Similar matrices

Def: If A and B are $n \times n$ matrices, they are similar if $B=P^{-1} A P$ for some invertible $n \times n$ matrix P. We write $A \sim B$ to mean A is similar to B

- If $B=P^{-1} A P$, then $P B P^{-1}=A$. If $Q=P^{-1}$, then $A=Q^{-1} B Q$, so $A \sim B \Leftrightarrow B \sim A$.
- Since $A=I^{-1} A I$, we always have $A \sim A$.
- If $A \sim B$ and $B \sim C$, then

$$
\begin{aligned}
& P^{-1} A P=B \text { and } Q^{-1} B Q=C \\
\Rightarrow & Q^{-1}\left(P^{-1} A P\right) Q=C \\
\Rightarrow & (P Q)^{-1} A(P Q)=C
\end{aligned}
$$

So $A \sim C$.

Example: A is diagonalizable if and only if $A \sim D$ for a diagonal matrix D.

Thus, if $A \sim B$ and A is diagonalizable, the properties above imply $B \sim D$, so B is diagonalizable as well.

Theorem: If $A \sim B$, then
1.) $\left.\begin{array}{rl}\operatorname{det}(A)=\operatorname{det}(B) \quad\left(P^{-1} A P=B \Rightarrow\right. & \operatorname{det} P^{-1} \operatorname{det} A \operatorname{det} P \\ & =\operatorname{det} B\end{array}\right)$
2.) $\operatorname{rank}(A)=\operatorname{rank}(B)$
3.) $\quad C_{A}(x)=C_{B}(x)$
4) A and B have same eigenvalues.
5.) $\operatorname{tr}(A)=\operatorname{tr}(B) \quad(\operatorname{tr}(A)=$ trace of $A=$ sum of diagonal $)$

Ex: If $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$

$$
\operatorname{tr}(A)=2+2=4=1+3=\operatorname{tr}(B)
$$

but $\operatorname{det}(A)=4-1=3 \neq 2=\operatorname{det}(B)$, so A and B are not similar.

Diagonalization
Using new tools from the previous section, we can now say more about eigenvectors and diagonalization

Recall:
If A is an $n \times n$ matrix,

- $C_{A}(x)=\operatorname{det}(x I-A)$, and eigenvalues are the woos of $C_{A}(x)$.
- If λ is an eigenvalue of A, then λ-eigenvectors are the nontrivial solutions of

$$
(\lambda I-A) \stackrel{\rightharpoonup}{x}=\stackrel{\rightharpoonup}{0}
$$

- A is diagonalizable if and only if it has n eigenvectors $\vec{x}_{1}, \ldots, \vec{x}_{n}$ such that the matrix $P=\left[\begin{array}{lll}\vec{x}_{1} & \ldots & \vec{x}_{n}\end{array}\right]$ is invertible.

Now we know that P is invertible \Leftrightarrow columns form a basis for \mathbb{R}^{n}, which leads to the following:

Theorem: A is diagonalizable if and only if \mathbb{R}^{n} has a basis $\left\{\vec{x}_{1}, \ldots, \vec{x}_{n}\right\}$ consisting of eigenvectors of A.

- In this case, $P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, where each λ_{i} is the eigenvalue corresponding to \vec{x}_{i}.

Recall that if λ is an eigenvalue of A, an $n \times n$ matrix, The eigenspace of A corresponding to λ is

$$
E_{\lambda}(A)=\left\{\vec{x} \text { in } \mathbb{R}^{n} \mid A \vec{x}=\lambda \stackrel{\rightharpoonup}{x}\right\}
$$

Equivalently, $E_{\lambda}(A)=$ null $(\lambda I-A)$.

This is a subspace of \mathbb{R}^{n} and consists of all
λ-eigenvectors (plus the 0 vector).

Since $E_{\lambda}(A)=\operatorname{null}(\lambda I-A)$, we have:
1.) A basis for $E_{\lambda}(A)$ consists of basic λ-eigenvectors.
2.) $\operatorname{dim} E_{\lambda}(A)=\#$ of basic λ-eigenvectors \leq multiplicity of λ.
3.) A is diagonalizable if and only if
$\operatorname{dim}\left(E_{1}(A)\right)=$ multiplicity of λ for every eigenvalue λ of A. (Assuming $C_{A}(x)$ completely factors)

$$
\begin{aligned}
& \text { Ex: } \\
& \qquad \begin{array}{l}
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 1 & -2 \\
-1 & 0 & -2
\end{array}\right] \\
C_{A}(x)=\operatorname{det}\left[\begin{array}{ccc}
x-2 & -1 & -1 \\
-2 & x-1 & 2 \\
1 & 0 & x+2
\end{array}\right] \\
=1(-2+(x-1))-0+(x+2)((x-2)(x-1)-2) \\
=(x-3)+(x+2)\left(x^{2}-3 x\right) \\
= \\
=(x-3)(1+(x+2) x) \\
=
\end{array} \begin{array}{l}
(x-3)\left(x^{2}+2 x+1\right)=(x-3)(x+1)^{2}
\end{array}
\end{aligned}
$$

Eigenvalues are $\lambda_{1}=3($ malt 1$)$

$$
\lambda_{2}=-1(\text { mull } 2)
$$

$$
\begin{aligned}
& \lambda_{1}=3 \\
& E_{3}(A)=\operatorname{null}(3 I-A) \\
& \quad\left[\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
-2 & 2 & 2 & 0 \\
1 & 0 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
0 & 1 & 6 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 5 & 0
\end{array}\right] \\
& \Rightarrow x=-5 z \\
& y=-6 z
\end{aligned}
$$

set $z=t$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{c}
-5 \\
-6 \\
1
\end{array}\right] \quad \text { so } \quad E_{3}(A)=\operatorname{span}\left\{\left[\begin{array}{c}
-5 \\
-6 \\
1
\end{array}\right]\right\}
$$

and has dimension 1 .

$$
\begin{aligned}
& \lambda_{2}=-1: \\
& {\left[\begin{array}{ccc|c}
-3 & -1 & -1 & 0 \\
-2 & -2 & 2 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & -2 & 4 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& x=-z \\
& y=2 z \\
& \text { set } z=t \rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
\end{aligned}
$$

So $E_{-1}(A)=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]\right\}$ and has dimension 1 .
Thus, its dimension is less them the multiplicity
so A is not diagomalizable.
(Also, note that there are at most 2 lin. indep. eigenvectors of A, so not enough to form a basis of \mathbb{R}^{3})

Practice problems: 5.5 : Idef, 4

