Def: IF A and B are hxn matrices, they are similar if B=P'AP for some invertible hxn matrix P. We write A~B to mean A is similar to B

- If $B = P^{-1}AP$, then $PBP^{-1} = A$. If $Q = P^{-1}$, then $A = Q^{-1}BQ$, so $A \sim B \iff B \sim A$.
- · Since A = I'AI, we always have A~A.

• If
$$A \sim B$$
 and $B \sim C$, then
 $P^{-1}AP = B$ and $Q^{-1}BQ = C$
 $\implies Q^{-1}(P^{-1}AP)Q = C$
 $\implies (PQ)^{-1}A(PQ) = C$
so $A \sim C$.

Thus, if A~B and A is diagonalizable, the properties above imply B~D, so B is diagonalizable as well.

Theorem: If
$$A \sim B$$
, then
1.) $det(A) = det(B)$ $\left(\begin{array}{c} P^{-1}A P = B = \right) det P^{-1} det A det P \\ = det B \end{array} \right)$
2.) $rank(A) = rank(B)$
3) $C_A(x) = C_B(x)$
4) A and B have some eigenvalues.
5.) $tr(A) = tr(B)$ $\left(tr(A) = trace of A = sum of diagonal\right)$
Ex: If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$
 $tr(A) = 2 + 2 = 4 = 1 + 3 = tr(B)$,
but $det(A) = 4 - 1 = 3 \neq 2 = det(B)$ so A and B are not

but $det(A) = 4 - 1 = 3 \neq 2 = det(B)$, so A and B are not similar.

Diagonalization

Using new tools from the previous section, we can now say more about eigenvectors and diagonalization

Recall:

If A is an nxn matrix,

• $C_A(x) = det(xI - A)$, and eigenvalues are the bots of $c_A(x)$.

- If λ is an eigenvalue of A, then λ -eigenvectors are the nontrivial solutions of $(\lambda T - A) \vec{\chi} = \vec{O}$
- A is diagonalizable if and only if it has n eigenvectors $\vec{x}_{1,...,}\vec{x}_{n}$ such that the matrix $P = [\vec{x}_{1},...,\vec{x}_{n}]$ is invertible.

Now we know that P is invertible (=) columns form a basis for R, which leads to the following:

Theorem: A is diagonalizable if and only if
$$\mathbb{R}^{h}$$
 has a basis $\{\vec{x}_{1}, ..., \vec{x}_{h}\}$ consisting of eigenvectors of A.

•In this case, $P^{-1}AP = diag(\lambda_1, \lambda_2, ..., \lambda_n)$, where each λ_i is the eigenvalue corresponding to $\overline{x_i}$.

Recall that if
$$\lambda$$
 is an eigenvalue of A , and non-matrix,
The eigenspace of A corresponding to λ is
 $E_{\lambda}(A) = \{\vec{x} \text{ in } |R^{n}| | A\vec{x} = \lambda\vec{x}\}$
Equivalently, $E_{\lambda}(A) = null(\lambda I - A)$.

This is a subspace of R^h and consists of all

Since
$$E_{\lambda}(A) = null(\lambda I - A)$$
, we have:
1.) A basis for $E_{\lambda}(A)$ consists of basic λ -eigenvectors.
2.) dim $E_{\lambda}(A) = #$ of basic λ -eigenvectors \leq multiplicity of λ .
3.) A is diagonalizable if and only if
 $dim(E_{\lambda}(A)) = multiplicity$ of λ for every
eigenvalue λ of A. (Assuming $C_{A}(x)$ completely
factors)

$$\begin{aligned} \mathbf{E} \mathbf{X} \\ \mathbf{A} &= \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & -2 \\ -1 & 0 & -2 \end{bmatrix} \\ \mathbf{C}_{\mathbf{A}}(\mathbf{x}) &= d\mathbf{e} + \begin{bmatrix} \mathbf{x} - 2 & -1 & -1 \\ -2 & \mathbf{x} - 1 & 2 \\ 1 & 0 & \mathbf{x} + 2 \end{bmatrix} \\ &= 1 \left(-2 + (\mathbf{x} - 1) \right) - \mathbf{b} + (\mathbf{x} + 2) \left((\mathbf{x} - 2) (\mathbf{x} - 1) - 2 \right) \\ &= (\mathbf{x} - 3) + (\mathbf{x} + 2) (\mathbf{x}^2 - 3\mathbf{x}) \\ &= (\mathbf{x} - 3) \left(1 + (\mathbf{x} + 2)\mathbf{x} \right) \\ &= (\mathbf{x} - 3) \left(\mathbf{x}^2 + 2\mathbf{x} + 1 \right) = (\mathbf{x} - 3) (\mathbf{x} + 1)^2 \\ \end{aligned}$$
Eigenvalues are $\lambda_1 = 3 (\text{mult } 1) \\ \lambda_2 = -1 (\text{mult } 2) \end{aligned}$

$$\frac{\lambda_{1}=3}{E_{3}(A) = \operatorname{null}(3I-A)}$$

$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ -2 & 2 & 2 & 0 \\ 1 & 0 & 5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 5 & 0 \end{bmatrix}$$

$$\implies \chi = -5 z$$

$$y = -6 z$$

$$Set z = t$$

$$\begin{bmatrix} \chi \\ y \\ z \end{bmatrix} = t \begin{bmatrix} -5 \\ -6 \\ 1 \end{bmatrix} \qquad So \qquad E_{3}(A) = \operatorname{span}\left\{ \begin{bmatrix} -5 \\ -6 \\ 1 \end{bmatrix} \right\}$$

$$\frac{\lambda_{2} = -1}{\begin{vmatrix} -3 & -1 & -1 & 0 \\ -2 & -2 & 2 & 0 \\ 1 & 0 & 1 & 0 \end{vmatrix}} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -2 & 4 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x = -2$$

$$y = 22$$

$$y = 22$$

$$y = 22$$

$$y = 1$$

Thus, its dimension is less than the multiplicity

(Also, note that there are at most 2 lin. indep. eigenvectors of A, so not enough to form a basis of \mathbb{R}^3 .)

Practice problems: 5.5: 1 def, 4