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Abstract

Let R be a commutative Noetherian ring of dimension d, M a commutative cancellative torsion-

free monoid of rank r and P a finitely generated projective R[M ]-module of rank t.

(1) Assume M is Φ-simplicial seminormal. (i) If M ∈ C(Φ), then Serre dim R[M ] ≤ d. (ii) If

r ≤ 3, then Serre dim R[int(M)] ≤ d.

(2) If M ⊂ Z2
+ is a normal monoid of rank 2, then Serre dim R[M ] ≤ d.

(3) Assume M is c-divisible, d = 1 and t ≥ 3. Then P ∼= ∧tP⊕R[M ]t−1.

(4) Assume R is a unibranched affine algebra over an algebraically closed field and d = 1.

Then P ∼= ∧tP⊕R[M ]t−1.

1 Introduction

Throughout rings are commutative Noetherian with 1; projective modules are finitely generated and of

constant rank; monoids are commutative cancellative torsion-free; Z+ denote the additive monoid of

non-negative integers.

Let A be a ring and P a projective A-module. An element p ∈ P is called unimodular, if there

exists φ ∈ Hom (P,A) such that φ(p) = 1. We say Serre dimension of A (denoted as Serre dim A)

is ≤ t, if every projective A-module of rank ≥ t + 1 has a unimodular element. Serre dimension of

A measures the surjective stabilization of the Grothendieck group K0(A). Serre’s problem on the

freeness of projective k[X1, . . . , Xn]-modules, k a field, is equivalent to Serre dim k[X1, . . . , Xn] = 0.

After the solution of Serre’s problem by Quillen [16] and Suslin [21], many people worked on surjec-

tive stabilization of polynomial extension of a ring. Serre [20] proved Serre dim A ≤ dimA, Plumstead

[14] proved Serre dim A[X] ≤ dimA, Bhatwadekar-Roy [4] proved Serre dim A[X1, . . . , Xn] ≤ dimA

and Bhatwadekar-Lindel-Rao [3] proved Serre dim A[X1, . . . , Xn, Y
±1
1 , . . . , Y ±1m ] ≤ dimA.

Anderson conjectured an analogue of Quillen-Suslin theorem for monoid algebras over a field which

was answered by Gubeladze [8] (see 1.1) as follows.

Theorem 1.1 Let k be a field and M a monoid. Then M is seminormal if and only if all projective

k[M ]-modules are free.

Gubeladze [11] asked the following

Question 1.2 Let M ⊂ Zr+ be a monoid of rank r with M ⊂ Zr+ an integral extension. Let R be a

ring of dimension d. Is Serre dim R[M ] ≤ d?
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We answer Question 1.2 for some class of monoids. Recall that a finitely generated monoid M of

rank r is called Φ-simplicial if M can be embedded in Zr+ and the extension M ⊂ Zr+ is integral (see

[10]). A Φ-simplicial monoid is commutative, cancellative and torsion free.

Definition 1.3 Let C(Φ) denote the class of seminormal Φ-simplicial monoids

M ⊂ Zr+ = {ts11 . . . tsrr | si ≥ 0} of rank r such that Mm = M ∩ {ts11 . . . tsmm | si ≥ 0} for 1 ≤ m ≤ r

satisfies the following: Given a positive integer c, there exist integers ci > c for i = 1, . . . ,m− 1 such

that for any ring R, the automorphism η ∈ AutR[tm](R[t1, . . . , tm]) defined by η(ti) = ti + tcim for

i = 1, . . . ,m− 1, restricts to an R-automorphism of R[Mm].

Note that Mm (1 ≤ m ≤ r) are in C(Φ).

The following result (3.4, 3.8) answers Question 1.2 for monoids in C(Φ).

Theorem 1.4 Let M be a seminormal Φ-simplicial monoid and R a ring of dimension d.

(1) If M ∈ C(Φ), then Serre dim R[M ] ≤ d.

(2) Assume rank(M) ≤ 3. Then Serre dim R[int(M)] ≤ d, where int(M) = int(R+M) ∩ Z3
+ and

int(R+M) is the interior (w.r.t. Euclidean topology) of the cone R+M ⊂ R3.

The following result (3.6) follows from (1.4(1)). When R is a field, the result is due to Anderson

[1].

Theorem 1.5 Let R be a ring of dimension d and M ⊂ Z2
+ a normal monoid of rank 2. Then Serre

dim R[M ] ≤ d.

The following result answer Question 1.2 partially for 1-dimensional rings (see 3.13, 3.16). The

techniques of Kang [12], Roy [17] and Gubeladze’s [9] are used to prove the following result. Recall

that a monoid M is called c-divisible for some integer c > 1 if cX = m has a solution in M for all

m ∈ M . All c-divisible monoids are seminormal. Further a ring R is called unibranched if for any

p ∈ SpecR containing C, there is a unique q ∈ SpecR such that q ∩ R = p, where R is the integral

closure of R and C the conductor ideal of R ⊂ R.

Theorem 1.6 Let R be a ring of dimension 1, M a monoid and P a projective R[M ]-module of rank

r.

(i) If M is c-divisible and r ≥ 3, then P ∼= ∧rP⊕R[M ]r−1.

(ii) If R is a unibranched affine algebra over an algebraically closed field, then P ∼= ∧rP⊕R[M ]r−1.

If R is a 1-dimensional anodal ring with finite seminormalization, then (1.6(ii)) is due to Sarwar

([18], Theorem 1.2). If k is an algebraically closed field of characteristic 2, then node k[X,Y ]/(X2 −
Y 2 − Y 3) is not anodal but is unibranched by Kang ([12], Example 2).

At the end, we give some applications to minimum number of generators of projective modules.
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2 Preliminaries

Let A be a ring and Q an A-module. We say p ∈ Q is unimodular if the order ideal OQ(p) = {φ(p) | φ ∈
Q∗} equals A. The set of all unimodular elements in Q is denoted by Um(Q). We write En(A) for the

group generated by set of all n× n elementary matrices over A and Umn(A) for Um(An). We denote

by AutA(Q), the group of all A-automorphisms of Q.

For an ideal J of A, we denote by E(A⊕Q, J), the subgroup of AutA(A⊕Q) generated by all the

automorphisms ∆aφ =
( 1 aφ
0 idQ

)
and Γq =

(
1 0
q idQ

)
with a ∈ J , φ ∈ Q∗ and q ∈ Q. Further, we shall

write E(A⊕Q) for E(A⊕Q,A). We denote by Um(A⊕Q, J) the set of all (a, q) ∈ Um(A⊕Q) with

a ∈ 1 + J and q ∈ JQ.

We state some results for later use.

Proposition 2.1 (Lindel [13], 1.1) Let A be a ring and Q an A-module. Let Qs be free of rank r for

some s ∈ A. Then there exist p1, . . . , pr ∈ Q, φ1, . . . , φr ∈ Q∗ and t ≥ 1 such that following holds:

(i) 0 :A s
′A = 0 :A s

′2A, where s′ = st.

(ii) s′Q ⊂ F and s′Q∗ ⊂ G, where F =
∑r
i=1Api ⊂ Q and G =

∑r
i=1Aφi ⊂ Q∗.

(iii) the matrix (φi(pj))1≤i,j≤r = diagonal (s′, . . . , s′). We say F and G are s′-dual submodules of

Q and Q∗ respectively.

Proposition 2.2 (Lindel [13], 1.2, 1.3) Let A be a ring and Q an A-module. Assume Qs is free of

rank r for some s ∈ A. Let F and G be s-dual submodules of Q and Q∗ respectively. Then

(i) for p ∈ Q, there exists q ∈ F such that ht (OQ(p+ sq)As) ≥ r.
(ii) If Q is projective A-module and p ∈ Um(Q/sQ), then there exists q ∈ F such that ht (OQ(p+

sq)) ≥ r.

Proposition 2.3 (Lindel [13], 1.6) Let Q be a module over a positively graded ring A = ⊕i≥0Ai and

Qs be free for some s ∈ R = A0. Let T ⊆ A be a multiplicatively closed set of homogeneous elements.

Let p ∈ Q be such that pT (1+sR) ∈ Um(QT (1+sR)) and s ∈ rad(OQ(p) + A+), where A+ = ⊕i≥1Ai.
Then there exists p′ ∈ p+ sA+Q such that p′T ∈ Um(QT ).

Proposition 2.4 (Lindel [13], 1.8) Under the assumptions of (2.3), let p ∈ Q be such that OQ(p) +

sA+ = A and A/OQ(p) is an integral extension of R/(R ∩ OQ(p)). Then there exists p′ ∈ Um(Q)

with p′ − p ∈ sA+Q.

The following result is due to Amit Roy ([17], Proposition 3.4).

Proposition 2.5 Let A,B be two rings with f : A → B a ring homomorphism. Let s ∈ A be non-

zerodivisor such that f(s) is a non-zerodivisor in B. Assume that we have the following cartesian

square.

A
f //

��

B

��
As

fs // Bf(s)

3



Further assume that SLr(Bf(s)) = Er(Bf(s)) for some r > 0. Let P and Q be two projective A-modules

of rank r such that (i) ∧rP ∼= ∧rQ, (ii) Ps and Qs are free over As, (iii) P ⊗AB ∼= Q⊗AB and

Q⊗AB has a unimodular element. Then P ∼= Q.

Definition 2.6 (see [10], Section 6) Let R be a ring and M a Φ-simplicial monoid of rank r. Fix an

integral extension M ↪→ Zr+. Let {t1, . . . , tr} be a free basis of Zr+. Then M can be thought of as a

monoid consisting of monomials in t1, . . . , tr.

For x = ta11 . . . tarr and y = tb11 . . . tbrr in Zr+, define x is lower than y if ai < bi for some i and

aj = bj for j > i. In particular, ti is lower than tj if and only if i < j.

For f ∈ R[M ], define the highest member H(f) of f as am, where f = am + a1m1 + . . . + akmk

with m,mi ∈M , a ∈ R \ {0}, ai ∈ R and each mi is strictly lower than m for 1 ≤ i ≤ k.

An element f ∈ R[Zr+] is called monic if H(f) = atsr, where a ∈ U(R) (:=units of R) and s > 0.

An element f ∈ R[M ] is said to be monic if f is monic in R[Zr+] via the embedding R[M ] ↪→ R[Zr+].

Define M0 to be the submonoid {ts11 . . . t
sr−1

r−1 | si ≥ 0} ∩M of M . Clearly M0 is finitely generated

as M is finitely generated. Also M0 ↪→ Zr−1+ is integral. Hence M0 is Φ-simplicial. Further, if M is

seminormal, then M0 is seminormal.

Grade R[M ] as R[M ] = R[M0] ⊕ A1 ⊕ A2 ⊕ . . ., where Ai is the R[M0]-module generated by the

monomials ts11 . . . t
sr−1

r−1 t
i
r ∈ M . For an ideal I in R[M ], define its leading coefficient ideal λ(I) as

{a ∈ R | ∃f ∈ I with H(f) = am for some m ∈M}. �

Lemma 2.7 ([10], Lemma 6.5) Let R be a ring and M ⊂ Zr+ a Φ-simplicial monoid. If I ⊆ R[M ] is

an ideal, then ht (λ(I)) ≥ ht (I), where λ(I) is defined in (2.6).

3 Main Theorem

This section contains main results stated in the introduction. We also give some examples of monoids

in C(Φ).

3.1 Over C(Φ) class of monoids

Lemma 3.1 Let R be a ring and M ⊂ Zr+ a monoid in C(Φ) of rank r. Let f ∈ R[M ] ⊂ R[Zr+] =

R[t1, . . . , tr] with H(f) = uts11 . . . tsrr for some unit u ∈ R. Then there exist η ∈ AutR(R[M ]) such

that η(f) is a monic polynomial in tr.

Proof By a property of C(Φ), choose large c1, . . . , cr−1 such that η ∈ AutR[tr]R[t1 . . . , tr] defined

by η(ti) = ti + tcir for i = 1, . . . , r− 1, restricts to an automorphism of R[M ]. Further, η(f) is a monic

polynomial in tr. �

Lemma 3.2 Let R be a ring of dimension d and M ⊂ Zr+ a monoid in C(Φ) of rank r. Let P be a

projective R[M ]-module of rank > d. Write R[M ] = R[M0] ⊕ A1 ⊕ A2 . . ., as defined in (2.6). Let
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A+ = A1 ⊕A2 ⊕ . . . be an ideal of R[M ]. Assume that Ps is free for some s ∈ R and P/sA+P has a

unimodular element. Then the natural map Um(P ) → Um(P/sA+P ) is surjective. In particular, P

has a unimodular element.

Proof Write A = R[M ]. Since every unimodular element of P/sA+P can be lifted to a unimodular

element of P1+sA+
, if s is nilpotent, then elements of 1+sA+ are units in A and we are done. Therefore,

assume that s is not nilpotent.

Let p ∈ P be such that p ∈ Um(P/sA+P ). Then OP (p) + sA+ = A. Hence OP (p) contains an

element of 1+sA+. Choose g ∈ A+ such that 1+sg ∈ OP (p). Applying (2.2) with sg in place of s, we

get q ∈ F ⊂ P such that ht (OP (p+ sgq)) > d. Since p+ sgq is a lift of p, replacing p by p+ sgq, we

may assume that ht (OP (p)) > d. By (2.7), we get ht (λ(OP (p))) ≥ ht (OP (p)) > d. Since λ(OP (p))

is an ideal of R, we get 1 ∈ λ(OP (p)). Hence there exists f ∈ OP (p) such that the coefficient of H(f)

(highest member of f) is a unit.

Suppose H(f) = uts11 . . . tsrr with u a unit in R. Since M ∈ C(Φ), by (3.1), there exists α ∈
AutR(R[M ]) such that α(f) is monic in tr. Thus we may assume that OP (p) contains a monic

polynomial in tr. Hence A/OP (p) is an integral extension of R[M0]/(OP (p) ∩ R[M0]) and p ∈
Um(P/sA+P ). By (2.4), there exists p′ ∈ Um(P ) such that p′ − p ∈ sA+P . This means p′ ∈ Um(P )

is a lift of p. This proves the result. �

Remark 3.3 In (3.2), we do not need the monoid M to be seminormal. �

We prove (1.4(1)).

Theorem 3.4 Let R be a ring of dimension d and M a monoid in C(Φ) of rank r. If P is a projective

R[M ]-module of rank r′ ≥ d + 1, then P has a unimodular element. In other words, Serre dim

R[M ] ≤ d.

Proof We can assume that the ring is reduced with connected spectrum. If d = 0, then R is a field.

Since M is seminormal, projective R[M ]-modules are free, by (1.1). If r = 0, then M = 0 and we are

done by Serre [20]. Assume d, r ≥ 1 and use induction on d and r simultaneously.

If S is the set of all non-zerodivisor of R, then dimS−1R = 0 and so S−1P is free S−1R[M ]-module

(d = 0 case). Choose s ∈ S such that Ps is free. Consider the ring R[M ]/(sR[M ]) = (R/sR)[M ].

Since dimR/sR = d− 1, by induction on d, Um(P/sP ) is non-empty.

Write R[M ] = R[M0] ⊕ A1 ⊕ A2 . . ., as defined in (2.6). It is easy to see that M0 ∈ C(Φ). Let

A+ = A1 ⊕A2 ⊕ . . .. Since R[M ]/A+ = R[M0], by induction on r, Um(P/A+P ) is non-empty. Write

A = R[M ] and consider the following fiber product diagram

A/(sA ∩A+) //

��

A/sA

��
A/A+

// A/(s,A+)
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If B = R/sR, then A/(s,A+) = B[M0]. Let u ∈ Um(P/A+P ) and v ∈ Um(P/sP ). Let u and v

denote the images of u and v in P/(s,A+)P . Write P/(s,A+)P = B[M0] ⊕ P0, where P0 is some

projective B[M0]-module of rank = r′ − 1. Note that dim(B) = d − 1 and u, v are two unimodular

elements in B[M0]⊕ P0.

Case 1. Assume rank(P0) ≥ max {2, d}. Then by ([6], Theorem 4.5), there exists σ ∈ E(B[M0]⊕
P0) such that σ(u) = v. Lift σ to an element σ1 ∈ E(P/A+P ) and write σ1(u) = u1 ∈ Um(P/A+P ).

Then images of u1 and v are same in P/(s,A+)P . Patching u1 and v over P/(s,A+)P in the above

fiber product diagram, we get an element p ∈ Um(P/(sA ∩A+)P ).

Note sA ∩ A+ = sA+. We have Ps is free and P/sA+P has a unimodular element. Use (3.2), to

conclude that P has a unimodular element.

Case 2. Now we consider the remaining case, namely d = 1 and rank(P ) = 2. Since B = R/sR

is 0 dimensional, projective modules over B[M0] and B[M ] are free, by (1.1). In particular, P/sP

and P/(s,A+)P are free modules of rank 2 over the rings B[M ] and B[M0] respectively. Consider the

same fiber product diagram as above.

Since any two unimodular elements in Um2(B[M0]) are connected by an element of GL2(B[M0]).

Further B[M0] is a subring of B[M ] = A/sA. Hence the natural map GL2(B[M ]) → GL2(B[M0]) is

surjective. Hence any automorphism of P/(s,A+)P can be lifted to an automorphism of P/sP . By

same argument as above, patching unimodular elements of P/sP and P/A+P , we get a unimodular

element in P/(sA ∩ A+)P . Since sA ∩ A+ = sA+ and P/sA+P has a unimodular element, by (3.2),

P has a unimodular element. This completes the proof. �

Example 3.5 (1) If M is a Φ-simplicial normal monoid of rank 2, then M ∈ C(Φ). To see this, by

([10], Lemma 1.3), M ∼= (α1, α2) ∩ Z2
+, where α1 = (a, b) and α2 = (0, c) and (α1, α2) is the group

generated by α1 and α2. It is easy to see that M ∼= ((1, a1), (0, a2)) ∩ Z2
+, where gcd(b, c) = g and

a1 = b/g, a2 = c/g. Hence M ∈ C(Φ).

(2) If M ⊂ Z2
+ is a finitely generated rank 2 normal monoid, then it is easy to see that M is

Φ-simplicial. Hence M ∈ C(Φ) by (1).

(3) If M is a rank 3 normal quasi-truncated or truncated monoid (see [10], Definition 5.1), then

M ∈ C(Φ). To see this, by ([10], Lemma 6.6), M satisfies properties of (1.3). Further, M0 is a

Φ-simplicial normal monoid of rank 2. By (1), M0 ∈ C(Φ). �

Corollary 3.6 Let R be a ring of dimension d and M ⊂ Z2
+ a normal monoid of rank 2. Then Serre

dim R[M ] ≤ d.

Proof If M is finitely generated, then result follows from (3.5(2)) and (3.4).

If M is not finitely generated, then write M as a filtered union of finitely generated submonoids,

say M = ∪λ∈IMλ. Since M is normal, the integral closure Mλ of Mλ is contained in M . Hence

M = ∪λ∈IMλ. By ([5], Proposition 2.22), Mλ is fintely generated. If P is a projective R[M ]-module,

then P is defined over R[Mλ] for some λ ∈ I as P is finitely generated. Now the result follows from

(3.5(2)) and (3.4). �
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The following result follows from (3.5(3)) and (3.4).

Corollary 3.7 Let R be a ring of dimension d and M a truncated or normal quasi-truncated monoid

of rank ≤ 3. Then Serre dim R[M ] ≤ d.

Now we prove (1.4(2)).

Proposition 3.8 Let R be a ring of dimension d and M a Φ-simplicial seminormal monoid of rank

≤ 3. Then Serre dim R[int(M)] ≤ d.

Proof Recall that int(M) = int(R+M) ∩ Z3
+. Let P be a projective R[int(M)]-module of rank

≥ d + 1. Since M is seminormal, by ([5], Proposition 2.40), int(M) = int(M), where M is the

normalization of M . Since normalization of a finitely generated monoid is finitely generated (see [5],

Proposition 2.22), M is a Φ-simplicial normal monoid. By ([10], Theorem 3.1), int(M) = int(M) is a

filtered union of truncated (normal) monoids (see [10], Definition 2.2). Since P is finitely generated, we

get P is defined over R[N ], where N ⊂ int(M) is a truncated monoid. By (3.7), Serre dim R[N ] ≤ d.

Hence P has a unimodular element. Therefore Serre dim R[int(M)] ≤ d. �

In the following examples, R is a ring of dimension d, Monoid operations are written multiplica-

tively and K(M) denotes the group of fractions of monoid M .

Example 3.9 For n > 0, consider the monoid M ⊂ Zr+ generated by {ti11 t
i2
2 . . . t

ir
r |
∑
ij = n}. Then

M is a Φ-simplicial normal monoid. For integers ci = nki + 1, ki > 0 and i = 1, . . . , r − 1, consider

η ∈ AutR[tr](R[t1, . . . , tr]) defined by ti 7→ ti + tcir for i = 1, . . . , r − 1.

A typical monomial in the expansion of η(ti11 . . . t
ir−1

r−1 t
ir
r ) = (t1 + tc1r )i1 . . . (tr−1 + t

cr−1
r )ir−1tirr will

look like (ti1−l11 tc1l1r ) . . . (t
ir−1−lr−1

r−1 t
cr−1lr−1
r )tirr = (ti1−l11 . . . t

ir−1−lr−1

r−1 t
l1+...+lr−1+ir
r )t

n(k1l1+...+kr−1lr−1)
r

which belong to M . So η(R[M ]) ⊂ R[M ]. Similarly, η−1(R[M ]) ⊂ R[M ]. Hence η restricts to an

R-automorphism of R[M ]. Therefore η satisfies the property of (1.3). Hence M ∈ C(Φ). By (3.4),

Serre dim R[M ] ≤ d. �

Example 3.10 Let M be a Φ-simplicial monoid generated by monomials t21, t
2
2, t

2
3, t1t3, t2t3. For

integers cj = 2kj − 1 with kj > 1, consider the automorphism η ∈ AutR[t3](R[t1, t2, t3]) defined by

tj 7→ tj + t
cj
3 for j = 1, 2. Then it is easy to see that η restricts to an automorphism of R[M ].

We claim that M is seminormal but not normal. For this, let

z = (t23)−1(t1t3)(t2t3) = t1t2 ∈ K(M) \M, but z2 ∈ M,

showing that M is not normal. For seminormality, let

z = (t21)α1(t22)α2(t23)α3(t1t3)α4(t2t3)α5 ∈ K(M) with αi ∈ Z and z2, z3 ∈ M.

We may assume that 0 ≤ α4, α5 ≤ 1. Now z2 ∈ M ⇒ α1, α2 ≥ 0 and 2α3 + α4 + α5 ≥ 0. If α3 < 0,

then α4 = α5 = 1 and α3 = −1. In this case, z3 = (t2α1+1
1 t2α2+1

2 )3 /∈ M , a contradiction. Therefore
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α3 ≥ 0 and z ∈ M . Hence M is seminormal. It is easy to see that M ∈ C(Φ). By (3.4), Serre dim

R[t21, t
2
2, t

2
3, t1t3, t2t3] ≤ d.

�

Remark 3.11 (1) Let R be a ring and P a projective R-module of rank ≥ 2. Let R be the

seminormalization of R. It follows from arguments in Bhatwadekar ([2], Lemma 3.1) that P ⊗RR has

a unimodular element if and only if P has a unimodular element.

(2) Assume R is a ring of dimension d and M ∈ C(Φ). If M the seminormalization of M is in

C(Φ), then Serre dim R[M ] ≤ max{1, d} using ([2] and 3.4).

(3) Let (R,m,K) be a regular local ring of dimension d containing a field k such that either char

k = 0 or char k = p and tr-deg K/Fp ≥ 1. Let M be a seminormal monoid. Then, using Popescu

([15], Theorem 1) and Swan ([23], Theorem 1.2), we get Serre dim R[M ] = 0. If M is not seminormal,

then Serre dim R[M ] = 1 using ([11], [2] and [23]).

Example 3.12 For a monoid M , M denotes the seminormalization of M .

1. Let M ⊂ Z2
+ be a Φ-simplicial monoid generated by tn1 , t1t2, t

n
2 , where n ∈ N. To see M is

normal, let z = ti1t
j
2 = (tn1 )p(t1t2)q(tn2 )r ∈ K(M) with p, q, r ∈ Z such that zt ∈ M for some

t > 0. Then i, j ≥ 0. We need to show that z ∈ M . We may assume that 0 ≤ q < n.

Since i, j ≥ 0, we get p, r ≥ 0. Thus z ∈ M and M is normal. Hence, by (3.6), Serre dim

R[tn1 , t1t2, t
n
2 ] ≤ d.

2. The monoid M ⊂ Z2
+ generated by t21, t1t

2
2, t

2
2 is seminormal but not normal. For this, let

z = (t1t
2
2)(t22)−1 = t1 ∈ K(M) \ M . Then z2 ∈ M showing that M is not normal. For

seminormality, let z = (t21)α(t1t
2
2)β(t22)γ ∈ K(M) with α, β, γ ∈ Z be such that z2, z3 ∈ M . We

may assume 0 ≤ β ≤ 1. If β = 0, then α, γ ≥ 0 and hence z ∈M . If β = 1, then z2 ∈M implies

α ≥ 0 and γ+ 1 ≥ 0. If γ = −1, then z3 = (t1)6α+3 /∈M , a contradiction. Hence γ ≥ 0, proving

that z ∈ M and M is seminormal. It is easy to see that M ∈ C(Φ). Therefore, by (3.4), Serre

dim R[t21, t1t
2
2, t

2
2] ≤ d.

3. Let M be a monoid generated by (t21, t1t
j
2, t

2
2), where j ≥ 3. Then M is not seminormal. For

this, if z = (t1t
j
2)(t22)−1 = t1t

j−2
2 ∈ K(M) \M , then z2 = t21t

2(j−2)
2 and z3 = (t21)(t1t

j
2)(t2j−62 )

are in M , showing that M is not seminormal.

If j = 3, then observe that t1t2 belongs to M . Since the monoid genertaed by t21, t1t2, t
2
2 is

normal, we get that M is generated by t21, t1t2, t
2
2. Hence Serre dim R[M ] ≤ d by (1).

Observe that if j is odd, then M = (t21, t1t2, t
2
2) and if j is even, then M = (t21, t1t

2
2, t

2
2). So Serre

dim R[M ] ≤ d by (1, 2).

In both cases, applying (3.11(1)), we get Serre dim R[M ] ≤ max {1, d}.

4. Let M be a monoid generated by (t31, t1t
2
2, t

3
2) Then M is not seminormal. For this, let z =

(t1t
2
2)2t−32 ∈ K(M) \M . Then z2 = t31(t1t

2
2) ∈M and z3 = t61t

3
2 ∈M . Hence seminormalization
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of M is M = (t31, t
2
1t2, t1t

2
2, t

3
2). By (3.9), Serre dim R[M ] ≤ d. Therefore, applying (3.11(1)), we

get Serre dim R[M ] ≤ max {1, d}.

�

3.2 Monoid algebras over 1-dimensional rings

The following result proves (1.6(i)).

Theorem 3.13 Let R be a ring of dimension 1 and M a c-divisible monoid. If P is a projective

R[M ]-module of rank r ≥ 3, then P ∼= ∧rP⊕R[M ]r−1.

Proof If R is normal, then we are done by Swan [23]. Assume R is not normal.

Case 1. Assume R has finite normalization. Let R be the normalization of R and C the conductor

ideal of the extension R ⊂ R. Then height of C = 1. Hence R/C and R/C are zero dimensional rings.

Consider the following fiber product diagram

R[M ] //

��

R[M ]

��
(R/C)[M ] // (R/C)[M ]

If P ′ = ∧rP⊕R[M ]r−1, then by Swan [23], P ⊗R[M ] ∼= ∧r(P ⊗R[M ])⊕R[M ]r−1 ∼= P ′⊗R[M ].

By Gubeladze [8], P/CP and P ′/CP ′ are free (R/C)[M ]-modules. Further, SLr((R/C)[M ]) =

Er((R/C)[M ]) for r ≥ 3, by Gubeladze [9]. Now using standard arguments of fiber product diagram,

we get P ∼= P ′.

Case 2. Now R need not have finite normalization. We may assume R is a reduced ring with

connected spectrum. Let S be the set of all non-zerodivisors of R. By [8], S−1P is a free S−1R[M ]-

module. Choose s ∈ S such that Ps is a free Rs[M ]-module.

Now we follow the arguments of Roy ([17],Theorem 4.1). Let R̂ denote the s-adic completion R.

Then R̂red has a finite normalization. Consider the following fiber product diagram

R[M ] //

��

R̂[M ]

��
Rs[M ] // R̂s[M ]

Since R̂s is a zero dimensional ring, by [9], SLr(R̂s[M ]) = Er(R̂s[M ]) for r ≥ 3. If P ′ = ∧rP⊕R[M ]r−1,

then Ps and P ′s are free Rs[M ]-modules and by Case 1, P ⊗ R̂[M ] ∼= P ′⊗ R̂[M ]. By (2.5), P ∼= P ′.

This completes the proof. �

The following result is due to Kang ([12], Lemma 7.1 and Remark).
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Lemma 3.14 Let R be a 1-dimensional unibranched affine algebra over an algebraically closed field,

R the normalization of R and C the conductor ideal of the extension R ⊂ R. Then R/C = R/C +

a1R/C + · · ·+ amR/C, where ai ∈
√
C the radical ideal of C in R.

Lemma 3.15 Let R be a 1-dimensional ring, R the normalization of R and C the conductor ideal of

the extension R ⊂ R. Assume R/C = R/C + a1R/C + · · ·+ amR/C, where ai ∈
√
C the radical ideal

of C in R. Let M be a monoid and write A = R/C.

(i) If σ ∈ SLn(A[M ]), then σ = σ1σ2, where σ1 ∈ SLn((R/C)[M ]) and σ2 ∈ En(A[M ]).

(ii) If P is a projective R[M ]-module of rank r, then P ∼= ∧rP⊕R[M ]r−1.

Proof (i) Let σ = (bij) ∈ SLn(A[M ]). Write bij = (bij)0 + (bij)1a1 + · · ·+ (bij)mam, where (bij)l ∈
(R/C)[M ]. If α = ((bij)0), then det(σ) = 1 = det(α) + c, where c ∈ (

√
C/C)[M ]. Since c ∈ (R/C)[M ]

is nilpotent, det(α) is a unit in (R/C)[M ]. Let β = diagonal (1/(1 − c), 1, . . . , 1) ∈ GLn((R/C)[M ])

and σ1 = αβ ∈ SLn((R/C)[M ]).

Note that σ−11 σ = β−1α−1σ = β−1 1/(1− c)ασ, where α = ((bij)0), (bij)0 are minors of (bij)0.

σ2 := σ−11 σ =


1 0 · · · 0

0 1
1−c · · · 0

...
... · · ·

...

0 0 · · · 1
1−c




1 + c11 c12 · · · c1n

c21 1 + c22 · · · c2n
...

... · · ·
...

cn1 cn2 · · · 1 + cnn

 ,

where cij ∈ (
√
C/C)[M ].

Note that σ2 ∈ SLn(A[M ]) and σ2 = Idmodulo the nilpotent ideal of A[M ]. Hence σ2 ∈ En(A[M ]).

Thus we get σ = σ1σ2 with the desired properties.

(ii) Follow the proof of (3.13) and use (3.15(i)) to get the result. �

Now we prove (1.6(ii)) which follows from (3.14) and (3.15).

Theorem 3.16 Let R be a 1-dimensional unibranched affine algebra over an algebraically closed field

and M a monoid. If P is a projective R[M ]-module of rank r, then P ∼= ∧rP⊕R[M ]r−1.

4 Applications

Let R be a ring of dimension d and Q a finitely generated R-module. Let µ(Q) denote the minimum

number of generators of Q. By Forster [7] and Swan [22], µ(Q) ≤ max{µ(Qp) + dim(R/p)|p ∈
Spec (R), Qp 6= 0}. In particular, if P is a projective R-module of rank r, then µ(P ) ≤ r + d.

The following result is well known.

Theorem 4.1 Let A be a ring such that Serre dim A ≤ d. Assume Am is cancellative for m ≥ d+ 1.

If P is a projective A-module of rank r ≥ d+ 1, then µ(P ) ≤ r + d.
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Proof Assume µ(P ) = n > r + d. Consider a surjection φ : An →→ P with Q = ker(φ). Then

An ∼= P⊕Q. Since Q is a projective A-module of rank ≥ d+ 1, Q has a unimodular element q. Since

φ(q) = 0, φ induces a surjection φ : An/qAn →→ P . Since n − 1 > d, An−1 is cancellative. Hence

An−1 ∼= An/qA and P is generated by n− 1 elements, a contradiction. �

The following result is immediate from (4.1, 3.4, 3.6 and [6]).

Corollary 4.2 Let R be a ring of dimension d, M a monoid and P a projective R[M ]-module of rank

r > d. Then:

(i) If M ∈ C(Φ), then µ(P ) ≤ r + d.

(ii) If M ⊂ Z2
+ is a normal monoid of rank 2, then µ(P ) ≤ r + d.

Schaubhüser [19] proved that for any ring R of dimension d and n ≥ max{2, d+ 1}, En+1(R[M ])

acts transitively on Umn+1(R[M ]). Using Schaubhüser’s result and arguments of Dhorajia-Keshari

([6], Theorem 4.4), we get that if R is a ring of dimension d and P is a projective R[M ]-module of

rank ≥ max{2, d+ 1}, then E(R[M ]⊕P ) acts transitively on Um(R[M ]⊕P ). Therefore the following

result is immediate from (4.1 and 3.13).

Corollary 4.3 Let R be a ring of dimension 1, M a c-divisible monoid and P a projective R[M ]-

module of rank r ≥ 3. Then µ(P ) ≤ r + 1.
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