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Abstract

Let R be a commutative Noetherian ring of dimension d, M a commutative cancellative torsion-
free monoid of rank r and P a finitely generated projective R[M]-module of rank ¢.

(1) Assume M is ®-simplicial seminormal. (¢) If M € C(®), then Serre dim R[M] < d. (i7) If
r < 3, then Serre dim R[int(M)] < d.

(2) If M C Z2 is a normal monoid of rank 2, then Serre dim R[M] < d.

(3) Assume M is c-divisible, d = 1 and ¢ > 3. Then P = A'POR[M]" ™.

(4) Assume R is a unibranched affine algebra over an algebraically closed field and d = 1.
Then P = A*POR[M]' L.

1 Introduction

Throughout rings are commutative Noetherian with 1; projective modules are finitely generated and of
constant rank; monoids are commutative cancellative torsion-free; Zy denote the additive monoid of
non-negative integers.

Let A be a ring and P a projective A-module. An element p € P is called unimodular, if there
exists ¢ € Hom (P, A) such that ¢(p) = 1. We say Serre dimension of A (denoted as Serre dim A)
is < t, if every projective A-module of rank > t 4+ 1 has a unimodular element. Serre dimension of
A measures the surjective stabilization of the Grothendieck group Ky(A). Serre’s problem on the
freeness of projective k[X1,..., X, ]-modules, k a field, is equivalent to Serre dim k[X,...,X,] =0.

After the solution of Serre’s problem by Quillen [16] and Suslin [21], many people worked on surjec-
tive stabilization of polynomial extension of a ring. Serre [20] proved Serre dim A < dim A, Plumstead
[14] proved Serre dim A[X] < dim A, Bhatwadekar-Roy [4] proved Serre dim A[Xy,...,X,] < dim A
and Bhatwadekar-Lindel-Rao [3] proved Serre dim A[Xy, ..., X,, Y2, ..., Y, 1] < dim A.

Anderson conjectured an analogue of Quillen-Suslin theorem for monoid algebras over a field which

was answered by Gubeladze [8] (see 1.1) as follows.

Theorem 1.1 Let k be a field and M a monoid. Then M is seminormal if and only if all projective
k[M]-modules are free.

Gubeladze [11] asked the following

Question 1.2 Let M C Z be a monoid of rank r with M C Z'_ an integral extension. Let R be a
ring of dimension d. Is Serre dim R[M] < d?



We answer Question 1.2 for some class of monoids. Recall that a finitely generated monoid M of
rank 7 is called ®-simplicial if M can be embedded in Z!, and the extension M C Z!, is integral (see

[10]). A ®-simplicial monoid is commutative, cancellative and torsion free.

Definition 1.3 Let C(®) denote the class of seminormal ®-simplicial monoids
M C Zl, = {t]"...tJr| s; > 0} of rank r such that M,, = M N {t]*...t;m|s; > 0} for 1 < m < r

satisfies the following: Given a positive integer ¢, there exist integers ¢; > ¢ for i = 1,...,m — 1 such
that for any ring R, the automorphism 7 € Autgy,,|(R[t1,...,tn]) defined by n(t;) = t; + t: for
t=1,...,m — 1, restricts to an R-automorphism of R[M,,].

Note that M, (1 < m < r) are in C(®P).

The following result (3.4, 3.8) answers Question 1.2 for monoids in C(®).

Theorem 1.4 Let M be a seminormal ®-simplicial monoid and R a ring of dimension d.

(1) If M € C(®), then Serre dim R[M] < d.

(2) Assume rank(M) < 3. Then Serre dim Rlint(M)] < d, where int(M) = int(Ry M) N Z% and
int(Ry M) is the interior (w.r.t. Euclidean topology) of the cone R M C R®.

The following result (3.6) follows from (1.4(1)). When R is a field, the result is due to Anderson
[1].

Theorem 1.5 Let R be a ring of dimension d and M C Zi a normal monoid of rank 2. Then Serre
dim R[M] < d.

The following result answer Question 1.2 partially for 1-dimensional rings (see 3.13, 3.16). The
techniques of Kang [12], Roy [17] and Gubeladze’s [9] are used to prove the following result. Recall
that a monoid M is called c-divisible for some integer ¢ > 1 if ¢X = m has a solution in M for all
m € M. All c-divisible monoids are seminormal. Further a ring R is called unibranched if for any
p € Spec R containing C, there is a unique q € Spec R such that ¢ N R = p, where R is the integral
closure of R and C' the conductor ideal of R C R.

Theorem 1.6 Let R be a ring of dimension 1, M a monoid and P a projective R[M]-module of rank
r.

(i) If M is c-divisible and v > 3, then P =2 \"P@®R[M]" 1.

(ii) If R is a unibranched affine algebra over an algebraically closed field, then P = A" P@R[M]"~1.

If R is a 1-dimensional anodal ring with finite seminormalization, then (1.6(ii)) is due to Sarwar
([18], Theorem 1.2). If k is an algebraically closed field of characteristic 2, then node k[X,Y]/(X?% —
Y2 — Y?) is not anodal but is unibranched by Kang ([12], Example 2).

At the end, we give some applications to minimum number of generators of projective modules.



2 Preliminaries

Let A be aring and @ an A-module. We say p € @ is unimodular if the order ideal Og(p) = {o(p)| ¢ €
Q*} equals A. The set of all unimodular elements in @ is denoted by Um(Q). We write E,,(A4) for the
group generated by set of all n x n elementary matrices over A and Um,,(A) for Um(A™). We denote
by Aut 4(Q), the group of all A-automorphisms of Q.

For an ideal J of A, we denote by E(A® Q, J), the subgroup of Aut 4(A® Q) generated by all the
automorphisms A,y = ((1) ;C‘;g) and I'y = ((11 u?Q) with a € J, ¢ € Q* and g € Q. Further, we shall
write E(A® Q) for E(A® Q, A). We denote by Um(A & @, J) the set of all (a,q) € Um(A & Q) with
a€l+Jandqe JQ.

We state some results for later use.

Proposition 2.1 (Lindel [13], 1.1) Let A be a ring and Q an A-module. Let Qs be free of rank r for
some s € A. Then there exist p1,...,pr € Q, ¢1,...,0, € Q" and t > 1 such that following holds:
(1)0:48A=0:4 s'? A, where s’ = st.
(ii) Q C F and $'Q* C G, where F =%, | Ap; CQ and G =Y ;_, A¢; C Q*.
(t7) the matriz (¢;(p;))1<ij<r = diagonal (s',...,s"). We say F and G are s'-dual submodules of

Q and Q* respectively.

Proposition 2.2 (Lindel [13], 1.2, 1.3) Let A be a ring and Q an A-module. Assume Qs is free of
rank r for some s € A. Let F' and G be s-dual submodules of Q and Q* respectively. Then

(i) for p € Q, there exists ¢ € F such that ht (Og(p + sq)As) > 7.

(13) If Q is projective A-module and p € Um(Q/sQ), then there exists g € F such that ht (Og(p +
sq)) >r.

Proposition 2.3 (Lindel [13], 1.6) Let Q be a module over a positively graded ring A = @;>0A; and
Qs be free for some s € R = Aqg. Let T C A be a multiplicatively closed set of homogeneous elements.
Let p € Q be such that pra4sr) € Um(Qr4sr)) and s € rad(Oq(p) + Ay), where Ay = ©i>14;.
Then there exists p' € p+ sA+Q such that pl. € Um(Qr).

Proposition 2.4 (Lindel [158], 1.8) Under the assumptions of (2.3), let p € Q be such that Og(p) +
sAy = A and A/Oq(p) is an integral extension of R/(R N Ogq(p)). Then there exists p’ € Um(Q)
with p’ —p € sAL Q.

The following result is due to Amit Roy ([17], Proposition 3.4).

Proposition 2.5 Let A, B be two rings with f : A — B a ring homomorphism. Let s € A be non-
zerodivisor such that f(s) is a non-zerodivisor in B. Assume that we have the following cartesian

square.
f

%B

|,

A, L By,



Further assume that SL,(Bj(s)) = E,(By(s)) for somer > 0. Let P and Q be two projective A-modules
of rank r such that (i) N"P = A"Q, (i3) Ps and Qs are free over Ag, (iii) P® 4B = Q® aB and
Q ® AoB has a unimodular element. Then P = Q.

Definition 2.6 (see [10], Section 6) Let R be a ring and M a ®-simplicial monoid of rank r. Fix an
integral extension M < Z' . Let {t1,...,t.} be a free basis of Z . Then M can be thought of as a
monoid consisting of monomials in t1,...,t,.

For z = t§*...t% and y = 5" ...’ in 7', define x is lower than y if a; < b; for some i and
a; = b; for j > i. In particular, ¢; is lower than ¢; if and only if 7 < j.

For f € R[M], define the highest member H(f) of f as am, where f = am + aymy + ...+ apmy
with m,m; € M, a € R\ {0},a; € R and each m, is strictly lower than m for 1 <i < k.

An element f € R[Z!] is called monic if H(f) = at, where a € U(R) (:=units of R) and s > 0.
An element f € R[M] is said to be monic if f is monic in R[Z'] via the embedding R[M] — R[Z' ].

Define My to be the submonoid {t* ..., '|'s; > 0} N M of M. Clearly M is finitely generated
as M is finitely generated. Also My — Z’:l is integral. Hence My is ®-simplicial. Further, if M is
seminormal, then Mj is seminormal.

Grade R[M] as R[M] = R[My] ¢ A1 & Ay @ ..., where A; is the R[My]-module generated by the
monomials #]'...#"'tL € M. For an ideal I in R[M], define its leading coefficient ideal A(I) as

cfr—1

{a € R|3f € I with H(f) = am for some m € M}. [ ]

Lemma 2.7 ([10], Lemma 6.5) Let R be a ring and M C Z, a ®-simplicial monoid. If I C R[M] is
an ideal, then ht (A(I)) > ht (I), where X\(I) is defined in (2.6).

3 Main Theorem

This section contains main results stated in the introduction. We also give some examples of monoids

in C(®).

3.1 Over C(®) class of monoids

Lemma 3.1 Let R be a ring and M C Z', a monoid in C(®) of rank r. Let f € R[M] C R[Z ]| =
Rlty,...,t;] with H(f) = uti* ...t for some unit w € R. Then there exist n € Autr(R[M]) such

that n(f) is a monic polynomial in t,.

Proof By a property of C(®), choose large cy,...,c,—1 such that n € Autgy, R[t1...,t,] defined
by n(t;) =t;+t% for i = 1,...,r —1, restricts to an automorphism of R[M]. Further, n(f) is a monic

polynomial in ¢,. |

Lemma 3.2 Let R be a ring of dimension d and M C Z', a monoid in C(®) of rank r. Let P be a
projective R[M]-module of rank > d. Write R[M] = R[My] ® A1 ® As..., as defined in (2.6). Let



Ay = A1 ® Ay @ ... be an ideal of R[M]. Assume that Py is free for some s € R and P/sA+P has a
unimodular element. Then the natural map Um(P) — Um(P/sA, P) is surjective. In particular, P

has a unimodular element.

Proof Write A = R[M]. Since every unimodular element of P/sA P can be lifted to a unimodular
element of P14, , if s is nilpotent, then elements of 14+sA are units in A and we are done. Therefore,
assume that s is not nilpotent.

Let p € P be such that p € Um(P/sAP). Then Op(p) + sA; = A. Hence Op(p) contains an
element of 14+sA,. Choose g € A such that 14+sg € Op(p). Applying (2.2) with sg in place of s, we
get ¢ € F C P such that ht (Op(p + sgq)) > d. Since p + sgq is a lift of P, replacing p by p + sgq, we
may assume that ht (Op(p)) > d. By (2.7), we get ht (A(Op(p))) > ht (Op(p)) > d. Since A(Op(p))
is an ideal of R, we get 1 € A(Op(p)). Hence there exists f € Op(p) such that the coefficient of H(f)
(highest member of f) is a unit.

Suppose H(f) = wti ...t with u a unit in R. Since M € C(®), by (3.1), there exists o €
Aut g(R[M]) such that «(f) is monic in ¢,. Thus we may assume that Op(p) contains a monic
polynomial in ¢.. Hence A/Op(p) is an integral extension of R[My]/(Op(p) N R[My]) and D €
Um(P/sA; P). By (2.4), there exists p’ € Um(P) such that p’ —p € sA; P. This means p’ € Um(P)
is a lift of p. This proves the result. |

Remark 3.3 In (3.2), we do not need the monoid M to be seminormal. ]
We prove (1.4(1)).

Theorem 3.4 Let R be a ring of dimension d and M a monoid in C(®) of rank r. If P is a projective
R[M]-module of rank r' > d + 1, then P has a unimodular element. In other words, Serre dim
R[M] < d.

Proof We can assume that the ring is reduced with connected spectrum. If d = 0, then R is a field.
Since M is seminormal, projective R[M]-modules are free, by (1.1). If r = 0, then M = 0 and we are
done by Serre [20]. Assume d,r > 1 and use induction on d and r simultaneously.

If S is the set of all non-zerodivisor of R, then dim S™!R = 0 and so S™! P is free S~! R[M]-module
(d = 0 case). Choose s € S such that P; is free. Consider the ring R[M]/(sR[M]) = (R/sR)[M].
Since dim R/sR = d — 1, by induction on d, Um(P/sP) is non-empty.

Write R[M] = R[My] @ A; @ As..., as defined in (2.6). It is easy to see that My € C(®P). Let
Ay =A@ A ®.... Since R[M]/A; = R[Mp], by induction on r, Um(P/A P) is non-empty. Write
A = R[M] and consider the following fiber product diagram

A/(sANAL) — A/sA

| |

AJA, —— = AJ(s, Ay)



If B = R/sR, then A/(s,A;) = B[My]. Let v € Um(P/ALP) and v € Um(P/sP). Let ©w and ¥
denote the images of u and v in P/(s, Ay)P. Write P/(s,Ay)P = B[My] ® Py, where P, is some
projective B[Mg]-module of rank = 7/ — 1. Note that dim(B) = d — 1 and @, v are two unimodular
elements in B[My] & Fp.

Case 1. Assume rank(Py) > max {2,d}. Then by ([6], Theorem 4.5), there exists o € E(B[My] ®
Py) such that o(u) = v. Lift o to an element oy € E(P/A4P) and write o1(u) = u; € Um(P/A, P).
Then images of u; and v are same in P/(s, A} )P. Patching u; and v over P/(s, A1)P in the above
fiber product diagram, we get an element p € Um(P/(sAN A4)P).

Note sAN A = sA;. We have P; is free and P/sA; P has a unimodular element. Use (3.2), to
conclude that P has a unimodular element.

Case 2. Now we consider the remaining case, namely d = 1 and rank(P) = 2. Since B = R/sR
is 0 dimensional, projective modules over B[My] and B[M] are free, by (1.1). In particular, P/sP
and P/(s, Ay)P are free modules of rank 2 over the rings B[M] and B[M,] respectively. Consider the
same fiber product diagram as above.

Since any two unimodular elements in Ums(B[M)]) are connected by an element of GLg(B[Mj]).
Further B[M)] is a subring of B[M] = A/sA. Hence the natural map GLy(B[M]) — GLo(B[M)]) is
surjective. Hence any automorphism of P/(s, A;)P can be lifted to an automorphism of P/sP. By
same argument as above, patching unimodular elements of P/sP and P/A. P, we get a unimodular
element in P/(sAN Ay)P. Since sAN Ay = sA; and P/sA; P has a unimodular element, by (3.2),
P has a unimodular element. This completes the proof. |

Example 3.5 (1) If M is a ®-simplicial normal monoid of rank 2, then M € C(®). To see this, by
([10], Lemma 1.3), M = (a1, a2) NZ%, where aq = (a,b) and as = (0,¢) and (a1, az) is the group
generated by a; and as. It is easy to see that M = ((1,a1), (0,a2)) N Z7%, where ged(b,c) = g and
ay =b/g, as = ¢/g. Hence M € C(®).

(2) I M c Za_ is a finitely generated rank 2 normal monoid, then it is easy to see that M is
®-simplicial. Hence M € C(®) by (1).

(3) If M is a rank 3 normal quasi-truncated or truncated monoid (see [10], Definition 5.1), then
M € C(®). To see this, by ([10], Lemma 6.6), M satisfies properties of (1.3). Further, My is a
®-simplicial normal monoid of rank 2. By (1), My € C(®). [ ]

Corollary 3.6 Let R be a ring of dimension d and M C Zi a normal monoid of rank 2. Then Serre
dim R[M] < d.

Proof If M is finitely generated, then result follows from (3.5(2)) and (3.4).

If M is not finitely generated, then write M as a filtered union of finitely generated submonoids,
say M = UxerMy. Since M is normal, the integral closure My of M)y is contained in M. Hence
M = UyerMy. By ([5], Proposition 2.22), M is fintely generated. If P is a projective R[M]-module,

then P is defined over R[M,] for some X € I as P is finitely generated. Now the result follows from
(3.5(2)) and (3.4). [ |



The following result follows from (3.5(3)) and (3.4).

Corollary 3.7 Let R be a ring of dimension d and M a truncated or normal quasi-truncated monoid
of rank < 3. Then Serre dim R[M] < d.

Now we prove (1.4(2)).

Proposition 3.8 Let R be a ring of dimension d and M a ®-simplicial seminormal monoid of rank
< 3. Then Serre dim R[int(M)] < d.

Proof Recall that int(M) = int(Ry M) NZ3. Let P be a projective R[int(M)]-module of rank
> d+ 1. Since M is seminormal, by ([5], Proposition 2.40), int(M) = int(M), where M is the
normalization of M. Since normalization of a finitely generated monoid is finitely generated (see [5],
Proposition 2.22), M is a ®-simplicial normal monoid. By ([10], Theorem 3.1), int(M) = int(M) is a
filtered union of truncated (normal) monoids (see [10], Definition 2.2). Since P is finitely generated, we
get P is defined over R[N], where N C int(M) is a truncated monoid. By (3.7), Serre dim R[N] < d.
Hence P has a unimodular element. Therefore Serre dim Rlint(M)] < d. |

In the following examples, R is a ring of dimension d, Monoid operations are written multiplica-

tively and K (M) denotes the group of fractions of monoid M.

Example 3.9 For n > 0, consider the monoid M C Z’, generated by {{'t5...tir| S i; = n}. Then
M is a ®-simplicial normal monoid. For integers ¢; = nk; + 1, k; > 0and ¢ = 1,...,7 — 1, consider
n € Aut gy (R[t1,...,t,]) defined by t; +— t; +t5i fori=1,...,r - 1.

A typical monomial in the expansion of f(£% ...t ir) = (ty + 1) .. (Epq + 71 )ir—1tir will
look like (£ tgerty  (¢inp=lr=rger—tbronygir — (g yiroambeoyghobe oty bkl
which belong to M. So n(R[M]) C R[M]. Similarly, n~'(R[M]) C R[M]. Hence 7 restricts to an
R-automorphism of R[M]. Therefore n satisfies the property of (1.3). Hence M € C(®). By (3.4),

Serre dim R[M] < d. [ ]

Example 3.10 Let M be a ®-simplicial monoid generated by monomials 2, 3,3, ¢1t3,tats. For
integers ¢; = 2k; — 1 with k; > 1, consider the automorphism 7 € Aut p,)(R[t1,t2,t3]) defined by
tj >t +tg for j =1,2. Then it is easy to see that 7 restricts to an automorphism of R[M].

We claim that M is seminormal but not normal. For this, let
z = (13) "N t1t3) (tats) = tita € K(M) \ M, but z* € M,
showing that M is not normal. For seminormality, let
2= (13)* (£3)°2 (t2)* (t1t3)** (tat3)™® € K(M) with o; € Z and 2%,2° € M.

We may assume that 0 < ay, a5 < 1. Now 22 € M = aj,as > 0 and 203 + a4 + a5 > 0. If a3 < 0,
then ay = a5 = 1 and a3 = —1. In this case, 2% = (2 71¢2°21)3 ¢ M a contradiction. Therefore



ag > 0 and z € M. Hence M is seminormal. It is easy to see that M € C(®). By (3.4), Serre dim
R[t3, 5,13, t1t3, tats] < d.
|

Remark 3.11 (1) Let R be a ring and P a projective R-module of rank > 2. Let R be the
seminormalization of R. It follows from arguments in Bhatwadekar ([2], Lemma 3.1) that P ® gR has
a unimodular element if and only if P has a unimodular element.

(2) Assume R is a ring of dimension d and M € C(®). If M the seminormalization of M is in
C(®), then Serre dim R[M] < maz{l,d} using ([2] and 3.4).

(3) Let (R, m, K) be a regular local ring of dimension d containing a field k£ such that either char
k = 0 or char k = p and tr-deg K/F, > 1. Let M be a seminormal monoid. Then, using Popescu
([15], Theorem 1) and Swan ([23], Theorem 1.2), we get Serre dim R[M] = 0. If M is not seminormal,
then Serre dim R[M] = 1 using ([11], [2] and [23]).

Example 3.12 For a monoid M, M denotes the seminormalization of M.

1. Let M C Zi be a ®-simplicial monoid generated by t7,t1t2,t5, where n € N. To see M is
normal, let z = tit) = (¢£7)P(t1t2)9(t5)" € K(M) with p,q,r € Z such that z* € M for some
t > 0. Then 4,5 > 0. We need to show that z € M. We may assume that 0 < q¢ < n.
Since i,j > 0, we get p,r > 0. Thus z € M and M is normal. Hence, by (3.6), Serre dim
Rt} tytg, t3] < d.

2. The monoid M C Zf_ generated by t2 t;t2,¢3 is seminormal but not normal. For this, let
z = (t1td)(t3)"r = t1 € K(M)\ M. Then 22 € M showing that M is not normal. For
seminormality, let z = (#2)(¢1t3)?(t2)” € K(M) with «, 3, € Z be such that 22,23 € M. We
may assume 0 < 8 < 1. If 3 =0, then a,v > 0 and hence z € M. If 3 = 1, then 22 € M implies
a>0andy+1>0. Ify=—1, then 2% = (¢;)%T3 ¢ M, a contradiction. Hence > 0, proving
that z € M and M is seminormal. It is easy to see that M € C(®). Therefore, by (3.4), Serre
dim R[t3,,t3,13] < d.

3. Let M be a monoid generated by (t7,t1t5,t3), where j > 3. Then M is not seminormal. For
this, if z = (1#3)(12)~! = 14572 € K(M) \ M, then 22 = 212072 and 23 = (¢2)(t,£]) (7 ~)
are in M, showing that M is not seminormal.

If j = 3, then observe that t;t, belongs to M. Since the monoid genertaed by t2 tito,13 is
normal, we get that M is generated by t3,t1t9,t3. Hence Serre dim R[M] < d by (1).

Observe that if j is odd, then M = (¢2,t1t5,t2) and if j is even, then M = (¢2,t13,t2). So Serre

dim R[M) < d by (1,2).
In both cases, applying (3.11(1)), we get Serre dim R[M] < max {1,d}.

4. Let M be a monoid generated by (t3,1t2,¢3) Then M is not seminormal. For this, let z =
(t113)%ty® € K(M)\ M. Then 22 = t3(t;t3) € M and 2% = tt3 € M. Hence seminormalization



of M is M = (t3,t3t2, t1t3,t3). By (3.9), Serre dim R[M] < d. Therefore, applying (3.11(1)), we
get Serre dim R[M] < max {1,d}.

3.2 Monoid algebras over 1-dimensional rings

The following result proves (1.6(i)).

Theorem 3.13 Let R be a ring of dimension 1 and M a c-divisible monoid. If P is a projective
R[M]-module of rank r > 3, then P = A" P@R[M]"~1.

Proof If R is normal, then we are done by Swan [23]. Assume R is not normal.

Case 1. Assume R has finite normalization. Let R be the normalization of R and C' the conductor
ideal of the extension R C R. Then height of C' = 1. Hence R/C and R/C are zero dimensional rings.
Consider the following fiber product diagram

| |

(R/C)[M] — (R/C)[M]

If P/ = A"P®R[M]"~!, then by Swan [23], P® R[M] & A"(P® RIM])®&R[M]"~! = P'® R[M].
By Gubeladze [8], P/CP and P'/CP’ are free (R/C)[M]-modules. Further, SL,.((R/C)[M]) =
E,.((R/C)[M)]) for r > 3, by Gubeladze [9]. Now using standard arguments of fiber product diagram,
we get P = P/,

Case 2. Now R need not have finite normalization. We may assume R is a reduced ring with
connected spectrum. Let S be the set of all non-zerodivisors of R. By [8], S7!P is a free S~ R[M]-
module. Choose s € S such that P; is a free Rs[M]-module.

Now we follow the arguments of Roy ([17],Theorem 4.1). Let R denote the s-adic completion R.

Then R,.q has a finite normalization. Consider the following fiber product diagram

Since R, is a zero dimensional ring, by [9], SL,.(Rs[M]) = E,.(Rs[M]) for r > 3. If P’ = A"P@R[M]" 1,
then P, and P! are free R,[M]-modules and by Case 1, P® R[M] = P’ ® R[M]. By (2.5), P = P'.

This completes the proof. |
The following result is due to Kang ([12], Lemma 7.1 and Remark).



Lemma 3.14 Let R be a 1-dimensional unibranched affine algebra over an algebraically closed field,
R the normalization of R and C the conductor ideal of the extension R C R. Then R/C = R/C +
a1 R/C + -+ anR/C, where a; € VC the radical ideal of C' in R.

Lemma 3.15 Let R be a 1-dimensional ring, R the normalization of R and C the conductor ideal of
the extension R C R. Assume R/C = R/C +a R/C + -+ a,,R/C, where a; € \/C the radical ideal
of C in R. Let M be a monoid and write A= R/C.

(i) If o € SL,,(A[M]), then 0 = o102, where o1 € SL,((R/C)[M]) and o2 € E,(A[M]).

(ii) If P is a projective R[M]-module of rank r, then P = A" P&R[M] 1.

Proof (1) Let 0 = (bL]) S SLn(A[M]) Write bi]’ = (bij)O + (bij)lal + -+ (b,‘j)mam, where (bz])l S
(R/C)[M]. If @ = ((bi;)0), then det(c) = 1 = det(a) + ¢, where ¢ € (v/C/C)[M]. Since ¢ € (R/C)[M]
is nilpotent, det(a) is a unit in (R/C)[M]. Let 8 = diagonal (1/(1 —¢),1,...,1) € GL,((R/C)[M))
and 01 = af € SL,((R/C)[M]).

Note that o7 'o = f~ta"lo = 71 1/(1 — ¢) @o, where @ = ((b;;)o), (bij)o are minors of (b;;)o-

1 0 0 1+enn C12 Cin
4 0 = -+ 0 21 1+coo - Con
ogi=0, 0= | | )
1
0 O T Cnl Cn2 o 1+cenn

where ¢;; € (VC/C)[M].
Note that o € SL,, (A[M]) and o2 = Id modulo the nilpotent ideal of A[M]. Hence o5 € E,,(A[M]).
Thus we get 0 = 0109 with the desired properties.
(ii) Follow the proof of (3.13) and use (3.15(i)) to get the result. [ |
Now we prove (1.6(ii)) which follows from (3.14) and (3.15).

Theorem 3.16 Let R be a 1-dimensional unibranched affine algebra over an algebraically closed field
and M a monoid. If P is a projective R[M]-module of rank r, then P = A" P&R[M]" 1.

4 Applications

Let R be a ring of dimension d and @ a finitely generated R-module. Let u(Q) denote the minimum
number of generators of Q. By Forster [7] and Swan [22], u(Q) < max{u(Qp) + dim(R/p)[p €

Spec (R), Qp # 0}. In particular, if P is a projective R-module of rank r, then u(P) <r +d.

The following result is well known.

Theorem 4.1 Let A be a ring such that Serre dim A < d. Assume A™ is cancellative for m > d+ 1.
If P is a projective A-module of rank r > d + 1, then u(P) <r+d.
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Proof Assume p(P) = n > r+ d. Consider a surjection ¢ : A" — P with @ = ker(¢). Then

A™ = PHQ. Since @ is a projective A-module of rank > d + 1, @ has a unimodular element ¢. Since

#(q) = 0, ¢ induces a surjection ¢ : A"/qA™ —+ P. Since n — 1 > d, A"~ ! is cancellative. Hence

A=l 22 A" /g A and P is generated by n — 1 elements, a contradiction. |
The following result is immediate from (4.1, 3.4, 3.6 and [6]).

Corollary 4.2 Let R be a ring of dimension d, M a monoid and P a projective R[M]-module of rank
r>d. Then:

(1) If M € C(®), then u(P) <r +d.

(i) If M C Zi is a normal monoid of rank 2, then u(P) <r +d.

Schaubhiiser [19] proved that for any ring R of dimension d and n > max{2,d+ 1}, E,+1(R[M])
acts transitively on Umy, 1 (R[M]). Using Schaubhiiser’s result and arguments of Dhorajia-Keshari
([6], Theorem 4.4), we get that if R is a ring of dimension d and P is a projective R[M]-module of
rank > maxz{2,d + 1}, then E(R[M]®P) acts transitively on Um(R[M]|@SP). Therefore the following
result is immediate from (4.1 and 3.13).

Corollary 4.3 Let R be a ring of dimension 1, M a c-divisible monoid and P a projective R[M]-
module of rank r > 3. Then u(P) <r + 1.
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author would like to thank C.S.I.R., India for their fellowship.

References

[1] D.F. Anderson, Projective modules over subrings of k[X, Y] generated by monomials, Pacific J. Math. 79
(1978) 5-17.

[2] S.M. Bhatwadekar, Inversion of monic polynomials and existence of unimodular elements (II), Math. Z.
200 (1989) 233-238.

[3] S.M. Bhatwadekar, H. Lindel and R.A. Rao, The Bass-Murthy question: Serre dimension of Laurent
polynomial extensions, Invent. Math. 81 (1985) 189-203.

[4] S.M. Bhatwadekar and A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra
86 (1984) 150-158.

[5] W. Bruns and J. Gubeladze, Polytopes, Rings and K-Theory, Springer Monographs in Mathematics, 2009.

[6] A.M. Dhorajia and M.K. Keshari, A note on cancellation of projective modules, J. Pure and Applied
Algebra 216 (2012) 126-129.

[7] Otto Forster, Uber die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring, Math. Z. 84
(1964) 80-87.

[8] J. Gubeladze, Anderson’s conjecture and the mazimal class of monoid over which projective modules are
free, Math. USSR-Sb. 63 (1988), 165-188.

11



[9] J. Gubeladze, Classical algebraic K-theory of monoid algebras, Lect. Notes Math. 1437 (1990), Springer,
36-94.

[10] J. Gubeladze, The elementary action on unimodular rows over a monoid ring, J. Algebra 148 (1992)
135-161.

11] J. Gubeladze, K-Theory of affine toric varieties, Homology, Homotopy and Appl. 1 (1999) 135-145.

12] M.C. Kang, Projective modules over some polynomial rings, J. Algebra 59 (1979) 65-76.

14] B. Plumstead, The conjectures of Eisenbud and Evans, Amer. J. Math. 105 (1983) 1417-1433.

15] D. Popescu. On a question of Quillen, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 45 (93) no. 3-4,
(2002) 209-212.

[16

[
[
[13] H. Lindel, Unimodular elements in projective modules, J. Algebra 172 (1995) no-2, 301-319.
[
[

D. Quillen. Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.

]
[17] A. Roy, Application of patching diagrams to some questions about projective modules, J. Pure Appl.
Algebra 24 (1982), no. 3, 313-319.

[18] H.P. Sarwar, Some results about projective modules over monoid algebras, to appear in Communications

in Algebra.

[19] G. Schabhiiser, Cancellation properties of projective modules over monoid rings, Universitt Miinster,

Mathematisches Institut, Minster, (1991) iv+86 pp.
20] J.P. Serre, Sur les modules projectifs, Sem. Dubreil-Pisot 14 (1960-61) 1-16.
21] A.A. Suslin, Projective modules over polynomial rings are free, Sov. Math. Dokl. 17 (1976), 1160-1164.

(20]
(21]
[22] R.G. Swan, The number of generators of a module, Math. Z. 102 (1967), 318-322.
(23]

23] R.G Swan, Gubeladze proof of Anderson’s conjecture, Contemp. Math 124 (1992), 215-250.

12



