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Abstract. We deal with reaction-di¤usion equations of bistable type in an inhomo-

geneous medium. When the reaction term is balanced in the sense that a bulk potential

energy attains the same global minimum at the two stable equilibria for each spatial

point, we derive a free-boundary problem whose solutions determine equilibirum in-

terfaces. We show that a non-degenerate solution of the free-boundary problem gives

rise to an equilibrium internal layer solution of the reaction-di¤usion equation, and

moreover, the stability property of the latter is obtained from a linearization of the free

boundary problem.

1. Introduction

1.1. Background. Internal layers, which separate two stable bulk states by a

sharp transition near hypersurfaces (called interfaces), are often observed in

bistable reaction-di¤usion equations when the reaction rate is stronger than the

di¤usion e¤ect. The motion of such interfaces is considered as the evolution of

spatio-temporal patterns generated by the reaction-di¤usion equation. There-

fore, investigations of interfacial phenomena, such as internal transition layers

and interface motions, are of crucial importance in our understanding of

pattern-formation mechanisms in nature.

The Allen-Cahn equation with cubic nonlinearity

qu

qt
¼ e2Du� ðu3 � uÞ x A RN ; t > 0;ðA-CÞ

is a typical example in which internal layers spontaneously develop and evolve

when the di¤usion coe‰cient is rather small, 0 < e2 w 1. By rescaling time,

one can write (A-C) as follows:
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qu

qt
¼ eDu� 1

e
ðu3 � uÞ;ðA-C-sÞ

qu

qt
¼ Du� 1

e2
ðu3 � uÞ:ðA-C-ssÞ

It should be noted here that no spatial re-scaling has been performed to obtain

the latter two equations from (A-C). Slow dynamics in (A-C), say dynamics

of order OðeÞ, is clearly captured by (A-C-s), while to describe much slower

dynamics of order Oðe2Þ the third equation (A-C-ss) may be adequate. It is

therefore our advantage to employ three forms of the same equation inter-

changeably, according to the dynamical behavior of our attention.

The ordinary di¤erntial equation (ODE), or the reaction kinetics, asso-

ciated with (A-C)

du

dt
¼ u� u3ðODEÞ

is of bistable type, in the sense that u ¼G1 are its two stable equilibria. The

equilibrium u ¼ 0 is located in between the two stable ones, and in fact, it is

precisely on the boundary of the basins of attraction for u ¼G1. Since the

reaction rate is much stronger than the di¤usion rate in (A-C), it is naturally

expected that ODE-dynamics will dominate the behavior of solutions, at least

in the initial stage. In fact, it is rigorously proven by Chen [2] that the solution

of (A-C) with initial condition uðx; 0Þ ¼ u0ðxÞ develops transition laryers near

fx A RN j u0ðxÞ ¼ 0g. Namely, for tA0

uðx; tÞA�1 fx A RN j u0ðxÞ < 0g ¼: Dð�Þð0Þ;

uðx; tÞA1 fx A RN j u0ðxÞ > 0g ¼: DðþÞð0Þ:

In this sense, G0 ¼ fx A RN j u0ðxÞ ¼ 0g is called the initial interface.

When the transition layer becomes sharp enough, the di¤usion e¤ect e2Du

also becomes comparble with the reaction term and can not be neglected anymore.

It is also shown by Chen [2] that at this stage the interface GðtÞ ¼ fx A RN j
uðx; tÞ ¼ 0g starts to move according to the mean curvature flow:

Vðx;GðtÞÞ ¼ �kðx;GðtÞÞ x A GðtÞ; t > 0:ðMCFÞ

Here, the scale of time is that of (A-C-ss), and Vðx;GðtÞÞ is the speed of

GðtÞ, measured in the unit normal direction nðx;GðtÞÞ on GðtÞ pointing into

the interior of DðþÞðtÞ, where DðGÞðtÞ ¼ fx jGuðx; tÞ > 0g. The symbol kðx;GÞ
stands for the sum of principal curvatures of G at x A G. We agree to call it

simply the mean curvature of GðtÞ. The sign of kðx;GðtÞÞ is chosen so that it
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is positive if the center of the curvature sphere is in Dð�ÞðtÞ. More precisely,

we define it by

kðx;GðtÞÞ ¼ divx nðx;GðtÞÞ

in which the unit normal vector n is smoothly extended to a neighborhood of

GðtÞ.
The Allen-Cahn equation above is a special case of the following reaction-

di¤usion equation

qu

qt
¼ e2Du�W 0ðuÞ;ðRDÞ

in which WðuÞ is a double-well potential and W 0ðuÞ ¼ dWðuÞ
du

. WðuÞ is called

a double-well potential when it has two local minima at, say, u ¼ a� and

u ¼ aþ ða� < aþÞ. When WðuÞ ¼ u4=4� u2=2, (RD) is nothing but (A-C).

In the dynamics of (RD) driven by the double-well potential, the di¤erence of

potential values at the two wells u ¼ aG plays an important role. The di¤er-

ence is measured as

WðaþÞ �Wða�Þ ¼
ð aþ
a�

W 0ðuÞdu ¼: ½W �þ�:ðPDÞ

Note that for a double-well potential, the nonlinearity �W 0ðuÞ is of bistable

type. When the di¤erence ½W �þ� is zero, the corresponding nonlinearity

�W 0ðuÞ is called balanced. When the nonlinearity is bistable and balanced,

the description above for (A-C) is equally valid for (RD).

When the nonlinearity is bistable but not balanced, it is also shown by

Chen [2] that the motion of interface GðtÞ is described by

Vðx;GðtÞÞ ¼ cW x A GðtÞ; t > 0;ðCSÞ

where the time scale is that of (A-C-s), and cW is a constant which is of the

same sign as ½W �þ�. The motion law (CS) is in accord with our intuition. If,

for example, cW > 0, namely, ½W �þ� > 0 (and hence the well at u ¼ a� is deeper

than that at u ¼ aþ, cf. (PD)), then (CS) says that the interface GðtÞ invades

DðþÞðtÞ, the region occupied by u ¼ aþ. Therefore, eventually Dð�ÞðtÞ, which is

occupied by u ¼ a�, will dominate the entire region.

For more detail of the interface dynamics of (RD), we refer to [2] by

Chen.

1.2. Statement of Problem. In the previous subsection, interfacial phenomena

have been described for a spatially homogeneous reaction-di¤usion equation.

From a viewpoint of application, it is natural to consider spatially inhomo-

geneous equations, since environments in which reaction and di¤usion take
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place is, realistically speaking, non-uniform. For reaction-di¤usion equations,

there are at least two ways of introducing spatial inhomogeneity: one in the

di¤usion rate; the other in the reaction term. In this paper, we restrict our

consideration strictly to the latter situation.

Let us consider a spatially inhomogeneous reaction-di¤usion equation

qu

qt
¼ e2Du� f ðu; x; eÞ; ðx A DHRN ; t > 0Þ;

qu

qn
¼ 0; ðx A qD; t > 0Þ;

8>><
>>:ð1:1Þ

with the no-flux boundary conditions. In (1.1), D is a smooth bounded do-

main and n stands for the inward unit normal vector on qD. The nonlinear

term f ðu; x; eÞ is assumed to be smooth and derived from a double-well poten-

tial Wðu; x; eÞ:

f ðu; x; eÞ ¼ qWðu; x; eÞ
qu

ð1:2Þ

with u ¼ fðGÞðx; eÞ denoting the locations of two wells, satisfying

fð�Þðx; eÞ < fðþÞðx; eÞ ðx A DÞ:ð1:2-aÞ

It is expected, from the discussion on the Allen-Cahn equation, that the

di¤erence in the values of potential at the two wells will play an important role

in describing the dynamics of (1.1). Let us denote the di¤erence at each x A D

by ½W �þ�ðxÞ:

½W �þ�ðxÞ ¼
ð fðþÞðxÞ

fð�ÞðxÞ
f ðu; x; 0Þdu ¼ WðfðþÞðxÞ; x; 0Þ �Wðfð�ÞðxÞ; x; 0Þð1:3Þ

where fðGÞðxÞ ¼ fðGÞðx; 0Þ (cf. (1.2-a)).

Along with (1.1), it is convenient to also consider its (time) re-scaled

versions:

qu

qt
¼ eDu� 1

e
f ðu; x; eÞ;ð1:1-sÞ

qu

qt
¼ Du� 1

e2
f ðu; x; eÞ:ð1:1-ssÞ

In this paper, we are mainly concerned with interfacial phenomena for

(1.1), and in particular, with equilibrium internal transition layers and their

stability properties.

Before we go further, let us make precise the conditions to be imposed on

the nonlinearity f .
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(A1) The equation f ðu; x; 0Þ ¼ 0 has exactly three solutions u ¼
fðGÞðxÞ; fð0ÞðxÞ with

fð�ÞðxÞ < fð0ÞðxÞ < fðþÞðxÞ x A D:

Moreover,

fGu ðxÞ1 fuðfðGÞðxÞ; x; 0Þ > 0 x A D:

Under the assumption (A1), it is known that the following problem

d 2 ~QQ0

dz2
þ c

d ~QQ0

dz
� f ð ~QQ0; x; 0Þ ¼ 0 z A R;

limz!Gy
~QQ0ðzÞ ¼ fðGÞðxÞ; ~QQ0ð0Þ ¼

1

2
ðfðþÞðxÞ þ fð�ÞðxÞÞ

8>><
>>:ð1:4Þ

has a unique solution ð ~QQ0ðz; xÞ; cðxÞÞ, where x A D is regarded as a parameter.

The solution pair ð ~QQ0ðz; xÞ; cðxÞÞ satisfy the following properties: There exist

constants C > 0 and d > 0, independent of x, such that

j ~QQ0ðz; xÞ � fðGÞðxÞjaCe�djzj as z !Gy;ð1:4-aÞ

q ~QQ0ðz; xÞ
qz

> 0;
q ~QQ0ðz; xÞ

qz

����
����; q2 ~QQ0ðz; xÞ

qz2

����
����aCe�djzj;ð1:4-bÞ

½W �þ�ðxÞ ¼ cðxÞ
ðy
�y

q ~QQ0ðz; xÞ
qz

 !2
dz:ð1:4-cÞ

The solution uðx; tÞ of (1.1) starting from an initial function u0ðxÞ, similar to

the case of (RD), will develop internal transition layers near

x A D j u0ðxÞ ¼
1

2
ðfðþÞðxÞ þ fð�ÞðxÞÞ

� �
¼ G0;

and the interface GðtÞ evolves according to

Vðx;GðtÞÞ ¼ cðxÞ ðx A GðtÞ; t > 0Þ:ð1:5Þ

The time scale of (1.5) is the same as (1.1-s). Here and in what follows, we

always treat the cases where interfaces are staying uniformly away from the

boundary of doamin qD.

From our standpoint of investigating the existence of equilibrium internal

layer solutions, it is natural to ask the next question:

If the interface equation (1.5) has a smooth equilibrium solution G ,

then does (1.1) have a family of equilibrium solutions with transition

layers on G for small e > 0?
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It turns out that the answer to this question is rather delicate. In [4], Fife

and Greenlee prove that the answer is a‰rmative if the condition

‘xcðxÞjG � nðx;GÞ < 0; x A GðF-GÞ

is fulfilled. Here G is a smooth equilibrium solution of (1.5). Namely, G ¼
fx A D j cðxÞ ¼ 0g is a closed manifold of codimension 1. Moreover, the solu-

tion thus obtained is a stable equilibrium of (1.1). It is of crucial importance

to note that the normal vector n above is pointing into the region where the

solution u assumes values close to fðþÞ. Since cðxÞ1 0 on G, the condition

above says that in the two regions away from the interface G the solution takes

values close to the absolute minimum of the potential Wðu; x; 0Þ.
On the other hand, it is also pointed out in [9], in the context of the same

question for a system of reaction-di¤usion equations, that if the condition

‘xcðxÞjG � nðx;GÞ > 0 x A GðReverse F-GÞ

is the case, then there may exist infinitely many internal laryer solutions which

exhibit sharp transitions near G . By examining the proof in [9] and inter-

preting it in our situation, we can state the following criterion on the existence

of equilibrium internal layer solutions.

Theorem 1.1. Let G be a smooth equilibrium solution of (1.5). If it is

non-degenerate in the sense that the spectrum of the linearized operator

eDG þ ð‘xcðxÞjG � nðx;GÞÞ;ð1:6Þ

defined on G (DG is the Laplace-Beltrami operator on G), is bounded away from

zero uniformly in e A ð0; e0� for some e0 > 0, then ð1:1Þ has a family of solutions

with sharp transitions along G .

Since DG is a non-positive operator, it is evident that if ‘xcðxÞjG �
nðx;GÞ < 0, then the spectrum of the operator (1.6) is uniformly bounded away

from zero. Hence the criterion above is compatible with the result by Fife and

Greenlee [4]. On the other hand, if the sign is opposite, ‘xcðxÞjG � nðx;GÞ > 0,

then the spectrum of (1.6) hits zero infinitely often as e ! 0.

The purpose of this paper is to investigate the existence and stability prop-

erties of internal layer solutions of (1.1) when the nonlinearity is of balanced

type at each point x A D. Namely, we impose the following condition on f :

(A2) ½W �þ�ðxÞ1 0 on D, or equivalently, cðxÞ1 0 on D.

Under this condition, we may normalize W so that WðfðGÞðxÞ; x; 0Þ1 0.

If (A2) is the case, two kinds of degeneracies occur;
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0 any closed manifold G HD of codimension one is an equilibrium of

(1.5);
0 the corresponding linear operator (1.6) reduces to eDG which has the

0-eigenvalue as well as infinitely many eigenvalues converging to 0 as

e ! 0,

making Theorem 1.1 invalid. Therefore, we need to establish a selection prin-

ciple to identify possible equilibrium interfaces, and to develop a method to

study stability properties of corresponding transition layer solutions.

Under the conditions (A1) and (A2), one can show, along the line of

arguments employed in Nakamura et al. [7], that the interface equation for

(1.1-ss) is given by

Vðx;GðtÞÞ ¼ �kðx;GðtÞÞ þ Jðx;GðtÞÞ
mðxÞ ; ðx A GðtÞ; t > 0Þ;ð1:7Þ

where

mðxÞ ¼
ðy
�y

q ~QQ0ðz; xÞ
qz

 !2
dz; ðx A DÞ;ð1:7-aÞ

Jðx;GÞ ¼
ðy
�y

½zð‘x f ðu; x; 0Þju¼ ~QQ0ðz;xÞ � nðx;GÞÞð1:7-bÞ

þ feð ~QQ0ðz; xÞ; x; 0Þ�
q ~QQ0ðz; xÞ

qz
dz; ðx A GÞ:

There is an important relation between mðxÞ and Jðx;GÞ:

Jðx;GÞ ¼ �‘xmðxÞ � nðx;GÞ þ
ðy
�y

feð ~QQ0ðz; xÞ; x; 0Þ
q ~QQ0ðz; xÞ

qz
dzð1:7-cÞ

¼ �‘xmðxÞ � nðx;GÞþ q

qe
½WðfðþÞðxÞ; x; eÞ �Wðfð�ÞðxÞ; x; eÞ�je¼0:

In terms of the potential W , the quantity mðxÞ is expressed as

mðxÞ ¼
ð fðþÞðxÞ

fð�ÞðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wðu; x; 0Þ

p
duð1:7-dÞ

which may be interpreted as the unit energry neccessary for the system to make

transition in the n-direction from fð�ÞðxÞ to fðþÞðxÞ. Therefore, when the

nonlinearity is independent of e, (1.7-c) implies that the interface equation (1.7)

is written as

Vðx;GðtÞÞ ¼ �kðx;GðtÞÞ � ‘nðlog mðxÞÞ; ðx A GðtÞ; t > 0Þ;
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which is a slight generalization of the interface equation (2.20) in Nakamura

et al. [7]. The latter equation shows that the interface tends to move in the

direction to decrease the interfacial energy mðxÞ if the curvature-e¤ect is

neglected.

The main objective of this paper is to answer the following question:

Under the conditions (A1) and (A2), if the interface equation (1.7) has

a smooth equilibrium solution G , then does (1.1) have an equilibrium

solution with internal transition layers on G ? If such a solution exists,

is it stable or unstable?

In order to state our problem succinctly, let us define a class F of

interfaces.

F ¼ fG HD jG is an ðN � 1Þ-dimensional; smooth;ð1:8Þ
and closed manifoldg:

For a given G A F and in its su‰ciently small neighborhood

G ðdÞ 1 fx A D j distðx;GÞ < dgð1:9Þ

for some d > 0, we introduce a local coordinate system via

G ðdÞ C x 7! ðy; rÞ A G � ð�d; dÞ with r ¼ distðx; yÞ; if x A D
ðþÞ
G ;

�distðx; yÞ; if x A D
ð�Þ
G ;

(
ð1:10Þ

where y A G is such that distðx;GÞ ¼ distðx; yÞ, and D
ðGÞ
G are sub-domains of D

divided by G. Later in this paper, D
ðGÞ
G are, respectively, the domains where

uðxÞAfðGÞðxÞ (cf. (2.1), (2.2) below). Denoting by nðy;GÞ the unit normal

vector of G at y A G pointing into D
ðþÞ
G , one can write the coordinate system

in (1.10) as

x ¼ yþ rnðy;GÞ; ðx A G ðdÞ; y A G ; jrja dÞ:ð1:11Þ

For an element G A F, we also define its r-shift, Gr, by

Gr ¼ fx ¼ yþ rnðy;GÞ j y A Ggð1:12Þ

for jrj < d.

In accordance with the right-hand side of (1.7), let us define a function

V1ðx;GÞ for G A F by

V1ðx;GÞ1�kðx;GÞmðxÞ þ Jðx;GÞ; x A D:ð1:13Þ

As our selection principle for equilibrium interfaces, we now impose the

condition that (1.7) has a smooth equilibrium solution.
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(A3) There exists a G A F such that

V1ðx;GÞ1 0 on G :

It is not so easy to find such a G A F as in (A3). It is a free-interface

problem to be investigated in its own right (cf. § 2.2 below).

In order to answer the question above, we need an extra non-degeneracy

condition. Let us define an elliptic operator AG by

AGRðxÞ :¼ mðxÞ DG þ
XN�1

j¼1

kjðxÞ2
 !

RðxÞ þ ‘GmðxÞ � ‘GRðxÞð1:14Þ

� kðx;GÞ qmðxÞ
qnðx;GÞRðxÞ þ Jrðx;GÞRðxÞ x A G ;

¼ divGðmðxÞ‘GRðxÞÞ þmðxÞ
XN�1

j¼1

kjðxÞ2
 !

RðxÞ

� kðx;GÞ qmðxÞ
qnðx;GÞRðxÞ þ Jrðx;GÞRðxÞ x A G ;

where DG ; divG , and ‘G stand, respectively, for the Laplace-Beltrami, divergence

and gradient operators on the manifold G with respect to the metric induced

on G from the Eulidean metric in D, and kjðxÞ ð j ¼ 1; . . . ;N � 1Þ are principal

curvatures of G at x. The function Jrðx;GÞ is defined by

Jrðx;GÞ1
q

qr
Jðxþ rnðx;GÞ;GrÞjr¼0:ð1:15Þ

The operator AGR in (1.14) is the linearization of V1ðx;GÞ in the direction of

fxþ RðxÞnðx;GÞ j x A Gg:

This follows from the identity

q

qt
Jðxþ tRðxÞnðx;GÞ;GtRðxÞÞjt¼0 ¼ ‘GmðxÞ � ‘GRðxÞ þ Jrðx;GÞRðxÞ;

which is verified via direct computations. The operator AG also emerges

naturally from C 1-matching conditions in § 4.2, below.

Let us consider an eigenvalue problem for AG

AGYðxÞ ¼ lmðxÞYðxÞ; x A G :ð1:16Þ

Since (1.16) is a self-adjoint eigenvalue problem, its eigenvalues are all real.

We denote them as
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sG ¼ flG
j g

y
j¼0; lG

0 > lG
1 > � � � > lG

j ! �y;ð1:16 0Þ

where only distinct eigenvalues are listed. The multiplicity of lG
j is denoted by

mG
j b 1. The non-degeneracy condition on G is:

(A4) 0 is not an eigenvalue of (1.16), i.e., 0 B sG .

Let us now outline the contents of the paper.

In the next section, we will state our main theorem and present some

examples to which it applies. These examples naturally give rise to interesting

geometric variational problems. We then prove the main theorem in § 3, while

§§ 4 and 5 are devoted to the proof of technical results used in § 3.

2. Main results

2.1. Existence and Stability of Layers. The following is our main theorm.

Theorem 2.1. Assume that the conditions (A1), (A2), (A3), and (A4) are

satisfied.

( i ) There exist e0 > 0 and a family of equilibrium solutions uðx; eÞ of (1.1)

such that for each fixed d0 > 0

lim
e!0

uðx; eÞ ¼ fð�ÞðxÞ; x A D
ð�Þ
G nG ðd0Þ;

fðþÞðxÞ; x A D
ðþÞ
G nG ðd0Þ;

(
ð2:1Þ

uniformly.

(ii) If lG
0 < 0, then the solution uðx; eÞ is asymptotically stable. If there

exists kb 0 such that lG
k > 0 > lG

kþ1, then the solution uðx; eÞ is

unstable with instability index equal to
Pk

j¼0 mj.

Nakashima [8] established results similar to Theorem 2.1. She proves the

existence of stable internal transition layers in one-dimensional situation. Her

method, however, is based on comparison principles and hence unable to prove

unstable solutions. Our theorem is a generalization of the results in [8] to

multi-dimensional domains, including unstable situations.

Theorem 2.1 justifies the interface equation (1.7), in the context of equi-

librium solutions. A dynamic version of such a justification may be estab-

lished by the method similar to the one presented below (cf. §§ 3, 4, and 5).

2.2. Examples. In this subsection, we deal with simple examples to which

Theorem 2.1 applies.

Example 2.1. Let us consider the situation where the nonlinearity f in

(1.1) is given by
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f ðu; x; eÞ1 ðu� eaðxÞÞðu2 � 1Þ:ð2:2Þ

In this case, the corresponding ~QQ0 of (1.4) is easily found to be

~QQ0ðt; xÞ1 Q̂Q0ðtÞ :¼ tanh
tffiffiffi
2

p
� �

:ð2:3Þ

In the sequel, the function Q̂Q0ðtÞ will be used frequently. The functions mðxÞ
and Jðx;GÞ of (1.7-a) and (1.7-b), respectively, are easily computed:

mðxÞ1 2
ffiffiffi
2

p

3
ðx A DÞ; Jðx;GÞ1 4

3
aðxÞ ðx A GÞ:ð2:4Þ

Therefore the condition (A3) demands that there should exist a G A F such that

kðx;GÞ ¼
ffiffiffi
2

p
aðxÞ; x A G :ð2:5Þ

This is a problem of highly geometric nature. Such a hypersurface is called a

surface with prescribed mean curvature in di¤erential geometry literature. One

can verify that (2.5) is the first variational equation for the functional FaðGÞ
defined by

FaðGÞ :¼
ð
G

dSG
x �

ð
D

ð�Þ
G

aðxÞdx ðG A FÞ;ð2:6Þ

where dSG
x is the surface element of G .

Let us assume that (2.5) does have a smooth solution G, or equivalently,

that (2.6) has a critical point G which is regular enough (we will later treat a

special case where we can easily find a solution). The linear operator AG in

(1.14) is given by

3

2
ffiffiffi
2

p AGRðxÞ ¼ DG þ
XN�1

j¼1

kjðxÞ2
 !

RðxÞ þ qaðxÞ
qnðx;GÞRðxÞ x A G :ð2:7Þ

The first two terms on the right-hand side of (2.7), DG þ
PN�1

j¼1 kjðxÞ2, is called
the Jacobi operator on G , which describes the first variation of �kðx;GÞ. In

fact � 3

2
ffiffi
2

p AGRðxÞ is the second variation of Fa at G in the direction of R.

Example 2.2. In this example, we consider the case where the non-

linearity f is of the form

f ðu; x; eÞ1 hðxÞ2ðu3 � uÞ:ð2:8Þ

The function hðxÞ is smooth and strictly positive on D. One can easily identify
~QQ0ðt; xÞ;mðxÞ and Jðx;GÞ as
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~QQ0ðt; xÞ ¼ Q̂Q0ðhðxÞtÞ; mðxÞ ¼ 2
ffiffiffi
2

p

3
hðxÞ;ð2:9Þ

Jðx;GÞ ¼ � 2
ffiffiffi
2

p

3

qhðxÞ
qnðx;GÞ x A G :

Therefore the free-interface problem in the present case is given by

hðxÞkðx;GÞ þ qhðxÞ
qnðx;GÞ ¼ 0; x A G :ð2:10Þ

This is the first variational equation for the functional EhðGÞ defined by

EhðGÞ :¼
ð
G

hðxÞdSG
x :ð2:11Þ

The free-interface problem (2.10) may look similar to (2.5), but it is sub-

stantially di¤erent, since in (2.10) the value of mean curvature at x A G depends

not only on the the prescribed value hðxÞ, but also on the normal direction

nðx;GÞ of the free interface. To the best of our knowledge, there seems to

be no general condition on h that ensures the existence of solutions to (2.10),

except for a special case to be treated in § 2.3 below. It is a natural strategy to

find minimizers (or critical points) of Eh in order to obtain solutions of (2.10).

This problem deserves a separate treatment.

Assuming that (2.10) has a smooth solution G , the linear operator in (1.14)

is given by

3

2
ffiffiffi
2

p AGRðxÞ1 hðxÞ DG þ
XN�1

j¼1

kjðxÞ2
 !

RðxÞ þ ‘GhðxÞ � ‘GRðxÞð2:12Þ

� qhðxÞ
qnðx;GÞ kðx;GÞRðxÞ �

q2hðxÞ
qnðx;GÞ2

RðxÞ;

which is the second variation of (2.11) at G .

Example 2.3. Let the nonlinearity f in (1.1) be given by

f ðu; x; eÞ1 uðu2 � fðxÞ2Þ;ð2:13Þ

in which fðxÞ > 0 is a smooth function defined on D. Then we have

~QQ0ðt; xÞ ¼ fðxÞQ̂Q0ðfðxÞtÞ; mðxÞ ¼ 2
ffiffiffi
2

p

3
fðxÞ3;ð2:14Þ

Jðx;GÞ ¼ �c�fðxÞ2
qfðxÞ

qnðx;GÞ ;
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where

c� ¼ 2

ð
R

Q̂Q0ðtÞ
dQ̂Q0ðtÞ

dt
t dt ¼ 2

ffiffiffi
2

p
:

The free-interface problem is therefore written as

kðx;GÞfðxÞ3 þ 3fðxÞ2 qfðxÞ
qnðx;GÞ ¼ 0 x A G :ð2:15Þ

This is almost identical to (2.10). In fact, (2.15) is the first variational equation

of the functional ÊEfðGÞ defined by

ÊEfðGÞ1
ð
G

fðxÞ3dSG
x :ð2:16Þ

Assuming that (2.15) has a smooth solution G , the operator AG is given

by

3

2
ffiffiffi
2

p AGRðxÞ1 fðxÞ3 DG þ
XN�1

j¼1

kjðxÞ2
 !

RðxÞ þ ‘GðfðxÞ3Þ � ‘GRðxÞð2:17Þ

� qfðxÞ3

qnðx;GÞ kðx;GÞRðxÞ � q2fðxÞ3

qnðx;GÞ2
RðxÞ:

In the examples above, we have been naturally lead to geometric vari-

ational problems associated with the functionals Fa;Eh and ÊEf, defined respec-

tively by (2.6), (2.11) and (2.16). Critical points of these functionals corre-

spond to the solutions of the free-interface problems (2.5), (2.10) and (2.15),

respectively. The solutions of the latter problems in turn give rise to stationary

solutions of (1.1) with internal transition layers on the free-interface. Also, the

stability of the transition layer solutions is read o¤ from the index of the critical

points.

2.3. Analysis of Examples. In this subsection, the examples above will be

analyzed when the inhomogeneity is radially symmetric. Let D contain the

origin of RN and a; h and f depend only on r ¼ jxj. We do not, however,

assume that D is radially symmetric. In this situation, we look for the free-

interface G among spheres with center at the origin. For the sake of defi-

niteness, we assume that interiors of free surfaces correspond to D
ð�Þ
G . The

other case where D
ðþÞ
G corresponds to the interior of G can be treated similarly.

The free-interface problem is nothing but the equilibrium problem of the

interface equation (1.7). It is therefore more illuminating to cast it in a

dynamic version. When the initial interface is a sphere with center at the

origin, the solution of (1.7) remains to be a concentric sphere, since the spatial
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inhomogeneity is radially symmetric. Therefore, the dynamic versions of the

free-interface problems (2.5), (2.10) and (2.15) are respectively written as:

ðExample 2:1Þ: dr

dt
¼ � d

dr
log rN�1 �

ð r
0

aðsÞds
� �

;ð2:18Þ

ðExample 2:2Þ: dr

dt
¼ � d

dr
logðrN�1hðrÞÞ;

ðExample 2:3Þ: dr

dt
¼ � d

dr
logðrN�1fðrÞ3Þ:

Therefore radial dynamics of (1.7) in these examples are determined by the

profile of the corresponding potentials.

Let r ¼ r0 be an equilibrium point of (2.18). The stability of the cor-

responding interface G with respect to radial pertubations is determined by the

sign of the second derivative of the potintials at r ¼ r0. The stability property

with respect to non-radial perturbations is encoded in the eigenvalues of the

linear operator in (2.7), (2.12), or (2.17).

One can easily verify that eigenfunctions of the operator are all spherical

harmonics. The eigenvalue lG
j corresponding to spherical harmonics of degree

jb 0 is given by

ðExample 2:1Þ: lG
j ¼ � jð j þN � 2Þ

r20
� d 2

dr2
log rN�1 �

ð r
0

aðsÞds
� �����

r¼r0

;ð2:19Þ

ðExample 2:2Þ: lG
j ¼ � jð j þN � 2Þ

r20
� d 2

dr2
logðrN�1hðrÞÞ

����
r¼r0

;

ðExample 2:3Þ: lG
j ¼ � jð j þN � 2Þ

r20
� d 2

dr2
logðrN�1fðrÞ3Þ

����
r¼r0

:

Based upon the information provided by (2.19), Theorems 2.1 and 2.2 now

apply to produce the existence and stability properties of the corresponding

stationary solutions of (1.1) with internal transition layers.

Remark 2.2. Our theorem naturally applies to one-dimensional cases,

where we can reproduce the results in [8].

Let D ¼ ð0; 1ÞHR. The interface equation for Example 2.1 is given by

dr

dt
¼ aðrÞ:

A simple zero r0 A ð0; 1Þ of aðrÞ therefore gives rise to an equilibrium solution

of (1.1) for small e > 0, which is asymptotically stable if a 0ðr0Þ < 0 and unstable

if a 0ðr0Þ > 0.
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On the other hand, the interface equation for Example 2.4 is given by

dr

dt
¼ � h 0ðrÞ

hðrÞ :

Therefore, a nondegenerate critical point r0 A ð0; 1Þ of the function hðrÞ;
h 0ðr0Þ ¼ 0, h 00ðr0Þ0 0, gives rise to a family of internal transition layer solutions

of (1.1) near r ¼ r0. The solutions are asymptotically stable (resp. unstable) if

hðrÞ attains a local minimum (resp. local maximum).

3. Proof of Theorem 2.1

We will prove Theorem 2.1 in this section. Since our proof is rather

lengthy, we will delegate the computational details to §§ 4 and 5.

Let uðx; eÞ be the desired solution of Theorem 2.1. We define the equili-

brium interface Ge by

Ge ¼ x A D j uðx; eÞ ¼ 1

2
ðfðþÞðxÞ þ fð�ÞðxÞÞ

� �
:

Without loss of generality, we may assume that fðþÞðxÞ þ fð�ÞðxÞ1 0 on D.

For, if not, we change the unknown u by u 7! u� 1
2
ðfðþÞðxÞ þ fð�ÞðxÞÞ. Then

the new unknown satisfies

e2Du ¼ f ðu; x; eÞ;

where

f ðu; x; eÞ ¼ f uþ 1

2
ðfðþÞðxÞ þ fð�ÞðxÞÞ; x; e

� �
þ e2

2
DðfðþÞðxÞ þ fð�ÞðxÞÞ:

For this new nonlinearity f , the conditions (A1) and (A2) are fulfilled. We

therefore define the interface Ge by

Ge ¼ fx A D j uðx; eÞ ¼ 0g A F;ð3:1Þ

which is unknown a priori. The condition (A3) demands that lime!0 Ge exists.

Therefore we expect that Ge is expressed as the graph of a function R eðyÞ over

G :¼ lime!0 Ge in terms of the local coordinate system ðy; rÞ in (1.10) and

(1.11):

Ge ¼ fx A D j x ¼ yþ eReðyÞnðyÞ; y A Gg:ð3:2Þ

We will first establish the existence of approximate solutions with an ar-

bitrarily high accuracy.
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Proposition 3.1. For any integer kb 2, one can choose a smooth function

Re
kðyÞ ðy A GÞ for which there exists a family of smooth approximate solutions

u e
kðxÞ of the problem

e2Du� f ðu; x; eÞ ¼ 0 ðx A DÞ;
qu

qn
¼ 0 ðx A qDÞ;

8><
>:ð3:3Þ

such that

fx A D j ue
kðxÞ ¼ 0g ¼ fx A D j x ¼ yþ eRe

kðyÞnðyÞ; y A Gg

and

que
k

qn
¼ 0 ðx A qDÞ; ke2Due

k � f ðue
k; x; eÞkC a

e ðDÞ ¼ Oðekþ1�a�a 0 Þ

for 0 < a < 1 and 0 < a 0 a 1. Here C a
e ðDÞ is the usual Hölder space C aðDÞ

with the weighted norm

kpkC a
e ðDÞ ¼ sup

x AD

jpðxÞj þ ea sup
x0x 0 AD

jpðxÞ � pðx 0Þj
jx� x 0ja :

We give here some comments on Proposition 3.1, although it will be

proven in § 4.

The function Re
kðyÞ is given by a finite sum

Re
kðyÞ ¼ R1ðyÞ þ eR2ðyÞ þ � � � þ ek�2Rk�1ðyÞ;

in which the functions RjðyÞ ð0a ja k � 1Þ are determined by solving linear

elliptic equations on G :

AGR1 ¼ h1ðyÞ ða known functionÞ ð j ¼ 1Þ;ð3:4Þ

AGRj ¼ hjðy;R1; . . . ;Rj�1Þ(3.5)

ða function determined by R1; . . . ;Rj�1Þ ð jb 2Þ:

Thanks to the condition (A4), the operator AG is invertible and hence (3.4)

and (3.5) are uniquely solvable. The elliptic equations (3.4) and (3.5) will

appear as C1-mathching conditions in the asymptotic expansions in § 4.

We now linearize (3.3) around the approximate solution ue
k:

L e
kj :¼ e2Dj� fuðue

k; x; eÞj;

and consider the associated eigenvalue problem:
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L e
kj ¼ lj ðx A DÞ;

qj

qn
¼ 0 ðx A qDÞ:

8><
>:ð3:6Þ

Definition 3.2. An eigenvalue le of (3.6) is called a non-critical

eigenvalue if there exist constants d > 0, e� > 0 such that

jlejb d ðEe A ð0; e��Þ:

An eigenvalue of (3.6) is called a critical eigenvalue if it is not non-critical.

The following result plays a decisive role in our proof of Theorem 2.1.

Proposition 3.3. (i) There exists d� > 0 and e� > 0 so that non-critical

eigenvalues le of (3.6) satisfy

le
a�d�; Ee A ð0; e��:

(ii) Let le be a critical eigenvalue of (3.6) with kb 2. Then

lim
e!0

le ¼ 0 and lim
e!0

le

e2
¼ l� A sG :

We will prove this proposition in § 5.

From this proposition and the condition (A4), we immediately conclude

that the linear operator Le
k is invertible. This also allows us to establish the

following.

Proposition 3.4. There exist constants C > 0 and e� > 0 so that the

estimate

kðLe
kÞ

�1k
C

1=2
e ðDÞ!C

1=2
e ðDÞ a

C

e2½N=4�þ4
for e A ð0; e��

is valid, where
�
N
4

�
stands for the integer-part of one-quater of the dimension N.

Proof. Proposition 3.3 and the condition (A4) imply that

L e
k : W

2;2ðDÞ ! L2ðDÞ

is invertible for e A ð0; e�� (where e� > 0 is adequately small), and that there

exists C > 0 such that

kukL2 a
C

e2
kvkL2 ; e A ð0; e��;ð3:7Þ

where v A C1=2ðDÞ and u ¼ ðL e
kÞ

�1
v.

In the sequel, we simply use the same symbol C to denote positive con-

stants, independent of e, which may di¤er from line to line.
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By using the Lp-estimates for the Laplacian in the equation

Du ¼ 1

e2
f fuðue

k; x; eÞuþ vg;

we have

kukW 2; pðDÞ a
C

e2
ðkukLp þ kvkLpÞ ð1 < Ep < yÞ:ð3:8Þ

Our strategy of proof is to use (3.8), combined with the Sobolev em-

beddings

kukLp aCkukW 2; p 0 ; 1a pa
p 0N

N � 2p 0 ; if Nb 2p 0;ð3:9Þ

and

kukC a aCkukW 2; p ; with a ¼ min 1; 2�N

p

� �
; if 2p > N:ð3:10Þ

1. For N ¼ 1; 2; 3, we first use (3.10) with p ¼ 2. Taking a ¼ 1=2, and

using (3.8) (with p ¼ 2) and (3.7), we have

kuk
C

1=2
e

a kukC 1=2 aCkukW 2; 2 a
C

e2
ðkukL2 þ kvkL2Þ

a
C

e2
C

e2
kvkL2 þ kvkL2

� �
a

C

e4
kvk

C
1=2
e
:

This completes the proof for N ¼ 1; 2; 3.

2. For Nb 4, we argue as follows. The estimate

kukW 2; 2 a
C

e4
kvkL2 ; ENb 1ð3:11Þ

has been already established above by using (3.8) and (3.7). For each integer

jb 0, we will establish the esimate

kukW 2; 2N=ðN�4jÞ a
C

e2jþ4
kvkL2N=ðN�4jÞ ; ENb 4j:ð3:12Þ

Let us prove (3.12) by induction. For j ¼ 0, (3.12) reduces to (3.11). Assume

now that (3.12) is true for some jb 0. By using (3.9) with p 0 ¼ 2N
N�4j , we

obtain, for Nb 4ð j þ 1Þ,

kukLp aCkukW 2; 2N=ðN�4jÞ ; 1a Epa
2N

N � 4ð j þ 1Þ :
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Using this with p ¼ 2N
N�4ð jþ1Þ in (3.8), and then using (3.12) in the resulting

estimate, we obtain

kukW 2; 2N=ðN�4ð jþ1ÞÞ a
C

e2ð jþ1Þþ4
kvkL2N=ðN�4ð jþ1ÞÞ ; ENb 4ð j þ 1Þ:

Therefore, we have established (3.12) for all nonnegative integer j.

On the other hand, if N ¼ 4j; 4j þ 1; 4j þ 2; 4j þ 3, then 2� 2N
N�4j

> N, and

hence (3.10) applies with a ¼ 1=2, giving rise to

kukC 1=2 aCkukW 2; 2N=ðN�4jÞ :

Since kuk
C

1=2
e

� kukC 1=2 and kvkLp aCkvk
C

1=2
e

for any pb 1, the last estimate

and (3.12) establish for each jb 0 that

kuk
C

1=2
e

a
C

e2jþ4
kvk

C
1=2
e
; for N ¼ 4j; 4j þ 1; 4j þ 2; 4j þ 3:

This completes the proof. r

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. The method of proof presented below is a gen-

eralization of an idea first employed in [5].

We look for a true solution uðx; eÞ of (3.3) near the approximate solution

u e
k:

uðx; eÞ ¼ ue
kðxÞ þ jðxÞ:

Problem (3.3) is now recast, in terms of j, as

Le
kj ¼ NeðjÞ þRe in D;

qj

qn
¼ 0 on qD;

8><
>:ð3:13Þ

where

NeðjÞ ¼ f ðu e
k þ j; x; eÞ � f ðue

k; x; eÞ � fuðu e
k; x; eÞj;

Re ¼ �e2Du e
k þ f ðue

k; x; eÞ:

�

Replacing j by e l ~jj with l ¼ 2 N
4

� �
þ 4, we rewrite (3.13) as follows:

~jj ¼ S e ~jj :¼ e�lðL e
kÞ

�1fNeðe l ~jjÞ þReg:ð3:14Þ

Applying Proposition 3.1 with k ¼ 2l, we have

kRek
C

1=2
e ðDÞ ¼ Oðe2lþ1=2Þ:

Since jNeðjÞj ¼ Oðjjj2Þ, Proposition 3.4 yields
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ke�lðL e
kÞ

�1Neðe l ~jjÞk
C

1=2
e ðDÞ ¼ Oðk~jjkC 0ðDÞk~jjkC 1=2

e ðDÞÞ

ke�lðLe
kÞ

�1Rek
C

1=2
e ðDÞ ¼ Oðe1=2Þ:

These allow us to show that S e : C
1=2
e ðDÞ ! C

1=2
e ðDÞ is a contraction on a

small ball of radius Oðe1=2Þ around zero in C
1=2
e ðDÞ. Therefore, the fixed-point

equation (3.14) has a unique solution ~jj ¼ ~jje with k~jjek
C

1=2
e ðDÞ ¼ Oðe1=2Þ. The

desired solution is then given by

uðx; eÞ ¼ ue
kðxÞ þ jeðxÞ with kjek

C
1=2
e ðDÞ ¼ Oðe lþ1=2Þ:

This completes the proof of the existence-part of Theorem 2.1.

In order to prove the stability-part of the theorem, we consider the critical

eigenvalues of

Le ¼ e2D� fuðuðx; eÞ; x; eÞ:

However, we have

Le ¼ Le
k � ½ fuðuðx; eÞ; x; eÞ � fuðue

kðxÞ; x; eÞ�

and

k fuðuð� ; eÞ; � ; eÞ � fuðue
k; � ; eÞkLy ¼ Oðe lþ1=2Þ:

Therefore, the critical eigenvalues of L e are at most Oðe lþ1=2Þ away ðlb 4Þ
from those of Le

k. In other words, Proposition 3.3 is also valid for the critical

eigenvalues of L e. This fact establishes the stability properties in Theorem 2.1.

4. Asymptotic expansion of approximate solutions

In this section, we will prove Proposition 3.1.

The construction of the approximate solution ue
k in Proposition 3.1 consists

of three parts; outer expansion, boundary correction, and inner expansion.

The outer expansion deals with the approximation in the bulk regions ðDðGÞ
G Þ.

The outer approximation in general does not satisfy the boundary conditions in

(3.3). The boundary correction then modifies the outer approximation so as to

satisfy the boundary conditions. The inner expansion takes care of the sharp

transition behavior of ue
k near the interface Ge where a stretched spatial scale is

to be introduced.

4.1. Outer Expansion. We substitute the formal expression

uðxÞ ¼ uðGÞ
e ðxÞ :¼

X
jb0

e ju
ðGÞ
j ðxÞð4:1Þ
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into the di¤erential equation in (3.3). The superscripts ‘‘ðGÞ’’ indicate that the

relevant functions are defined on the two subdomains D
ðGÞ
G , respectively. We

then expand the left hand side of the resulting equation in the e-power series.

Equating to zero the coe‰cient of each power of e, we obtain an array of

equations. The lowest order equation is

0 ¼ f ðuðGÞ
0 ; x; 0Þ:ð4:2Þ

According to (A1), we choose

u
ð�Þ
0 ðxÞ ¼ fð�ÞðxÞ; ðx A D

ð�Þ
G Þ;

u
ðþÞ
0 ðxÞ ¼ fðþÞðxÞ; ðx A D

ðþÞ
G Þ:

(
ð4:3Þ

The equations for u
ðGÞ
j ðxÞ ð jb 1Þ are given by

0 ¼ fuðfðGÞðxÞ; x; 0ÞuðGÞ
1 ðxÞ þ feðfðGÞðxÞ; x; 0Þ; ðx A D

ðGÞ
G Þ;ð4:4Þ

for j ¼ 1 and

fuðfðGÞðxÞ; x; 0ÞuðGÞ
j ðxÞð4:5Þ

¼ Du
ðGÞ
j�2ðxÞ þ function depending on u

ðGÞ
0 ðxÞ; . . . ; uðGÞ

j�1ðxÞ ðx A D
ðGÞ
G Þ

for jb 2. Thanks to (A1), we have fuðfðGÞðxÞ; x; 0Þ > 0 on D
ðGÞ
G , and hence

u
ðGÞ
j ðxÞ is uniquely determined successively for j ¼ 1; 2; . . . :

4.2. Inner Expansion. There is a jump between the outer expansionsP
jb0 e

ju
ð�Þ
j ðxÞ and

P
jb0 e

ju
ðþÞ
j ðxÞ on G . The inner expansion bridges the

jump by introducing sharp transition layers along G . In order to describe the

transiton layers, it is adequate to work with the local coordinate system ðy; rÞ
near G , defined in (1.10). A function pðxÞ of x A G ðdÞ is also expressed as

pðr; yÞ, with the relation x ¼ yþ rnðyÞ being understood. The symbol prðr; yÞ,
for example, means

prðr; yÞ ¼
q

qr
pðr; yÞ ¼ ‘pðxÞ � nðxÞ:

We now introduce a stretched spatial scale in the r-direction. However,

note that the set fr ¼ 0g simply corresponds to the reduced interface G, while

our interface Ge is given by (3.1), (3.2). Therefore, we define the stretched

variable z by

z ¼ r� eReðyÞ
e

; or r ¼ ezþ eReðyÞ;ð4:6Þ
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with

ReðyÞ ¼
X
jb0

e jRjþ1ðyÞ:

We will substitute into (3.3) the formal expression

u eðxÞ ¼ ueðr; yÞ :¼
X
jb0

e ju
ðGÞ
j ðezþ eReðyÞ; yÞ þ

X
jb0

e jQ
ðGÞ
j ðz; yÞð4:7Þ

¼
X
jb0

e jq
ðGÞ
j ðz; yÞ;

where

q
ðGÞ
0 ðz; yÞ ¼ u

ðGÞ
0 ð0; yÞ þQ

ðGÞ
0 ðz; yÞ ¼ fðGÞð0; yÞ þQ

ðGÞ
0 ðz; yÞ;ð4:7-0Þ

q
ðGÞ
1 ðz; yÞ ¼ u

ðGÞ
1 ð0; yÞ þ ðzþ R1ÞuðGÞ

0r ð0; yÞ þQ
ðGÞ
1 ðz; yÞð4:7-1Þ

q
ðGÞ
2 ðz; yÞ ¼ u

ðGÞ
2 ð0; yÞ þ ðzþ R1ÞuðGÞ

1r ð0; yÞð4:7-2Þ

þ 1

2
ðzþ R1Þ2uðGÞ

0rr ð0; yÞ þ R2u
ðGÞ
0r ð0; yÞ þQ

ðGÞ
2 ðz; yÞ

q
ðGÞ
k ðz; yÞ ¼ Q

ðGÞ
k ðz; yÞ þ

Xk
j¼0

1

ðk � jÞ!
d k�j

dek�j
u
ðGÞ
j ðezþ eRe; yÞ

����
e¼0

� �
ð4:7-kÞ

for general kb 2:

In order to write down equations for q
ðGÞ
k , we need to express the Laplacian

D in terms of the local coordinates ðr; yÞ and ðz; yÞ.
The Laplacian D is expressed as

D ¼ q2

qr2
þ kðr; yÞ q

qr
þ DGðr; yÞ;ð4:8Þ

in terms of the coordinate system ðr; yÞ in (3.1) and (3.2), where

kðr; yÞ: the sum of principal curvatures (the mean curvature, for short)

of GðrÞ,

GðrÞ :¼ fx A D j x ¼ yþ rnðyÞ; y A Gg

at x ¼ yþ rnðyÞ A GðrÞ,
DGðr; yÞ: the Laplace-Beltrami operator on GðrÞ acting on functions of y.

In order to obtain equations for q
ðGÞ
k , we further need to express (4.8) in terms

of ðz; yÞ.
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Lemma 4.1. The Laplacian in (4.8) is expressed as follows.

e2D ¼ q2

qz2
þ ekð0; yÞ q

qz
þ
X
jb2

e j½�Mj�1 þ Pj�2�;ð4:9Þ

where

ðaÞ M1 ¼ ðDGR1Þ
q

qz
þ 2‘GR1 � ‘G

q

qz

� �
� krð0; yÞR1

q

qz
� j‘GR1j2

q2

qz2
;ð4:10Þ

ðbÞ Mj ¼ ðDGRjÞ
q

qz
þ 2‘GRj � ‘G

q

qz

� �

� krð0; yÞRj

q

qz
� 2‘GR1 � ‘GRj

q2

qz2
ð jb 2Þ;

ðcÞ P0 ¼ DG þ zkrð0; yÞ
q

qz
;

ðdÞ Pj: dierential operator depending only on R1; . . . ;Rj:

Proof. Let us denote by ðgijÞ ¼ ðgijðr; yÞÞ ði; j ¼ 1; . . . ;N � 1Þ the cova-

riant metric tensor on GðrÞ, induced from the Euclidean metric in RN , at x ¼
yþ rnðyÞ. We also use the symbols g ¼ detðgijÞ and ðgijÞ ¼ ðgijÞ�1. Under

the change of variables in (4.6), we have

q

qr
7! 1

e

q

qz
;

q2

qr2
7! 1

e2
q2

qz2
;

and

q

qyi
7! q

qyi
� qRe

qyi

q

qz
:

Using (4.8), e2D is therefore written as

e2D ¼ q2

qz2
þ ekðezþ eRe; yÞ q

qz
þ e2 ~DDG

e ðz; yÞ;ð4:8-eÞ

where

~DDG
e ðz; yÞ ¼

1ffiffiffi
g

p
XN�1

i; j¼1

q

qyi
� qRe

qyi

q

qz

� � ffiffiffi
g

p
gij q

qyj
� qRe

qyj

q

qz

� �� �
:

One can compute this explicitly as follows.
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~DDG
e ðz; yÞ ¼ DGðezþ eRe; yÞ � ½DGðezþ eRe; yÞRe� q

qz
ð4:11Þ

� 2‘GR
e � ‘G

q

qz

� �
þ j‘GRej2 q2

qz2

� effiffiffi
g

p
XN�1

i; j¼1

q

qr
ð ffiffiffi

g
p

gijÞjr¼ezþeR e

qRe

qyi

� �
q

qyj

þ effiffiffi
g

p
XN�1

i; j¼1

q

qr
ð ffiffiffi

g
p

gijÞjr¼ezþeR e

qRe

qyi

� �
qRe

qyj

� �
q

qz
:

Substituting Re ¼
P

kb1 e
k�1Rk into (4.8-e) and (4.11), and expanding the

resulting equation in the e-power series, we obtain (4.9) and (4.10). r

We are now ready to write down the equations for q
ðGÞ
k ðz; yÞ. In the

sequel, partial di¤erentiation with respect to z will be denoted by ‘‘dot’’, _qq.

We also use the short hand notation f ðu; r; y; eÞ in place of f ðu; x; eÞ with the

relation x ¼ yþ rnðyÞ being understood.

The equations for q
ðGÞ
k are given as follows.

€qq
ðGÞ
0 ¼ f ðqðGÞ

0 ; 0; y; 0Þ;ð4:12Þ

€qq
ðGÞ
1 � fuðqðGÞ

0 ; 0; y; 0ÞqðGÞ
1 ¼ F

ðGÞ
1 ðzÞð4:12-1Þ

:¼ �k _qq
ðGÞ
0 þ frðqðGÞ

0 ; 0; y; 0Þðzþ R1Þ þ feðqðGÞ
0 ; 0; y; 0Þ;

where k ¼ kð0; yÞ, fr ¼ q
qr
f , and fe ¼ q

qe
f . In the sequel, f ð�Þ means

f ðqðGÞ
0 ; 0; y; 0Þ.

€qq
ðGÞ
2 � fuð�ÞqðGÞ

2 ¼ F
ðGÞ
2 ðzÞð4:12-2Þ

:¼ �k _qq
ðGÞ
1 þM1q

ðGÞ
0 � P0q

ðGÞ
0 þ frð�ÞR2

þ 1

2
fuuð�ÞðqðGÞ

1 Þ2 þ furð�Þðzþ R1ÞqðGÞ
1 þ fueð�ÞqðGÞ

1

þ freð�Þðzþ R1Þ þ
1

2
frrð�Þðzþ R1Þ2 þ

1

2
feeð�Þ;

€qq
ðGÞ
k � fuð�ÞqðGÞ

k ¼ F
ðGÞ
k ðzÞð4:12-kÞ

:¼ �k _qq
ðGÞ
k�1 þMk�1q

ðGÞ
0 þ frð�ÞRk

þ fuuð�ÞqðGÞ
1 q

ðGÞ
k�1 þ furð�ÞRk�1q

ðGÞ
1 þ fueð�ÞqðGÞ

k�1

þ furð�Þðzþ R1ÞqðGÞ
k�1 þ freð�ÞRk�1 þ frrð�Þðzþ R1ÞRk�1 þ f

ðGÞ
k :

N. N. Nefedov and K. Sakamoto414



The symbol f
ðGÞ
k in the last of (4.12-k) represents terms which depend only on

q
ðGÞ
0 ; . . . ; q

ðGÞ
k�2 and R1; . . . ;Rk�2 ðkb 3Þ. We consider the equations in (4.12),

(4.12-k) as defined on ð�y; 0Þ (for superscript ð�Þ) and ð0;yÞ (for superscript

ðþÞ), respectively. These equations are supplemented by the following con-

ditions.

q
ðGÞ
k ð0; yÞ1 0 ðinterface conditionÞ;ð4:13Þ

Q
ðGÞ
k ðz; yÞ ¼ Oðe�bjzjÞð4:14Þ

as jzj ! y for some b > 0 ðinner-outer matchingÞ;

_qq
ð�Þ
k ð0; yÞ ¼ _qq

ðþÞ
k ð0; yÞ ðC1-mactching conditionÞ:ð4:15Þ

The conditions (4.13) come from the definition of the interface Ge ¼
fx j uðx; eÞ ¼ 0g. The conditions (4.14) are called the inner-outer matching

conditions. The exponential decay in these conditions guarantees that the

inner corrections ðQðGÞ
k ðz; yÞÞ do not disrupt the outer approximation in the

region away from the interface. The conditions (4.15) are the C1-matching

conditions. Once the conditions in (4.13) and (4.15) are satisfied, the solutions

q
ð�Þ
k ðz; yÞ ðz A ð�y; 0�Þ and q

ðþÞ
k ðz; yÞ ðz A ½0;yÞÞ are joined smoothly across

z ¼ 0, giving rise to a smooth function qkðz; yÞ defined for z A R:

qkðz; yÞ ¼
q
ð�Þ
k ðz; yÞ; ðz A ð�y; 0�Þ;

q
ðþÞ
k ðz; yÞ; ðz A ½0;yÞÞ:

(

It will be shown that the C1-matching conditions are equivalent to (3.4) and

(3.5).

The equations (4.12) have trival solutions q
ðGÞ
0 which also satisfy the con-

ditions (4.13), (4.14), and (4.15) with k ¼ 0:

q
ð�Þ
0 ¼ ~QQ0ðz; yÞ ðz A ð�y; 0�Þ; q

ðþÞ
0 ¼ ~QQ0ðz; yÞ ðz A ½0;yÞÞ;

where ~QQ0 is the function defined as the unique solution of (1.4). Note that we

have normalized ~QQ0 so that ~QQ0ð0; yÞ1 0. From now on, we do not distinguish

q
ðGÞ
0 and simply denote them as q0. Note also that q0 is defined for all x A D

via q0ðz; xÞ :¼ ~QQ0ðz; xÞ. We therefore denote by q0ðz; r; yÞ the extended function
~QQ0ðz; yþ rnðyÞÞ.

The equations ð4:12-kÞ ðkb 1Þ are inhomogeneous linear ordinary di¤er-

ential equations for q
ðGÞ
k with y A G being a parameter:

d 2

dz2
� fuðq0ðz; yÞ; 0; y; 0Þ

	 

q
ðGÞ
k ¼ F

ðGÞ
k ðzÞ ðkb 1Þ:ð4:16Þ

It is easily shown that (4.16) have unique solutions q
ðGÞ
k ðz; yÞ ðGz A ½0;yÞÞ that

satisfy the conditions (4.13) and (4.14):
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ð4:17Þ

q
ðGÞ
k ðz; yÞ ¼ _qq0ðzÞ

ð z
0

1

½ _qq0ðz 0Þ�
2

ð z 0
Gy

_qq0ðz 00; yÞF
ðGÞ
k ðz 00Þdz 00dz 0; Gz A ½0;yÞ:

From (4.17), one finds that the C 1-matching condition (4.15) is equivalent toð
R

_qq0ðz; yÞFkðzÞdz ¼ 0 ðkb 1Þ;ð4:18Þ

where FkðzÞ ¼ F
ðGÞ
k ðzÞ for Gz A ½0;yÞ.

Let us apply (4.18) to (4.12-1). We need not distinguish F
ðGÞ
1 , since they

constitute a smooth function F1ðzÞ defined on R, thanks to the C 1-matching

condition for q
ðGÞ
0 . One can also see that two functions F

ðGÞ
k ðzÞ give rise to the

smooth function FkðzÞ defined on R as soon as the C1-matching conditions for

q
ðGÞ
j ð0a ja k � 1Þ are satisfied.

The condition (4.18) for k ¼ 1 is

0 ¼ �k

ð
R

½ _qq0ðzÞ�
2
dzþ

ð
R

zfrðq0ðzÞ; 0; y; 0Þ _qq0ðzÞdz

þ R1

ð
R

frðq0ðzÞ; 0; y; 0Þ _qq0ðzÞdzþ
ð
R

feðq0ðzÞ; 0; y; 0Þ _qq0ðzÞdz:

Recall that q0ðz; yÞ ¼ ~QQ0ðz; yÞ, and hence
Ð
R
½ _qq0ðzÞ�

2
dz ¼ mð0; yÞ. We also

haveð
R

frðq0ðzÞ; 0; y; 0Þ _qq0ðzÞdz ¼
ð fðþÞð0;yÞ

fð�Þð0;yÞ
frðu; 0; y; 0Þdu1

q

qr
cðr; yÞjr¼0 ¼ 0;

because cðr; yÞ1 0 according to (A2). Therefore the C1-matching condition

for q
ðGÞ
1 is written as

0 ¼ �kðxÞmðxÞ þ Jðx;GÞ; x A G :ð4:19Þ

The condition (A3) says that the reduced interface G satisfies this equation.

Note that the solutions q
ðGÞ
1 depend on R1, but the C1-matching condition on

them does not.

Proposition 4.2. The C1-matching condition (4.15) (or (4.18)) for kb 2

is equivalent to

AGR1 ¼ h1ðyÞ; y A G ð for k ¼ 2Þ;
AGRk�1 ¼ hk�1ðy;R1; . . . ;Rk�2Þ; y A G ð for k > 2Þ;

�
ð4:20Þ

where AG is the linear elliptic operator on G , defined in (1.14), and hjðy;R1; . . . ;

Rj�1Þ is a smooth function on G which is determined by R1; . . . ;Rj�1.
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Proof. We first note that the coe‰cient of Rk in the C1-matching condi-

tion (4.18) is zero: ð
R

_qq0ðzÞ frðq0; 0; y; 0Þdz ¼ 0;

thanks to the condition (A3); cðr; yÞ1 0.

We divide the proof into two cases; case (1) k ¼ 2, and case (2) k > 2.

Case (1): The solution q1ðzÞ is expressed as q1ðzÞ ¼ q1ðzÞ þ R1p0ðzÞ,
where

p0ðzÞ ¼
q

qR1
q1ðzÞ ¼

q

qr
q0ðz; r; yÞjr¼0

is the unique solution of

€pp0 � fuð�Þp0 ¼ frð�Þ z A R;

p0ð0Þ ¼ 0;

�

which decays exponentially to zero as z !Gy, and q1 is the unique solution

of

€qq1 � fuð�Þq1 ¼ �k _qq0 þ zfrð�Þ þ feð�Þ; z A R;

q1ð0Þ ¼ 0;

(

which grows linearly in z as z !Gy.

By using q1 ¼ q1 þ R1p0, one finds that in the C1-matching conditionð
R

_qq0ðzÞF2ðzÞdz ¼ 0;ð4:21Þ

the terms involving R1ðyÞ are expressed as

I1ðyÞ � k

ð
R

_pp0 _qq0 dz

� �
R1ðyÞ þ

ð
R

ðM1q0Þ _qq0 dzþ I2ðyÞ½R1ðyÞ�2;

where

I1ðyÞ ¼
ð
R

½ fuuð�Þq1p0 þ furð�Þq1� _qq0 dz

þ
ð
R

½ furð�Þzp0 þ zfrrð�Þ þ fueð�Þp0 þ freð�Þ� _qq0 dz;

I2ðyÞ ¼
ð
R

1

2
fuuð�Þ½ p0�2 þ furð�Þp0 þ

1

2
frrð�Þ

	 

_qq0 dz:

Recall here from (4.10) that M1 is a di¤erential operator involving R1.

Layers in inhomogeneous media 417



We will establish the following:
0 Claim 1: I2ðyÞ1 0.
0 Claim 2: We have

Ð
R
_pp0 _qq0 dz ¼ 1

2
mrð0; yÞ, where mr ¼ q

qr
m.

0 Claim 3: The integral involving the operator M1 is reduced to

ð
R

ðM1q0Þ _qq0 dz ¼ mðyÞDGR1 þ ‘GR1 � ‘GmðyÞ � krð0; yÞmðyÞR1ðyÞ

where kr ¼ q
qr
kðr; yÞjr¼0.

0 Claim 4: I1ðyÞ ¼ � k
2
mrð0; yÞ þ Jrðy;GÞ.

Note that krð0; yÞ ¼ �
PN�1

j¼1 kjðyÞ2. Therefore, if the claims are proven, the

C 1-matching condition for q
ðGÞ
2 is shown to be the same as the elliptic equation

AGR1 ¼ h1ðyÞ on G .

Proof of Claims:

Claim 1. Integrating by parts and using the fact limz!Gy p0ðzÞ ¼
fðGÞð0; yÞ, we have

I2ðyÞ ¼
ð
R

1

2
ð fuð�ÞÞzðp0Þ

2 þ ð frð�ÞÞz p0
	 


dzþ 1

2

ð fðþÞ

fð�Þ
frrðu; 0; y; 0Þdu

¼ 1

2
fuðfðþÞ; 0; y; 0ÞðfðþÞ

r Þ2 � 1

2
fuðfð�Þ; 0; y; 0Þðfð�Þ

r Þ2

þ frðfðþÞ; 0; y; 0ÞfðþÞ
r � fuðfð�Þ; 0; y; 0Þfð�Þ

r

�
ð
R

f fuð�Þp0 þ frð�Þg _pp0 dzþ
1

2

ð fðþÞ

fð�Þ
frrðu; 0; y; 0Þdu

¼ 1

2
f fuð?þÞfðþÞ

r þ frð?þÞgfðþÞ
r � 1

2
f fuð?�Þfð�Þ

r þ frð?�Þgfð�Þ
rð4:22Þ

þ 1

2
frð?þÞfðþÞ

r � frð?�Þfð�Þ
r þ

ð fðþÞ

fð�Þ
frrðu; 0; y; 0Þdu

( )
ð4:23Þ

�
ð
R

f fuð�Þp0 þ frð�Þg _pp0 dz;ð4:24Þ

in which

f ð?GÞ ¼ f ðfðGÞð0; yÞ; 0; y; 0Þ:

Since f ðfðGÞðr; yÞ; r; y; 0Þ1 0 implies

fuðfðGÞðr; yÞ; r; y; 0ÞfðGÞ
r ðr; yÞ þ frðfðGÞðr; yÞ; r; y; 0Þ1 0;
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by setting r ¼ 0, we find that (4.22) is identically equal to zero. Di¤erentiating

the identity

01

ð fðþÞðr;yÞ

fð�Þðr;yÞ
f ðu; r; y; 0Þdu

twice with respect to r and setting r ¼ 0, we also find that (4.23) is zero. The

fact _pp0ðGyÞ ¼ 0, together with the identityð
R

f fuð�Þp0 þ frð�Þg _pp0 dz ¼
ð
R

€pp0 _pp0 dz ¼
1

2
ð _pp0ðyÞ2 � _pp0ð�yÞ2Þ;

implies that (4.24) vanishes.

Claim 2. Since p0ðzÞ ¼ q
qr
q0ðz; r; yÞjr¼0, we have

ð
R

_pp0 _qq0 dz ¼
1

2

q

qr

ð
R

½ _qq0ðz; r; yÞ�
2
dzjr¼0 ¼

1

2
mrð0; yÞ:

Claim 3. From the definition of the operator M1 in (4.10) and mðxÞ ¼Ð
R
½ _qq0ðz; xÞ�

2
dz, we haveð

R

ðM1q0Þ _qq0 dz ¼ ðDGR1Þ
ð
R

ð _qq0Þ
2
dzþ 2‘GR1 �

ð
R

ð‘G _qq0Þ _qq0 dz

� krð0; yÞR1

ð
R

ð _qq0Þ
2
dz�

ð
R

€qq0 _qq0 dz

¼ mðyÞDGR1 þ ‘GR1 � ‘GmðyÞ � krðyÞmðyÞR1:

Claim 4. We use the fact p0 ¼ q
qr
q0. From the definition of Jðx;GÞ

Jðx;GÞ ¼
ð
R

fzfrðq0; x; 0Þ þ feðq0; x; 0Þg _qq0 dz;ð1:7-bÞ

we obtain

Jrðy;GÞ ¼
ð
R

zf furðq0; x; 0Þp0 þ frrðq0; x; 0Þg _qq0 dzþ
ð
R

zfrðq0; x; 0Þ _pp0 dz

þ
ð
R

f fueðq0; x; 0Þp0 þ freðq0; x; 0Þg _qq0 dzþ
ð
R

feðq0; x; 0Þ _pp0 dz:

By using the relation

€pp€0 � fuð�Þ _pp0 ¼ ½ fuuð�Þp0 þ furð�Þ� _qq0;

which is obtained by di¤erentiating the equation for p0 with respect to z, we

have
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I1ðyÞ � Jrðy;GÞ ¼
ð
R

f fuuð�Þp0 _qq0 þ furð�Þ _qq0gq1 dz�
ð
R

fzfrð�Þ þ feð�Þg _pp0 dz

¼
ð
R

f€pp€0 � fuð�Þ _pp0gq1 dz�
ð
R

fzfrð�Þ þ feð�Þg _pp0 dz

¼
ð
R

_pp0f€qq1 � fuð�Þq1 � zfrð�Þ þ feð�Þgdz

¼
ð
R

_pp0ð�k _qq0Þdz ðvia the equation for q1Þ

¼ � k

2
mrð0; yÞ ðas in the proof of Claim 2Þ:

This completes the proof of Claim 4.

Case (2): Since qk�1 ¼ Rk�1 p0 þ qk�1 ðkb 2Þ, with qk�1 being indepen-

dent of Rk�1, in the C1-matching condition
Ð
R
_qq0ðzÞFkðzÞdz ¼ 0 for k > 2, the

terms involving Rk�1 are expressed as (cf. (4.12-k))

�k

ð
R

_pp0 _qq0 dz

� �
Rk�1 þ

ð
R

ðMk�1q0Þ _qq0 dzð4:25Þ

þ
�ð

R

f fuuð�Þq1p0 þ furð�Þq1g _qq0 dz

þ
ð
R

fzfurð�Þp0 þ zfrrð�Þ þ fueð�Þp0 þ freð�Þg _qq0 dz
�
Rk�1

þ
ð
R

f furð�Þp0 þ frrð�Þg _qq0 dz
� �

R1Rk�1:

The first line of (4.25) is computed as in the proof of Claims 2 and 3 with R1

being replaced by Rk�1. The second and third lines of (4.25) are the same as

I1ðyÞRk�1, except that q1 is replacing q1. Therefore, we have

ðthe second and third lines of ð4:25ÞÞð4:26Þ

¼ Jrðy;GÞRk�1 þ Rk�1

ð
R

_pp0f€qq1 � fuð�Þq1 � zfrð�Þ � feð�Þgdz

¼ Jrðy;GÞ þ Rk�1

ð
R

_pp0ð�k _qq0Þdzþ R1Rk�1

ð
R

frð�Þ _pp0 dz:

On the other hand, integrating the first integrand by parts, the fourth line of

(4.25) is computed as
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ðthe fourth line of ð4:25ÞÞð4:27Þ

¼ R1Rk�1 frð?þÞfðþÞ
r � frð?�Þfð�Þ

r þ
ð
R

frrð�Þ _qq0 dz
	 


� R1Rk�1

ð
R

frð�Þ _pp0 dz ¼ �R1Rk�1

ð
R

frð�Þ _pp0 dz:

The third term in line (4.26) and the last term in (4.27) cancel. Therefore we

conclude that the C1-matching condition for q
ðGÞ
k is

AGRk�1 ¼ hk�1ðy;R1; . . . ;Rk�2Þ: r

4.3. Boundary Correction. The outer approximation u
ðGÞ
e in (4.1) does not

necessarily satisfy the boundary conditions qu
qn
¼ 0 on qD. In order to modify

the outer approximation, we introduce a stretched coordinate system near qD.

Let us express a point x A D near qD as

x ¼ sþ rnðsÞ ðs A qD; rb 0Þ:ð4:28Þ

The Laplacian D in the coordinate system ðr; sÞ is given by

D ¼ q2

qr2
þ kqðr; sÞ q

qr
þ Dqðr; sÞ;ð4:29Þ

where kqðr; sÞ is the mean curvature of SðrÞ,

SðrÞ :¼ fx A D j x ¼ sþ rnðsÞ; s A qDg;

at x ¼ sþ rnðsÞ, and Dqðr; sÞ is the Laplace-Beltrami operator on SðrÞ.
The stretched variable in the nðsÞ-direction is introduced by

z ¼ r

e
; or r ¼ ez:ð4:30Þ

In terms of the stretched coordinate system ðz; sÞ, the Laplacian is expressed as

e2D ¼ q2

qz2
þ ekqð0; sÞ q

qz
ð4:29-eÞ

þ e2
X
kb0

ek
zk

k!

qk

qrk
Dqðr; sÞjr¼0 þ

zkþ1

ðk þ 1Þ!
qkþ1

qrkþ1
kqðr; sÞjr¼0

q

qz

" #
:

We denote by ub
e ðr; sÞ the outer approximation u

ðGÞ
e ðxÞ in the coordinate

ðr; sÞ:

ub
e ðr; sÞ ¼ uðGÞ

e ðsþ rnðsÞÞ ðs A qDÞ:
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In the boundary correction, we modify the outer approximation in the form

ub
e ðxÞ ¼ ub

e ðr; sÞ ¼
X
jb0

e jub
j ðez; sÞ þ

X
jb0

e jBjðz; sÞð4:31Þ

¼
X
jb0

e jbjðz; sÞ;

where

b0ðz; sÞ ¼ ub
0 ð0; sÞ þ B0ðz; sÞð4:31-0Þ

bkðz; sÞ ¼ Bkðz; sÞ þ
Xk
j¼0

1

ðk � jÞ!
qk�j

qek�j
ub
j ðez; sÞje¼0 ðkb 1Þ:ð4:31-kÞ

The boundary conditions in (3.3) now read

queðxÞ
qn

¼ q

qr
ub
e ðr; sÞjr¼0 ¼

1

e

X
jb0

e j _bbjð0; sÞ ¼ 0;

where we used dot to indicate the di¤erentiation with respect to r. Therefore,

we require the conditions

_bbkð0; sÞ ¼ 0 ðkb 0Þ;ð4:32Þ

and

lim
z!y

Bkðz; sÞ ¼ 0 exponentially ðkb 0Þ:ð4:33Þ

Substituting (4.31) into (3.3) and using (4.29-e), we obtain an equation for

bkðz; sÞ ðkb 0Þ. The equation for b0 is

€bb0 � f ðb0; s; 0Þ ¼ 0; z A ½0;yÞ ðs A qDÞ:ð4:34Þ

This has the trivial solution b0ðz; sÞ1 ub
0 ð0; sÞ (i.e., B0ðz; sÞ1 0), which satisfies

the conditions (4.32) and (4.33) with k ¼ 0. The equation for bk for kb 1 is

of the following form

€bbk � KðsÞ2bk ¼ gkðz; sÞ; z A ½0;yÞ;ð4:34-kÞ

where KðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fuðub

0 ð0; sÞ; s; 0Þ
q

> 0 ðs A qDÞ and gk is a function depending

only on b0; . . . ; bk�1. Solutions of (4.34-k) satisfying (4.33) are uniquely given

by

bkðz; sÞ ¼ ake
�Kz � 1

2K

ð z
0

e�Kðz�z 0Þgkðz 0; sÞdz 0 þ
1

2K

ð z
y
eKðz�z 0Þgkðz 0; sÞdz 0ð4:35Þ
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with K ¼ KðsÞ, where ak is an arbitrary constant. From (4.35), we find that

bk satisfies the condition (4.32) if ak is given by

ak ¼
1

2KðsÞ

ð0
y
e�KðsÞzgkðz; sÞdz:

This completes the construction of the boundary correction.

Putting the above ingredients together, we obtain the desired approxi-

mation ue
kðxÞ in Proposition 3.1. We now choose smooth cut-o¤ functions

y0ðrÞ; yþðrÞ and y�ðrÞ such that

0a y iðrÞa 1 ði ¼ 0;þ;�Þ; y0ðrÞ þ yþðrÞ þ y�ðrÞ1 1 ðr A RÞ

and

y0ðrÞ ¼ 1; jrja 1;

0; jrjb 2;

�
yþðrÞ ¼ 1; rb 2;

0; ra 1;

�
y�ðrÞ ¼ 0; rb�1;

1; ra�2:

�

We also use symbols dðx;GÞ; xG ; dðx; qDÞ, and xq defined by

dðx;GÞ ¼ distðx;GÞ; x A DðþÞ

�distðx;GÞ; x A Dð�Þ

�

and xG A G is defined by jdðx;GÞj ¼ distðx; xGÞ when jdðx;GÞja 2d �, while

dðx; qDÞ ¼ distðx; qDÞ; x A D;

and xq A qD is defined by dðx; qDÞ ¼ distðx; xqÞ when dðx; qDÞa 2d �.

Let b > 0 be the same constants as in (4.14) and K ¼ minfKðsÞ j s A qDg.
The desired approximation is defined for x A D

ðGÞ
G by

ue
kðxÞ ¼ y�

bdðx;GÞ
ðk þ 1Þejlog ej

� �Xk
j¼0

e ju
ð�Þ
j ðxÞð4:36Þ

þ yþ
bdðx;GÞ

ðk þ 1Þejlog ej

� �Xk
j¼0

e ju
ðþÞ
j ðxÞ

þ y0
bdðx;GÞ

ðk þ 1Þejlog ej

� �Xk
j¼0

e jqj
dðx;GÞ � eRe

kðxGÞ
e

; xG

� �

þ y0
Kdðx; qDÞ

ðk þ 1Þejlog ej

� �Xk
j¼0

e jBj
dðx; qDÞ

e
; xq

� �

þ yþ
Kdðx; qDÞ

ðk þ 1Þejlog ej

� �Xk
j¼0

e jub
j ðxÞ;
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where we simply write qj in place of q
ðGÞ
j , since the latter ðqðGÞ

j Þ have been

smoothly joined by the C1-matching conditions. We can easily verify

que
kðxÞ
qn

¼ 0; x A qD:

It is also routine computations to verify

ke2Due
kð�Þ � f ðue

kð�Þ; � ; eÞkC a
e ðDÞ ¼ Oðekþ1�a�a 0 Þ as e ! 0:

This completes the proof of Proposition 3.1.

5. Asymptotic expansion of eigenvalue

In this section, we shall prove Proposition 3.3, by using the results in [3]

and [1].

We first use the estimate established in [3]: There exists a constant C > 0,

independent of small e > 0, so that any eigenvalue le of (3.6) satisfies

le
aCe2:

This estimate, together with the definition of non-critical eigenvalues, proves

Proposition 3.3 (i).

We now proceed to the proof of Proposition 3.3 (ii). Let us denote by

ðje; leÞ a critical eigenpair of (3.6):

L e
kj

e :¼ e2Dje � fuðue
k; x; eÞje ¼ leje; x A D;

qje=qn ¼ 0; x A qD:

�
ð3:6Þ

The theory developed in [1] (cf. Lemmas 4.1 and 4.2, therein) says: In order

to approximate the critical eigenpair ðje; leÞ, it su‰ces to find asymptotic

expansions

je ¼ j0 þ ej1 þ e2j2 þ � � � ;
le ¼ el1 þ e2l2 þ � � � ;

�
ð5:1Þ

so that the right hand side of (5.1) satisfies (3.6) approximately, namely, for

some k > 1

L e
kj

e � leje ¼ OðekÞ; x A D;

qje=qn ¼ 0; x A qD;

�
as e ! 0:

We therefore need to show:

1. The coe‰cient l1 ¼ 0, which essentially says that the interface evolves

according to the time scale of (1.1-ss);

2. The coe‰cient l2 is an element of sG .

By using Lemma 2.1 in [1], one can prove that there exist constants C > 0,
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d > 0, and b > 0, indepedent of e A ð0; e��, so that any critical eigenfunction of

(3.6) satisfies

jjeðxÞjaC exp � d

e
distðx;GÞ

� �
; distðx;GÞb eb:ð5:2Þ

It is appropriate, therefore, to consider (3.6) in terms of the coordinate system

ðz; yÞ introduced in (4.6). We therefore express the critical eigenfucntion je as

jeðxÞ ¼ jeðz; yÞ ¼ j0ðz; yÞ þ ej1ðz; yÞ þ e2j2ðz; yÞ þ � � �ð5:3Þ

with respect to the stretched coordinate system near Ge. We impose the

boundary conditions

jjðz; yÞ ¼ Oðe�djzjÞ as jzj ! y for some d > 0 ð jb 0Þ;ð5:4Þ

according to (5.2). The potential term of the di¤erential equation in (3.6) is

expressed as

fuðq eðz; yÞ; ez; y; eÞ ¼ fuðq0ðz; yÞ; 0; y; eÞ þ
X
jb1

e j f ð jÞu ðzÞ;ð5:5Þ

where qeðz; yÞ ¼
P

jb0 e
jqjðz; yÞ and

f ð jÞu ðzÞ :¼ 1

j!

q j

qe j
fuðqeðz; yÞ; ez; y; eÞje¼0:

Let us substitute (5.3), (5.1) into (3.6). By using (4.9) and (5.5), and

equating like powers of e, we obtain equations of jj ð jb 0Þ. They read as

follows.

€jj0 � fuð�Þj0 ¼ 0;ð5:6Þ

€jj1 � fuð�Þj1 ¼ �k _jj0 þ f ð1Þu ðzÞj0 þ l1j0 ¼: l1ðzÞ;ð5:6-1Þ

€jj2 � fuð�Þj2 ¼ �k _jj1 þM1j0 � P0j0ð5:6-2Þ

þ f ð1Þu ðzÞj1 þ f ð2Þu j0 þ l2j0 þ l1j1 ¼: l2ðzÞ;

€jjk � fuð�Þjk ¼ �k _jjk�1 þM1jk�2 � P0jk�2 þ
Xk�1

j¼2

ðMj � Pj�1Þjk�j�1ð5:6-kÞ

þ f ð1Þu ðzÞjk�1 þ f ð2Þu ðzÞjk�2 þ
Xk
j¼3

f ð jÞu jk�j

þ lkj0 þ
Xk�3

j¼1

lk�jjj þ l2jk�2 þ l1jk�1 ¼: lkðzÞ:

We show the solvability of these equations.
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The equation (5.6) has a unique solution satisfying (5.4) with j ¼ 0:

j0ðz; yÞ ¼ Y0ðyÞ _qq0ðz; yÞ;ð5:7Þ

where Y0 is an arbitrary smooth function defined on G. The function Y0 will

be determined as an eigenfucntion of (1.16).

The equations (5.6-k) with kb 1 are all linear inhomogeneous equations.

These equations have a family of solutions which satisfy the condition (5.4) if

and only if the solvability conditionð
R

_qq0ðz; yÞlkðzÞdz ¼ 0ð5:8Þ

is satisfied. It turns out that the solvability condition determines lk and jk�2

in terms of lj and jj�2 with 2a ja k � 1.

1. We will show l1 ¼ 0. Let us apply the solvability condition (5.8) to

(5.6-1). It is given by

0 ¼ l1Y0

ð
R

ð _qq0Þ
2
dz� kY0

ð
R

€qq0 _qq0 dzþY0

ð
R

f ð1Þu ðzÞð _qq0Þ
2
dz:ð5:9Þ

Note that
Ð
R
€qq0 _qq0 dz ¼ 0 and

Ð
R
frð�Þ _qq0 dz ¼ 0. Integrating by parts and using

the equation (4.12-1) for q1, we haveð
R

f ð1Þu ðzÞð _qq0Þ
2
dz ¼

ð
R

f fuuð�Þq1 þ furð�Þðzþ R1Þ þ fueð�Þgð _qq0Þ
2
dz

¼
ð
R

fð fuð�ÞÞzq1 þ ð frð�ÞÞzðzþ R1Þ þ ð feð�ÞÞzg _qq0 dz

¼ �
ð
R

f fuð�Þq1 þ frð�Þðzþ R1Þ þ feð�Þg€qq0 dz

�
ð
R

f fuð�Þ _qq1 þ frð�Þg _qq0 dz

¼ �
ð
R

f€qq1 þ k _qq0g€qq0 dz�
ð
R

€qq€0 _qq1 dz�
ð
R

frð�Þ _qq0 dz

¼ �
ð
R

€qq1€qq0 dzþ
ð
R

€qq0€qq1 dz ¼ 0:

Therefore (5.9) implies 0 ¼ mðyÞl1Y0. On the other hand, the normalizationÐ
D
ðjeðxÞÞ2dx ¼ 1 gives rise to 1 ¼

Ð
G
ðyÞY0ðyÞdSG

y , and hence to Y0ðyÞD 0.

We conclude that

l1 ¼ 0ð5:10Þ

and that j1ðz; yÞ is given by
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j1ðz; yÞ ¼ Y1ðyÞ _qq0ðz; yÞ þ j1ðz; yÞY0ðyÞ;ð5:11Þ

where Y1 is an arbitrary smooth function and j1 is the unique solution of

€jj1 � fuð�Þj1 ¼ �k€qq0 þ f
ð1Þ
u ðzÞ _qq0; z A R;

j1ð0; yÞ ¼ 0;

(
ð5:12Þ

decaying to zero as z !Gy. Comparing (5.12) and the equation for _qq1,

which is obtained by di¤erentiating (4.12-1) with respect to z, we find that

_qq1ðz; yÞ � j1ðz; yÞ ¼
_qq1ð0; yÞ
_qq0ð0; yÞ

_qq0ðz; yÞ þ p0ðz; yÞ;ð5:13Þ

where p0 is the same as appeared in § 4; p0 ¼ qq0=qrjr¼0.

2. Let us now apply the solvability condition (5.8) to (5.6-2). By using

(5.7), we have

0 ¼ l2mðyÞY0 þ
ð
R

f�k _jj1 þM1j0 � P0j0g _qq0 dzð5:14Þ

þ
ð
R

f ð1Þu ðzÞj1 _qq0 dzþ
ð
R

f ð2Þu ðzÞj0 _qq0 dz:

Thanks to (5.11) and the fact
Ð
R
f
ð1Þ
u ðzÞð _qq0Þ

2
dz ¼ 0, we find that the second line

of (5.14) is expressed as

ðthe second line of ð5:14ÞÞð5:15Þ

¼ Y0

ð
R

f ð1Þu ðzÞj1 _qq0 dzþ
ð
R

f ð2Þu ðzÞð _qq0Þ
2
dz

� �
:

We first establish some identities.

Proposition 5.1. We have the following relations:

ðiÞ
ð
R

f ð1Þu ðzÞj1 _qq0 dzþ
ð
R

f ð2Þu ðzÞð _qq0Þ
2
dz

¼ 1

2
kmrðyÞ � Jrðy;GÞ þ

ð
R

f�k _qq1 þM1q0 � P0q0g€qq0 dz;

ðiiÞ Y0

ð
R

ðM1q0Þ€qq0 dzþ
ð
R

ðM1j0Þ _qq0 dz ¼ 0;

ðiiiÞ Y0

ð
R

ð�k _qq1€qq0Þdzþ
ð
R

ð�k _jj1 _qq0Þdz ¼
1

2
kmrY0;

ðivÞ Y0

ð
R

ðP0q0Þ€qq0 dzþ
ð
R

ðP0j0Þ _qq0 dz

¼ mðyÞDGY0 þ ‘GmðyÞ � ‘GY0 � krmðyÞY0:
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By using the proposition and employing the relation kr ¼ �
PN�1

j¼1 kjðyÞ2,
we arrive at:

Theorem 5.2. (i) The solvability condition for (5.6-2), namely, (5.14) is

rewritten as

0 ¼ l2mðyÞY0 �AGY0;

i.e., l2 is an eigenvalue of (1.16).

(ii) For k > 2, the solvability condition for (5.6-k) is written as

ðl2mðyÞ �AGÞYk�2 þ lkmðyÞY0 ¼ Hkðy; l2; . . . ; lk�1;Y0; . . . ;Yk�3Þ;ð5:16Þ

where the right hand side is a known function of the variables indicated.

Theorem 5.2 (i) and (5.10) establish the proof of Proposition 3.3 (ii).

As for proof, Theorem 5.2 (i) follows immediately from Proposition 5.1.

The proof of Theorem 5.2 (ii) is reduced to that of (i) as follows. In the

solvability condition ð
R

lkðzÞ _qq0ðzÞdz ¼ 0

for (5.6-k), we leave on the left side those terms involving jk�1; jk�2, and lk,

and move the rest to the right hand side. Since we have shown l1 ¼ 0, the left

hand side is written asð
R

f�k _jjk�1 þM1jk�2 � P0jk�2ð5:17Þ

þ f ð1Þu ðzÞjk�1 þ f ð2Þu ðzÞjk�2 þ lkj0 þ l2jk�2g _qq0 dz:

Note that jk�1 and jk�2 are expressed as

jk�2ðz; yÞ ¼ Yk�2ðyÞ _qq0ðz; yÞ þ jk�2ðz; yÞ;

jk�1ðz; yÞ ¼ Yk�1ðyÞ _qq0ðz; yÞ þ j1ðz; yÞYk�2ðyÞ þ jk�1ðz; yÞ;

where j1 is as defined in (5.12), and the functions jk�1 and jk�2 are indepenent

of lk;Yk�2, and Yk�1. Moving the terms involving these latter functions from

(5.17) to the right hand side of the above solvability condition, (5.17) is similar

to the solvability condition for j2. The only di¤erences are; Y0 is replaced by

Yk�2; and the extra term lkmðyÞY0 is added. Therefore, applying Proposition

5.1, the statement (ii) of Theorem 5.2 follows.
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Theorem 5.2 (ii) may be used to show that the critical eigenvalues of (3.6)

are approximated as accurate as one wishes, in the e-power series.

Proof of Proposition 5.1. The proof is computational and integration by

parts will be used frequently.

(i) We first integrate by parts to obtain

ð
R

f ð2Þu ðzÞð _qq0Þ
2
dz ¼

ð
R

fð fuð�ÞÞzq2 þ ð frð�ÞÞzR2g _qq0 dz

þ
ð
R

�
1

2
ð fuuð�ÞÞzðq1Þ

2 þ ð furð�ÞÞzðzþ R1Þq1

þ ð fueð�ÞÞzq1 þ ð freð�ÞÞzðzþ R1Þ

þ 1

2
ð frrð�ÞÞzðzþ R1Þ2 þ

1

2
ð feeð�ÞÞz

�
_qq0 dz

¼ �
ð
R

f fuð�Þq2 þ frð�ÞR2g€qq0 dz�
ð
R

fuð�Þ _qq0 _qq2 dzð5:18Þ

�
ð
R

�
1

2
fuuð�Þðq1Þ2 þ furð�Þðzþ R1Þq1 þ fueð�Þq1 þ freð�Þðzþ R1Þ

þ 1

2
frrð�Þðzþ R1Þ2 þ

1

2
feeð�Þ

�
€qq0 dz

�
ð
R

f ð1Þu ðzÞ _qq1 _qq0 dz�
ð
R

furð�Þq1 _qq0 dz�
ð
R

f freð�Þ þ frrð�Þðzþ R1Þg _qq0 dz:(5.19)

By using the identity

�
ð
R

fuð�Þ _qq0 _qq2 dz ¼ �
ð
R

€qq€0 _qq2 dz ¼
ð
R

€qq2€qq0 dz

in the second term of line (5.18), and using (5.13) together with the relation

ð
R

f ð1Þu ðzÞð _qq0Þ
2
dz ¼ 0

in the first term of line (5.19), we continue the computation above as follows.
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ð
R

f ð2Þu ðzÞð _qq0Þ
2
dz

¼
ð
R

€qq0

�
€qq2 � fuð�Þq2 � frð�ÞR2 �

1

2
fuuð�Þðq1Þ2 � furð�Þðzþ R1Þq1

� fueð�Þq1 � freð�Þðzþ R1Þ �
1

2
frrð�Þðzþ R1Þ2 �

1

2
feeð�Þ

�
dz

�
ð
R

f furð�Þq1 þ f ð1Þu ðzÞðp0 þ j1Þg _qq0 dz

�
ð
R

f freð�Þ þ frrð�Þðzþ R1Þg _qq0 dz:

Thanks to the equation (4.12-2) for q2, we have

ð
R

f ð2Þu ðzÞð _qq0Þ
2
dzþ

ð
R

f ð1Þu ðzÞj1 _qq0 dzð5:20Þ

¼
ð
R

f�k _qq1 þM1q0 � P0q0g€qq0

�
ð
R

f f ð1Þu ðzÞp0 þ furð�Þq1 þ freð�Þ þ frrð�Þðzþ R1Þg _qq0

¼
ð
R

f�k _qq1 þM1q0 � P0q0g€qq0 � I1ðyÞ � 2R1I2ðyÞ

¼
ð
R

f�k _qq1 þM1q0 � P0q0g€qq0 � Jr þ
k

2
mr

ðcf : Claims 1 and 4 in x 4Þ:

This completes the proof of (i).

(ii) From the definition (4.10-(a)) of M1, we have

ð
R

ðM1q0Þ€qq0 dz ¼ ðDGR1Þ
ð
R

_qq0€qq0 dzþ 2‘GR1 �
ð
R

‘Gð _qq0Þ€qq0 dz

� krR1

ð
R

_qq0€qq0 � j‘GR1j2
ð
R

ð€qq0Þ
2
dz

¼ 2‘GR1 �
ð
R

‘Gð _qq0Þ€qq0 dz� j‘GR1j2
ð
R

ð€qq0Þ
2
dz:

On the other hand, by using (5.7) and (4.10-(a)), we have
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ð
R

ðM1j0Þ _qq0 dz ¼ ðDGR1Þ
ð
R

€qq0 _qq0 dzY0 þ 2‘GR1 �
ð
R

‘Gð€qq0Þ _qq0 dzY0

þ 2ð‘GR1 � ‘GY0Þ
ð
R

€qq0 _qq0 dz� j‘GR1j2
ð
R

€qq€0 _qq0 dzY0

¼ �2‘GR1 �
ð
R

‘Gð _qq0Þ€qq0 dzY0 þ j‘GR1j2
ð
R

ð€qq0Þ
2
dzY0:

Therefore we get

Y0

ð
R

ðM1q0Þ€qq0 dzþ
ð
R

ðM1j0Þ _qq0 dz ¼ 0:

(iii) Since �
Ð
_qq1€qq0 dz ¼

Ð
€qq1 _qq0 dz, by using (5.11) and (5.13), we have

Y0

ð
R

�k _qq1€qq0 dzþ
ð
R

�k _qq0 _jj1 dz ¼ k

ð
R

ð€qq1Y0 � _jj1Þ _qq0

¼ kY0

ð
R

_pp0 _qq0 dzþ
_qq1ð0Þ
_qq0ð0Þ

Y0 �Y1

� �
k

ð
R

€qq0 _qq0 dz ¼
1

2
kmrY0:

(iv) Recall the definition (4.10-(c)) of P0. We haveð
R

ðP0q0Þ€qq0 dz ¼
ð
R

ðDGq0Þ€qq0 dzþ kr

ð
R

z _qq0€qq0 dz

¼ �
ð
R

ðDG _qq0Þ _qq0 dz�
1

2
krmðyÞ:

On the other hand, we also have,ð
R

ðP0j0Þ _qq0 dz ¼
ð
R

ðDG _qq0Y0Þ _qq0 dzþ kr

ð
R

z _qq0€qq0 dzY0

¼ Y0

ð
R

ðDG _qq0Þ _qq0 dzþ 2‘GY0 �
ð
R

ð‘G _qq0Þ _qq0 dz

þ ðDGY0Þ
ð
R

ð _qq0Þ
2
dz� 1

2
krmðyÞY0

¼ mDGY0 þ ‘GY0 � ‘Gm� 1

2
krmY0 þY0

ð
R

ðDG _qq0Þ _qq0 dz:

Therefore, we finally obtain

Y0

ð
R

ðP0q0Þ€qq0 dzþ
ð
R

ðP0j0Þ _qq0 dz ¼ mDGY0 þ ‘Gm � ‘GY0 � krmY0:

This concludes the proof of Proposition 5.1. r
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Remark 5.3. By using Theorem 5.2 (ii), it is possible to obtain higher

order approximations of the critical eigenvalues. Although, this is of interest

in its own right, we do not exhibit the details in this paper.
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