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1 Introduction

Let X be a locally finite simplicial tree. Then the group G = Aut(X) of

simplicial automorphisms of X naturally has the structure of a locally com-

pact topological group, with a neighborhood basis of the identity consisting

of automorphisms fixing larger and larger balls. A lattice in G is a discrete

subgroup of cofinite (Haar) measure µ. The study of these “tree lattices” gen-

eralizes the theory of lattices in rank one Lie groups over nonarchimedean

local fields, and provides a remarkably rich theory (see the now-standard

reference [BL]). With the right normalization of the Haar measure µ, there

is a combinatorial formula:

Vol(Γ\\X) := µ(Γ\G) =
∑

v∈V (A)

1

|Γv|

where the sum is taken over vertices v in a fundamental domain A ⊆ X for

the Γ–action, and |Γv| is the order of the Γ–stabilizer of v. Recall that a

lattice Γ < G is uniform if Γ\G is compact, and is nonuniform otherwise.

One of the basic problems about a locally compact topological group G

is to classify its lattices up to commensurability. Recall that two lattices
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Γ1, Γ2 ≤ G are commensurable in G if there exists g ∈ G so that gΓ1g
−1 ∩Γ2

has finite index in both gΓ1g
−1 and Γ2. Since covolume is multiplicative in

index, two commensurable lattices have volumes which are commensurable

real numbers, i.e., which have a rational ratio. Other commensurability

invariants are harder to come by unless G is linear.

When G = Aut(X), Bass–Kulkarni proved in [BK] that there is at most

one commensurability class of uniform lattices in G. The case of nonuniform

lattices, (which exist in abundance by a theorem of Carbone [Ca]), is much

more complicated.

In this paper we will concentrate on the case of the biregular tree Xm,n

with degrees m and n. Bass–Lubotzky [BL] (for m = n) and Rosenberg

[Ro] (for every m ≥ n ≥ 3) proved that for every real number r > 0, there

exists a nonuniform lattice Γ in G = Aut(Xm,n) with covolume r. This gives

uncountably many commensurability classes of nonuniform lattices in G, one

for each commensurability class of real numbers.

In Section 3 we find two new commensurability invariants. The quotient

growth type (see §3.2) is essentially the “growth type” of the quotient graph

Λ = Γ\X, which is an equivalence class of functions measuring the growth

of combinatorial balls in Λ. The stabilizer growth type (see §3.3) measures

the growth of the order of the stabilizers of vertices in a fundamental domain

as a function of their distance to a fixed basepoint. There is a refinement of

this invariant for each prime p.

Our main result (see Sections 4 and 5) is the construction of lattices

realizing every possible value of the invariants, which further indicates the

richness of nonuniform lattices in G. Informally, we prove:

Theorem 1.1 (Main theorem, informal statement). Suppose 3 ≤ m ≤
n, and let G = Aut(Xm,n). Let r > 0 be any real number, and let f, g : N →
N be any functions which are possible quotient and stabilizer growth func-

tions, respectively (see §3 for the precise conditions). Then there exists a

nonuniform lattice Γ < G with covolume r, quotient growth f , and (for

n > 4 composite) stabilizer growth g.

This result is stated precisely as Theorem 5.4 below. In particular we

note the following.
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Corollary 1.2. Let m,n ≥ 3 and let G = Aut(Xm,n). Then for each real

number r > 0, there exist uncountably many commensurability classes of

nonuniform lattices in G, each having covolume r.

As a concrete example, given any r > 0 and 1 < α < 2, we then construct

lattices Γr,α < G each with covolume r, and with the growth type of the quo-

tient tree proportional to αk; the number α is a commensurability invariant.

Similarly, we can build lattices whose quotients have “intermediate growth”,

i.e. whose R-balls have growth type eRβ
for any 0 < β < 1. In contrast note

that, for lattices in rank one Lie groups over nonarchimedean local fields, it

follows from theorems of Lubotzky and Raghunathan (see [Lu]) that such

lattices always have quotients with “linear growth type.”

We would like to pose the following:

Problem 1.3. Classify nonuniform lattices in Aut(Xm,n) up to commensu-

rability.

As a special case, it would be interesting to give a commensurability

classification for lattices all having a fixed quotient, for example a ray.

2 Preliminaries

In this section we present some needed background material.

2.1 Edge-indexed graphs and graphs of groups

In this subsection we briefly recall the basic tools in constructing tree lattices.

See the book [BL] by Bass–Lubotzky for a more comprehensive introduction

to this material.

A graph of groups A = (A,A) consists of a graph A with vertex set V (A)

and edge set E(A), vertex groupsAv for each v ∈ V (A), edge groupsAe = Ae

for each e ∈ E(A), and injections αe : Ae ↪→ A∂0(e) from each edge group into

the group at its terminal vertex. If v0 ∈ V (A) then the fundamental group

Γ = π1(A, v0) acts without edge inversions on the universal covering tree

(Ã, v0) with quotient A, so that for each lift ẽ of an edge e the inclusion αe is
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isomorphic to the inclusion FixΓ(ẽ) ↪→ FixΓ(∂0ẽ). Furthermore, every action

(without inversions) arises in this manner from a quotient graph of groups

Γ\\X = (Γ\X,A).

Let i(e) = [A∂0(e) : αeAe], and let I(A) = (A, i) denote the corresponding

edge-indexed graph. A grouping of an edge-indexed graph (A, i) is a graph

of groups A with I(A) = (A, i). The grouping is finite if all the associated

groups are finite and faithful if the action on the universal covering tree is

faithful.

Note that the universal covering tree (Ã, v0) depends only on the under-

lying edge indexed graph I(A). In particular, if ∂0(e) = v then for each lift

ṽ of v there are exactly i(e) lifts of e with terminal vertex ṽ.

In order to construct groupings of edge-indexed graphs, a useful interme-

diate step is an ordering. An ordering of an edge-indexed graph (A, i) is a

function N : V (A)q E(A) → Q+ such that for each e ∈ E(A) we have

N(e) = N(e) =
N

(
∂0(e)

)

i(e)
.

An edge indexed graph is unimodular if it admits an ordering. Any two

orderings of (A, i) differ by a constant multiple, and thus an ordering is

uniquely determined by its value at a single vertex.

An integral valued ordering gives a set of numbers that are combinatori-

ally admissable as the orders of vertex and edge groups of a finite grouping

of (A, i). More precisely, if A = (A,A) is a finite grouping of (A, i) then the

orders of the vertex and edge groups define an ordering N with N(v) = |Av|.
Conversely, any integral ordering N has a finite cyclic grouping, con-

structed as follows. Let each vertex group [resp. edge group] be finite cyclic

with order given by the value of N on that vertex [resp. edge], and let

αe : Ae ↪→ A∂0(e) be given by [1] 7→ [i(e)]. This grouping is effective if and

only if the values of N do not have a common factor.

2.2 Haar measure and covolume

Let G be a locally compact topological group with a left invariant Haar

measure µ. A discrete subgroup Γ ≤ G is a G–lattice if the covolume µ(Γ\G)

is finite.
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Suppose G acts on a set S with compact open stabilizers Gs for each

s ∈ S. Then every discrete subgroup Γ ≤ G has finite stabilizers Γs, and we

define the S–covolume of Γ to be the quantity

VolS(Γ\\S) :=
∑

s∈Γ\\S
1/ |Γs| .

The following theorem relates Haar measure and S–covolume of discrete

subgroups.

Theorem 2.1 ([BL], Chapter 1). Let G be a locally compact topological

group acting on a set S with compact open stabilizers and a finite quotient

G\S. Suppose further that G admits at least one lattice. Then there is a

normalization of the Haar measure µ, depending only on the choice of G–

set S, such that for each discrete subgroup Γ ≤ G we have

VolS(Γ\\S) = µ(Γ\G).

When G acts by automorphisms on a tree X, the usual convention in the

literature is to compute covolumes of lattices with respect to the action on

the set of all vertices of X. However, other natural choices for S often exist.

For instance, one could let S be the set of edges of X, or S could be a union

of G–orbits of vertices.

The preceding theorem shows that the particular choice of S is largely a

matter of convenience, as long as the same choice is made for all computa-

tions.

3 Commensurability invariants

In this section we discuss and construct several commensurability invariants

for discrete subgroups of Aut(X), for any locally finite tree X. The invariants

include the covolume, the growth of the quotient graph, and the growth of

the orders of vertex stabilizers in the quotient graph of groups. We remark

that each of the invariants in this section can be easily extended to com-

mensurability invariants of lattices in the automorphism group of any locally

finite simplicial complex.
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3.1 Covers of graphs of groups

Suppose X is a locally finite tree and H a discrete subgroup of Aut(X)

acting without inversions on X. A subgroup Γ ≤ H corresponds to a cover

Γ\\X → H\\X of the corresponding quotient graphs of groups, in a sense to

be made precise below. In this subsection we examine some features of this

correspondence, focusing on the case when Γ has finite index in H. Related

results can be found in [BL] and [Ro].

Let A = (A,A) and B = (B,B) denote the graphs of groups H\\X and

Γ\\X, respectively, and let (A, i) and (B, j) be the underlying edge-indexed

graphs. Then there is a natural quotient map q : B → A. Now for each

b ∈ V (B) let a = q(b) and choose a lift b̃ of b to X. Then the stabilizer

FixΓ(b̃) is naturally a subgroup of FixH(b̃), so q induces a monomorphism

Bb ↪→ Aa of vertex groups, which is well-defined up to conjugacy. Similarly,

q induces monomorphisms of edge groups. Thus q induces a covering of

graphs of groups in the sense of Bass ([Ba]).

Definition 3.1. The degree of the cover q : B → A is the quantity

deg(q) :=
∑

b∈q−1(a)

[Aa : Bb] (1)

for any fixed vertex a ∈ V (A).

Proposition 3.2. The degree of q does not depend on the choice of a ∈ V (A).

Furthermore, if H and Γ each have finite covolume, then deg(q) = [H : Γ].

For instance, if each inclusion Bb ↪→ Aa is an isomorphism, then each

point of A lifts to exactly deg(q) points in B, and the graph map q : B → A is

a covering of spaces whose topological degree is equal to deg(q). Alternately,

if the graph map q is an isomorphism, then each point of A has exactly one

lift to B, and we have [Aa : Bb] = deg(q) whenever q(b) = a.

Proof of Proposition 3.2. Since q is a cover of graphs of groups, it is easy to

see that the induced map q : (B, j) → (A, i) is a covering of edge-indexed

graphs in the sense of Bass–Lubotzky ([BL]). In other words, for each vertex
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b ∈ V (B) with q(b) = a and each edge e with ∂0(e) = a, we have

i(e) =
∑

f∈q−1
b (e)

j(f)

where qb denotes the restriction of q to the edges in ∂−1
0 (b).

Applying the definition of i and j, gives

|Aa|
|Ae| =

∑

f∈q−1
b (e)

|Bb|
|Bf |

or equivalently

[Aa : Bb] =
∑

f∈q−1
b (e)

[Ae : Bf ]

Summing over all vertices b with q(b) = a gives

∑

b∈q−1(a)

[Aa : Bb] =
∑

f∈q−1(e)

[Ae : Bf ]

Notice that the quantity on the left hand side is independent of the choice

of e ∈ ∂−1
0 (a), and the right hand side is unchanged if we replace e with e.

Hence both boundary vertices of an edge give the same degree. Since A is

connected, it follows that deg(q) is independent of the choice of a ∈ V (A).

Dividing both sides of (1) by |Aa| gives

deg(q)

|Aa| =
∑

b∈q−1(a)

1

|Bb|

which immediately leads to the formula deg(q) Vol(A) = Vol(B). (Here

volumes are computed with respect to the set of all vertices.) Thus

deg(q) =
µ(Γ\G)

µ(H\G)
= [H : Γ]

where the second equality is straightforward (see, e.g., [BL]).

3.2 Quotient growth type

Let f, g : N → N be any two functions. We say that f ¹ g if

f(k) ≤ α g(k + β)
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for some α, β ∈ N. We say f and g are equivalent, denoted f ' g, if f ¹ g

and g ¹ f . Note that there is no multiplicative factor inside the argument

of g.

Let A be a locally finite graph with basepoint ?, and let g : N → N be

such that g(k) the number of vertices in the combinatorial ball of radius k

centered at ?. We define the growth type of (A, ?) to be the equivalence class

of the function g. It is easy to see that changing the basepoint does not

change the growth type.

Now suppose Γ ≤ H are two discrete subgroups of Aut(X) with [H : Γ] <

∞. Let q : Γ\\X → H\\X be the corresponding finite degree covering map.

The following result is an immediate corollary of Proposition 3.2.

Corollary 3.3. For each vertex a ∈ V (H\X), the set q−1(a) ⊆ V (Γ\X)

contains at most deg(q) vertices.

The following is an easy exercise using the previous corollary.

Proposition 3.4. Let X be a locally finite tree, and let Γ and Γ′ be com-

mensurable lattices of Aut(X). Then Γ\X and Γ′\X have the same growth

type.

3.3 Stabilizer growth type

Let A = (A,A) be a graph of finite groups such that A is a locally finite

graph. Fix a basepoint ? ∈ V (A). The stabilizer growth type of (A, ?) is the

equivalence class of the function g : N → N such that g(k) is the order of

the largest vertex group associated to any vertex in the combinatorial ball

of radius k centered at ?. Clearly the equivalence class of g does not depend

on the choice of basepoint ?.

A finer invariant of A is the p–stabilizer growth type for any fixed prime p,

defined as follows. If a finite group K has order pn1
1 · · · pn`

` for distinct primes

p1, . . . , p`, then the pi–order of K, denoted |K|pi
, is the natural number

pni
i . We define the p–stabilizer growth type of (A, ?), for p prime, as the

equivalence class of the function g : N → N such that g(k) is the maximal

p–order of any vertex group associated to a vertex in the combinatorial ball
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of radius k centered at ?. The p–stabilizer growth type also does not depend

on the choice of basepoint.

Suppose Γ ≤ H are two discrete subgroups of Aut(X), for some locally

finite tree X, such that [H : Γ] < ∞, and let A = (A,A) and B = (B,B) be

the graphs of groups H\\X and Γ\\X respectively. Let q : B → A denote

the associated covering map. The following lemma is an immediate corollary

of Proposition 3.2.

Lemma 3.5. For each a ∈ V (A), each b ∈ q−1(a), and each prime p, the

order [resp. p–order ] of Bb divides the order [p–order ] of Aa. Furthermore,

we have

1 ≤ |Aa|
|Bb| ≤ deg(q) and 1 ≤ |Aa|p

|Bb|p
≤ deg(q).

Corollary 3.6. Let X be a locally finite tree, and let Γ and Γ′ be commen-

surable lattices in Aut(X). Then Γ\\X and Γ′\\X have the same stabilizer

growth type and also the same p–stabilizer growth type for each prime p.

Remark 3.7. Other related commensurability invariants exist using varia-

tions on the preceding definitions. For instance, combinatorial spheres are

coarsely preserved by finite covers. So one could consider the growth of the

minimal order, or minimal p–order, of a vertex group in the combinatorial

sphere.

More generally, given a discrete Γ ≤ Aut(X) there is a spectrum of

orders, and p–orders, of vertex groups in each combinatorial sphere of X,

which is coarsely preserved under commensurability. It seems possible that

a weighted variant of Patterson–Sullivan measure on ∂X could be associated

to each commensurability class of discrete subgroup Γ ≤ Aut(X). The idea

is to weight each vertex by the relative size of the associated vertex group

compared to other vertex groups in the same sphere.

4 Constructions of lattices

As mentioned in the introduction, Bass–Lubotzky [BL] (for m = n) and

Rosenberg [Ro] (for every m ≥ n ≥ 3) proved that for every real number
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r > 0, there exists a nonuniform lattice Γ in G = Aut(Xm,n) with covolume

r. In this section we give a different construction which will allow us the

flexibility of exhibiting the lattices promised in Theorem 5.2.

The construction will occur in three steps: the basic building block will

be given in §4.1; these will be used in §4.2 to give lattices with arbitrary co-

volume bigger than a certain constant (depending on m,n); and the constant

will be improved to zero in §4.3.

4.1 Star trees and their associated lattices

Let Xm,n denote the biregular tree with degrees m and n, for 3 ≤ n ≤ m. In

this subsection we construct a family of discrete subgroups of G = Aut(Xm,n)

which will be the basic building blocks for our construction of the lattices.

Each subgroup Γ will constructed as the fundamental group of a graph of

groups A = (A,A) with A a tree.

A star of degree m is a tree with one vertex of degree m, called the center

of the star, and m vertices of degree one. A star tree of degree m is a bipartite

tree with vertex sets V0 and V1, such that every vertex of V0 has degree m and

every vertex of V1 has degree either one or two. Any star tree of degree m

can be uniquely expressed as a union of stars of degree m provided m ≥ 3.

Let A be a star tree of degree m with basepoint v0 ∈ V0. Put the following

edge indexing on A. For each edge e such that ∂0(e) ∈ V0, set i(e) = 1. For

each edge e such that ∂0(e) is a vertex of V1 with degree one, set i(e) = n. If

v ∈ V1 has degree two, let e and e′ be the two edges with terminal vertex v,

chosen so that e is closer than e′ to v0 . Let i(e) = n− 1 and i(e′) = 1. Note

that the edge-indexed graph (A, i) has universal cover Xm,n.

Since A is a tree, any edge indexing on A is unimodular. In particular,

if we let N be the ordering of (A, i) normalized so that N(v0) = 1, it is easy

to see that N is integral.

The canonical grouping of (A, i) is the cyclic grouping A associated to N ,

which is necessarily faithful, since each lift of v0 has a trivial stabilizer. The

canonical grouping is a graph of finite groups A with universal cover Xm,n.

Convention 4.1 (Star tree covolumes). For convenience, we compute all

covolumes of star tree lattices with respect to the set of vertices V0, using
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Theorem 2.1. (In case m = n, we first pass to the index two subgroup

G0 < G stabilizing the lift of V0.) For instance, if A consists of just a single

star, then its canonical grouping A has V0–covolume 1. On the other hand,

the covolume with respect to the full set of vertices V = V0

∐
V1 is (n+m)/n.

Thus the reader can multiply any V0–covolume by the factor (n + m)/n to

obtain the corresponding V –covolume.

For each v ∈ V0, the level of v, denoted `(v), is the number of vertices of

V1 on the unique edge-path from v to the basepoint v0. If A is the canonical

grouping A of a star tree A, then for each v ∈ V0, we have N(v) = (n−1)`(v).

Therefore the covolume of A is given by

∑
v∈V0

1

(n− 1)`(v)
,

establishing the following theorem.

Theorem 4.2. Suppose 3 ≤ n ≤ m, and let A be any star tree of degree m.

Then there is a discrete subgroup Γ(A) ≤ Aut(Xm,n), such that Γ(A)\Xm,n =

A, and Γ(A) has covolume

∑

v∈V0(A)

1

(n− 1)`(v)

Example 4.3. A star ray is a minimal infinite star tree. It consists of an

infinite sequence of stars connected end to end. A star ray R of degree 4 is

illustrated in Figure 1(a). The ordering of the canonical grouping of (R, i)

is shown in Figure 1(b) in the case m = 4 and n = 3. This grouping has

covolume ∞∑

`=0

1

(n− 1)`
=

n− 1

n− 2
= 2.

4.2 Arbitrary volumes bounded away from zero

In this subsection we construct uncountably many lattices in G with covol-

ume κ, for each κ > κ0 := (n− 1)/(n− 2).

If the canonical grouping of a star tree A is to be a nonuniform lattice,

it is necessary that A contains at least one ray. Thus the covolume of any
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Figure 1: (a) A star ray R of degree 4. The basepoint is indicated by a

double circle. (b) The ordering of the canonical grouping of (R, i) in the case

m = 4 and n = 3.
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Figure 2: The tree B3 in the case m = 4 and n = 3.

nonuniform lattice produced in this manner is bounded below by κ0, which

is the covolume associated to a star ray R (see Example 4.3).

For each natural number p, let Bp be a finite star tree of degree m with

basepoint b0 such that V0(Bp) contains exactly (n− 1)j vertices of level j for

j = 0, . . . , p − 1 and no vertices of any higher level. Let c0 ∈ V1(Bp) be a

vertex of degree one adjacent to b0. The tree B3 is illustrated in Figure 2 in

the case m = 4, and n = 3.

Consider the star tree obtained by gluing a copy of Bp to the star ray R

along the vertex c0 so that b0 has level j with respect to the basepoint of R.

We refer to this process as gluing Bp to R at level j. Such a gluing increases

the covolume by precisely
p

(n− 1)j
.

It is now easy to construct lattices with any given covolume κ > κ0, as
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follows. Choose a sequence of natural numbers (ej) such that

ρ := κ− κ0 =
e1

n− 1
+

e2

(n− 1)2
+ · · ·+ ej

(n− 1)j
+ · · ·

and let A be the tree obtained by gluing for each j > 0 a copy of Bej
to R

at level j. The canonical grouping of A is then a lattice Γ with covolume κ.

Choosing the sequence (ej) is similar to writing ρ in base n − 1, except

we do not require that each ej be smaller than (n− 1). Consequently, there

is a large amount of flexibility in choosing the ej, even if we restrict ourselves

to bounded sequences. In particular, by varying the sequence (ej), it is easy

to obtain uncountably many lattices with a given covolume. We will take

advantage of this flexibility below

4.3 Arbitrarily small volumes

In this subsection we modify the lattices constructed above to produce lat-

tices with arbitrarily small covolumes.

Recall that a star tree A of degree m gives rise to an edge-indexed graph

(A, i) with universal cover Xm,n. Thus far, we have only considered the

covolume of the canonical grouping of (A, i). Consequently, we have not

produced lattices with covolume arbitrarily close to zero. In order to achieve

smaller covolumes, we must increase the orders of the edge and vertex groups.

The main source of tension in increasing the orders of the local groups is

that the grouping must remain faithful. If a grouping (A,A) is not faithful,

then the kernel of the action on the universal cover is a group K which can

be embedded as a nontrivial normal subgroup in every edge group and vertex

group in a manner which is equivariant with respect to the edge maps (see

[Ba, I.1.23]).

Loosely speaking, a nonuniform lattice arising as the canonical grouping

of a star tree is based on a sequence of inclusions

G0
ι0 // G1

ι1 // · · · ιj−1
// Gj

ιj
// · · · ,

where |Gj| = (n−1)j. Our strategy now is to find a group H and a sequence

of maps φj : H → Aut(Gj) equivariant with respect to the ιj. The ιj then
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induce a sequence of inclusions

G0 oφ0 H // G1 oφ1 H // · · · // Gj oφj
H // · · ·

Since G0 is the trivial group, the corresponding grouping is faithful if and

only if H does not have a subgroup H ′ which is normal in every semidirect

product, or equivalently if each nontrivial element h ∈ H acts nontrivially

on some Gi.

Note that the volume of this new lattice equals ρ/ |H|, where ρ is the

volume of the original lattice, since the new ordering differs from the old

only by the multiplicative factor |H|. To get arbitrarily small covolumes, we

want to be able to choose the group H arbitrarily large.

It remains to produce specific groups H and Gj and actions H → Aut(Gj)

satisfying the preceding properties. To this end, fix a natural number k, and

define

Gj =





Z/(n− 1)jZ, if j ≤ k;

Z/(n− 1)kZ× Z/(n− 1)j−kZ, if j > k.

Let ιj : Gj → Gj+1 be defined as follows. If j < k, then ιj is multiplication

by n− 1, and if j ≥ k, it is the identity on the first factor and multiplication

by n− 1 on the second factor.

We now let H be the multiplicative group of the ring Z/(n−1)kZ. There

is a natural monomorphism H ↪→ Aut(Gk) given by multiplication, which

pulls back to maps H → Aut(Gj) for each j ≤ k. For j ≥ k, let H act by

φk on the left factor and trivially on the right factor. It is easy to see that

this defines a sequence of maps φj : H → Aut(Gj) equivariant with respect

to the ιj. Furthermore, by construction, every element of H acts nontrivially

on Gk. Since the order of H is at least (n − 1)(k−1) we acheive arbitrarily

small covolumes as k →∞.

For each star tree A of degree m, the preceding discussion can be ap-

plied to produce finite groupings of (A, i) with arbitrarily small covolumes

as follows. For each vertex v ∈ V0, set Av = G`(v) oH. If e is an edge with

∂0(e) = v, set Ae = Av. If w ∈ V1 has degree one and e is the edge with

∂0(e) = w, set Aw = Ae × Z/nZ and let the edge map be the inclusion of

the first factor. If w ∈ V1 has degree two, then ∂−1
0 (w) consists of two edges
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e1 and e2 such that Ae1 = Gi o H and Ae2 = Gi+1 o H. In this case, set

Aw = Ae2 , and let the map Ae1 ↪→ Aw be the map Gi o H ↪→ Gi+1 o H

induced by ιi as above.

By the argument above, this construction produces for each k a finite

grouping Ak of (A, i). The grouping Ak is faithful provided that the tree A

contains at least one vertex at level k. Thus if A is infinite, Ak is faithful for

every k.

5 Realizing all values of the invariants

In this section we state the precise version of Theorem 1.1 (see Theorem 5.4

below) and use the constructions given in §4 to exhibit its proof.

5.1 Arbitrary growth type and covolume

Throughout this section, all quotient growths should be computed with re-

spect to the metric on Xm,n in which each edge has length 1/2. In this metric,

the function ` measures the distance from a vertex to the basepoint.

A function f : N → N is an acceptible quotient growth function if it

satisfies

f(0) = 1, 1 ≤ f(j + 1) ≤ 2f(j), and
∞∑

j=0

f(j)

2j
< ∞.

(The third condition is essential only in the case when n = 3.)

Lemma 5.1. Let f be any acceptible quotient growth function. Then there

is a star tree Tf of degree m whose growth is equivalent to f . Furthermore,

we may assume that Tf has a vertex c0 ∈ V1(Tf ) of degree one adjacent to

the basepoint.

Proof. Construct Tf with exactly f(j) stars at level j. The inequality 1 ≤
f(j + 1) ≤ 2f(j) quarantees that this can always be done, since each level

contains at most twice the number of stars as the previous level and 2 ≤
m− 1.
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Theorem 5.2. Let f be any acceptible quotient growth function, and κ any

positive real number. Then there is a lattice Γ in Aut(Xm,n) with covolume κ

and quotient growth type f . In particular, there are uncountably many com-

mensurability classes of lattices with covolume κ, and also uncountably many

commensurability classes with growth type f .

Proof. We will construct our lattices as canonical groupings of star trees.

Without loss of generality, we may assume that κ > κ0, since the techniques

of §4.3 can then be used to obtain arbitrary positive covolumes.

Let Tf be a star tree of degree m with growth equivalent to f , as given

by Lemma 5.1. The canonical grouping of such a tree is a lattice with finite

covolume ν.

Fix a natural number k sufficiently large that ν/(n − 1)k < κ − κ0, and

choose a bounded sequence of natural numbers (ej)j 6=k so that

κ− κ0 =
e1

n− 1
+ · · ·+ ek−1

(n− 1)k−1
+

ν

(n− 1)k
+

ek+1

(n + 1)k+1
+ · · ·

Form a star tree A(f, κ) by gluing Tf to the star ray R at level k and

for each j 6= k gluing a copy of Bej
at level j. Since the Bej

have uniformly

bounded depth, they do not affect the growth type of A, which is therefore

equivalent to f . Furthermore, the canonical grouping of A has covolume κ

by construction.

The last assertion of the theorem follows from the fact that for each α ∈
(1, 2) there is an acceptible quotient growth function equivalent to j 7→ αj

and two such functions are inequivalent whenever α 6= α′.

5.2 Arbitrary stabilizer growths

In the previous sections we constructed lattices in Aut(Xm,n) as groupings

of the canonical edge indexing of a star tree. All nonuniform lattices arising

from such a canonical edge indexing necessarily have the same stabilizer

growth type, namely the type of the exponential function given by h(k) =

(n − 1)k. In this subsection we construct lattices with different stabilizer

growths by varying the edge indexing. The techniques of this subsection

require that n be composite.
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As in the previous subsection, we continue to compute all growth func-

tions using the metric in which each edge has length 1/2.

We say that a sequence s = (sk) is n–admissible if each sk is an integer

dividing n and if 2 < sk ≤ n. For each k, let rk := n/sk. Given an n–

admissible sequence s and an infinite star tree A of order m with basepoint

v0, there is an edge indexing I(A, s) with universal cover Xm,n defined as

follows. If ∂0(e) ∈ V0(A), set i(e) := 1. If ∂0(e) ∈ V1(A) has degree one, set

i(e) := n. If w ∈ V1 has degree two, then ∂−1
0 (w) = {e, e′}, where e is closer

to the basepoint v0 than e′. Then `
(
∂1(e)

)
= k − 1 and `

(
∂1(e

′)
)

= k for

some k. In this case, set

i(e) := n− rk = rk(sk − 1) and i(e′) := rk

Observe that the canonical edge indexing is the special case when sk = n

and rk = 1 for all k.

Let N be the ordering associated to I such that N(v0) = 1. If v, v′ ∈ V0(A)

with `(v) = k − 1 and `(v′) = k, then we have

N(v′) = N(v) (sk − 1) = (s1 − 1) · · · (sk − 1)

In particular, N is integral and N(v) depends only on the level of v ∈ V0(A).

The value N(w) for any w ∈ V1 is within a factor of n of N(v) for some

v ∈ V0 at a combinatorial distance 1 from w. Thus we may ignore vertices

in V1 when considering the stabilizer growth type of N . It is now clear that

N has stabilizer growth type equivalent to the function h given by

h(k) = (s1 − 1) · · · (sk − 1)

In particular, if t > 2 is any nontrivial factor of n (i.e., not equal to

either 1 or n), then for each real number λ ∈ [t− 1, n− 1] there is a sequence

s = (sk) with sk ∈ {t, n} such that the ordering N associated to s has

stabilizer growth equivalent to the function k 7→ λk. Furthermore, distinct

choices of λ give rise to inequivalent growth types. Thus we have established

the following result.

Proposition 5.3. Suppose that 3 ≤ m ≤ n and that n > 4 is composite.

Then G = Aut(Xm,n) admits uncountably many nonuniform lattices with

distinct stabilizer growth types.
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Notice that the stabilizer growth type of any ordering N associated to an

n–admissible sequence s depends only on the choice of s. The growth type

is independent of the choice of ordering N of I, and is also independent of

the choice of infinite star tree A.

Our goal for the remainder of this subsection is to modify the construc-

tions in the previous subsections to produce lattices modeled on an arbitrary

n–admissible sequence s that also have arbitrary acceptible quotient growth

and arbitrary covolume. Note that these constructions involved modifying

only the tree A and the grouping of I. Thus they do not affect the stabilizer

growth of the corresponding lattices.

Theorem 5.4. Suppose that 3 ≤ m ≤ n and that n > 4 is composite.

Let f be any acceptible quotient growth function, s = (sk) any n–admissible

sequence, and κ any positive real number. Then G = Aut(Xm,n) contains

nonuniform lattices with quotient growth type f , covolume κ, and stabilizer

growth type given by the function

h(0) = 1; h(j) = (s1 − 1) · · · (sj − 1)

Proof. Let R be the star ray of degree m with basepoint v0, let N be the

ordering associated to the edge indexing I(R, s) such that N(v0) = 1, and

let

κ0 :=
∞∑

j=0

1

h(j)

which is the covolume of the ordering N .

We first consider the special case when κ > κ0, as in §4.2. Let Tf be a star

tree with growth f , which has a vertex c0 ∈ V1(Tf ) of degree one adjacent to

the basepoint. Gluing Tf onto the star ray R at any level k, has the effect of

increasing the covolume of the ordering N by

νk :=
∞∑

j=0

f(j)

h(j + k)

Since s is n–admissible, it follows that sj−1 ≥ 2, so that h(j) ≥ 2j. Therefore

νk ≤ 2−k

∞∑
j=0

f(j)

2j
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The preceding sum converges since f is an acceptible growth function. As in

the proof of Theorem 5.2, we fix a natural number k sufficiently large that

νk < κ− κ0, and glue Tf to R at level k.

The next step is to modify the construction of the bounded trees Bp

from §4.2 to take into account the variable stabilizer growth provided by the

sequence s. For each p, q ∈ N let Bp,q be a finite depth star tree of degree m

with exactly h(q + j)/h(q) vertices of level j for j = 0, . . . , p − 1 and no

vertices of any higher level. Thus the process of gluing Bp,q to R at level q

contributes h(q + j)/h(q) vertices of level q + j for each j = 0, . . . , p− i. So

Bp,q increases the covolume of N by

p−1∑
j=0

1

h(q)
=

p

h(q)

We now construct a star tree A with growth type f and covolume κ as

follows. Choose a bounded sequence (ej)j 6=k satisfying

κ− κ0 =
e1

h(1)
+ · · ·+ ek−1

h(k − 1)
+ νk +

ek+1

h(k + 1)
+ · · ·

Then the star tree A is formed by gluing Tf onto the star ray R at level k,

and for each j 6= k gluing a copy of Bej ,j at level j. The resulting tree A,

with the induced ordering N , has quotient growth type f , covolume κ, and

stabilizer growth type h, as desired.

Finally we must consider the case when κ ≤ κ0. But this is easily

dealt with by a construction similar to that in §4.3, replacing (n − 1)j with

h(j) throughout. Therefore, given any star tree A and any n–admissible

sequence s, the associated edge indexing I(A, s) admits faithful finite group-

ings with arbitrarily small covolumes. Since quotient growth and stabilizer

growth types depend only on the underlying edge indexed graph, this process

completes the proof of the theorem.
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