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Abstract
Weconsider asymptotic problems concerning themotion of interface separating the regions of
large and small values of the solution of a reaction–diffusion equation in the media consisting
of domains with different characteristics (composites). Under certain conditions, the motion
can be described by the Huygens principle in the appropriate Finsler (e.g., Riemannian)
metric. In general, the motion of the interface has, in a sense, non-local nature. In particular,
the interface may move by jumps. We are mostly concerned with the nonlinear term that is
of KPP type. The results are based on limit theorems for large deviations.
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1 Introduction

Consider a reaction–diffusion equation (RDE)

∂uε

∂t
= ε

2

n∑

i, j=1

ai j (x)
∂2uε

∂xi∂x j
+1

ε
c(x, uε)uε = εMuε+1

ε
c(x, uε)uε, t>0, x ∈ R

n, (1)

uε(0, x) = g(x) ≥ 0.

HereM is an elliptic operatorwith sufficiently regular coefficients, ε > 0 is a small parameter,
and the nonlinear term is of Kolmogorov–Petrovskii–Piskunov (KPP) type. The latter means
that c(x, 1) = 0, c(x, u) < 0 for u > 1, and c(x, 0) > c(x, u) > 0 for u ∈ (0, 1) and
x ∈ R

n . Assume that 0 ≤ g ≤ 1 is continuous with compact support G0. (We could also
allow g to be continuous everywhere except a smooth hypersurface. In this case, we require
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that G0 coincides with the closure of its interior.) We assume that g is not identically equal
to zero. We assume that c is Lipschitz continuous in u (uniformly in x).

It was shown in [4–6] that if c(x, 0) = c̃(x) = c̃ is constant, then limε↓0 uε(t, x) is
equal to zero if ρ(x,G0) > t

√
2c̃ and is equal to one if ρ(x,G0) < t

√
2c̃, where ρ is the

Riemannian metric corresponding to the diffusion matrix a(x) = (ai j (x)):

ρ(x, y) = inf
ϕ∈C1([0,1],Rn)
ϕ(0)=x,ϕ(1)=y

∫ 1

0

√
(a−1(ϕ(t))ϕ̇(t), ϕ̇(t))dt .

This result means that when ε � 1 the interface between the region where uε(t, x) is close
to zero and the region where it is close to one moves according to the Huygens principle with
the constant speed

√
2c̃ in the metric ρ.

If c̃(x) is not constant, the position of the interface at time t2 > t1, in general, is not defined
by the position of the interface at time t1. Its motion is, in a sense, non-local. In particular,
it can have jumps [4,6]. In general case, the limiting behavior of uε(t, x) as ε ↓ 0 can be
described using the limit theorems for large deviations (see [11]). Let Xε

t be the diffusion
process on Rn governed by the operator εM :

dXε
t = √

εσ (Xε
t )dWt , Xε

0 = x, (2)

where Wt is a Wiener process and σ(x)σ ∗(x) = a(x). The Feynman–Kac formula implies
that the solution uε of problem (1) satisfies the following equation

uε(t, x) = Ex

(
g(Xε

t ) exp

(
1

ε

∫ t

0
c(Xε

s , u
ε(t − s, Xε

s ))ds

))
, (3)

where Ex means the expected value for trajectories of (2) with the initial condition Xε
0 = x .

In the case of KPP-type nonlinear term, (3) implies that

uε(t, x) ≤ Ex

(
g(Xε

t ) exp

(
1

ε

∫ t

0
c̃(Xε

s )ds

))
= ũε(t, x). (4)

Note that the function ũε is the solution of the linear problem obtained from (1) when c(x, u)

is replaced by c̃(x). The asymptotics of ũε(t, x) in the right hand side of (4) can be calculated
using large deviation estimates. Namely, if S0t (ϕ), ϕ ∈ C([0, t],Rn), is the action functional
[11] of the family Xε

t as ε ↓ 0 with the normalizing factor ε−1, then

lim
ε↓0 ε ln ũε(t, x) = sup

ϕ0=x,ϕt∈G0

(∫ t

0
c̃(ϕs)ds − S0t (ϕ)

)
= Ṽ (t, x).

This implies that

lim
ε↓0 u

ε(t, x) = lim
ε↓0 ũ

ε(t, x) = 0 if Ṽ (t, x) < 0.

Under certain assumptions, one can prove that limε↓0 uε(t, x) = 1 if Ṽ (t, x) > 0. In this
case, the equation Ṽ (t, x) = 0 defines the position of the interface. In particular, if c̃(x) = c̃
is constant, the position of the interface is described by the Huygens principle, as above. In
the general case, the position of the interface is defined (see [7,9]) by the function

V (t, x) = sup
ϕ0=x,ϕt∈G0

min
a∈[0,t]

(∫ a

0
c̃(ϕs)ds − S0a(ϕ)

)
.
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If V (t, x) < 0, then limε↓0 uε(t, x) = 0, while limε↓0 uε(t, x) = 1 if (t, x) belongs to the
interior of the set {(t, x) : V (t, x) = 0}. These results were later re-proved and generalized
using classical PDE methods (see [2,3]).

Equation (3), together with (2), is equivalent to (1). It describes the interplay between
the transport of particles (in our case the diffusion of particles) and the law of multiplica-
tion/annihilation of particles. Note that, instead of the diffusion transport defined by (2), one
could consider other types of stochastic motion, as long as the action functional for the fam-
ily is known and a certain Markov property is satisfied. One could also consider a non-local
non-linear term (compare with [1]).

In this paper, we will study interface propagation for reaction–diffusion equations in
composite structures. By a composite structure we mean a domain that is a union of two or
more regionswith significantly different properties of themedia (coefficients of the equation).
In the case of layered structures that are space-homogeneous (in each of the layers), it turns
out that the interface motion can also be described by the Huygens principle. However, the
speed of the motion is constant if it is calculated with respect to an appropriate Finsler metric,
rather than aRiemannianmetric.We derive the expression for thismetric in three qualitatively
different cases, depending on the magnitude of the underlying diffusion across the layers.

In contrast to the case of a single layer, now the propagation of the interface is not described
by the Huygens principle and may be non-local, even if the nonlinear term does not vary
within each of the layers. The main difference between the case of the single layer and the
one with several layers is that now the propagation of the interface is determined not only by
the large deviations of the underlying diffusion along the layer, but by the interplay between
the deviation from the stationary destribution between the layers and the large deviations for
the diffusion in each of the layers. A similar, in a sense, phenomenon was studied in [12].

Examples of composite structures are given in Figs. 1 and 2. The composite in Fig. 1
consists of two layers with different properties. Figure 2 shows periodic inclusions in a
homogeneous medium. First, let us consider the layered structure shown in Fig. 1.

Fig. 1 Layered composite structure

Fig. 2 Composite structure with inclusions
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The reaction–diffusion equation in a structure with two layers has the form

∂uε

∂t
= ε

2

n∑

i, j=1

ai j (x, y)
∂2uε

∂xi∂x j
+ ε−β

2
α(x, y)

∂2uε

∂ y2

+1

ε
c(x, y, uε)uε, t > 0, x ∈ R

n, y ∈ I1 ∪ I2,

∂uε

∂ y
|y=0,1 = 0, uε(0, x, y) = g(x), (5)

where 0 ≤ g ≤ 1 is continuous with compact support G0 and is not identically equal to zero,
I1 = (0,m), and I2 = (m, 1). It is assumed that g is not identically equal to zero. To account
for different layers, we assume that

ai j (x, y) =
{
a1i j (x), y ∈ I1
a2i j (x), y ∈ I2,

α(x, y) =
{

α1(x), y ∈ I1
α2(x), y ∈ I2.

It is assumed that a1, a2 are uniformly bounded and uniformly positive-definite matrices and
that α1, α2 are uniformly bounded and uniformly positive. The nonlinear term in (5) also
depends on the layer: we assume that

c(x, y, u) =
{
c1(x, u), y ∈ I1,

c2(x, u), y ∈ I2.

It is assumed thataki j , α
k ∈ C2(Rn), while ck(x, u) is Lipschitz continuous, k = 1, 2.Observe

that the coefficients in (5) may be discontinuous for y = m, and the equation is satisfied only
when y 
= m. Thus, in order for the uniqueness of the solution to hold, one should add a
‘gluing condition’ on the plane y = m. To do this rigorously, it is best to relate uε to itself
using the Feynman–Kac formula, similarly to (3), and then use this as the definition of the
solution of (5) (compare with [6]). Namely, let

Mεu(x, y) = ε

2

n∑

i, j=1

ai j (x, y)
∂2u

∂xi∂x j
+ ε−β

2
α(x, y)

∂2u

∂ y2
.

The domain of Mε contains functions u ∈ C(Rn × [0, 1])⋂
C2(Rn × (I1

⋃
I2)), whose

first derivative in y belongs to C(Rn × [0, 1]), which satisfy ∂u
∂ y |y=0,1 = 0, and are such that

Mεu (understood as the differential operator on R
n × (I1

⋃
I2) applied to u and extended

to R
n × [0, 1]) belongs to C(Rn × [0, 1]). The closure of the operator Mε with the domain

specified above serves as the generator for theMarkov family (Xε
t , Y

ε
t ) onRn ×[0, 1] (where

we dropped the dependence on the initial point (x, y) from the notation). This diffusion
process is the limit of processes with continuous diffusion coefficients approximating the
diffusion coefficients ai j (x, y).

The pair of processes (Xε
t , Y

ε
t ) starting at (x, y) is the solution of the system of stochastic

differential equations

dXε
t = √

εA(Xε
t , Y

ε
t )dWt , Xε

0 = x,

dY ε
t = 1√

εβ
σ (Xε

t , Y
ε
t )dVt , Y ε

0 = y,

where A is the positive-definite symmetric square root of the matrix a, σ = √
α, Wt is an

n-dimensional Brownian motion, and Vt is a one-dimensional Brownian motion independent
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of Wt . The process Y ε
t is reflected at the end points of the segment and satisfies a gluing

condition at y = m. We define the solution of (5) as the bounded continuous function on
[0,∞) × R

n × [0, 1] that sastisfies

uε(t, x, y)

= E(x,y)

(
g(Xε

t ) exp

(
ε−1

∫ t

0
c(Y ε

s , uε(t − s, Xε
s , Y

ε
s )ds

))

for each t, x, y. Using the Lipschitz continuity of c in the second argument, it is easy to show
that such a function uε exists and is unique for each ε > 0.

We are mostly interested in the case when the nonlinearity is of Kolmogorov–Petrovskii–
Piskunov (KPP) type. Namely, we assume that ck , k = 1, 2, are uniformly Lipschitz
continuous in u, ck(x, 1) = 0, ck(x, u) < 0 for u > 1, and ck(x, 0) > ck(x, u) > 0
for x ∈ R

n and u ∈ (0, 1).
The asymptotics of uε as ε ↓ 0 for various values of the parameter β will be studied in

this paper. In Sect. 2, we consider the situation when ak and ck , k = 1, 2, do not depend
on the x-variable. In this case, the metric governing the interface propagation is translation-
invariant—it is given by a norm of the difference between the points. Three different cases
are distinguished, depending on whether β = 1, β > 1, or β < 1. In Sect. 3, we discuss the
situation when ak , αk , and ck are allowed to depend on x . In both Sects. 2 and 3, we use the
large deviation principle for the joint distribution of the trajectory of the underlying diffusion
in the x-space and the occupation measure for the diffusion in the y-space. In the case of
x-dependent coefficients, the large deviation principle is more complicated.

2 The Case of x-Independent Coefficients

2.1 Asymptotics of Solutions to Linear Equations

In this section, we consider the linear version of the Cauchy problem (5), i.e., we assume
that c(x, y, u) = c(x, y). The coefficients ak, αk, ck , k = 1, 2, do not depend on x . Thus uε

satisfies

∂uε

∂t
= ε

2

n∑

i, j=1

ai j (y)
∂2uε

∂xi∂x j

+ε−β

2
α(y)

∂2uε

∂ y2
+ 1

ε
c(y)uε, t > 0, x ∈ R

n, y ∈ (0, 1) \ {m}.
∂uε

∂ y
|y=0,1 = 0, uε(0, x, y) = g(x). (6)

We will show that there is a function λ(t, x), continuous on (0,∞) × R
n , such that

ε ln uε(t, x, y) → supx ′∈G0
λ(t, x − x ′). The expressions for λ(t, x) are different, depending

on whether β = 1, β > 1, or −1 < β < 1. (If β = −1, there is no need to distinguish
between the x and y variables, and the answer follows from [6]. If β < −1, then, in order to
find the asymptotics of uε(t, x, y)with y 
= m, the equation can be viewed in the (t, x) space,
with the diffusion in the y variable ignored, and the y variable in the coefficients treated as
a parameter.) The function λ is the multi-layer analogue of Ṽ defined in the Introduction.
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1668 M. Freidlin, L. Koralov

First consider the case when β = 1. Let

Lu(y) = 1

2
α(y)u′′(y)

be the operator on C([0, 1]) with the domain D(L) that consists of functions satisfying

u ∈ C1([0, 1]), αu′′ ∈ C([0, 1]), u′(0) = u′(1) = 0.

Let Y ε
t be the process s with values on [0, 1], whose generator is ε−βL . Thus, if the initial

value of the process Y ε
t is y, the process formally satisfies

dY ε
t = 1√

εβ
σ (Y ε

t )dVt , Y ε
0 = y,

where σ = √
α and Vt is a one-dimensional Brownian motion. (Y ε

t is reflected at the end
points of the segment and satisfies a gluing condition at y = m.)

Given initial values Xε
0 = x and Y ε

0 = y, define

Xε
t = x + √

ε

∫ t

0
A(Y ε

s )dWs,

where A is the positive-definite symmetric square root of the matrix a = (ai j ) and Wt is
an n-dimensional Brownian motion independent of Vt . Note that Xε

t also depends on β,
although this is not reflected in the notation.

We will repeatedly make use of the following simple observation (compare with [11], Ch.
3). Let
ε

z be a family of probabilitymeasures on (M,B(M)), where (M, d) is ametric space,
ε > 0 is a small parameter, and z is an additional parameter (for example, 
ε

z may be the
measures induced by processes that start at an initial point z). Suppose that Sz is the action
functional for 
ε

z with normalizing coefficient ε−1, uniformly in z. Then for continuous
functions 0 ≤ ϕ ≤ C and ψ ≤ C on M ,

lim
ε↓0

(
ε ln

∫

M
ϕ(x) exp

(
ψ(x)

ε

)
d
ε

z

)
= sup

x∈supp(ϕ)

(ψ(x) − Sz(x)), (7)

uniformly in z.
If ψ is not continuous, we can still estimate the left-hand side of (7) from above. Namely,

for η > 0 define Sη
z (x) = inf y:d(y,x)≤η Sz(y). Then it is not difficult to see that

lim
ε↓0

(
ε ln

∫

M
ϕ(x) exp

(
ψ(x)

ε

)
d
ε

z

)
≤ sup

x∈supp(ϕ)

(ψ(x) − Sη
z (x)), (8)

uniformly in z.
For f ∈ C([0, 1]), let H( f ) be the top eigenvalue of the operator L f u = Lu + f u.

Let M[0,1] be the space of probability measures on ([0, 1],B([0, 1])). Let M′[0,1] = {μ ∈
M[0,1] : μ({m}) = 0}. Let με

t,y be the normalized occupation measure on ([0, 1],B([0, 1]))
of the process Y ε (with Y ε

0 = y) on the interval [0, t], i.e., με
t,y(B) = ∫ t

0 χB(Y ε
s )ds/t ,

B ∈ B([0, 1]).
For μ ∈ M[0,1], define

I (μ) = sup
f ∈C([0,1])

(∫ 1

0
f dμ − H( f )

)
.
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Then t I is the action functional for με
t,y , uniformly in (t, y) ∈ [a, b] × [0, 1] if 0 < a < b

(see [11,13] (Ch. 10)). Let

J = {p = (p1, p2) : p1 + p2 = 1, p1, p2 ≥ 0}.
This space is endowed with the metric dJ ((p′

1, p
′
2), (p

′′
1 , p

′′
2 )) = |p′

1 − p′′
1 |. For p ∈ J and

μ ∈ M′[0,1], define pμ = (μ(I1), μ(I2)) and

S(p) = inf
μ:pμ=(p1,p2)

I (μ). (9)

Thus t S is the action functional, uniformly in (t, y) ∈ [a, b] × [0, 1], for the family of
measures on J induced by the random vectors (με

t,y(I1), μ
ε
t,y(I2)). Such measures (which

also depend on β) will be denoted by 
ε
t,y , i.e.,


ε
t,y(A) = P

(
pμε

t,y
∈ A

)
, A ∈ B(J ).

In order to derive the asymptotics of uε(t, x, y), we will show that the main contribution
to the expectation in the Feynman–Kac formula comes from the event where the trajectories
of the underlying diffusion spend an asymptotically non-random proportion of time p1 in
the region where y ∈ I1, and an asymptotically non-random proportion of time p2 in the
region where y ∈ I2. Assuming that p1 and p2 are known, we will derive the expression
for the contribution to the expectation in the Feynman–Kac formula, and then maximize the
expression under the condition that p1 + p2 = 1.

Let a1 = (a1i j ), a
2 = (a2i j ). For v ∈ R

n , define

R(p, v) = 1

2
((p1a

1 + p2a
2)−1v, v),

T (p) = p1c
1 + p2c

2.

Now we can write the expression for λ(t, x) in the case when β = 1,

λ(t, x) = sup
p

(
t
(
T (p) − S(p) − R

(
p,

x

t

)))
. (10)

Next consider the case β > 1. The difference from the case with β = 1 is that now the
values of p1 and p2 are prescribed. Namely, let π be the invariant measure for the process
Y y,ε
t (the invariant measure doesn’t depend on ε or β). The expression for λ(t, x) in the case

when β > 1 is

λ(t, x) = t
(
T (pπ ) − R

(
pπ ,

x

t

))
. (11)

Finally, consider−1 < β < 1. In this case, we again have minimization in p, but the term
S(p) is not present. Namely, define

λ(t, x) = sup
p

(
t
(
T (p) − R

(
p,

x

t

)))
. (12)

Theorem 2.1 Under the above assumptions,

lim
ε↓0 ε ln(uε(t, x, y)) = sup

x ′∈G0

λ(t, x − x ′) (13)

uniformly on every compact K ⊂ (0,∞) × R
n × [0, 1], where λ is given by (10) if β = 1,

by (11) if β > 1, and (12) if −1 < β < 1.
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1670 M. Freidlin, L. Koralov

Proof Fix t > 0. Let Mx,p,ε
t be the measure on C = C([0, t],Rn) induced by the process Xε

t
conditioned on 
ε

t,y({p}) = 1 (obesrve that there is no dependence on y or β in Mx,p,ε
t , as

follows from the definition of the process Xε
t ).

By the Feynman–Kac formula,

uε(t, x, y) = E(x,y)

(
g(Xε

t ) exp

(
ε−1

∫ t

0
c(Y ε

s )ds

))

=
∫

J
exp(ε−1t(c1 p1 + c2 p2))

∫

C
g(ϕt )dM

x,p,ε
t (ϕ)d
ε

t,y(p). (14)

For a compact K̄ ⊂ R
n , the action functional forMx,p,ε

t is given, uniformly in (x, p) ∈ K̄×J ,
by

∫ t
0 R(p, ϕ′(s))ds when ϕ(0) = x (and is equal to −∞ otherwise). Therefore, by (7),

lim
ε↓0

(
ε ln

∫

C
g(ϕt )dM

x,p,ε
t (ϕ)

)
= − inf

ϕ:ϕ(0)=x,ϕ(t)∈G0

∫ t

0
R(p, ϕ′(s))ds

= − inf
x ′∈G0

t R

(
p,

x − x ′

t

)
,

uniformly in (x, p) ∈ K̄ × J . Substituting this in (14), we get

lim
ε↓0 ε ln(uε(t, x, y)) = lim

ε↓0 ε ln
∫

J
exp

(
ε−1t

(
T (p) − inf

x ′∈G0
R

(
p,

x − x ′

t

)))
d
ε

t,y(p).

(15)
When β = 1, we use (7) and the fact that t S is the action functional for the family 
ε

t,y in
order to obtain

lim
ε↓0 ε ln(uε(t, x, y)) = sup

x ′∈G0

sup
p

(
t

(
T (p) − S(p) − R

(
p,

x − x ′

t

)))
,

uniformly in (x, y) ∈ K̄ × [0, 1]. Next, consider the case when β > 1. If U ⊆ J is an open
neighborhood of pπ , then, for each C > 0,


ε
t,y(U ) ≥ 1 − exp(−ε−1C)

for all sufficiently small ε. Therefore, the main contribution to the integral in (15) comes
from an arbitrarily small neighborhood of pπ , which implies that

lim
ε↓0 ε ln(uε(t, x, y)) = sup

x ′∈G0

t

(
T (pπ ) − R

(
pπ ,

x − x ′

t

))
,

uniformly in (x, y) ∈ K̄ × [0, 1]. Finally, if −1 < β < 1, then for each nonempty open set
U ⊆ J and each c > 0 we have


ε
t,y(U ) ≥ exp(−ε−1c)

for all sufficiently small ε. Therefore,

lim
ε↓0 ε ln(uε(t, x, y)) = sup

x ′∈G0

sup
p

(
t

(
T (p) − R

(
p,

x − x ′

t

)))
,

uniformly in (x, y) ∈ K̄ × [0, 1]. We have thus justified (12) in all the three cases for
fixed t > 0. Let us now show that the convergence is uniform on K ⊂ (0,∞) ×R

n × [0, 1].
From the Feynman–Kac formula it follows that for δ < t
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E(x,y)
(
uε(t − δ, Xε

δ , Y
ε
δ )

) ≤ uε(t, x, y) ≤ exp

(
δmax(c1, c2)

ε

)
E(x,y)

(
uε(t − δ, Xε

δ , Y
ε
δ )

)
.

Considering the contribution to the expectation from the events ‖Xε
δ −x‖ ≤ η and ‖Xε

δ −x‖ >

η and using the large deviations estimates on the process Xε
t , we see that for each η > 0 and

α > 0 there exist δ0 > 0, ε0 > 0 such that

1

2
inf

x ′:‖x ′−x‖≤η
inf

y∈[0,1] u
ε(t − δ, x ′, y)

≤ uε(t, x, y)

≤ exp

(
δ

ε

)
sup

x ′:‖x ′−x‖≤η

sup
y∈[0,1]

uε(t − δ, x ′, y) + exp

(
t max(c1, c2) − α

ε

)
,

when δ < δ0, ε < ε0. Together with the convergence in (12) for fixed t > 0 and the continuity
of the right hand side of (12), this is enough to conclude that the convergence is uniform on
K ⊂ (0,∞) × R

n × [0, 1].
Remark In the proof of Theorem 2.1 we saw that for each r , δ > 0

ε ln E(x,y)

(
g(Xε

t ) exp(ε
−1

∫ t

0
c(Y ε

s )ds), Xε
t ∈ Br (x0)

)
≥ λ(t, x − x0) − δ

for all sufficiently small ε, where x0 ∈ Int(G0). The same argument gives the bound if we
restrict the expectation to the event that Xε

t closely follows the segment connnecting x to x0.
More precisely, let ϕ : [0, t] → R

n be the linearly parametrized segment with ϕ(0) = x ,
ϕ(t) = x0. Then

ε ln E(x,y)

(
g(Xε

t ) exp(ε
−1

∫ t

0
c(Y ε

s )ds), sup
s∈[0,t]

‖Xε
s − ϕ(s)‖ ≤ δ

)
≥ λ(t, x − x0) − δ

(16)
for all sufficiently small ε, uniformly on every compact K ⊂ (0,∞) × R

n × [0, 1].
Remark For t1, t2 ≥ 0, we have

λ(t1 + t2, x1 + x2) ≥ λ(t1, x1) + λ(t2, x2). (17)

Indeed, suppose that G0 = Br0(0) (the ball of radius r0 around the origin). By Theorem 2.1,
for each δ > 0 there is r > 0 such that, for all sufficiently small ε,

uε(t1, x
′, y′) ≥ exp((λ(t1, x1) − δ)/ε)

when x ′ ∈ Br (x1). Let g̃ be a continuous function taking values in [0, 1] that is equal to one
on Br/2(x1) and equal to zero outside Br (x1). Applying Theorem 2.1 again, this time on the
interval [0, t2], with initial function g̃, and using the semigroup property of solutions to the
linear equation, we obtain

uε(t1 + t2, x1 + x2, y) ≥ exp((λ(t1, x1) − δ)/ε) exp((λ(t2, x2) − δ)/ε),

and therefore

ε ln uε(t1 + t2, x1 + x2, y) ≥ λ(t1, x1) + λ(t2, x2) − 2δ.

The left hand side can bemade arbitrarily close to λ(t1+t2, x1+x2) by selecting a sufficiently
small r0 and a sufficiently small ε. Thus, since δ > 0 was arbitrary, we obtain (17).
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1672 M. Freidlin, L. Koralov

2.2 Asymptotics of Solutions to Reaction–Diffusion Equations

In this section we consider the Cauchy problem for the reaction–diffusion equation (5). It is
assumed that ak, ck , k = 1, 2, do not depend on x . Thus

c(y, u) =
{
c1(u), y ∈ (0,m)

c2(u), y ∈ (m, 1).

Let c̃1 = c1(0), c̃2 = c2(0). Consider the linear problem (6) with c1, c2 replaced by c̃1, c̃2.
Let λ(t, x) be given by (10) if β = 1, by (11) if β > 1, and (12) if −1 < β < 1.

Define the norm ‖x‖ via the condition

λ(‖x‖, x) = 0.

From the definition of λ, in each of the cases it follows that λ(|a|t, ax) = |a|λ(t, x), and
therefore ‖ax‖ = |a|‖x‖. The triangle inequality follows from (17), and so ‖ · ‖ is indeed a
norm. Let d(x1, x2) = ‖x1 − x2‖. Define

Gt = {x ∈ R
n : d(x,G0) ≤ t}.

Note that the growth ofGt is described by the Huygens principle in the (translation-invariant)
metric d .

Theorem 2.2 If uε(t, x, y) is the solution of (5) and c is of KPP type, then, for each t > 0,

lim
ε↓0 u

ε(t, x, y) = 0

uniformly on every compact K ⊂ (Rn \ Gt ) × [0, 1], and
lim
ε↓0 u

ε(t, x, y) = 1

uniformly on every compact K ⊂ Int(Gt ) × [0, 1].

Proof Let ũ be the solution of the linear problem (6) with c1, c2 replaced by c̃1, c̃2. Since
ck(u) ≤ c̃k for 0 ≤ u ≤ 1 (the nonlinearity is of KPP type), it is clear that u ≤ ũ. By
Theorem 2.1, limε↓0 ũε(t, x, y) = 0 uniformly on every compact K ⊂ (Rn \ Gt ) × [0, 1],
and therefore limε↓0 uε(t, x, y) = 0 uniformly on K .

Now consider a compact K such that K ⊂ Int(Gt ) × [0, 1]. Let η > 0 and (x0, y0) ∈ K .
Assume that x0 /∈ G0. Let t0 = d(x0,G0) < t . Let us show that there is δ > 0 such that

uε(t0, x, y) ≥ exp(−ε−1η) (18)

for all sufficiently small ε when ‖x − x0‖ ≤ δ. Let λ̃(t, x) = supx ′∈G0
λ(t, x − x ′). Given

δ1 > 0, we can choose x1 ∈ Int(G0) and δ > 0 in such a way that for each x we have
λ̃(t0 − δ1 − s, ϕ(s)) < 0 for s ≤ t0 − 2δ1, where ϕ is the linearly parametrized segment
ϕ : [0, t0 − δ1] → R

n , ϕ(0) = x , ϕ(t0) = x1,. Taking, if necessary, a smaller value of δ, we
canmake sure that λ̃(t0−δ1−s, ψ(s)) < −δ for s ≤ t0−2δ1 wheneverψ : [0, t0−δ1] → R

n

is such that ‖ϕ(s) − ψ(s)‖ ≤ δ for all s. Let ϕ̂ : [0, t0] → R
n be defined via

ϕ̂(s) =
{
x, s ∈ [0, δ1]
ϕ(s − δ1), s ∈ [δ1, t0].
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By the Feynman–Kac formula (which defines the solution),

uε(t0, x, y)

=E(x,y)

(
g(Xε

t0) exp

(
ε−1

∫ t0

0
c(Y ε

s , uε(t0 − s, Xε
s , Y

ε
s ))ds

))

≥ E(x,y)

(
g(Xε

t0) exp

(
ε−1

∫ t0

0
c(Y ε

s , uε(t0 − s, Xε
s , Y

ε
s ))ds

)
, sup
s∈[0,t0]

‖Xε
s − ϕ̂(s)‖≤δ

)
.

(19)

Observe that ũε(t0−s, x, y) → 0uniformly for (s, x) such that δ1 ≤ s ≤ t0−δ1,‖x−ϕ̂(s)‖ ≤
δ, since ε ln ũε(t0 − s, x, y) → λ̃(t0 − s, x) < −δ. Since uε ≤ ũε, the right hand side of (19)
can be estimated from below, for all sufficiently small ε, by

E(x,y)

(
g(Xε

t0) exp

(
ε−1

∫ t0−δ1

δ1

(c̃(Y ε
s ) − δ)ds

)
, sup

s∈[0,t0]
‖Xε

s − ϕ̂(s)‖
)

.

Conditioning on the value of the process at time δ1, we estimate the value of this expression,
from below, by the product R1 × R2 × R3, where

R1 = exp(−ε−1(δt0 + δ1 max(c̃1 + c̃2))),

R2 = P(x,y)

(
sup

s∈[0,δ1]
‖Xε

s − x‖ ≤ δ

2

)
,

R3 = inf
x ′,y′:‖x ′−x‖≤ δ

2

E(x ′,y′)

(
g

(
Xε
t0−δ1

)
exp

(
ε−1

∫ t0−δ1

0
c̃(Y ε

s )ds

)
,

sup
s∈[0,t0−δ1]

‖Xε
s − ϕ(s)‖ ≤ δ

)
.

It follows from (16) that for all sufficiently small δ1 and δ (which may depend on δ1),

ε ln R3 ≥ inf
x ′:‖x ′−x‖≤ δ

2

λ̃(t0 − δ1, x
′ − x1) − η

4
≥ −η

2
,

provided that ε is sufficiently small. Also, for all sufficiently small δ1 and δ we have

R1, R2 ≥ exp

(
−ε−1η

4

)
,

for all sufficiently small ε. Thus uε(t0, x, y) can be made larger than exp(−ε−1η) for all
sufficiently small ε.

Now suppose that x0 ∈ G0. In this case, we can find ĝ such that 0 ≤ ĝ ≤ g, x0 /∈ supp(ĝ),
and x0 ∈ Int(Ĝt ), where Ĝt = {x ∈ R

n : d(x, supp(ĝ)) ≤ t}. Then, as shown above,
there exist t0 ∈ (0, t) and δ > 0 such that uε(t0, x, y) ≥ ûε(t0, x, y) ≥ exp(−ε−1η) for all
sufficiently small ε and ‖x − x0‖ ≤ δ, where û is the solution with the initial data ĝ. Thus
we have proved that (18) holds for some t0 ∈ (0, t).

Consider now the diffusion process (Xε
t , Y

ε
t ) starting at (x, y) such that ‖x − x0‖ ≤ δ/2.

Suppose η′ > 0 is fixed. Let

τ = min(t − t0, inf{s : uε(t − s, Xε
s , Y

ε
s ) ≥ 1 − η′}).
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Then

uε(t, x, y)

≥E(x,y)

(
u(τ, Xε

τ , Y
ε
τ ) exp

(
ε−1

∫ τ

0
c(Y ε

s , uε(t−s, Xε
s , Y

ε
s )ds

)
, sup

s∈[0,τ ]
‖Xε

s −x‖≤ δ

2

)
.

On the event {τ = t − t0, sups∈[0,τ ] ‖Xε
s − x‖ ≤ δ

2 }, we have

u(τ, Xε
τ , Y

ε
τ ) exp

(
ε−1

∫ τ

0
c(Y ε

s , uε(t − s, Xε
s , Y

ε
s )ds

)
≥ exp(−ε−1η) exp(ε−1ĉ),

where ĉ = mink=1,2 infu∈[0,1−η′](ck(u)). The right hand side can be made larger than one
by selecting a sufficiently small η. On the event τ < t − t0,

u(τ, Xε
τ , Y

ε
τ ) exp

(
ε−1

∫ τ

0
c(Y ε

s , uε(t − s, Xε
s , Y

ε
s )ds

)
≥ 1 − η′.

Finally,

lim
ε↓0 P(x,y)

(
sup

s∈[0,τ ]
‖Xε

s − x‖ ≤ δ

2

)
= 1.

Therefore,

uε(t, x, y) ≥ 1 − 2η′

for all sufficiently small ε and (x, y) ∈ Bδ/2(x0) × [0, 1]. Extracting a finite covering of K
by such domains, we see that the estimate holds for (x, y) ∈ K for for all sufficiently small
ε. Since η′ was arbitrary, this implies the statement of the theorem. ��

3 The Case of x-Dependent Coefficients

3.1 Asymptotics of Solutions to Linear Equations

In this section, we again consider the linear version of the Cauchy problem (5), but now allow
the coefficients ak, αk, ck , k = 1, 2, to depend on x . Thus uε satisfies

∂uε

∂t
= ε

2

n∑

i, j=1

ai j (x, y)
∂2uε

∂xi∂x j

+ε−β

2
α(x, y)

∂2uε

∂ y2
+ 1

ε
c(x, y)uε, t > 0, x ∈ R

n, y ∈ (0, 1) \ {m}.
∂uε

∂ y
|y=0,1 = 0, uε(0, x, y) = g(x). (20)

Recall that the pair of processes (Xε
t , Y

ε
t ) starting at (x, y) has been defined in Sect. 1. In the

case considered in Sect. 2.1, the main contribution to the expectation in (14) comes from the
event that the trajectoris of Xε

t (starting at x) closely follow the linearly parametrized segment
connecting x with x ′, where x ′ is one of the points inG0. Since the coefficients were spatially
homogeneous, the contribution to the expectation from such an event depended only on the
difference between x and x ′. Now there is an optimal path ϕ : [0, t] → R

n such that the
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trajectories of Xε
t following in its vicinity give the main contribution to the expectation. The

shape of the path depends on both initial point x and the final point x ′, and will be determined
by examining the behavior of the slow component jointly with the distribution of the fast
component (when tracking the fast component, all the points of (0,m) can be identified, as
well as all the points of (m, 1), i.e., we can view the fast component as a process with just
two distinct values).

Let K = {1, 2}. Consider the random occupation measure on (K × [0, t],B(K ) ×
B([0, t])):

νε
t,x,y({1} × �) =

∫

�

χ[0,m)(Y
ε
s )ds, νε

t,x,y({2} × �) =
∫

�

χ(m,1](Y ε
s )ds,

where � ∈ B([0, t]) and (Xε
0, Y

ε
0 ) = (x, y). The space of measures on (K × [0, t],B(K ) ×

B([0, t])) whose marginals νs , s ∈ [0, t], are probability measures on K , will be denoted by
M. It is endowed with the Levy–Prohorov distance denoted by ρ.

Let C be the space of continuous functions on [0, t] endowed with the distance d . Thus
Xε can be viewed as a random element of C.

For x, v ∈ R
n , define

R(p, x, v) = 1

2
((p1a

1(x) + p2a
2(x))−1v, v).

For ϕ ∈ C and ν ∈ M, define

R̄(ν, ϕ) =
∫ t

0
R(νs, ϕs, ϕ̇s)ds,

For f ∈ C([0, 1]), let Hx ( f ) be the top eigenvalue of the operator Lx
f u = 1

2α(x, y)u′′(y)+
f u (with the gluing condition at y = m and reflection at the end points). Let π(x) be the
invariant measure for the process governed by this operator. For μ ∈ M[0,1], define

I x (μ) = sup
f ∈C([0,1])

(∫ 1

0
f dμ − Hx ( f )

)
.

For x ∈ R
n and p ∈ J , define

S(p, x) = inf
μ:pμ=(p1,p2)

I x (μ).

For ϕ ∈ C and ν ∈ M, define

S̄(ν, ϕ) =
∫ t

0
S(νs, ϕs)ds.

Let 
̃ε
t,x,y , be the measure on (M × C, ρ × d) induced by (νε

t,x,y, X
ε) (with Xε

0 = x and

Y ε
0 = y). Note that 
̃ε

t,x,y also depends on β because of the dependence of Y ε
t on β. The

following theorem is proved, in a somewhat different form, in [15].

Theorem 3.1 If β = 1, the family 
̃ε
t,x,y obeys the large deviations principle with the action

functional

L(ν, ϕ) = R̄(ν, ϕ) + S̄(ν, ϕ),

uniformly in (x, y) on every compact K ⊂ R
n × [0, 1].
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If β > 1, the family 
̃ε
t,x,y obeys the large deviations principle with the action functional

L(ν, ϕ) =
{
R̄(ν̃ϕ, ϕ) i f ν = ν̃ϕ,

∞ otherwise,

uniformly in (x, y) on every compact K ⊂ R
n × [0, 1], where ν̃ϕ is such that ν̃

ϕ
s = π(ϕs)

for each s.
If −1 < β < 1, the family 
̃ε

t,x,y obeys the large deviations principle with the action
functional

L(ν, ϕ) = inf
ν′∈M

R̄(ν′, ϕ),

uniformly in (x, y) on every compact K ⊂ R
n × [0, 1].

Define

T (p, x) = p1c
1(x) + p2c

2(x)

and

T̄ (ν, ϕ) =
∫ t

0
T (νs, ϕs)ds.

Let C(x, x ′) = {ϕ ∈ C : ϕ(0) = x, ϕ(t) = x ′}. For β = 1, define

λ(t, x, x ′) = sup
ϕ∈C(x,x ′)

sup
ν∈M

(T̄ (ν, ϕ) − S̄(ν, ϕ) − R̄(ν, ϕ)). (21)

The expression for λ(t, x, x ′) in the case when β > 1 is

λ(t, x, x ′) = sup
ϕ∈C(x,x ′)

(T̄ (ν̃ϕ, ϕ) − R̄(ν̃ϕ, ϕ)). (22)

Finally, in the case when −1 < β < 1, define

λ(t, x, x ′) = sup
ϕ∈C(x,x ′)

sup
ν∈M

(T̄ (ν, ϕ) − R̄(ν, ϕ)). (23)

Theorem 3.2 Under the above assumptions,

lim
ε↓0 ε ln(uε(t, x, y)) = sup

x ′∈G0

λ(t, x, x ′) (24)

uniformly on every compact K ⊂ (0,∞) × R
n × [0, 1], where λ is given by (21) if β = 1,

by (22) if β > 1, and (23) if −1 < β < 1.

Proof The proof is similar to that of Theorem 3.2. The main difference is that in (14) we
were able to represent uε(t, x, y) is terms of a repeated integral with respect to the measures
Mx,p,ε

t and 
ε
t,y . Now, we’ll instead use the measure 
̃ε

t,x,y on (M × C, ρ × d). Fix t > 0.
By the Feynman–Kac formula,

uε(t, x, y) = E(x,y)

(
g(Xε

t ) exp(ε
−1

∫ t

0
c(Xε

s , Y
ε
s )ds)

)

=
∫

M×C
g(ϕt ) exp

(
ε−1

∫ t

0

∑

k∈K
ck(ϕ(s))νs(k)ds

)
d
̃ε

t,x,y(ν, ϕ).
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By (7) and Theorem 3.1,

lim
ε↓0 ε ln(uε(t, x, y)) = sup

x ′∈G0

sup
ϕ∈C(x,x ′)

sup
ν∈M

(T̄ (ν, ϕ) − L(ν, ϕ)).

In each of the cases, β = 1, β > 1, and −1 < β < 1, we can insert the expression for
L(ν, ϕ) provided in Theorem 3.1 into the right hand side of the last formula. Thus we obtain
that (24) holds uniformly in (x, y) ∈ K̄ × [0, 1], where K̄ ⊂ R

n is compact. The uniform
convergence on K ⊂ (0,∞) ×R

n × [0, 1] can be justified in the same as in Theorem 3.2. ��

3.2 Asymptotics of Solutions to Reaction–Diffusion Equations

As in Sect. 2.2, here we consider the Cauchy problem for the reaction–diffusion equation (5),
but now we allow ak, αk, ck , k = 1, 2, to depend on x . Let c̃1(x) = c1(x, 0), c̃2(x) =
c2(x, 0). Consider the linear problem (20) with c1, c2 replaced by c̃1, c̃2. Let λ(t, x, x ′) be
given by (21) if β = 1, by (22) if β > 1, and (23) if −1 < β < 1. Define

Gt = {x ∈ R
n : λ(s, x, ϕ(s))≥0 for all s ∈ [0, t], for someϕ ∈ C with ϕ(0) = x, ϕ(t) ∈ G0}.

This set (or, rather,Gt ×[0, 1]) is the multi-layer analogue of the set {x : V (t, x) = 0}, where
V was defined in the Introduction. It is not difficult to show that if c̃1(x) ≡ c̃2(x) ≡ const,
then the growth ofGt obeys theHuygens principlewith respect to a certain non-homogeneous
metric. The metric satisfies d(x, x ′) = inf{t ≥ 0 : λ(t, x, x ′) ≥ 0}, where λ was defined in
Sect. 3.1.

Theorem 3.3 If uε(t, x, y) is the solution of (5) and c is of KPP type, then, for each t > 0,

lim
ε↓0 u

ε(t, x, y)) = 0

uniformly on every compact K ⊂ (Rn \ Gt ) × [0, 1], and
lim
ε↓0 u

ε(t, x, y)) = 1

uniformly on every compact K ⊂ Int(Gt ) × [0, 1].
Before we proceed with the proof of this theorem, let us discuss an example. Let β = 1.

Assume that n = 1 and G0 = [−2,−1]. Suppose that a1 = a2 ≡ 1. Let us take α1(x) =
α2(x) = δ−1 for x < −δ, α1(x) = α2(x) = δ for x > δ, and α1(x) = α2(x) ∈ [δ, δ−1] for
x ∈ [−δ, δ]. Assume that c̃1(x) ≡ δ, while c̃2(x) ≡ 1. We also assume that m = 2/3, i.e.,
the first layer is twice as thick as the second one. Optimizing over the time s ∈ [0, t] that a
trajectory ϕ spends to the right of the origin, from (21) we obtain that

lim
δ↓0 λ(t, 0,−1) = sup

s∈[0,1]

(
s + t − s

3
− 1

2(t − s)

)
.

The supremum in the right hand side is achieved when s = t − √
3/2. The right hand side is

positive if and only if t > 2/
√
3. Moreover, if t > 2/

√
3 and δ > 0 is sufficiently small then

the trajectory ϕ such that ϕ(τ) = δ for 0 ≤ τ ≤ t −√
3/2, ϕ(τ) = δ − 2(1+δ)√

3
(τ − (t −

√
3
2 ))

for τ ∈ [t − √
3/2, t], has the property that λ(τ, δ, ϕ(τ)) ≥ 0 for all τ ∈ [0, t]. Thus, if

t > 2/
√
3, then δ ∈ Gt for all sufficiently small δ. At the same time, it is not difficult to

check that

lim
δ↓0 λ(2/

√
3, z,−1) < 0
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if z < 0 and |z| is sufficiently small. Thus, z /∈ Gt if t > 2/
√
3 and t − 2/

√
3 and δ are

sufficiently small. This demonstrates that the interface jumps at some time prior to t .

Proof of Theorem 3.3 The main difference from the proof of Theorem 2.2 is that now there
may exist x /∈ Gt such that λ(t, x, x ′) > 0 for some x ′ ∈ G0. This is due to the fact that, in
general, λ(t, x, x ′) > 0 does not imply that there is ϕ ∈ C(x, x ′) such that λ(s, x, ϕ(s)) > 0
for each s ∈ [0, t). Thus, comparison with the solution of the corresponding linear equation
is not immediately available to establish the first statement of the theorem. However, once we
prove the first statement, the proof that limε↓0 uε(t, x, y) = 1 uniformly on every compact
inside Int(Gt ) × [0, 1] is similar to that in Theorem 2.2, and thus we focus on proving that
limε↓0 uε(t, x, y) = 0 uniformly on K ⊂ (Rn \ Gt ) × [0, 1].

Let (x0, y0) ∈ K . Given δ > 0, letUδ ⊆ R
n be the set defined as follows: x ′ ∈ Uδ if there

exists ϕ ∈ C such that ϕ(0) = x0, ϕ(t) = x ′, and λ(s+δ, x0, ϕ(s)) ≥ 0 for 0 ≤ s ≤ t . By the
definition of Gt , there is δ > 0 such that Uδ and G0 are disjoint. Observe that x0 ∈ Uδ and
λ(t +δ, x0, x ′) = 0 for x ′ ∈ ∂Uδ . Let Ũδ be a bounded domain with a smooth boundary such
that x0 ∈ Ũδ ⊂ Uδ and λ(t + δ/2, x0, x ′) ≤ 0 for x ′ ∈ ∂Ũδ . Moreover, we can choose this
domain in such a way that, for some r > 0 and all x satisfying ‖x − x0‖ ≤ r , x ∈ Ũδ ⊂ Uδ

and λ(t + δ/2, x, x ′) ≤ 0 for x ′ ∈ ∂Ũδ .
Let τ = inf{t : Xε

t ∈ ∂Ũδ}. Let ũε solve the following initial-boundary value problem:

∂ ũε

∂t
= ε

2

n∑

i, j=1

ai j (x, y)
∂2ũε

∂xi∂x j

+ε−β

2
α(x, y)

∂2ũε

∂ y2
+ 1

ε
c̃(x, y)ũε, t > 0, x ∈ Ũδ, y ∈ (0, 1) \ {m}.

∂ ũε

∂ y
|y=0,1 = 0, ũε(0, x, y) = 0, x ∈ Ũδ; ũε(t, x, y) = 1, x ∈ ∂Ũδ, (25)

where the solution is defined using the Feynman–Kac formula,

ũε(t, x, y) = E(x,y)

(
χτ≤t exp(ε

−1
∫ τ

0
c(Xε

s , Y
ε
s )ds)

)
.

It is clear that uε(t, x, y) ≤ ũε(t, x, y). The desired statement follows from the fact that
limε↓0 ũε(t, x, y) = 0 uniformly for (x, y) ∈ Br (x0) × [0, 1]. To show the latter, we modify
the proof of Theorem 3.2. For ϕ ∈ C, let τ(ϕ) = inf{t : ϕ(t) ∈ ∂Ũδ}. Let

T̂ (ν, ϕ) =
{∫ τ(ϕ)

0 T (νs, ϕs)ds if τ(ϕ) ≤ t

0 otherwise.

Then

ũε(t, x, y) = E(x,y)

(
χτ≤t exp(ε

−1
∫ τ

0
c(Xε

s , Y
ε
s )ds)

)

=
∫

M×C
χτ(ϕ)≤t exp

(
ε−1

∫ τ(ϕ)

0

∑

k∈K
ck(ϕ(s))νs(k)ds

)
d
̃ε

t,x,y(ν, ϕ).

By (8), for each η > 0,

lim sup
ε↓0

ε ln(ũε(t, x, y)) ≤ sup
ϕ∈C,ϕ(0)=x

sup
ν∈M

(T̂ (ν, ϕ) − Lη(ν, ϕ)),
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where Lη(ν, ϕ) = infρ(ν′,ν)+d(ϕ′,ϕ)≤η Lη(ν′, ϕ′). Pick ν̄ and ϕ̄ such that

T̂ (ν̄, ϕ̄) − Lη(ν̄, ϕ̄) ≥ sup
ϕ∈C,ϕ(0)=x

sup
ν∈M

(T̂ (ν, ϕ) − Lη(ν, ϕ)) − δ′,

where δ′ > 0 will be selected below. Then there are ν′ and ϕ′ with ρ(ν′, ν̄) + d(ϕ′, ϕ̄) ≤ η

such that

T̂ (ν̄, ϕ̄) − L(ν′, ϕ′) ≥ sup
ϕ∈C,ϕ(0)=x

sup
ν∈M

(T̂ (ν, ϕ) − Lη(ν, ϕ)) − 2δ′.

For s ∈ [0, t], let Ls(ν, ϕ) be defined as L(ν, ϕ) on the interval [0, s]. Observe that Ls(ν, ϕ) ≤
L(ν, ϕ). Thus

T̂ (ν̄, ϕ̄) − Lτ(ϕ̄)(ν
′, ϕ′) ≥ sup

ϕ∈C,ϕ(0)=x
sup
ν∈M

(T̂ (ν, ϕ) − Lη(ν, ϕ)) − 2δ′.

If η is sufficiently small, this implies that
∫ τ(ϕ̄)

0
T (ν′

s, ϕ
′
s)ds − Lτ(ϕ̄)(ν

′, ϕ′) ≥ sup
ϕ∈C,ϕ(0)=x

sup
ν∈M

(T̂ (ν, ϕ) − Lη(ν, ϕ)) − 3δ′.

Since λ(t + δ/2, x, x ′) ≤ 0 for x ′ ∈ ∂Ũδ , the left hand side can be made smaller than −4δ′
by choosing a sufficiently small δ′ and η, which shows that limε↓0 ũε(t, x, y) = 0 uniformly
for (x, y) ∈ Br (x0) × [0, 1]. ��

4 Remarks and Generalizations

1. Consider a composite consisting of periodic inclusions in homogeneousmedia (see Fig. 2).
Suppose, for brevity, that the system is invariant with respect to shifts of size one in each
variable. Assume that the inclusions are domains with diameter δ, and that each inclusion
contains a ball of diameter δ/N , where N > 1 is constant. If the nonlinear term f (x, u) =
uc(x, u) is of KPP type, the growth of the domain where uε(t, x) is close to one for t � 1,
with fixed ε and δ, has been described in [6], Ch. 7.

Let uε,δ(t, x) be the solution of problem (1) in this medium. Equation (3), together with
large deviations estimates, allows one to describe the limiting behavior of uε,δ(ε)(t, x) as
ε � δ(ε) � 1. Suppose, for brevity, that n = 1, a11(x) ≡ 1, c(x, 0) = c0 outside the
inclusions, and c(x, 0) = c1 inside the inclusions, where c0 and c1 are constants. Moreover,
assume that c1 > 2c0, G0 = (−∞, 0], and that the interval [−δ, 0] coincides with one of
the inclusions. Then, according to [5] (see also [6], Ch 6.2), as 0 < ε � 1, the interface
first moves to the right with the speed

√
2c0, and then jumps to x1 = 1 − δ at the time

T0 = (1 − δ)
√
2(c1 − c0)/c1 < 1/

√
2c0.

This implies that the average speed of the expansion of the regionwhere uε,δ is close to one
will be arbitrarily large if c1 is large enough. Moreover, the choice of c1 providing the rapid
expansion is independent of the fraction δ of the inclusions in the composite. This effect, under
some additional assumptions, is preserved for other types of nonlinearities. For instance, if
f (x, u) is a bistable nonlinearity outside of the inclusions (such as f (x, u) = u(1−u)(u−λ)

with λ ∈ (0, 1) and
∫ 1
0 f (x, u)du > 0), then one has this acceleration of the expansion due to

the fact that the nonlinearity in the inclusions is ofKPP type.Moreover, this effect is preserved
for non-periodic inclusions if, in a sense, their sizes and their fraction satisfy certain bounds
from below.
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2. Asymptotic problems for RDEswith other types of nonlinearities can be also considered
in the layered composites. For example, if f (x, u) is a bistable nonlinear term (as above)
and β > 1 in equation (5), the propagation of the region where uε,δ is close to one can be
described by theHuygens principle in the averageReimannianmetric as considered in Sect. 3.
The interface motion in the bistable case always has a local nature, and the constant velocity
in this metric is defined as the speed of the front in a one-dimensional space-homogeneous
medium (compare with [14]). The proof of this statement can be derived from the bounds
obtained in [14].

3. One can consider RDEs where the reaction occurs just on the surface {y = m} dividing
the layers. In this case, problem (5) should bemodified: the nonlinear term should be excluded
from the equation, and the gluing condition has the form

∂+uε(t, x, y)

∂ y
|y=m − ∂−uε(t, x, y)

∂ y
|y=m = 1

ε
c(x, uε)uε,

where the differentials ∂+ and ∂− mean that the derivatives are calculated when y approaches
m from above and below, respectively. Themodified Feynman–Kac formula in this case gives
the following equation for uε(t, x, y):

uε(t, x, y) = E(x,y)

(
g(Xε

t ) exp

(
ε−1

∫ t

0
c(Xε

s , Y
ε
s , uε(t − s, Xε

s , Y
ε
s ))dLε

s

))
,

where Lε
t is the local time of the process (Xε

t , Y
ε
t ) on the surface {y = m}. Here, additional

difficulties arise due to the large deviations for the local time. If the diffusion coefficients
are continuous on the surface {y = m}, the problem can be studied similarly to [10]. (Now,
however, the action functional is more sophisticated than the one considered in [10].)

4. Finally, we would like to mention that effects caused by random thickness of the layers,
random distribution of inclusions, as well as other types of underlying stochastic transport,
can also be studied using large deviation asymptotics.Wewill address some of these problems
in a different paper.
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