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IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE
GROUPS I

DAVID A. VOGAN, JR.

1. Introduction. Let G be a connected semisimple Lie group. In [16], a
collection of problems in the representation theory of G was set forth; one of the
major ones was the determination of the irreducible characters of G. (This
problem is not solved in the present paper.)The main theorem of [16] (Theorem
3.7 and Lemma 3.11 below) is a simple description of how these characters
behave under "coherent continuation" (defined by 2.6 below). From this
theorem, reducibility conditions for some standard induced representations were
obtained. Unfortunately, the proof given in [16] for Theorem 3.7 is extremely
complicated, and not very enlightening. The first purpose of this paper is to
present a greatly simplified proof of this theorem., using Duflo’s realization of
the primitive ideals in the enveloping algebra of the complexified Lie algebra (R)
of G (cf. [4]).
Our study of irreducible characters is along the lines sketched in [16]. As

indicated there (in Theorem 6.18) it suffices to determine the irreducible
characters with a given nonsingular infinitesimal character. These form a finite
set A, which has been parametrized by Langlands in [11]. Thus we may write
A {O1,... ON} here each Oi is characterized in a certain way, but not
explicitly known. To each (R)A, a finite set {U((R))} of invariant
eigendistributions was associated in [16]; this will be described in section 3
(Definition 3.8). Each U(O) is a sum of elements of A, with non-negative
integral multiplicities. Once these multiplicities are known (for all a and O) the
Og can be computed explicitly by a finite algorithm. (This algorithm will be
given in Section 5.) So the problem we consider is the determination of these
multiplicities. (For reasons discussed in Section 2, this seems to be the simplest
way of describing the irreducible characters.) Some of the multiplicities were
found in [16]. Here we determine some more of them (Theorems 4.12 and 4.14).
More importantly, we give a result relating the multiplicities to the dimensions
of certain Ext groups (Theorem 3.9). This turns out to be an extremely powerful
computational tool. In Section 6 we illustrate these results with a computation in
se(3, 1).
The results of this paper were formulated in the course of discussions with B.

Speh, J. C. Jantzen, and G. Zuckerman. I would like to thank them for many
helpful suggestions.
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2. Notation and preliminary results. Throughout this paper, G will be a
connected semisimple Lie group. The arguments of [16] relied heavily on the
theory of parabolic induction, so it was convenient there to work in
Harish-Chandra’s category of reductive groups. Certain technical problems
arose in that category, however, which were avoided by assuming that the
Caftan subgroups of G were abelian; and for simplicity G was assumed to be
linear. These assumptions eliminate many extremely interesting phenomena
associated with the double covers of split linear groups; and since the arguments
used here do not require the assumptions, it seems worthwhile to drop them.
Allowing disconnected groups, on the other hand, does not seem to be worth the
complications involved (notably in the theory of finite dimensional representa-
tions). We will tacitly assume that G has finite center; but the results all hold for
the general case, with occasional trivial modifications of the proofs.

Fix a maximal compact subgroup K of G, and let 0 be the associated Cartan
involution. We write (R)0, f0 for the Lie algebras of G and K, @, f for their
complexifications, and U((R)), U(t) for the enveloping algebras; analogous
notation is used for other subgroups. The Killing form and its various
restrictions and dualizations are all written
is written
We will make heavy use of the category IL(, K) of compatible (, K)

modules introduced by Lepowsky in [12]. An object X of 3]L ((R)., K) is a module
for and K simultaneously; if x X, then (K. x) (the span of the vectors k. x
for k K) is finite dimensional, and the differential of the action of K is the
action of . If 8 K (the set of equivalence classes of irreducible representations
of K) then the 6-primary subspace X(8) C_X is well defined, and
X (,ek X(i). If V is a locally finite representation of K (i.e., (K.v) is finite
dimensional for every v V), then U(t)@f V can be given the structure of a
compatible (, K) module; and it is projective in %L(, K). It follows easily
that every compatible ((R), K) module has a projective resolution, and therefore
that the functor Hom,, : has derived functors Ext,. The basic theory of these
functors is developed in [1]. We will often omit the subscript
((R), K), since we will not consider any other kind of Ext group.

Let ((R),, K) denote the subcategory of L((R), K) consisting of compatible
((R), K) modules with finite composition series. Such a module X has a global
character O(X), which is a distribution on G; this is most easily defined as the
sum of the characters of the irreducible composition factors of X. (By a theorem
of Casselman, X is the Harish-Chandra module of a certain representation of G
on a Hilbert space; and O(X) is the character of this representation. We will
make no use of this fact, however.) The characters of inequivalent irreducible
((R), K) modules are linearly independent. It follows that the lattice "f(@, K) of
virtual ((R), K) modules (i.e., formal finite combinations of irreducible (, K)
modules with integer coefficients) may be identified with a lattice of
distributions on G, which has as a basis the set of irreducible characters. This
lattice of distributions is called the lattice of virtual characters. In particular
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every virtual (, K) module V has a character O(V). We may of course identify
((R), K) with the Grothendieck group of o(, K).

Write d for the set of equivalence classes of irreducible (, K) modules.
Langlands has parametrized G in the following way. Let P be a parabolic
subgroup of G, with Langlands decomposition P MAN. (Thus M is O-stable,
and % C_o.) Fix a tempered representation # of M, and a character v A a*.
We say that v is positive (respectively strictly positive) with respect to P if
(Re v, a) > 0 (respectively Re v, a) > 0) for every root a of a in . Since N is
normal in P,/ and v define a representation of P which is trivial on N; we write
this as i (R) v(R) or 6 (R) . Put

Ie(R), I(R) Inde (R) v (R) 1.

Here induction means normalized induction. The K-finite vectors in 18 (R) form a
(@, K) module with a finite composition series, which we may also write as I(R).
If v is strictly positive with respect to P, then Langlands has constructed in [11] a
canonical irreducible quotient J(R) of I(R). (D. Milii6 has observed that the
proof of Lemma 3.13 of [11] actually shows that J(R) is the unique irreducible
quotient of i6(R) .) Again we will often consider J(R) as a ((R), K) module.

THEOREM 2.1 (Langlands [11]). Let X be an irreducible (, K) module. Then
there is a parabolic subgroup P MAN of G, a tempered representation
and a character A strictly positive with respect to P, such that X is equivalent
to J(R). Furthermore the pair (P, (R) ) is unique up to conjugation in G.

We call a pair (P, (R) v) as in the theorem a set of Langlands data. The
tempered representations of the groups M arising in this theorem have been
completely determined. (This depends on the connectedness of G or something
similar; at any rate the tempered representations of arbitrary reductive groups
are not known.) For G linear this is announced in [9]; the general case is treated
in [17]. In particular the characters O( (R) v)= O(I,(R)) occurring in the
theorem, which we will call standard, can in principle be computed: the problem
comes down to computing the characters of discrete series representations,
which can be done using Harish-Chandra’s proof of their uniqueness. This is
certainly not a completely satisfactory description of the standard characters;
but it is nonetheless reasonable to try to describe the irreducible characters by
expressing them in terms of standard characters. This will be our goal. First we
show that this is possible in principle.

PROPOSITION 2.2. J(R) occurs exactly once as a composition factor of I[(R).
Suppose J,’v, is a composition factor of I[(R). (Here (P, (R) v) and (P’, ’ v’)
are sets of Langlands data.) Then either J,’, J(R), or (Re v’, Re
< (Re v, Re
This result was discovered independently by several people. A proof may be
found in 16] (Proposition 2.10).
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COROLLARY’ 2.3. The standard characters form a basis for the lattice of virtual
characters of G. More precisely, there is an equation

N

) (R) + Z .io(8 (R) .i), (,)
i=1

for some integers ni; and n 4 0 implies (Re ’i, Re *’i) < (Re
This follows from Proposition 2.2 by an obvious induction. The first statement

of the Corollary was first proved by Zuckerman (unpublished); the rest is again
due to several people independently. One might at first suspect that (,) is as bad
as possible when J(R), is finite dimensional. In that case Zuckerman has
computed it explicitly. It has several nice features, notably that the n are all _+

(or zero). Unfortunately this is not true in general, and it seems unlikely that one
can compute (,) in a nice closed form. Our goal will be to construct a nice
algorithm for computing (,), with the hope that the complications in the result
arise only from the fact that the algorithm has many steps. (As indicated in the
introduction, even this program is not completely carried out here.) There is an
obvious analogy with the algorithm mentioned above for computing discrete
series characters. That algorithm is based on Harish-Chandra’s "matching
conditions" relating the behavior of a character on two Cartan subgroups, which
are extremely simple in form; but the discrete series characters themselves are
quite complicated.

Let ((R)) denote the center of U((), and let )c_ ( be a Cartan subalgebra.
Write W W((R)/b) for the Weyl group of b in ’(R). If S(b) is the symmetric
algebra of b, then Harish-Chandra has defined an algebra isomorphism ,"
(()--+S(b)w. ( is constructed using a system of positive roots, but is
independent of the choice of that system.) If k )*, we define X, (()--+ G by
Xx(Z) (z)(k). In this way Spec ((R)) is identified with the set of W orbits in )*.
If X is an irreducible ((R), K) module, then () acts by scalars on X; if it acts
through the homomorphism Xx, we say X has infinitesimal character . If X is a
((R), K) module of finite length, we define

Px(X) (x X[ for all z (@) there is a positive

integer n such that (z X(z))nx 0}.
Then

x= E, ) / w

a finite direct sum; this is obvious. The functor Px on -(@, K) lifts to a
homomorphism of ((R), K) to itself. In particular, if tO is a virtual character,
then Px(O) is well defined. In fact if t9 is known explicitly (as a function) then it
is trivial to compute Px(O) explicitly.
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Finally, suppose F is a finite dimensional (@, K) module. If X is a (, K)
module, so is X (R) F; and if X has finite composition series, so does X (R) F. In
that case O(X (R) F)- O(X). O(F), which is explicitly computable if O(X) is
known and F is specified. (Notice that O(F) is a smooth function, so that the
product is well defined.) There is a natural isomorphism

Hom, r(X (R) F, Y)=nomc,r(X Y (R) F*),
which easily implies a natural isomorphism

Ext(X (R) F, r)=Exti(x, Y (R) F*). (2.4)
If X and Y have finite composition series, then

nom(,r)(Px(X), Y)Hom(,K)(X, Px(Y)).
Since Ext is defined in the larger category ((, K), it is not obvious that the
corresponding result holds for Ext, but in fact it is proved in Ill:

Exti(ex(x), Y)=Exti(X, Px(Y)). (2.5)
Write A A(, b) for the set of roots of b in (. The infinitesimal character ;k

is called nonsingular if (a, ) 4:0 for all a A(, b). (Clearly this depends only
on the W orbit of in b*.) Fix a system A + C_ A of positive roots. We associate
to A+ a positive Weyl chamber C c_ b*"

C--(X*lRe(a,X)>O or Re(a,X)=0
and Im(a,)>0, for all aA+).

Then C is a fundamental domain for the action of W on *. An element of C is
called dominant; an element of C is called strictly dominant.

Recall from [16], section 5 Schmid’s theory of coherent continuation of
characters. If is a virtual character with strictly dominant infinitesimal
character X, and b* is a weight of a finite dimensional representation of G,
then S() is a virtual character with infinitesimal character + #. (In [16] we
had to consider / as a character of a special Caftan subgroup of G; the
eonnectedness of G allows us to be more careless here.) If F is a finite
dimensional representation of G, and A(F)C_ * is the set of weights of F with
multiplicities, then

fi).fi)(r) S(O); (2.6)
/x A(F)

this fact and Px+(S,(O))= S,(O) determine S,(O) uniquely, and the only
problem is to define it. This is done in [16], using Harish-Chandra’s theorem that
a character is a locally L function; it is perhaps worth remarking that use of
that theorem can be avoided by combining recent work on Zuckerman on
constructing the discrete series algebraically with the results of [17].
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if X is a @ module, we write Ann X c_ U(Vfi) for the annihilator of X. We
need some information about the relationship of Ann to Px and (R) F; the precise
form of the result is not very important, but the fact that a result exists will be
crucial. Let h" U((R)\) U((R))(R) U(ff) be the Hopf map: h is an algebra map,
and for x (R), h(x) x (R) + (R) x. If X and Y are U(@) modules, then X (R) Y
is a U(@)(R) U((R)) module in an obvious way. The usual U((R)) module structure
of X(R)Y is obtained via the map h" if vX(R)Y and u U(@), then
u.v h(u).v. The kernel of the map

U(@) (R) U(@)--> ( U(t)/Ann X) (R) ( U()/Ann Y)
is easily seen to be Ann X (R) U((R)) + U((R)) (R) Ann Y. We deduce

If X and Y are U(@) modules, then the annihilator of X (R) .Y as aLEMMA 2.7.
U(@) module is

h-’(Ann X (R) U(@) + U((R)) (R) Ann Y).
LEMMA 2.8. Let X be a ((R), K) module of finite length, say with at most n

irreducible composition factors. Suppose that these factors have infinitesimal
characters contained in

Then
{Xo, X XN ) C C.

Ann(Pxo(X )) { u U() for all z

U" H (Z Xj(Z)) Ann X
j=l

Proof. Choose a filtration (0) F C_ /,1 F" X, such that
Fill fi- is irreducible or zero for < < n. Put Xj Px(X). Since the h lie in, they are distinct modulo W; so X JV_0Xj.. Each Xj may be regarded as a
quotient of X, and hence inherits a filtratign (Xj. } with the same properties as
{Fi}. Of course xji/Xji-1 has infinitesimal charac.ter ?,; so if z ;g((), one sees
by induction that (z-xx(z))’ annihilates X]. In particular (z-Xb(z))"
annihilates Xj. If we write A for the subalgebra of U((R)) defined in the lemma,
then it follows that Ann(Pxo(X)) c_ A.

Conversely, suppose u A; we must show u annihilates PX,o(X). Choose
z ,.q((R)) such that Xxo(Z)# Xx(z) for all j>0. Now z-Xxo(Z) defines a
nilpotent operator T on PXo(X)" T" =0. So (computing in End Pxo(X)),
z Xxj(z) r + (Xxo(Z) X(Z)), which is invertible for j > 0. So

N

H (z s
j=l
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is invertible as an operator on Pno(X). Since S.u annihilates all of X, it
annihilates Pno(X); so u itself must annihilate Pno(X). Q.E.D.
The main idea of .the proofs given in section 3 for the results of [16] can now

be described very simply. By a theorem of Duflo, the annihilator of any
irreducible U((R)) module is the annihilator of some irreducible highest weight
module. (This will be described more carefully in the next section.) We will
translate statements about irreducible (@, K) modules into statements about
their annihilators, and then back into statements about highest weight modules.
In this last form they are often much easier to prove.

3. Coherent continuation across walls. Recall our fixed choice of a Cartan
subalgebra c_(, positive root system A+ C_A(, ), and Weyl chamber
C c_ b*. Throughout most of this paper we will be concerned with (@, K)
modules X of finite length having a fixed (generalized) infinitesimal character ?.
This means that Pn(X)= X, and thus that for all z (), z- Xn(Z) acts
nilpotently (not necessarily trivially) on X. Generally ? will be nonsingular, so
we can and do assume ? C. We define

/

c

It is a standard result that An is a root system, so that the Weyl group Wn is well
defined. It should be emphasized that An need not correspond to a subalgebra of
(R). Let 1-In denote the set of simple roots of A-.
LEMMA 3.1. For each 1-In there exists a positive root system eg c_ A((, )

such that et D_ A, and t is simple for .
This generalizes the standard result that every root is conjugate under W to a

simple root, and can be proved in the same way; details are left to the reader.
Fix a 1-Ix, and a positive system ,I, as in Lemma 3.1. Choose an integral

weight /,l, dominant for ,I,, and so large that +/,l is dominant and
nonsingular for ,I,. (If k is already dominant for ,I’--for example if ), is
integralwe could take/l 0.) Put m 2(a, ) + )/(a, a), and define/,2 to
be m times the fundamental weight of ,t, corresponding to a: thus if fl is a
simple root of ,t,, (fl,/,2) 0 if a fl, and 2(a, l.t2)/(a, a) m. It follows
that if 8 Ha, then (8,), +/, -/,2) > 0, with equality if and only if 8 a.

Following Zuckerman [19], we now introduce several functors on g(@, K).
Let F2 denote the finite dimensional irreducible (9 module of highest weight
with respect to ,t,, and (F)* its contragredient (which has lowest weight
Possibly passing to a finite covering group, we may assume that F
exponentiates to a representation of G. (We may often do this without further
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comment; the F appear only as a technical device for constructing certain
representations which will be defined on our original group.) If X is a (g6, K)
module of finite length, we define

l(x) Px+u2((Px(X)) (R) Fl )

/(X) Px+t4_((Px+t4(X)) (R) (F )*)

(R)

(p(X) Px((Px+(X)) (R) (FI )*).
Put 2o l, % %1o %2. The functors (p and 2 are precisely of the type
considered in Definition 1.1 of [19]. Since h may not be dominant with respect
to xI,,, the other two are not precisely of this kind; but since only the integral
roots really matter, the proofs of [19] go over almost without change. (Compare
[8], and Theorem 5.20(a) of [16].) For , *, we write v((, K) for the
subcategory of oy((R), K) consisting of modules with generalized infinitesimal
character ,. Then we have

PROPOSITION 3.2 (cf. [19], Theorem 1.2 and 1.3, and section 3). The functor
/ restricts to an isomorphism of Yx(q,, K) with x+ ((R), K), with natural inverse
p. If n 2(, },}/(c, c), / =/z2-/, and X has generalized infinitesimal
character h, then

(a) O(k,, (x)) S_ (O(X))
(b) O(%+(X)) 0(X) + S_no(O(X)).

If X is irreducible, then /(X) is primary, of length at most two.

Proof. The first statement is proved in the same way as Theorem 1.2 of [19].
Formulas (a) and (b) follow from the definition of Sg and the computations of
section 3 of [19] (compare also the proof of Theorem 5.20 of [16]). The last
statement follows from Zuckerman’s proof of Theorem 1.3 of [19]; the number 2
is the order of the stabilizer of X-/x in W. Q.E.D.
The first thing to notice about this result is that (at least on the level of

characters) %b is independent of all choices. By Theorem 1.2 of [19],
%,(X) 0 if and only if g,(X) 0. Accordingly we make

Definition 3.3. Suppose X is a (@, K) module of finite length with
nonsingular infinitesimal character X. The Borho-Jantzen-Duflo z-invariant ’(X)
is the subset of 1-Ix defined by c -(X) if and only if g,(X)= 0 (which is
equivalent to S_n(O(X))--O(X) by the remarks above and Proposition
3.2(b)).
The - invariant of Borho-Jantzen and Duflo (cf. [2], [4]) is defined for certain

ideals in U((); in case X is irreducible, what is defined above is their z(Ann X).
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Now fix an irreducible ((R), K) module X with nonsingular infinitesimal
character ,. For each a I-Ix -,(X), we will define a new (@, K) module
U(X). The existence of U(X) is the main theorem of [16]; we give now a new
proof.

LEMMA 3.4. Suppose A and B are ((R), K) modules offinite length. Then there
are natural isomorphisms

Ext*(%A, B ) = Ext*(A, 6B )

Ext*(A, B ) =Ext*(%A, B ).

Proof. These follow immediately from (2.4) and (2.5). Q.E.D.
The preceding result was first proved by G. Zuckerman (unpublished).

Suppose now that X is irreducible as above, and that a IIa --(X). By
Definition 3.3 and Proposition 3.2, +X is non-zero and primary, say with
unique irreducible constituent Z. By Lemma 3.4,

Hom., c(X, %6.X)=Hom., (q.X, 6.X)
UolIM, (%6.X, X ). (3.5)

The middle term here has a canonical non-zero element, namely the identity.
This gives rise to two maps

0---) X ---> %6X ---) X ---)0. (3.6)
The first map is injective and the second surjective, since X is irreducible.

THEOREM 3.7 ([16], Theorem 5.15 and Corollary 6.17). Let X be an
irreducible (, K) module with non-singular infinitesimal character A. With
notation as above, fix a root a 1-Ix ’(X). Then

(a) (3.6) is a chain complex, i.e., the composition of the maps is zero.
(b) X is irreducible.

Proof. We will show that if (a) or (b) fails, then /X=X (9 Y, with Y
irreducible and tY6X. Thus (@) acts by scalars on 6X. By a separate
argument, we will show that the Casimir operator of cannot act by scalars on
%6X. This contradiction will prove the theorem.

Notice first of all that O(+%+X) 20(+X); this is essentially Lemma 3.3
of [19]. (As remarked earlier, the functors 6 and % are not precisely those
considered by Zuckerman, but the same argument works.) Suppose first that (b)
fails. In this case Proposition 3.2 implies that 6X has exactly two irreducible,
isomorphic composition factors (which we call Z). It follows trivially that
Homc,x(+X, 6X) has dimension two or four, depending on whether +X is
completely reducible or not. In either case we have from 3.5 an injection

0- X @ X %e/,X.
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Let Q be the quotient module %&X/X @ X. To prove the first claim in this
case it suffices to show that Q 0, or equivalently that Hom. K(%X, Q) 0.
By Lemma 3.4, this is Hom, r(qX, qQ). But

O(qQ ) O(+,%qx) 20(qx) 0

by the remark above; so ,Q 0, proving the claim.
Suppose next that (b) holds but (a) fails. Let Y0 be the kernel of %X X.

Then (since (a) fails) 3.6 provides an isomorphism %X X @ Y0. Let Y be an
irreducible subrepresentation of Y0- Then

0 # Homm, r(Y, %6X)=Hom,r(Y,
Since qX is assumed irreducible, it follows that O(q Y)= (R)(qX)+ O, with
)1 the character of a representation. Hence

o(+:(Yo/r)) o(G%+:x) o(+ox) o(+oY)

since O(q%qX)=20(qX). Now the left side is the character of a
representation, and the right side is minus the character of a representation.
Hence O 0, and +(Yo/Y)= 0. It follows that

Hmm, K(%+.X, Yo/ Y)=Hme, K(,X, .(Yol Y)) O,

and hence that Yo/Y 0, i.e., Y0 Y. This proves the claim in general.
Let 2 be the Casimir operator of @. We want to show that 2 does not act by

scalars on %qX, or equivalently that 2 Xa(2) Ann(%+X). By Proposition
3.2, it is enough to show that 2 does not act by scalars on %2(q(X)); in other
words we may replace X by tpl(x), X by +/, and G by/2. Thus we may
assume that/x, is dominant for ,t,. (Similar reductions will be made hereafter
without much comment.) Put F F2. Let Z be the unique irreducible
composition factor of qX. Since Z is a subrepresentation of +X,
Ann(Z)

_
Ann(qX). Let L be an irreducible (R)-module (not necessarily a

(, K) module), and suppose Ann(L)
_
Ann(Z). By Lemmas 2.7 and 2.8,

Ann(%L) _D Ann(%GX ).

(Here %L Pa(L(R) F). The functor Pa makes sense because L (R) F, is
annihilated by an ideal of finite codimension in ((R)). This will be obvious for
the L we consider; or one could appeal to a general theorem of Kostant ([10].)
So it suffices to construct an L with Ann(L)_ Ann(Z), and show that 2 does
not act by scalars on Pa(L (R) F). As the annihilator of an irreducible (R)-module,
Ann(Z) is by definition a primitite ideal in U(@). The set of primitive ideals
containing ker(x,_) c_ ((R)) has a unique maximal element (as was proved by
Dixmier); and by a deep theorem of Duflo, this element is precisely the
annihilator of the irreducible xI,-highest weight module L, with highest weight
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X-- p(xI,). (For all this see [4]; the theory of highest weight modules is
described in [3].) Here p(xI,) is just half the sum of the roots of xt,; we will write
this simply as p below. Recall that the {-module L is completely reducible for
and every weight occurring is of the form -/z p Q, with Q a sum of roots
of xI,. The highest weight -/ p occurs with multiplicity one, as do all the
weights of the form X- i p- ma, for m a non-negative integer.

Since Ann(L) _D Ann(Z), it remains to show that f does not act by scalars on
Px(L (R) F,). This we prove by a reduction to gI(2). Since every weight of F is of
the form /- Q, with Q a sum of roots of xI,, we see that every weight of
L (R) F is of the form X- p- Q. Let V denote the subspace of weights of the
form X- p- ma, and let gI(2, G) be the subalgebra of generated by the
root vectors for the roots +_ a. Then V is invariant under b and N1, and is
annihilated by the root vectors for roots /3 ,t’- { a}. By a standard com-
putation, we can write

a a "- E X_X#+ r(h).
,-()

Here XB is a root vector for the root fl; r(h) is a polynomial of degree two in
invariant under translation by a; and ’1 is the Casimir operator for (R)l. Hence
the second term annihilates V, and r(h) acts by a fixed scalar c on V. In
particular f preserves V, and acts by 1 + Cl there.

Let 0 V v0 V be a vector of weight )-0. By the definition of
f.v0 Xx(2)v0. Let Qx(V) denote the generalized eigenspace of f in V with
eigenvalue Xx(2). By the preceding paragraph, this is just the generalized
eigenspace of ’1 in V with eigenvalue Xx(2)- c Let F denote the subspace of
F corresponding to weights of the form /- ma, and L the subspace of L
corresponding to weights of the form X- 0- ma. It is standard that F is
the irreducible (R)l module of dimension 2(a, X}/(a, a} n; and it follows from
an earlier remark on the weights of L that the weights of L as a (l module are
0, a, 2a, each occurring with multiplicity one. Finally observe that, as
a I module, V=L(R)F. With all of this explicit information, it is
straightforward to compute that 2 does not act by scalars on Qx(v): one writes
down the action of I on bases of weight vectors in F and L1. The rather
tedious details are left to the reader (compare for example section 7.2 of [7]).
Hence f does not act by scalars on Qx(v). To complete the proof of Theorem
3.7, it remains to show that Qx(V) c_ Px(L (R) F). Let [? be the kernel of
and suppose z ((). By the Harish-Chandra homomorphism, we can write

z p(a l, h) + E TX. (,)
.I,- ()

Herep is a polynomial in ’]1 and [9,, and T U(g6). Just as in the case z f,
the second term annihilates V, and [9,, acts by evaluation at X- p. Now by
definition of Xx, Z’Vo Xx(z)’vo. Then (,) implies that z has generalized
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eigenvalue Xx(Z) on the entire generalized eigenspace of "1 in V containing vo.
But this says precisely that Qx(V) c_ ex(L (R) Fs). Q.E.D.

Definition 3.8. Let X be an irreducible (fffi, K) module with infinitesimal
character 7, and suppose c IIx -(X). In the chain complex 3.6, let
K Ks(X) be the kernel of %psX--> X, Qs Qs(X) the quotient
and U U(X) the cohomology Ks/X=ker(Qs X).
By Proposition 3.2, O(Q)= O(K)= S_n(O).
THEOREM 3.9. Let X be an irreducible ((R), K) module with nonsingular

infinitesimal character ), and suppose 1-Ix -(X). Then
(a) %psX has X as its unique irreducible subrepresentation and as its unique

irreducible quotient.
(b) a (U(S)), and 3((R)) acts by scalars on Us(X).
(c) Suppose B is a ((R), K) module offinite length with (generalized) infinitesimal

character , and a z(B). Then

Hon, r(B, U(X))ExtI(B, X).
More generally, if Exti(B, X) 0, then

Exti(B, Us (X)) Ext l(B, X ) Ext + l(B, X ).

Dually, if Ext (X, B) 0, then

Exti(us(s), B ) Exti- l(s, B ) Exti+ l(s, B ).

(This theorem was essentially proved in the course of joint work with B. Speh,
except for the higher Ext formulas which are joint work with G. Zuckerman.)

Proof. We begin with the first part of (b). As we saw in the proof of
Theorem 3.7, O(p,%pX)= 20(psX); so

O(ps U ) O(p%pX) 20(pX) 0.

This proves the first part of (b). By Lemma 3.4 and Theorem 3.7(b),

Hom, r(X, %+.X)=Hom,/(.X, .X)C;
so X occurs only once as a subrepresentation of %.X. Similarly it occurs once
as a quotient. To prove (a), suppose Y # X is an irreducible subrepresentation
of %.X. Then Y occurs in U so +. Y 0 (since a (U.)); so

0 # Homc,(Y, %+.X)Uom, (#. Y, psX) 0,

a contradiction. For the second part of (b), suppose z 3(). Then z- Xx(Z)
defines a self intertwining operator I K. --) K Since z Xx(Z) annihilates X, I
annihilates X. Since X occurs only once in K,, I(K,O C_ K, is a subrepresentation
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not containing X. By (a), I(K,O O. In particular, z Xx(Z) annihilates U,(X).
For (c), notice that a z(B) but az(X); so X does not occur in B, so
Hom,r (B, X) Ext(B, X) 0, so the second formula really generalizes the
first; so we consider the second. We have two short exact sequences

O X--- %q6X QO (,)
O- U. Q. -X- O. (**)

Now q.B 0 since a (B); so

ExtJ(B, %.X)=ExtJ(.B, /.X)= 0

by Lemma 3.4. The long exact sequence for Exff(B, .) attached to (.) gives

ExtJ(B, X ) ExtJ-l(B, Q. ).
By the long exact sequence for (**),

__> Exti- I(B, Qa ) ----) Exti- I(B, X ) --) Exti(B, U, )
---> Exti(B, , ) --) Exti(B, X ) -->.

Now replacing Exti-l(B, Q.)Exti(B, X) by zero, and Exti(B, Q.) by Exti+1
(B, X), we find a short exact sequence

0-->Exti-l(B, X)--> Exti(B, Ua )--) Exti+ l(B, X)--O.
The dual assertion is proved similarly. Q.E.D.
THEOREM 3.10. Let X be an irreducible (, K) module with nonsingular

infinitesimal character , and suppose a II (X), fl (X).
(a) If fl is orthogonal to a, then fl z( U).
(b) If a and fl span a root system of type A 2, then U has exactly one irreducible

constituent r with fl ,( Y).
(c) If a and fl span a root system of type BE then U has one or two irreducible

constituents Yi with fl ( Yi).

Proof. We will make repeated use of

LEMMA 3.11. Let X be an irreducible (, K) module with nonsingular
infinitesimal character ?, and suppose a II. Let 0 be the character of X.

(a) If a ,(X), then S_n(O) -O.
(b) If tx6’(X), then S_n(O) 0 + 01 with 01 the character of a repre-

sentation, and a ,( Y) for every irreducible constituent Y of O1.

(c) If tx6’(X), and O’ is an arbitrary virtual character with infinitesimal
character , then the multiplicity of X in O’ is the same as the multiplicity of X in
S_..(03.
(These results were all formulated in [16]).
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Proof. (a) is contained in Definition 3.3; (b) is a reformulation of 3.9(b). For
(c), (a) and (b) imply that every irreducible constituent Y of O’- S_,((R)’) has
a ’(Y). Q.E.D.

Definition 3.12. A virtual character tO with nonsingular infinitesimal char-
acter X is called a-singular, (a H,) if S_,,((R))=-(R), or equivalently (by
3.1 l(c)) if every irreducible constituent Y of O has a z(Y). A ((R), K) module
of finite length is called a-singular if its character is (equivalently if a is in its
z-invariant).
Finally we need a simple composition law for coherent continuation.

LEMMA 3.13. Let 19 be a virtual character with nonsingular infinitesimal
character 7t C, and let t and 12 be weights offinite dimensional representations.
If + il w. C for some w W (the Weyl group of in (R)) then

Proof.
section 5).

This is an immediate consequence of the definition of St(O) (cf. [16],
Q.E.D.

We proceed now with the proof of Theorem 3.10. Let O be the character of X.
For w Wx, wX- X is a sum of roots with integral coefficients, and is therefore
a weight of a finite dimensional representation. Accordingly we can define
w. t9--Swa_X((R)). This of course makes sense for any character 19’ with
infinitesimal character ,; and by Lemma 3.13 one finds immediately that for
WIW2

W (W2" Or) (WIW2)"
Let so denote reflection about the root/3. With this notation, O’ is a-singular if
and only if s. ’= -’. For 3.10(a), we have O(U)= s(O)- (R). By hypoth-
esis is fl-singular, and s and s commute. Hence

s.O(t:o) (o) o
o(sO)

so () + (o(t:o)).
Consider now 3.10(b). By hypothesis s,ss ssst, and sty. (R) -19. Hence
ssasO -ssO, which means that ss(R) is a-singular. Using Lemma 3.1 l(b),
we write

sO O + O + O;
here O and O’4 are characters of representations, (R)" is a-singular and
fl-singular, and no constituent of O is fl-singular. Hence, by Lemma 3.11 again

ssoO -o + (oo + O + o7)
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here Ol and Oa are characters of representations, O’ is a-singular and
B-singular, and no constituent of Ol is a-singular. Since ssO is a-singular, this
implies that O1= O. In particular O4 0. Suppose O is reducible; say
O =(O)’+ (O)’’, with both terms non-zero characters of representations.
Then O (Ol)’ + (O" with obvious notation; and both terms are characters
of representations. Furthermore, applying the previous observation that O v 0
to (O) and (O) with a replaced by fl implies that (O1) and (Ol) are both
non-zero. This contradicts the irreducibility of O O1. So O is in fact
irreducible, proving 3.10(b).

3.10(c) requires a little more effort. We can begin in the same way: by
hypothesis saO =-O and s#ssas sss,,sa, so we deduce that s,,ssO is
B-singular. We can use the notation of the preceding case for s. O and sash. O.
By Lemma 3.11,

,o o -(o + o + o (oo) + (of + + 07 + o
Here O and O are characters of representations; (R) is a- and B-singular, and
no constituent of O is B-singular. Since sss. 0 is B-singular, it follows that
O 20. It is no longer obvious that O 4:0 (i.e., that fl z(U)). This will be
proved later; but assume it for a moment. To prove (c), it is enough to show that
O" cannot have as many as three irreducible constituents. Suppose that it does.
Choose a chain 0 F0 C_ F C_ c_ FN U of submodules of U, such that
Fi/Fi- Yi is an irreducible (, K) module; then O(U) /N= iO( Yi)" Since
O 0, we can define integers and 2 SO that fl (Y) if < or > i2, but
fl-z(Yi) and fl-z(Yi). Since O has at least three irreducible constituents,
there is an integer 3 with i2, and [3 z(Yi). We will show that X is a
constituent of U(Yi) and of U(Yi), and hence that X occurs at least twice in
O. Assume this for a moment. Then O 20 + O’; here O’ is the character of
an a-singular representation with no B-singular constituents, and O’v 0
because of the contribution of Y. (Here we are using our earlier assertion that
O 0, applied to Yi instead of X, with a and fl reversed.) Thus
O 20 + (O’), and (O’) 0 by our earlier assertion again. This contradicts
O 20, proving that in fact O cannot have as many as three constituents. It
remains to establish the two assertions made in the course of the proof.

First we show that X is a constituent of U(Yi,). Let G be the preimage of Fi,
in K under the natural projection U K/X, and let GO be the preimage of
Fi_ . We have an exact sequence

0--> Go--> G --> Yi,--> O.

By Theorem 3.9(a), Yi, is not a submodule of G
_
%bX. So the sequence does

not split, and Ext(Yi, Go) .0. (The description of Ext in. terms of exact
sequences in this category may be found in [1].) By Theorem 3.9(c),

Hom, r(U(Yg,), Go) 0.



76 DAVID A. VOGAN, JR

As a submodule of %X, G0 has X as its unique irreducible submodule
(Theorem 3.9(a)). It follows that X is a constituent of U(Yi,). In exactly the
same way one shows that X is a constituent of U(Yi2).

Finally, we must show that {9 # 0. Since X is fl-singular, this is equivalent to
showing that %X is not fl-singular, or equivalently that Ann(%X)
U((R)). By Lemmas 2.7 and 2.8, it is enough to replace X by some other
module L with Ann(L)_ Ann(X), and show that %L is not fl-singular. Just
as in the proof of Theorem 3.7, we will let L be an irreducible highest weight
module. This time we will argue by a reduction to (2), however; so we need

LEMMA 3.14. Vith notation as at the beginning of this section, suppose that
(a, fl C_ Ha are adjacent simple roots whose span in A((R), ) is not of type G2.
Then we can choose xp ,p. that is, there is a positite root system
containing A, such that tx and fl are simple for

Proof. Choose an element 7 b* such that
(a) <,, a> <v, fl) 0;
(b) if 6 A(6, ), then < ,, 6 > is real and non-zero unless

and fl;
(c) 3’ is dominant for

Such , clearly exist. Let A be the span of a and/9 in A(,.). Then A is a root
system of rank two, containing two adjacent roots, and not of type G2; so A is
of type A or B. On the other hand, Aa A has the same properties, and so is
also of type A2 or B2. Since there is no containment B2

_
A2, it follows that

Aa A A. Hence a and fl are the simple roots of a positive system A- for
A. Set

,I,={6A(@,)l(6,,)>0 or 6_/x-);
then one easily checks that xI, has the required properties. Q.E.D.
We turn now to the construction of L. Choose ,t’ ,I’ ’I,t as in Lemma

3.14, and assume that this choice has been used to construct/,/, and so on as
at the beginning of this section. Obviously we may assume/-- StY" Just as in
the proof of Theorem 3.7, this allows us to reduce to the case/ =/ 0, so
that tt and gt are dominant for q,. Put F F2, and let L be the irreducible
highest weight module of highest weight h-/-p with respect to xI,. By the
theorem of Duflo already mentioned ([4]), Ann(L)_ Ann(pX). Let {

_
@ be

the subalgebra generated by b and the root vectors for the roots _+ a and _+ fl"
(R) $:p(2) + center. Let L be the submodule of L spanned by weight vectors for
weights h- tt p ma nil. It is easy to see that L is the irreducible highest
weight module for (R) of highest weight h- p. Similarly, we let F be the
submodule of F consisting of the weights i ma nil; then F is irreducible,
with highest weight/. Let V c_ L (R) F be the subspace of weights of the form
h-p-ma-nil; then V=Ll(R)F as a {l module. Furthermore, V is
annihilated by the root vectors Xv for 3’ ,t, but 3’ not in the span of a and ft.
Let Pl be half the sum of the positive roots spanned by a and ft. It follows from
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known results that V contains as a composition factor the irreducible highest
weight module for (R) of highest weight s,s( p + p) Pl sst- P. (We
will say more about this in a moment.) It is easy to deduce that L (R) F contains
as a composition factor the irreducible highest weight module for @ of highest
weight s,st,- p, which we call L2. By definition of Xx, L2 has infinitesimal
character X.,x Xx, and hence occurs in L. Our goal is to prove that
qt,L 4: 0; it suffices to show that qL2 4: 0. This is essentially obvious, since
s,,s./3 -q,; a proof may be found in [8], Theorem 2.11.
We have now proved Theorem 3.10, except for the assertion made above that

L (R) F contains as a composition factor the irreducible highest weight module
(for (R)) of highest weight s,s- p. There are many ways to see this. The
simplest to explain (although certainly not the simplest to carry out) is the
following. There is a nice theory of formal characters for highest weight modules
(cf. [3]); and the assertion could certainly be verified if one knew the characters
of all irreducible highest weight modules for ;p(2). This is equivalent to knowing
the composition series of the Verma modules for :p(2), and these are known: all
composition factors occur with multiplicity one, and they are precisely those
given by Verma’s theorem. For details see [8]. The required computation is left
to the reader: as hinted above, we would actually suggest that the reader look
for one of the subtler but easier proofs. Q.E.D.
Theorem 3.9 suggests that it would be very nice if U,(X) were completely

reducible. This is true in many examples; so we make

CONJECTURE 3.15. If X is an irreducible ((R), K) module with nonsingular
infinitesimal character ), and a Ha z(X), then U(X) is completely reducible.

We can at least prove a related result. By [1], Corollary 7.5, there is a unique
automorphism G G, preserving K, such that if X is an irreducible (@, K)
module, then X" X*; here X" is the obvious twisting of X by/, and X* is the
(K-finite) contragredient module to X. The functors ( )" and ( )* are well defined
on all of oy((R), K).
LEMMA 3.16.. If X and Y are ((R), K) modules offinite length, then

Ext*(X, Y)
_
Ext*(X", Y )

Ext*(X, Y) Ext*( Y*, X*).

Proof. This is obvious if we interpret Ext in terms of long exact sequences
(cf. [ll). Q.E.D.

If X is a (@, K) module of finite length, define ._(X)*; X. is a
contravariant functor, and if X is irreducible then X. It is clear that this
functor commutes with % and p; so we deduce

PROPOSITION 3.17. If X is an irreducible (, .K) module with nonsingular
infinitesimal character X, and a Hx ’(X), then U(X)= Us(X).
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LEMMA 3.18. If X and Y are ((, K) modules offinite length, then

Ext*(X, Y ) Ext* ( I7, , ).

COROLLARY 3.19. Conjecture 6.21 of [16] (namely that the irreducible
constituents of U(X) occur with multiplicity one) implies Conjecture 3.15. More
precisely, suppose Y is an irreducible subrepresentation of U(X) which occurs
exactly once as a composition factor. Then Y is a direct summand of U(X).

Proof. Clearly it suffices to establish the last statement. So suppose
Hom,r(r, U(X)) O. By Lemma 3.18, Hom,K(U(X), Y) v O. Choose a
nontrivial map U(X)- Y, and let W be its kernel. Since Y occurs only once as
a composition factor of U(X), Y does not occur in W; so if we regard Y as a
submodule of U(X), Y N W 0. Hence we have an injection Y @ WC- U,(X).
Since these modules have the same character, the map is an isomorphism.
Q.E.D.

This completes our "general" results on U. In the next section we will collect
more "specific" results, describing U in terms of the Langlands classification of; these are to some extent taken from [16]. There is one more result which we
will state here, however.

THEOREM 3.20. Let X be an irreducible (, K) module with nonsingular
infinitesimal character ). Suppose is a weight of a finite dimensional rep-
resentation of G, and ) + 1 is dominant with respect to A.

(a) If ) + is nonsingular, then S,. O(X) is an irreducible character.
(b) In general, St (R)(X) is ii"reducible or zero.

Proof. These results are essentially proved in [16], Theorem 5.15 and
Theorem 5.20(a). The hypotheses on G are different, but this is irrelevant for the
proofs. Q.E.D.

3.20(a) is a fairly harmless perturbation of Zuckerman’s results in [19], and the
proof is formal. The proof given for (b) in [16] is rather complicated, and uses
the Langlands classification. If ) +/ is singular with respect to exactly one root
a, then (b) is easily deduced from Theorem 3.7(b), which of course was proved
without using the Langlands classification. It would be interesting to generalize
that argument to obtain 3.20(b).

4. Partial computation of U(X). Fix a nonsingular infinitesimal character
). The set Ga of equivalence classes of irreducible ((R), K) modules with
infinitesimal character k is finite. Suppose that X is an irreducible ((R), K)
module with infinitesimal character ); say X=Js(R),. Our first goal in the present
section is to compute z(X) in terms of (R) ,; this has essentially been done in
[16]. At the same time, if a Ha -z(X), we will determine certain special
composition factors Y of U,(X). There are zero, one, or two such composition
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factors, and they occur with multiplicity one; essentially they are the ones given
by Theorem 6.16 of [16]. ("Essentially" here and above refers to problems
arising from the non-linearity of G.) With these results in hand, we can prove a
sort of duality theorem (Theorem 4.14) which is one of our most powerful
general results on U. We begin with a slight reformulation of Langlands’
classification of

LMMh 4.1 (Harish-Chandra). Let P MAN be a parabolic subgroup of G,
and 571 a tempered representation. If has non-singular infinitesimal character
(in particular if J(R) Gx for some , ) then there is a cuspidal,,parabolic
subgroup P- MAN of G, a discrete series representation M, and a
unitary character , (A f) M) ^, such that P c_ P (so that P f3 M M(A
M)(N fq M) is a cuspidal parabolic subgroup of M) and

8 IndM(8 (R) , (R) 1).

Proof. Without the hypothesis on , we can find P, , and , so that 8 is a
constituent of Ind, (R) , (R) 1. (This result of Harish-Chandra may be found
for example in [11], Lemma 4.10.) It follows from the hypothesis that v is not
orthogonal to any real root of A M in M; so by [5], pp. 195-197, the induced
representation is irreducible. Q.E.D.
Now let P MAN be a CUSlidal parabolic subgroup of G, 3 a discrete

series representation, and , A. If , is positive with respect to P, and I(R) has
nonsingular infinitesimal character , then an induction by stages argument
allows us to identify I(R) with an induced representation of the sort considered
by Langlands (cf. section 2). In particular I(R) has a unique irreducible quotient
J(R). One can show that J(R)J,’, (with and ’ discrete series repre-
sentations) if and only if (MA, (R) ,) is conjugate under G to (M’A’, ’ (R) ,’);
this follows from Theorem 2.1 and a comparison of characters of unitarily
induced representations. Harish-Chandra’s parametrization of the discrete series
of M now suggests a way to parametrize Gx by certain characters of Cartan
subgroups of G. This is described carefully in [16]; we recall the definitions
briefly. Let B T +A be a 0-stable Cartan subgroup of G, with T / B fq K,
and A exp(b0 f)0). Let MA Gn be the Langlands decomposition of the
centralizer of A in M. An M-regularpseudocharacter (or regular character) 7 of B
is an ordered pair (I’, ), with F an irreducible representation of B0 and r/ b*
nonsingular with respect to A(932; / ). (Since H may be non-abelian, F need not
be a character.) Furthermore the following compatibility condition is required:
r/It. should be purely imaginary, so that it defines a positive root system
A +(, + ). Write On, On for the obvious half sums of positive roots. Then
we want dI"= + p-2. This notation will be heavily abused" we may
write to mean F or , but the meaning should be clear from context. (Thus, if
h B and a A(6, b), 7(h) means F(h), and (, a) means (, a).) The Weyl
group W(G/B) of B in G acts on B’ in an obvious way. Associated to
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there is a representation M(y]r/) in the discrete series of M; and of course 7]A
defines a one dimensional character of A. Fix a parabolic subgroup P associated
to B; thus P MAN. Set

ra (P, 7)= r(P, 7)= Ind rM(yIT/ )(R) (7],)(R) 1.

Such a representation is called a generalized principal series representation. The
character of this representation depends only on 7 (and not on our choice of P);
we write it as O(7). If 7 is nonsingular (i.e., 7 (F, ?), and /E b* is nonsingular
with respect to A((R), b)) and we choose P so that 7[A is positive with respect to P,
then r(P, ,) is the sort of representation considered above, and hence has a
Langlands quotient (7) (which, as the notation indicates, does not depend on
P). Here we should perhaps point out that (P, 7) has infinitesimal character
if 7 (F, ). Thus (7)= JM(lr+)(R)(’l)" (An attempt to formulate the results
below in the J6(R) notation should convince the reader that this abandonment of
traditional notation is justified.) We may sometimes write (R)(y) for O((7)). The
Langlands classification theorem now reads

THEOREM 4.2. Let X be an irreducible ((, K) module with nonsingular
infinitesimal character. Then there is a O-stable Caftan subgroup B of G and an
M-regular pseudocharacter 7 E ’ such that X’=(7). Furthermore (B, 7) is
unique up to conjugation by G.

This can be extended to singular infinitesimal characters (cf. [16], Theorem 2.9).
To study coherent continuation, we need to introduce some further notation.

Let B be as above, and fix a positive system xI, c_ A(), t + ); define On and Onnr
using xI,. A eg-pseudocharacter (or 9-character) 7 of B is an ordered pair (F, y),
with F an irreducible representation of B and y E b*. The compatibility
condition is simply dF + O-2On; thus c/ is not required to be
dominant or nonsingular. The set of q,-pseudocharacters of B is written /,.
Following the procedure of Hecht and Schmid in the linear case ([6]), one can
associate to 7]r/ a virtual character (R)M(t’, 71r/) for M. Thus we can define

O(q, 7) OG(q, 7) IndeaOM(’t’, 7IT+ ) ( (71A) @ 1.

Recall from section 2 our fixed Cartan subalgebra b and positive root system
A +, with respect to which coherent continuation was defined. If 7 Eft* is
nonsingular, we define A-= A-((R), fi) to be the unique positive system with
respect to which 7 is (strictly) dominant. Then there is a unique inner
automorphism c of (B such that c. O fi and c. A + A-. If / E b*, we define
/ /A C’/ Eft*.

THEOREM 4.3 (cf. [16], Corollary 5.12). Suppose B= T+A is a O-stable
Caftan subgroup of G, is a lositil;e system for A(, t+ ), and 7 E is
nonsingular. If E b* is a weight of a finite dimensional representation of G, then
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Proof. The argument given in [16] for linear groups works in the present
situation as well. (Notice that lifts to a character of B which is a weight of a
finite dimensional representation; 7 +/v means (F (R)/v, + ).) Q.E.D.
We need the Hecht-Schmid character identities in the present context. Since

disconnected linear groups are treated in Proposition 5.14 of [1 6], and connected
non-linear groups in [15], we will merely state the necessary definitions. So let
B T /A be a 0-stable Cartan subgroup of G, and if’ a positive root system for
+ in . (As usual MA GA.) Fix a simple noncompact root fl xI,. Let (a0a) +
be a one dimensional subalgebra of 0 contained in the sum of the fl and -fl
root spaces. Then (ag)+ is unique up to conjugation by T /. Set aa (a)+ +a,
(t+ )/ ( I/3(t) 0}. Then b/ (t+ )/ + a is a 0-stable Cartan subalgebra
of (; let B (T / )/A be the associated Cartan subgroup. Let M/A/ be the
Langlands decomposition of GAo. The roots of (t + )a in a may be identified
with the roots of + in orthogonal to fl; so the intersection of xI, with this set
defines a positive system xI, a for (t+ ) in 1)2. Fix , /},; we want to define
V# /,i,#. Put (Tl+)# (T + )# A T +, B (,T+)/A/. If (F, 7), we define
7a so that 7/l.= i, 7a[t+) lo+)a, and if fl is a real root of b supported on
a6, then (/, fl ) (,/3 ). (There is an ambiguity of sign in the choice of/, so
7 is not quite determined; but either choice will do.) We define F as a
representation of B to be F[(r,+) on (Tl+), and exp(7aloe)on A a. One easily
checks that (T1+) meets every component of T /, so that I is irreducible. Just
as in the linear case, B B if and only if the simple reflection s/ IV(G/B).
In that case we put F/ F, and V is defined. If s IV(G/B), then Bl has
index two in B, and we put

r Indr.
If B/ is abelian, I’t obviously splits as a direct sum of two irreducible
components r+ and Y; we can define { accordingly. In general F/ is either
irreducible or splits into two components Y according as s/ does or does not
fix I’l(r+)o in its action on (7+). So we define either y/ or -y{. The character
identities are

THEOREM 4.4. Suppose B C_ G is a O-stab& Cartan subgroup, C_ A(992, t + ) is
positive root s/stem, and fl is a simple root. Suppose " B,.
(a) If fl is compact, and 2( fl, } n, then 0(, ") + 0(, "/- nil) O.
(b) If fl is noncompact, define B 1 and // (or /) as above. Then if
(r -/, ) B,
0(, ’) + O(s/, ) 0(’, ,/) or 0(, ,+ ) + 0(B, ,_ ).

Proof. See [15] and [16], Proposition 5.14; the few additional details needed
are left to the reader. Q.E.D.
We will need to know the condition for a character to appear on the right side
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of the identity of 4.4(b). So fix a 0-stable Cartan subgroup B T / A, a positive
system xI, for / in , and a real root/3 of b in . Choose a three-dimensional
subalgebra %" I(2, lq)(R)0 through the root in such a way that B( _l)
a0, and q(-tX)=O(qB(S)). Set m/=exp(/(-)) T /. (There is
ambiguity in the definition of B, so mB is only defined up to inverse.) Define

B __. as in the remarks after Proposition 5.14 of [16]. By a slight extension of
the argument there, we find

PROPOSITION 4.5. With notation as above, O(er, ) occurs on the right side of a
character identity corresponding to the root if and only if the eigenvalues of
y(mB) are of the form e/lexp( _+ 2ri ( 7,/3 ) / (/3,/3 )).
Notice that if G is not linear,~we need not have m/2= 1; so there can be a
character identity even if 2(,/3)/( fi, fi)Z. In that case, however, we can at
least rule out the second possibility of 4.4(b)" the element mB lies in the identity
component of the more compact Cartan subgroup on which the character
identity is based, and so acts by scalars in the representation F defined earlier.
The reflection s (if it exists) takes m/ to mB--, and so does not preserve Fl
unless m/ acts by

___
1. We summarize this as

Remark 4.6. In the setting of 4.4(b), the second case can arise only if

We can now begin to study coherent continuation of irreducible
representations. The next few results are implicit in [16]. By Theorem 3.20, we
can coherently continue across non-integral walls without affecting irreducibil-
ity. Our goal is to see how such continuation affects the parameters in the
Langlands classification.

LEMMA 4.7. Let B T+A be a O-stable Cartan subgroup of G, P MAN an
associated parabolic subgroup, and ’. Suppose is nonsingular; recall the
associatedpositive root system A(, b). Suppose that for every root a A, either

(a) 0a A, or
(b) a is complex, and 2(a, )/(, ) Z, or
(c) a is real, and the eigenvalues of y(m,) are not of the form

%exp(+2ri(7, a)/(a, a)) (cf. Proposition 4.5), or
(d) a lct is a root of a in 92.

Then r(P, 7) has a unique irreducible quotient, namely (7).

Proof. Choose P’ so that 71a is positive with respect to P’. Then r(P’, 7) has
a unique irreducible quotient, namely (3’); and there is an integral intertwining
operator I(P’, P, 7) from r(P’, 7) to r(P, 7) (cf. [16], Section 3). Clearly it is
enough to show that I(P’, P, 7) is an isomorphism. This is proved in the same
way as Theorem 5.15 of 16] (cf. 16], Lemma 5.16 and Proposition 6.1). Q.E.D.
COROLLARY 4.8 (cf. [16], Corollary 5.17). In the setting of Lemma 4.7, suppose

Ix * is a weight of a finite dimensional representation of G. Suppose 7 + lzv is
nonsingular, and dominant with respect to those roots a A such that either
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(a) a is imaginary, or
(b) 2(a, 3’}/(a, c} Z, or
(c) a is real, and the eigenvalues of 7(m) are of the form %exp(_ 2rri (3’, a}/

Then S.
Proof. Fix a parabolic subgroup P--MAN associated to B, so that 3’[a is

positive with respect to P. Then (3’)^is the unique irreducible quotient of
rr(P, 3’). By condition (a), 3’ +/v B’. Let F be the finite dimensional
irreducible representation of G of extremal weight/,. Then it is easy to see that

(rr(P, 3’)(R) F) has a unique irreducible quotient, whose character is
((3’))). (Compare the proof of Theorem 5.20(a) in [16].) On the other hand,

an argument identical to that given for Corollary 5.9 of [16] shows that
Pv+,,(rr(P, 3’)(R)F)=rr(P, 3’+ iv). By Lemma 4.7 and the hypotheses on
3’ +/v, the unique irreducible quotient of rr(P, 3’ +/zv) is (3’ +/v)" Q.E.D.

This result tells us how to cross non-integral complex walls, and non-integral
real walls where the parity "condition of 4.5 doesn’t hold. We are left with
crossing noncompact imaginary non-integral walls, and real walls where the
parity condition holds.

LEMMA 4.9. In the setting of Corollary 4.8, fix a simple noncompact imaginary
root fl A such that 2(3’, fl /( fl, fl } Z. Suppose 3’ + t*v is strictly dominant
with respect to s/(A). Then (with notation as in Theorem 4.4) S((3’))= ((3’ +

Proof. Let I, A+ fq A(t+, 932); then we consider 3’ +/*r as an element of
/, and define B e and (3’ +/,r)e/ as for Theorem 4.4. By remark 4.6,
(3’ + )/ (as opposed to (3’ +/,r) ) exists; and the condition that 3’ +/,r be
dominant with respect to s/A) clearly implies that (3’ +/,r) is dominant with
respect to ’t,. So (3’ + ) may be regarded as an element of (//)’, so the
statement makes sense. The proof is quite similar to that given for Theorem
6.16(g) of [16]; details are left to the reader. Q.E.D.

This result immediately implies one about crossing a non-integral real wall
with the parity condition; we leave its formulation to the reader.
We need some notational conventions to state the next result. Suppose "/ B’,

and (3’) has nonsingular infinitesimal character 9", with dominant with
respect to our fixed positive system A + ((R), b). There is a unique inner
automorphism_of (R) which takes (b, A + (, b), ) to (b, A, V); we denote this by
bar. Thus , (a notation for which we apologize), and each root a A(@, b)
determines a root A(@, b). Thus for example, to describe z((3’)), we need
only describe ((3’)) c_ Av+; this is a subset of x c_A c_ A. This we now do.

THEOREM 4.12 (cf. [16], Theorem 6.16). With notation as above, suppose
X (3’) has nonsingular infinitesimal character ), and Ha is actually simple
with respect to A. Put n 2( fi, 3’) / (, ).
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(a) If is real and y(m)=-(-1)"e (cf. 4.5)
o( v.(x)) Oo.

(b) If is real and (m) ( 1)"e, then a (X).
(c) If is complex and O A, then a q z(X), and

o( vo(x )) o(v + Oo.
(d)/f is complex and O 6A, then a ,(X).
(e) If is compact imaginary, then a ’(X).
(f) If is noncompact imaginary, then a z(X). Define

4.4; then

then a ,(X), and

or ,{ +__ as in Theorem

O( U(X )) "([) + (9o or (+ ) + (y_ ) + 0o respectively.

In each case, 0o is the character of a representation, and every constituent of 0o
occurs in or(y).

Proof. Except for the very last assertion, this is proved for linear groups in
[16] (Theorem 6.16). The extension to the non-linear case is quite trivialmall the
difficulties were contained in Theorem 6.9 of [16], which is an immediate
consequence of Lemma 6.5 of [16] and Lemma 3.11 of the present paper. (As
mentioned in the Introduction, the proof of these results without Theorem 3.7 is
a highly non-trivial matter.) So we confine our attention to the last statement.
Consider first (a); we must show that every constituent of O0 occurs in r(,). As
is shown in [16] in the proof of Theorem 6.16, S_,(O(7))= (R)(3’). Write

with El an irreducible character. Then

Oo

s_.o(o(v))
S_ncx(O(’) 01 Or) (0(]/) 01 Or)

0i- S_not(Oi).
i--1

We know that O0 is the character of a representation. But by Lemma 3.11, every
term on the right is the negative of the character of a representation, except
those terms for which a -(Oi); in that case O S_,,(Oi)= 20 Thus every
constituent of O0 is such a Oi, proving the last assertion in case (a).

Consider next (c). Choose a cuspidal parabolic subgroup P MAN associated
to B so that ,/- n]o is positive with respect to P. Then (, n) is the unique
irreducible quotient of r(P, ,- n); and Lemma 4.7 implies that (,) is the
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unique irreducible quotient of ,r(P, ,). Recall now the functors % and of
section 3, which were defined using certain choices ,t,,, and/. We may as well
assume that A, since a is simple for A. In that case 7 , is dominant
with respect to A, and singular only with respect to the complex root a. Hence

B’; by Corollary 5.9 of 16],

(cf. Theorem 4.3 above. The point is that (Ind )@ F is naturally isomorphic to
Ind(@F); the results we are using follow easily.) The surjection
(P,)e() therefore gives rise to a surjection

(In fact (e()) is the Langlands quotient of (P, ), as is proved in [16],
Corollary 5.17; but we do not need this.) Accordingly we obtain a surjection

Now Lemma 5.8 of [16] provides a short exact sequence

O(e, - n)%((e, - ))(e, )0.
A simple diagram chase gives rise to a short exact sequence

OK aa((y)) Ol 0,

with K a quotient of r(P, - nS) and Q1 a quotient of (P, y). Now
O(%(())) 2(7) + O(U((T)). By Lemma 3.1 l(c), (y) occurs exactly as
often in (P, ) as in (P, ?- ha); and the first multiplicity is one by
Proposition 2.2. So K and Q both contain (?) exactly once. By Theorem
3.9(a), e(?) is a subrepresentation of K and a quotient of QI. Set
Kz K/e(), Q2 ker(Ql e(?)). Then we have an exact sequence

v.(e(v)) Q: 0,

with Kz a quotient of (P, ?- nS) and Q2 a subquotient of e(y). To prove the
last assertion, it is enough to show that each irreducible constituent Y of
U(e()), Ye(y- nS), occurs in Q2. So choose a submodule Z of U(e(y))
which contains Y as a quotient, and is minimal with respect to this property.
Then clearly Y is the unique irreducible quotient of Z. If Z K2 Z, then
there is a non-trivial quotient map Z Q2, and it follows that Y occurs in Qz.
So we may as well assume Z Kz. Since Y(-n8) is the unique
irreducible quotient of Z, the quotient map K2 (y- nS) (recall that K2 is a
quotient of (P, - n)).is necessarily trivial on Z. So (- n8) is not a
constituent of Z. Define Z as at the end of section 3. Then Z is a quotient of
U(e()) U(e()), and Z has Y as its unique irreducible submodule. Since the
unique irreducible quotient e(?- nS) of K2 does not occur in Z, the restriction
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of the quotient mal U((7)) Z to Ka is necessarily trivial. So this map lifts to
a surjection Q2 z; in particular Y occurs in Q.. This proves the last claim in
case (c). (It should be remarked that we have not established that the multiplicity
of Y in 00 is bounded by the multiplicity of Y in r(7).)

Consider next case (f); suppose for definiteness that we are in the case when
7 (instead of +_ ) exists; the other case is similar. Choose a parabolic subgroup
P associated to B so that 7la is positive with respect to P, and the
(restricted) real root of c in 92 is simple as a restricted root. Then there is a
unique parabolic subgroup P _D P associated to B, and Lemma 4.7 easily
implies that (7) is the unique irreducible quotient of r(P, 7). We claim that
there are exact sequences

O- X-%,(rr(P, 7))o r(P, )---0

x

Here 7a (F (n + 1)a, ha) /’. A little thought will convince the reader
that this is what happens in SL(2, ). The general case will essentially be left to
the reader, but the idea is the following. By a straightforward induction by
stages argument, we may assume P G, i.e. that r(),)-- (7) is a discrete series
representation. In this situation r(7) has exactly three composition factors,
namely r(7), r(7), and (7) (cf. [16], Proposition 5.22 and the remarks after
it). The required exact sequences are then obvious on the level of characters
because of Theorem 4.4; one only has to check that the composition factors fit
together properly, and this is easy. For by Langlands’ classification theorem,
rt(P, 7) has (7) as its unique irreducible quotient. The kernel of the
quotient map has composition factors r(’f) and r(7), and therefore splits as a
direct sum by Theorem 1.6 of [14]. The structure of the composition series of
%(r(7)) can be deduced from Theorem 3.9(a), since U(r(7)) (’")in this
case.
By the second exact sequence, X has () as its unique irreducible quotient.

The last claim of the theorem now follows from the first exact sequence exactly
as in case (c). Q.E.D.
The constituents of U(X) described by Theorem 4.12 are called special.

Using Corollary 4.8, Lemma 4.9, and Theorem 4.12, it is possible to determine
-((T)) for any 7 /’, with nonsingular infinitesimal character k: if a 1-In,
the first two results allow us to modify so that is simple in A. Then the
third result determines whether or not a ((,)). If G is linear, then the
situation of Lemma 4.9 never arises, and we have the following simple result.

COROLLARY 4.13. Suppose G is linear, 7 ’, and ’(7) has infinitesimal
character . Then ((7)) c_ II(k) consists of those roots a A which are simple
with respect to A and such that either

(a) a is real, and 7(m,) (- 1)n, (n 2(a, 7)/(a, a)), or
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4-(b) a is complex, and Oa Av or
(c) a is compact imaginary.

It should be emphasized that this result is false for non-linear groups: ((y))
contains the set described above, but (as one sees for the double cover of
SU(2, 1)) it may be strictly larger. We have not obtained a "closed form" for
((7)) in general.
To conclude this section, we give the duality theorem mentioned earlier.

THEOREM 4.14. Suppose X and Y are irreducible ((, K) modules with
nonsingular infinitesimal character h. Fix a and fl Ha, and suppose a (X),
fl (Y), a (Y), and fl -(X). Suppose also that a and fl do not span a
subsystem of A(t, b) of type G2 Then the multiplicity of Y in U,(X) equals the
multiplicity of X in U/(Y). Their common value is computable (in terms of the
Langlands classification) and is zero or one.

(The hypothesis that a and fl not span a G2 can be removed by calculations in
62 .)

Proof. By way of motivation, suppose that Conjecture 3.15 were available.
Then the multiplicity of Y in U(X) would be the dimension of

Hom,r(Y, U(X))Ext(Y, x)

Hom+, I(( U ( Y ), X )

by Theorem 3.9(c), which would be the multiplicity of X in Ut(Y). The point of
the theorem is that it doesn’t depend on Conjecture 3.15, and that one gets a
multiplicity one result.

If a is orthogonal to/3, both multiplicities are zero by Theorem 3.10. So we
may assume a and/3 are adjacent. Choose ,t, c_ A(q, b) as in Lemma 3.14. By
the reduction argument used in Theorems 3.7 and 3.10, we may as well assume X
is dominant for xI,. Write X’’(tl) Yff’()’2); say IRe lla,[ < Re )’zlol. The
hypotheses obviously imply YX; so by Proposition 2.2, Y is not a constituent
of rr(V). By Theorem 4.12, the multiplicity of Y in U,(X) is zero or one, and is
computable. (For Y must be one of the special constituents of U,(X) described
there.) Suppose Y does occur in U,(X). Let Z be a submodule of K,(X) in
which Y occurs, and minimal with respect to this property. Then X is the unique
irreducible subrepresentation of Z, and Y is the unique irreducible quotient. Put
Z0 Z/X C_ U(X), and Z ker(Z Y). Since Y is the unique irreducible
quotient of Z, the sequence

0ZZY0

does not split, and hence Extl(y, Z) # 0. We claim that/3 q’(Z1), If c and/3
span an A2, this follows from Theorem 3.10(b). Suppose then that c and fl span
a B2, and that Z has some constituent W with fl z(W). Put Z2 Z/X; then
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W occurs in Z2. The injection Z0C--- U(X) gives rise to a surjection U,(X) Zo
(Proposition 3.1.7); write K for the kernel of this map. Then we have an injection
Zo/Zo N K---)Zo. Since Zo has Y as its unique irreducible quotient, Y occurs
only once in Z0, and Y is the unique irreducible subrepresentation of Z0, it
follows that Zo/Zofq K is isomorphic to Y or 0; i.e., K_ Z2. The exact
sequence

O K Uo (X ) Zo O
now says that U(X). has at least three constituents which are not fl-singular: Y,
W in K, and W in Zo. This contradicts Theorem 3.10(c), and proves that in fact

’]’(Zl). Recall that Ext’(Y, Z)-0; by Theorem 3.9(c), Home,K(U/
(Y), Z) 4 0. Since Z c_ Z c_ K(X), X is the unique irreducible subrepresenta-
tion of Z. Thus X occurs in U(Y)o This argument did not use the assumption
Re "/i,,I < [Re /21,1, and is therefore symmetric in X and Y. So X occurs in
Ua(Y) if and only if Y occurs in U,(X). If a and fl span an A 2, Theorem 3.10(b)
completes the proof. Suppose then that a and fl span a B2. We know that Y
occurs in U(X) if and only if X occurs in U(Y), and that Y has multiplicity
one or zero in U(X). By Theorem 3.10(c), the desired result can fail only if Y
occurs in U (X) (exactly once) and X occurs twice in Ut(Y), which we therefore
assume to get a contradiction. First note that U(Y) can have no other
a-nonsingular constituents by Theorem 3.10(c). In particular the special
constituents of U(Y) given by Theorem 4.12 (which have longer "a-parameter"
than Y and therefore cannot be isomorphic to X) are a-singular. Next, an
examination of the proof of Theorem 3.10(c) shows that since U(Y) has two
a-nonsingular constituents, Y must be the unique fl-nonsingular constituent of
U(X). Recall also that we saw that Y was one of the special constituents of
U(X). If we let 1 and fll correspond to a and fl in A + the existence of such

yl+ We now examine several cases separately.constituents implies that Oa Av,.
+Let 2 and fiE correspond to a and fl in Av2.

Case I. a and l imaginary. Thus o is noncompact and fi is compact. By
Theorem 4.12(f), ct2 is real, fiE is complex, and Ofl s2fl, which is obviously
positive. The special constituent of Ua(Y) is easily computed from 4.12(c), and
(essentially computing inside p(2, FI) or 80(4, 1)) one finds that it is
ct-nonsingular. This contradicts the observations made above.

Case II. a imaginary, fl complex. Here a is noncompact and OfilA.
(since fl -(X)). Put m 2( fl, )/( fl, fl). By Theorem 4.12, X is the special
constituent of U((y- mill)). Set ]t3 "Yl- mill, and define o/3 and f13 in the
obvious way; then f13---fl, and O Sfl(tl)--O/l -[-r/l, with r- or 2.
Hence Oa a + rOfl a3 + rfl3 + rOfl. We consider two possibilities
separately.

Subcase (a). Ofll does not lie in the span of fl and a. In this case, since Ofl is
negative for A and does not lie in the span of the simple roots fla and a3,

aa + rfla + rOfl A. Thus Oa3 is negative. If Oa3 -a3, then we could write
0ill in terms of fl and a which we cannot; so 3 is complex. By 4.12(d), ({3)



IRREDUCIBLE CHARACTERS OF SEMISIMPLE LIE GROUPS 89

is a-singular. By what we have already proved, it follows that (3’3) occurs
in U(X), contradicting our previous observation that Y is the unique /3-
nonsingular constituent of U(X).

Subcase (b). 0/3 lies in the span of fl and a. Since a is imaginary, we deduce
at once that O -s(fl). Thus Theorem 4.12(f) implies that 0fl2 -/32; so
this case is included in Case III.

Case III. 2 is real. Choose P associated to B2 so that V21a is positive with
respect to P; then r(P, 3’2) has a unique irreducible quotient, namely (3’2) Y.
Arguing as in the proof of Theorem 4.12(c), say, we find an exact sequence.

0--,

and a surjection qaqa(r(P, 72))q/a(Y). (Here the main point is that
3’2- mfl2 is conjugate to "/2 ([16], proof of 6.16(a)) and the corresponding
intertwining operator is an isomorphism (Lemma 4.7)).) So we have an exact
sequence

O --> K --- fltB ( Y ) -- Q --> O

with K and @l quotients of r(P, ,). So Y occurs once in Kl and @l.
Furthermore Y is both the unique quotient and the unique subrepresentation of
Kl, so YKI. Hence @- @(Y), proving that @(Y) is a quotient of r(P, ,/).
In particular X occurs in Ua(Y) at most as often as in r(P, 3’2). But
O(2) O(7)+ O’+ O0, with a (O0) and O’= 0 or O(3,’) (some 7’/[,
with IRe  ’1o,I--IRe  ,1o,I and 7’ not conjugate to 70; this follows from the
character identity of Theorem 4.4. X occurs once in O(TI) and not at all in 19’
and 00; so X occurs exactly once in r(P, 7:), and hence at most once in U(Y),
contradicting our assumptions.

Case IV. a imaginary, 1 real. This cannot happen, since then a and/31
would be orthogonal.

/ and/31 compact. ThenCase V. a complex, 1 imaginary. We have Oa A3",,
by Theorem 4.12(c) 3’_ "/1 -nal (n 2(a, h)/(a, a) as usual) so that

+ ra ,

with r or 2. Hence 0/32 =/31 + r(OaO. Now/31 A3’+, and Oal A3’+, {al}
C A / so 0/32 > 0. Furthermore/32 is not imaginary, since/31 is and a is not. So
f12 is complex, and Ua(Y) contains (3’3)’ with 3’3 72- mfl2" Furthermore
(with obvious notation)

-’-(rs- 1)a + sill.
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Hence Oa3 (rs 1)0c + sil Computing in B2 shows rs 2, so o3 is complex.
As remarked above, the special constituent of U(Y) must be a-singular, so
Oa3A+ Since A+ +

Y3" "/3 (AyI- {Ol’ l + rcl})U {- c, fl rcl} it follows
that 0et --o or l "" rl" The first is impossible since o is complex, and the
second since it implies r -1.

+ and0B q +"Case VI. a komplex, fll complex. Here
and fiE s,(fll)= fll + rl. By Case III we may assume fl2 is not real; so since

+ this implies Ofl2= -a and hencefl z(r), we have 02 A+ If 02 ATI"YE" + Put mfl" then X is a0a fl_ A+ a contradiction. So 0fl_ At,. 3 ’special constituent of U,(:(3)). If c z(:(3)), then this implies that (73) is a
(fl-nonsingular) constituent of U.(X), a contradiction. So c z((73)). Now
O3 Sfl,(Ol)= a + Sil We separate several cases.

(a) fiE is complex. Then U/(Y) contains (74) as a special constituent, with
"4 "[2- milE" So by the remarks earlier, c z((74)). But c4 s,2(c2)= o2 -+-
sfl =(rs-1)ct + sil As usual rs 2, so a4= a3. Now ct z((74)), and
a’((73)); by Theorem 4.12, this is possible only if o3 is complex, and
0a A+- A+ This difference consists of the roots (-ill Cl, fiE), of which
only a has the right length; so

( + s/)= .
This gives sOfll a Oa, which implies/3 is real, a contradiction.

(b)/32 is imaginary and a3 is complex. Since/3 ’(Y),/3: is noncompact; and
+ But as we saw in case (a),since a ’1"((73)), 0a A + It follows that.y3o

a3 s,2(c). In this case 0 and s, commute so 0 s,(Oa)= s,(-01). We
know 0a A+ so this is possible only if 0c lies in the span of c and fll The

yl

only roots of the right length in this span are o1, which is ruled out since
o 001, and O + Sill, which is ruled out as in case (a).

(c) fiE is imaginary and ol. is imaginary. Since o/3 and fl2 have the same span
as a and ill, this is impossible.

(d) fl2 is imaginary and ol3 is real. Computing in BE, one finds that fiE and o3
are not orthogonal, so this is impossible.

Since Ofl2 A+ this exhausts the possibilities for Case VI.2’2’

Case VII. O complex, fl real. As usual 00 AT, and /1
(- 1)mete,. We have "/2 = 3’ nal, a2 -al, and B fll + ral. Since fll is

real and o is complex,/32 has non-zero imaginary part; so/32 is imaginary or
+complex. Since/3 r(Y), this implies that 0/32 Av. We separate two subcases.

(a) /32 is complex. Then U(Y) has as a special constituent (3’4), with
2- roB2 as usual. Furthermore c4 s,(Cl)= a + sil just as in case VI.

Hence a4 is complex or imaginary. Since a z((74)) as usual, this implies that
+ Since 0a4 0a Sl andeither ct4 is compact imaginary, or 0a4Av.

Oa A/ the second possibility would force 004 to be in the span of a and ill;
+ this implies Oa4=combined with 0c4 -c4 and 0aaAv,,

0014 2a + sill is imaginary; but fl2 fll + rl fll + 2a/s (2or + Sl)/S
so fl2 is imaginary, a contradiction. For the first possibility (c4 compact
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imaginary), computing in B2 shows that a4 and fl are not orthogonal. Since fll is
real, this is impossible.

(b) 2 is imaginary. Since fl z(Y), fiE is noncompact. Notice that the span
of a and fl is stable under O; this allows us to reduce to computations to the real
subalgebra of ,0 corresponding to the roots o and fl. Since fiE is noncompact
imaginary, this subalgebra is isomorphic to V(2, FI). There are two essentially
different possibilities. Suppose first that /3 is long. Define a more compact
Cartan subgroup B3 via Cayley transform through the real root fl, and choose
y3/ so that rr(7l) occurs on the right side of the character identity for rr(T3)
and the noncompact simple root f13 (cf. Proposition 4.5). Note that o3 is an
imaginary root. There is ambiguity in the choice of 73; it could be replaced by
V; (F3 (m + 1)f13, 3 mfl3), which replaces Ot3 by SB3(a3) a3 + f13 (be-
cause fl is long). If a3 is noncompact, then a3 + fl is compact; so possibly
replacing 3’3 by 3’;, we may assume a3 is compact. Then a z((3’4)), and X
occurs in U((3’4)); so (’4) occurs in U,(X), a contradiction. So suppose
finally that fl is short. Define B4 via Cayley transform through the noncompact
imaginary root f12. Then we can fix simple (real) roots a4 and f14 of ]4 in
corresponding to a2 and/32 via the Cayley transform. Thus we obtain an element
m,, B4. Since fl is short, it is easy to see that m,, acts by on the f14 root
space of b4 in (R), and hence that m, acts by -1 in the f12 direction in b. In
particular m,, does not fix 72 in its action on/’. The proof of the character
identities (Theorem 4.4) now shows that the right side of the character identity
for ’2 and/32 has two terms corresponding to (’/4)_+ /, and therefore that
Ua(Y) has two special constituents ((74)+_ ). Since m, is easily seen to have
different eigenvalues in (3’4)/ and (3’4)- (from their construction), Theorem
4.12(a) shows that a cannot lie in the z invariant of both of these constituents.
This contradicts the hypothesis that X is the unique a-nonsingular constituent of

+ cannot be real" so weY, and completes case VII. Since we saw that Oa A3,,, ot

have treated all possible cases, and proved the theorem. Q.E.D.
It hardly needs to be remarked that the preceding proof is extremely un-

satisfactory. It is not a complete accident, however: it is easy to see from the
first part of the proof that, if the result is true, then it can be verified along the
lines adopted here. From the computational point of view, therefore, the
case-by-case arguments are unnecessary: the methods of the first part allow one
to determine completely the fl-nonsingular constituents of U,(X), and the fact
that the answer happens to have a nice general form is not too important.

5. Computation of characters. In this section we describe irreducible
characters in terms of the U(X). More precisely, suppose that for each
irreducible (6, K) module X with nonsingular infinitesimal character 2, and
a 1-Ix (X) the irreducible constituents of U(X) and their multiplicities are
known (in terms of the Langlands classification). Then we will describe how to
compute the irreducible characters as integer combinations of the standard
characters (8 (R) ,) described in section 2. (Recall that the standard characters
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are computable via an algorithm, although they have not been expressed in
closed form.) By Theorem 6.18 of [16] (which can now be generalized to
non-linear groups without difficulty) we may confine our attention to characters
with nonsingular infinitesimal character. It is convenient to assume that the
characters of groups of lower dimension than G are known (although everything
could be formulated, a bit more clumsily, in terms of G itself). Fix A0 [9*
nonsingular, and let C CN be the set of Weyl chambers in t3* dominant
with respect to A + Choose weights/i of finite dimensional representations of G’o"
such that ?.--’o + Ii Ci. We confine our attention to the finite set of
irreducible characters with infinitesimal character equal to some ?i. By the proof
of Corollary 2.3, it is enough to compute the irreducible composition factors
(and their multiplicities) for the various rr(,) having infinitesimal character
? (;). This we do by induction on

l(,/) 1/21{ a zXlOa A }1 + 1/2 dim a

(Here 7 /’, and ct is the split component of b.) This notion of "length" has the
following nice properties, which are trivial to verify. Suppose a A- is simple.

/ and is dominant for s(A), then/(7’) =/(7) + IfIf a is complex, Oa A .f
a is noncompact imaginary, and y’ occurs on the right side of the corresponding
character identity (Theorem 4.4), then l(,’)= l(y)+ 1. Suppose then that the
composition series of r(y’) is known when r(y’) has infinitesimal character
X’ (.) and /(y’)< l(y), for some y B, such that r(y) has infinitesimal
character (,.). Choose a positive root system A-C_ A(@, b) such that if
a A is real, or 0a A-, then a A-, and such that fl zX- and
implies fl is real; this is certainly possible. Suppose first that A- A-. Then

+there is a simple root a Av such that aA-. Clearly a is complex, and
Oa qA. Choose a weight/x of a finite dimensional representation of G such that
)t + W(g/b). {.}, and 3, +/zv is dominant for s(A-)" if a is integral for
we take/, -na; otherwise/ can be taken to be the difference of two of the
chosen above. Now l(,/+/v) l(,)- 1, so the composition series of r(7 +/v)
is known. Furthermore

0() S_(O( + ))
here/ s(/z), with A((, ) corresponding to a. If a is not integral for y,
the effect of S_ on the irreducible constituents of O(y +/) is known from
Corollary 4.8 and Lemma 4.9, so the composition series of O(y) is known. If a is
integral with respect to y, then/X n. Write

x ,o, +
with O and O irreducible, -(0), and (0); the O and 0’. are specified
in terms of the Langlands classification, and the n and mj are explicitly known
integers by induction. Then
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so if the decomposition of each Ua(Oi) into irreducible constituents is known, so
is that for O(),).

So we may suppose that A A-, i.e., that a A and Oa A implies a is
real. We define a parabolic subalgebra @ + 9 of @ so that _D b, A(I, b) is

+the set of real roots of b in (R), and A(9, b)= (a AlOa Av }. Clearly @ is
0-stable, and corresponds to a connected reductive subgroup L of G whose
semisimple part is split over FI. In this setting the composition series of r(7) can
be computed in terms of the composition series for a certain representation of L
(cf. [16], Theorem 4.15, Corollary 4.18, and Proposition 4.19. Recent joint work
with G. Zuckerman provides a more conceptual proof of these results, which will
appear in a future paper.) Since we are assuming that the result is known for
groups of lower dimension, we are reduced to the case L G, i.e., to B T +A,
with T + discrete; and the inductive hypothesis means that the composition
series of r(7’) is known whenever B’ is not split and r(7’) has infinitesimal
character k’ (&.}. If rr(,) is irreducible, we are of course done; so suppose it is
not. By intertwining operator considerations (cf. [16], section 3), there is a root
a A((R), b) such that the eigenvalues of 7(m) are of the form %. exp(_
2ri(),, a)/(a,a)). Suppose first that we can find such an a so that the
corresponding character identity of Theorem 4.4 has only one term on the right.
(This happens for example if a is not integral. Cf. Remark 4.6). Thus if B is the
Cartan subgroup with one dimensional compact factor obtained from B via
Cayley transform, and xI, is a positive root system (i.e., choice of positive root)
for t+ in 3, then there is 7 - B’, with 7[t dominant for q,, such that

O() O(,, ) + O(-’o, L)
(ef. Theorem 4.4). The first term on the right has a composition series which is
known by induction. The second is not a standard character; but it is obtained
from a standard character by a sequence of wall crossings of the sort used in the
first part of the algorithm. We know how these wall crossings affect composition
series, so the composition series of O(-I,, ) is computable; details are left to
the reader. So in this case we can determine the constituents of O(,) and their
multiplicities. So we may assume that no non-integral roots a satisfying the parity
condition exist. We may also assume that G is simple. First we claim that

2 of B depends (up to inverse) only on thez(O(y)) 4 . Now the element m
length of a. Furthermore if b B, then bmb-1= m It follows that if 7(m)
has eigenvalues +_ 1, then in fact 7(m)= + or 1, and 7(m)= -+ whenever
a and fl have the same length.

Suppose first that all roots of G have the same length, or that @ is of type G2
We know that for some a, 7(m,)=-+ (since r(,) is reducible); so by the
remarks above (or a computation in the second case) 7(m)= -+ for all ft. Put

R= ah(,b)[ (a,a)=nZ, and 7(m)=-e(-1
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In the present situation % -(- l)2(a’)/(a’a) (cf. [16], before 5.15), so

R {a e >, I(-l)2("’v+p)/("’")= 7(m,))
(recall that Ax (a A((R), b) 2(a, 7)/(a, a) Z)). We claim that R is a root
system. Clearly a R if and only if -a R. Suppose a, fi R; we must show
thats/3aR. Nows/3a=a+rfl, with r=2(a fi)/(fl, fi), and ms.=m. or
m,m according as 2(a, fl)/(a,a) is even or odd (for this and similar
computations, compare section 6 of [17].) Hence

and

"y(msa.)=v(m,) or v(mo,me)
according as 2(a, ,8)/(a, a) is even or odd. Recalling that
we obtain

2(s/a, 7+0) 2(a, 7+0) 2(a, fl) 2(fi, V+0)--The desired equality (-1)2(saa’v+c))/(a’") 7(msa,) is now obvious. So R_is a
root system. On the other hand, Theorem 4.12 implies that (F(y))= Ha
(Ha Cl R). So if r(r(7)) is empty, then R D Ha so R

_
Ax since R is a root

system. But this contradicts the assumed existence of a root a A with
2(a, "r)/(a, a)= n Z, and 7(m.)= e.(-1)n. So r((7)) is nonempty in this
case.

Suppose next that there are two root lengths, differing by a factor of two. A
2 1; this resultcomputation for (2, R) shows that if a is short, then m,

therefore holds for G as well. In particular 7(m,)= -+ when a is short. If this is
true of long roots as well, the argument for the other case applies. So we may
assume that for some long root fl, 7(m/) =/= +-1. Thus 7(m) =/= 1; since m
depends only on the length of fi, 7(m/,) =/= _+1 whenever fi’ is long. Define R
exactly as before; now R consists of short roots. The computations of the
previous case easily imply that R is invariant under reflections about long roots
in Ax. If z((7)) is empty, then R contains all the short roots in 1-Ix. Now a
subsystem of a root system containing all the short simple roots and invariant
under reflections about long roots contains all the short roots. So R contains all
the short roots. But this contradicts the reducibility of rr(7)just as before. So in
all cases z((V)) is nonempty. (We have actually proved more, namely that
r((7)) meets each simple factor of Aa containing some root a with
7(m,) e," (- 1)".)

Suppose then that a rr((T)), and that the corresponding character identity
has two terms on the right. (Recall that if there is only one term, then the
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composition series of or(y) is completely known.) So there is some y B’
character identity

+ L) +

and a

Just as before, the composition series of the left side is assumed to be known by
induction. We may as well assume 711 a 71a. We will call 7 and 71 adjacent. Let
8 l-ix correspond to a.
By induction by stages, one sees that in fact O(7)- O(xI’, 7)= (R)0 is the

character of a representation, and z((R)0). Hence O(7) and O(q’, 7) have
the same c-nonsingular constituents.

Definition 5.1. Suppose D c_ H. A character (R) with infinitesimal character
is said to be known up to D if the multiplicity of X in (R) is known whenever

z(X) does not contain D.

Thus we have just seen that 0(7) is known up to z((7)). If (1 is known up to
D O2 is known up to D2 and O + O2 is known up to D U D2, then obviously
one can compute O up to D U D2. Let denote the equivalence relation on
/’ generated by adjacency as defined above. We have proved

LEMMA 5.2. With notation as above, set Dr
known up to Dr

v,,.,v’r((7’)). Then O(y) is

On the other hand, the sets Dr are fairly large"

LEMMA 5.3. Suppose a and fl are adjacent roots in Ha, with 7(m) and 7(m/)
both + 1, a rr((y)), and I/ 1/1 1 /2. Then Dr.

Proof. Let /’ be adjacent to 7 via the character identity corresponding
to a. The hypotheses imply 2( a, fl)/( fl, fl) is odd, and hence that m acts by
-1 on t+; it follows from the construction of the character identity that
v(mo)-- So if/ then/3 ((70). Q.E.D.

Because of these lemmas, the main difficulty in determining the composition
series of 0(7) comes from simple factors of A whose simple roots do not meet
((7)). So we need to rule out certain composition factors a priori. Let A be
the product of the simple factors of Ax which meet z((7)); put II A IIx.
LEMMA 5.4. With assumptions as above, suppose (71) is a composition factor

+of r(7), and suppose Av,. If is imaginary, or real with 7(m) satisfying the
parity condition, then a is integral. Furthermore the root A((R), b) corresponding
to lies in A.

Proof. We proceed by downward induction on l(71), treating all the
infinitesimal characters {X,.} at once. Notice that if 7 7, the result is true: this
follows from the remark at the end of the proof that ’((7)) - , together with
our assumption that A has no non-integral roots satisfying the parity condition.
In general, choose a positive root system Ai C_ A(N, [31) (with 71 B) such that
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if fl A/ is imaginary, or Off A +, then fl A- and such that fl A - and"/ 3’ +0/3A implies B is imaginary. Suppose first that A, 4 A. Choose a simple
root B ZX,+ such that B ZX", necessarily B is complex, and 0B A+, Choose a
weight of a finite dimensional representation of G such that X + W(N/).

A+ mB{.} and 71 + , is dominant for s(,), if/3 is integral, we take
(m 2(7, B)/( B,/3)); otherwise/ can be taken to be the difference of two of
the . chosen at the beginning of this section. Then l(, + ,)=/(’l) + 1.
Furthermore y +/ has no non-integral roots satisfying the parity condition
(since , doesn’t), and the set A, attached to , + is the same as that for ,. We
claim that (’l’l + ,) is a composition factor of r(7 +/) or of r(,). If B is
non-integral this is clear, and if fl is integral it is easily deduced from Theorem
4.12(e). So by induction there are no roots a A((, I)) which are "bad" with
respect to , + , and the conditions of the lemma; so there are none for ’l
either.

+ + implies fl isSo we may assume += A-, i.e., that B A, and 0/3
imaginary. Put MlA J4 (B TI+A 1)- Then M is split over Iq since G is, so
all its simple factors are noneompact. Furthermore every simple root of t- in
is simple as a root of l)l in (, by the special nature of zX+,. Suppose that Lemma
5.4 fails for ’l. Suppose first that there is an imaginary root a with A[;
clearly we may assume a is simple and noncompaet. Define B as for the
character identities. Choose a weight of a finite dimensional representation of
G as before, so that 71 + l is dominant for s,,(A+,). Using either Lemma^ 4.9 or
Theorem 4.12(f) (according as a is or is not integral) we obtain , (B’)’, with
l(’l,)--/(71) + 1, so that (,) occurs in r(,) or in r(7 +/). Furthermore the
real root of B corresponding to a satisfies the parity condition, but /X,; and
this contradicts the inductive hypothesis. So (still assuming the failure of Lemma
5.4) all imaginary roots correspond to roots in A,, but there is a real root
satisfying the parity condition, with A[. Since we know that Lemma 5.4
holds for 71 "1’, Ml is noncompaet; so there is a noneompact simple imaginary
root B, which is necessarily integral; say 2(71, B)/(B, B)--m. Just as above
we can define B t and ,; the only problem is to see that ,l fails to satisfy
Lemma 5.4 (to get a contradiction). Let a’ be the root of t/ in corresponding
to a under the Cayley transform defining b; obviously a’ is real, and
’--A,. The only question is whether ,(m,,) has eigenvalues e,. exp(-,-
2ri(,, a’)/(a’, a’)). Now m,, m, and (71, a’) (71, a). By the construc-
tion of the character identities, l(m,,)--71(m,); so we need only show that
,,--e,. This requires a little work. Define a Cartan subgroup B by a Cayley
transform through a. Since everything is defined within the attached equal rank
group M, we might as well assume for the moment that B T is compact. Let
a0 and B0 be the roots of t in (R) corresponding to a and B via the Cayley
transform defining T. Recall that the roots of t in l may be identified with the
roots of t in (R) orthogonal to a0; if B A(t, i) is identified with 0, and 0 is
(say) noneompaet, then is noncompact if and only if 0 is strongly orthogonal
to a0. Let ’I’ c_ A(h, g21) be the positive root system defined by ’l. Choose a
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positive system ,t, for t in @ so that % is simple, the span of % and/30 is spanned
by simple roots, and ,I, restricts to ,I, on the orthogonal complement of ao.
Write p(xI,) for half the sum of the roots of ,I,, and use other notation
analogously. Put n 2(a0, p(XI,)- 2p(xI, fq Af)))/(ao, a0) (f. [16], after 5.14);
then e--(-1)"-. %, is computed analogously on the Cartan subgroup B
obtained via Cayley transform of B through a’. We know that/3 is integral. If a
is not integral, then inspection of the rank two split groups shows that either/3 is
simple, or a and/3 are not strongly orthogonal. Suppose first that a and/3 are
strongly orthogonal. Then/30 is noncompact, and the various Cayley transforms
commute with each other: if we define ,I, to be the subset of ,I, orthogonal to
flu, and xI, to be the roots in xI, which are compact and strongly orthogonal to
flu, or noncompact and not strongly orthogonal, then

n,, 2(ao, p(I’e)- 2p(’Set))/(a,
and , (-1)"’ If fl is actually simple, then n n, by (4.3) of [17] (which is
due to Schmid), and we are done. If/3 is not simple, then it is integral by the
remark above. If and/ span a B2 then , is necessarily integral with respect to
all of the roots in this B= (since it is integral with respect to the long roots 8 and
fi). So t and fi lie in the same simple factor of Ax. Since we are assuming 8 A
and fi A, this is a contradiction. If 8 and fi span a G2, then (again because
they lie in distinct factors of Ax) they must be the only positive integral roots; so
a0 and fl0 must be compact, a contradiction. So we may assume a and fl are not
strongly orthogonal; thus they are the short roots of a BE Since fl is
noncompact fl0 is compact, and (computing in (2, IR)) one finds that B Bf
by an isomorphism fixing the orthogonal complement of a and ft. So let xt, be
the subset of ,t, orthogonal to a0, with ,I,e defined as in the previous case. Then

n, 2( flu, P(q’) 2p(q’ ))/(/3o, flu),
and , (- 1)% By 4.3 of [17] again, we may replace I, by xI, without changing
n,. But now/30 is compact, so 2(/3o, p(,I, A(t)))/(/30,/30) Z. So we need
only show that in the present case,

2(o, 0( n A()))/(o, o) Z.
Set p 0(’I’ fq A(D). Then

2 p) / 2( &, p ) / ( + 2 p ) / (
The first term is an integer; and the second may be written as

2((a0 fl0), 2p)/( &,
Since cto -/3o is a root, and 2p is integral, this is an integer. So % %,. Q.E.D.

We turn at last to the algorithm for computing the multiplicity of (3’1) in
r(,), assuming as always that no non-integral roots for 3’ satisfy the parity



98 DAVID A. VOGAN, JR

condition. We may as well assume in addition that (‘y1) and ,r(‘y) have the same
restriction to the center of G; otherwise the multiplicity is zero. We proceed by
downward induction on l(‘y1). Suppose first that there is a simple root a Av+,
with Oa A + Choose a weight/ of a finite dimensional representation of G"/i"
such that X +/. W(I@/b). (’i), and Y1 +/v, is dominant for s,,(Av+,): if a is
integral, with 2(a, ‘y1)/(a, a) n, we take/ZVl ha; otherwise/ can be taken
to be the difference of two of the #i chosen at the beginning of this section. Now
/(‘YI + /At) /(‘Y1) + 1, SO the multiplicity of e(‘y1 +/zv,) in r(‘y +/) is known. If
a is not integral, this is of course equal to the multiplicity of (,y) in (‘y); so
suppose a is integral. If 5 z((‘y)) ( the root in IIx corresponding to a) then
the multiplicity of (‘y) in r(,y) is known by Lemma 5.2. So suppose
Then as we have remarked before (proof of 4.12(a)) S_na(O(‘y)) (R)(‘y). Write

Here the -t0 denote irreducible characters, distinct from each other and from
O. and O. are(’YI) and (,YI na); the O and (R). are a-nonsingular, and the 3t J4

a-singular; the O and 0/3 correspond to ,y’ with/(,y’) > l(,y1), and the O2 and O)4
correspond to ,y’ with/(,y’) </(,YI). Thus the m and n are known,and the xj and
y) are (possibly) unknown. If we apply S_n to this equation, we obtain

O(‘y) O(,y)"" x0U((,y1)) -- .HiU(O) -- xjU()f.)2m0(,y1- na)- 2,miO

Now look at the occurrences of O(,y1- na) in this formula. It occurs exactly
once in Ua(O(,y1)), a known number of times in the first sum, and -2too times
on the second line. If we can show that it does not occur in any Ua(O}), then
obviously we can solve for x0 (which is the multiplicity we want). So suppose
_(’yi- na) occurs in some U,(O.); say Off=.._(,y2). Since (‘Y2)
O(,y1- na) is not a special constituent of Ua(O(,y2)). So by Theorem 4.12,
O(71- ha) occurs in 0(72). Now /(7- na)=/(71) + 1, and /(,Y2) < I(,Y1); so
/(,Y2) < I(,Yi- na). But we have

LMMA 5.5. If O(,yl) is a composition factor of O(,y2), then l(,Y2)
Equality holds (f and only if O(,y1) O(,y2).

This will be proved later. This contradiction shows that O(,y1- na) in fact
cannot occur in Ua(O), and allows us to compute the desired multiplicity in the
present case.
So we may assume that no such root a exists. As we saw in the proof of

+ +Lemma 5.4, this implies that if a Av, and Oa Av,, then a is imaginary. Write
B TI+A, MIA GA,. M is split over FI, and its simple roots may be
regarded as a subset of those of G. The roots in A(, b) corresponding to A(t,
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932) are contained in A by Lemma 5.4; in particular they are all integral. Recall
the subset Dr of 1-I defined by Lemma 5.2; Dr meets every simple factor of II
(by the definition of II), and II- Dr consists precisely of the short simple
roots in some simple components of 1-I of type Bn, Cn, or F4 (by Lemma 5.3. To
see this, we need only show that if a is a simple root of b in , then
3,(m) +--1. This is true because m2 lies in the center of G and in the identity
component of M; so since r(7) and r(,) have the same restrictions to the
center of G,

7(m2) r(7)(m2)
r(y)(m2)
r(M,)o(3,)(m2).

Here rtM,o(3,) is the discrete series representation of the identity component of
M with Harish-Chandra parameter ]ti?, and the equalities mean that the
operators are the same multiple of the appropriate identity operators. Since is
integral for 9321 this representation actually lives on a linear quotient of (MOo;
and clearly m2 in such a quotient. So 7(m)= +--1.) Suppose first that there
is a noncompact simple root a such that the corresponding root c 1-I lies in
Dr Then z((’l)) does not contain Dr (since it omits c), so the multiplicity of
(3’) in r(3,) is known by Lemma 5.2. So suppose that there are no such roots.
We claim that then 1 is a product of copies of (2). For let 2 be a simple
factor of 32. Then the simple roots of 322 correspond to some connected subset
of a simple factor 1-I of 1-I, and the noncompact roots correspond to elements
of II- Dx (and are therefore short). In particular this last set is non-empty, so
1-Ix2 is of type Bn Cn, or F4 In particular it has no branches, so neither does the
Dynkin diagram of 2. If the roots of 322 all have the same length, then
(2)0I(n, Iq), which is not equal rank unless n 2. So we may assume that
022 has two root lengths. But then it is easy to see that there always exists a long
noncompact simple root, contradicting our hypothesis that the noncompact
simple roots correspond to II- Dr So 1 is in fact a product of copies of
(2), corresponding to simple roots not in z((7)). But we claim that r(3,)
cannot have such a composition factor (unless in fact )2 0, in which case
B B and we are done). We proceed by induction on the number of copies of
I(2). Choose some simple noncompact root a, corresponding to t 1-Ix
’((,)). Then S_n,((,)) contains a composition factor (72) which is again of
the same type, but with ((3’)), and one less copy of i(2) in the associated
Levi factor (cf. 4.12(0). Since S_,(r(3,))= rr(7), (3’2) occurs in r:(3,). If rt
had more than one i(2), this is impossible by induction. If it has exactly one,
then 72 is associated to the split Cartan subgroup B, so we must have
(’2) (3’). But a ’((3’2)), and a z((,)), a contradiction.

This completes the algorithm for computing composition series in terms of the
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Proof of Lemma 5.5. We proceed by (upward) induction on/(Y2), proving the
result for all (nonsingular) infinitesimal characters simultaneously. Suppose first

+ such that 0athat there is a simple complex root a
of a finite dimensional representation such that "Y2 + /’L, is dominant and
nonsingular for. s,,(A); if a is integral, we take /v=-na, with n
2(a, "Y2)/(a, a). Then l(’Y2 + /’]t l(’Y2)-_ 1, so the_ result is known for q’/’(’Y2)" If
a is not integral, define 3’3 so that S(O(3’2))= 0(3’3). By Corollary 4.8 and
Lemma 4.9, /(73)= l(yl) +-- 1. By inductive hypothesis, /(73)< /(72 +/v), with
equality_ _if and only if 0(3,3) 0(3,2 +/v) (which is clearly equivalent to
0(,) 0(’2)). So

I(’YI) +--- l(t2)- 1,

which implies l(7)< /(’Y2), with equality only if /({3)--/(’2-t-/.t,z). If a is
integral, then

S_na()(2- nol)) [(’Y2)"

So either 0() occurs in 0(7 ha) (in which case we are done by induction) or
there is an a-nonsingular constituent 0(73) of 0(2 ha) such that 0(70 occurs
in U(0(73)). Now l(73) < I(y2- ha)= l(y2)- by induction. So if O(y) is not
a special constituent of Ua(O(’y3)) then 0(71) OCCURS in 0(73) SO

1(7) < /(73)</(72) by induction. If (R)(71) is a special constituent, then
/(,t,)=/(73)+ by Theorem 4.12; so /(71)< /(72). Equality holds only if
/(73) =/(72- ha), which implies 0(73)= 0(72- ha) by induction. By Theorem
4.12, the only special constituent of U((72- ha)) is (72); so (7)= O(7).

So we may assume that no such root a exists. Arguing as at the beginning of
this section, we find that the lemma can now be reduced to the case when G is
split, and B2 is the split Cartan subgroup. In this case /(72) 1/2dim(G/K)

/(7). Equality holds only if B is also split. In this case Proposition 2.2
immediately implies that ’(/2) ’(]tl). Q.E.D.
A few more remarks about the algorithm as a whole are in order. The first we

state as a lemma; all hypotheses on G and 7 have been dropped.

LEMMA 5.6. Suppose 7 /’, (7) has nonsingular infinitesimal character ,
ot 1-Ix "r((7)), and A is simple. Suppose that the composition factors and
multiplicities are known for r(7), as well as for (in the case of 4.12(c)) rr(7- na)
or (in the case of 4.12(f)) r(7+_ ) and r(’) (7’= (F- (n + 1)2, s,)). Suppose
further that for every a-nonsingular constituent S of r(7) except (7) itself, the
composition series of U,,(X) is known (i.e., composition factors and multiplicities.)
Then the composition series of U,((7)) is computable.
The easy proof is left to the reader. The point is that the algorithm we have

described for computing composition series on the basis of a complete
knowledge of the U has an enormous amount of redundancy in it. In practice
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one can compute U’s and composition series simultaneously: if some U’s can
be computed using the various general theorems of sections 3 and 4, then some
composition series can be computed. Lemma 5.7 then allows one to compute
more U’s, and hence more composition series. It may be that a general
description of the U’s can be given only as an algorithm of this kind.

6. A computational result and an example. It is clear that Theorem 3.9(c) is
most useful when U(X) is known to be completely reducible. By 3.9(b), ()
acts by scalars on U(X); so the following result is sometimes helpful.

PROPOSITION 6.1. Let X be an irreducible ((, K) module with nonsingular
infinitesimal character. Suppose there is a short exact sequence

of (gb, K) modules, such that 3(gb) acts by scalars on E. Then E X 9 X.

Proof. Say X(3’), with 3’ B’. Write B T/A, =(y/, /-), with
+ (t+ )* and y- c*. If/ is a weight of a finite dimensional representation
such that 3’ + is dominant and nonsingular for A, then Zuckerman’s
"periodicity theory" (cf. [19]) allows us to replace 3’ by 3’ +/v" Accordingly we

+ +may as well assume that if a Av and (a, y ) 0, then a is real. Now we
make use of the results of [17]. Define a 0-invariant parabolic subalgebra

1 + rt of , with l containing b, by A(tt, b.)= {a A((R), b)[ (a, y+ ) > 0).
Choose a Cartan subalgebra o of l0 fq f0; then o is also a Cartan subalgebra of
f0. Fix a positive root system for t in f compatible with tt fq f. Let t* be the
highest weight of a lowest K-type of X. Let 2p(u fq ;p) be the sum of the roots of t
in tt fq p. Section 7 of [17] describes how to,compute/ 2p(tt N ) from 3’. This
description involves a representation 6 T /, which is a certain fixed twist of
’lr/ by a one dimensional character of T /. Possibly passing to a covering
group of G and again shifting 3’ by a weight of a finite dimensional
representation, we may obviously assume that 6(m,) 4: -1, for every simple
root ct of b in l. In this case, the results of Section 6 of [17] show that the
stabilizer W of 6 in the Weyl group W0 generated by reflections about real
roots, is W0 itself. Let E" denote the highest weight space of the K-type in E,
which has dimension two. E is a module for the centralizer U(g)r of K in @.
By the results of Lepowsky and McCollum in [13], the result of the proposition
is equivalent to the assertion that U(’): acts semisimply on E’. This we now
prove.

Put R dim(u fq), and F= HR(u, E); then F is an (l, 1 N t) module of
finite length (cf. [17], Corollary 3.10). Let F-2P(un’vi) be the highest weight space
of the N f-type - 2p(u ) of F. By the results of [17], there is a natural
bijection E’=F"-2P(uno). (Here we are using the fact that / is strongly
u-minimal in E. This is proved for X in [17], and the result for E follows trivially
since E and X have the same set of K-types.) Furthermore there is a map
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" U(,g)r U(l) n i which relates the U(t)r structure of E to the U(l) n

structure of F-2pun. By Proposition 6.8 of [17], the action of U(I)1 on
F-2"’ factors through a certain homomorphism

V(l )t ---> S(fi) w,;
here Wn W0 is the Weyl group generated by reflections about real roots by our
assumptions on ,/. By Harish-Chandra’s theorem, the restriction of this map to
,(1) is already surjective. We write " U()K S(fi)w for the composite map.
The restriction of to g,((R)) is nothing but the Harish-Chandra homomorphism

((R))- S(b)w. So we may regard E as a module for S(b)w, on which S(b)w
acts by scalars (namely evaluation at a nonsingular element orb*).
What we want to show is that S(b)wo acts semisimply on E. Clearly it
suffices to show that S(b)wo acts semisimply on S(b)Wo/S(b)wo. (S(b)), where
S(b) is the kernel of infinitesimal character Xv. But this is an immediate
consequence of a theorem of Harish-Chandra (cf. [18], Theorem 2.1.3.6).
Q.E.D.

Clearly this argument has a lot more mileage in it, and a complete description
of the U(X) may require a more refined version of Proposition 6.1. Probably an
analogous proof exists in terms of the Langlands classification, and this might be
a more reasonable point of view.
One general remark on the usefulness of the methods of this paper may be

helpful in describing the extent to which the methods are incomplete. Suppose B
is a 0-stable Cartan subgroup of G, -//’, r(7) has nonsingular infinitesimal

/ is actuallycharacter h, a 1-Ix ((,)), and the corresponding root A
simple. Suppose further that for every irreducible constituent Y of r(/), it is
false that z(Y)_ ’((7))U { a}. Then U((,)) is computableit is completely
reducible, and all its constituents have multiplicity one. For let Z be an
irreducible (., K) module with infinitesimal character ; we want to determine
the multiplicity of Z in U((7)). If Z is one of the special constituents of
U((),)), this multiplicity is one (cf. Theorem 4.12). So suppose Z is not a
special constituent. If a (Z), then of course Z cannot occur in U,,((y)); so
assume a (Z). If ’(Z)

_
((3’)), then by hypothesis Z is not a constituent of

rr(,); so Theorem 4.12 implies that Z does not occur in U((-/)). So we may
assume z(Z) z(()). Pick a root fl z0r(,)) with fl _z(Z). By Theorem 4.14,
the multiplicity of Z in U((,)) is one or zero according as (3’) is or is not a
special constituent of Urn(Z), which is computable.

So difficulties arise only when r(3,) has a constituent Y with z(Y)_
r(()) (a). (Even in this case, the redundancy of the algorithm of section
5 often allows one to make computations.) A little thought will convince the
reader that this situation cannot arise very easily. Perhaps the simplest example
in which it does occur is G SP(3, 1), and we conclude this paper with some
computations in that example.

So suppose G SP(3, 1). In this case .(4). We can take )._(4 with the
usual basis {el, e2, e3, e4); then we can take for positive roots (2e, e _+ ek
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(j < k)). The simple roots are then a e e2, fl e2 e3, y e3 e4, and
6 2e4. We will consider only representations with same infinitesimal character
as the trivial representation, namely , (4, 3, 2, 1). The Killing form (up to a
constant) restricts to the usual bilinear form (e ej) 6/j on G4. The Weyl group
W is the group of permutations and sign changes of the e,..
There are two conjugacy classes of Cartan subgroups, namely the compact

ones and the noncompact ones; fix 0-stable representatives B and B2 We may
identify b with t in such a way that the roots corresponding to compact roots

^tare 2e and _+ e _+ (2 < i, j < 4). Since B is connected, an element y of B is
determined by y. Those y corresponding to discrete series with infinitesimal
character 2 are simply those with y w. , for some w W; and w. , and w’. ,
give rise to the same discrete series if and only if w-w’ W(G/BI). Now
W(G/BI) is the Weyl group of the system of compact roots, and therefore
consists of sign changes, and permutations of the last three coordinates. Hence it
suffices to consider

./(1, 1) (4, 3, 2, 1)

"/(1, 2) (3, 4, 2, 1)
V(1, 3) (2, 4, 3, 1)

./(1,4)--(1,4,3,2).
Here the first (in ./(1, .)) refers to the Cartan subgroup B In this case B2 is
connected as well, so the elements of / are also identified with their
differentials. We identify I2 with in such a way that el- e2 corresponds to a
real root (and therefore e + e2, e3 + e4, 2e3, and 2e4 correspond to compact
imaginary roots). W(G/B2) contains the reflections about both real and
imaginary roots, so we need to consider only the following pseudocharacters:

./(2, 1)= (4, 3, 2, 1) "/(2, 7) (4, 1, 3, 2)

./(2, 2) (3, 2, 4, 1) ./(2, 8) (3, 1, 4, 2)

./(2, 3) (2, 1, 4, 3) ./(2, 9) (4, 1, 3, 2)

./(2, 4) (4, 2, 3, 1) ./(2, 10) (3, 2, 4, 1)

./(2, 5)= (3, 1, 4, 2) ./(2, 11) (4, 2, 3, 1)

./(2, 6) (2, 1, 4, 3) ./(2, 12) (4, 3, 2, 1).
Defining the "length" l(./) as in Section 5, one checks easily that the first three
have length 1, the next three have length 2, the next two have length 3, the next
two have length 4, the next has length 5, and the last has length 6; for if
(x, y, z, w) bJ’, then O(x, y, z, w) (y, x, z, w). Similarly one can calculate
--invariants, using Corollary 4.13. Using the remarks preceding this example and
the algorithm of Section 5, one can begin to compute the various U,,(X), and
thus composition series (by induction on l(./)). For convenience we write
,t(./(i,j)) ,r(i,j), O(./(i,j))= O(i,j), etc. The results of this computation are
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given in Table 6.2. There are no difficulties for l(7) < 3; we will do just one case
as an example. Suppose that composition series are known for l(7) < 1, and we
wish to compute that of 19(2, 4). Since 7(2, 4) (4, 2, 3, 1) (3, 2, 4, 1) (e3

+el), and e3 -e corresponds to ct in A(2,2) (7(2, 2)=(3, 2, 4, 1)), we have
0(2, 4)= S_((2, 2)). Now l(7(2, 2)) 1, so the composition series of t9(2, 2)
is known--by Table 6.2,

0(2, 2) (2, 2) + ((1, 2) + (1, 3).
Now we compute S_ applied to each summand separately. By Theorem 4.12,
etr((2, 2)), and the special constituent of U,((2, 2)) is (2, 4). All other
constituents must occur in t9(2, 2), and have c in their r invariant. The only
candidate is (1, 3). Now flr((1, 3)), and fl r(O(2, 2)); so by Theorem
4.14, the multiplicity of (1, 3) in U((2, 2)) is the multiplicity of (2, 2) in
Ua((1, 3)). But one checks easily that 19(2, 2) is a special constituent of
U/(19(1, 3)), so this multiplicity is one. So

U((2, 2)) (2, 4) + (1, 3),
and

S_,((2, 2)) (2, 2) + (2, 4) + N(1, 3).

By a similar but much easier argument,

S_((1, 2)) (1, 2) + (2, 1).

Finally, r(O(1, 3)), so

S_,,((1, 3))= -(1, 3).

Adding the last three equations, and recalling (.), we have

0(2, 4) S_((2, 2)) (2, 4) + 19(2, 2) + (9(2, 1) + 19(1, 2),
as claimed in Table 6.2.

Difficulties arise when we try to compute the composition series of 19(2, 9);
1(7(2, 9)) 4, and we assume Table 6.2 is known for 1(7) < 4. Arguing as above,
we find that 19(2, 9)= S_(O(2, 8)). When we try to compute U(O(2, 8)),
however, we find that t9(2, 8) has a composition factor 19(1, 4), with
r(O(1, 4))_ z(19(2, 8))U (c). So Theorem 4.14 does not tell us the multiplicity
of 19(1, 4) in U(t9(2, 8)). The right way to deal with this problem is very simple"
we simply observe that it is also true that 0(2, 9)= S_(O(2, 7)), and compute
as above; one easily verifies the result given in Table 6.2 for the composition
series of 19(2, 9). Armed with this information, we could if we wished use
Lemma 5.6 to compute U ((2, 8)). However, there exist still more complicated
examples (the simplest I know involves SP(3, Iq)) in which this method does not
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TABLE 6.2

Composition series for SP(3, 1)

0(2, 1) 0(2, 1) + t9(1, 1) + (1, 2)

0(2, 2) 0(2, 2) + 0(1, 2) + 0(1, 3)

0(2, 3)= 0(2, 3) + 9(1, 3) + O(1, 4)

19(2, 4) 0(2, 4) + t9(2, 2) + 19(2, 1) + 0(1, 2)

19(2, 5) 19(2, 5) + 0(2, 3) + 0(2, 2) + O(1, 3)

19(2, 6) 0(2, 6) + 0(2, 3)

0(2, 7) 0(2, 7) + 19(2, 5) + 19(2, 4) + 19(2, 2)

19(2, 8) t9(2, 8) + 19(2, 6) + 0(2, 5) + 0(2, 3) + O(1, 4)

t9(2, 9) 19(2, 9) + 0(2, 8) + 0(2, 7) + 19(2, 5)

0(2, 10) t9(2, 10) + t9(2, 8) + t9(1, 4)

19(2, 11) 0(2, 11) + 0(2, 10) + 19(2, 9) + 19(2, 8) + 19(2, 6)

0(2, 12) 19(2, 12) + 19(2, 11) + 9(2, 6)

work; so we describe a direct approach to calculate the multiplicity of t9(1, 4) in
Ua(O(2, 8)). (The reason for using this example rather than the one for SP(3, R)
should be obviots: SP(3, Iq) has a great many more representations, and would
therefore take much longer to describe.)
By Theorems 4.12 and 4.14,

Ua(O(2, 8)) (2, 9) + (2, 6) + X. 19(1, 4).

We claim that (2, 6) is a direct summand of U((2, 8)). By Corollary 3.19, it
suffices to show that

Hom,,c((2, 6), U((2, 8)))= (3.

But by Theorem 3.9(e),

Hom,x((2, 6), U.(e(2, 8)))=Ext’((2, 6), (2, 8))
Hom, x( UI((2, 6)), (2, 8))= t3
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since Ua((2, 6)) is completely reducible (by the remarks before this example)
and contains (2, 8) (by Theorem 4.12).

Next, we claim that (1, 4) occurs exactly once as a subrepresentation of
U,((2, 8)). By Theorem 3.9(c), we must show that Extl((1, 4), (2, 8))= 13.
Now fl z((1,4)); and it follows from Theorems 4.14 and 4.12 that
(2, 8)= Ua((2, 6)). Finally

Ext’((1, 4), (2, 6))Hom,r((1, 4), Ut((2, 6)))= 0

by Theorem 3.9(c) again. So by Theorem 3.9(c) with i= 1, we obtain

Ext’((1, 4), (2, 8)) Ext((1, 4), (2, 6)) @ Ext2((1, 4), (2, 6)).
The first summand on the right is zero since (1, 4)=(2, 6). Using the root ,,
which is in ((2, 6)) but not in z((1, 4)), a similar argument proves that

Ext=((1, 4), (2, 6))Ext’((2, 3), (2, 6)).
Now ((2, 3)), and z((2, 6)); so by Theorem 3.9(c) again,

Ext((2, 3), (2, 6))=Hom, r(U((2, 3)), (2, 6)).
But by the remarks before this example and Theorems 4.12 and 4.14, U((2, 3))
is completely reducible and contains (2, 6) once. So the last Hom has dimen-
sion 1. Assembling all this, we find that Extl((1, 4), (2, 8))= 13 as claimed.

If we knew that U((2, 8)) was completely reducible, we would now be done;
(1, 4) would occur exactly once in U((2, 8)). Since we do not know this, an
additional argument is necessary. First we claim that (2, 9) is a direct
summand of U((2, 8)). Just as for (2, 6), it is enough to show that
Ext((2, 9), (2, 8))= 13. Just as for (1, 4) one finds that

Ext((2, 9), (2, 8))Ext=((2, 9), (2, 6)).
(We need to know that Ext((2, 9), (2, 6))=0; but this is clear since
/3 z((2, 6)),/3 z((2, 9)), and (2, 9) does not occur in U((2, 6)).) Since, ((2, 9)) and , z((2, 6)),

Ext=((2, 9), (2, 6))--Ext(Ur((2, 9)), (2, 6)).
But by Theorem 4.14, Ur((2, 9))-- (2, 11) ( (2, 7). Now fl !ig -((2, 6)),
fl z((2,7)), and (2,7) does not occur in Ua((2,6)); so Ext.
((2, 7), (2, 6))=0. So we must show Extl((2, 11), (2, 6))= 13. We have
a z((2, 6)), U((2, 10))= (2, 11), and Extl((2, 10), (2, 6))= 0, as is
easily verified; so Theorem 3.9(c) implies that

Ext((2, 11), (2, 6))Ext2((2, 10), (2, 6)).
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A similar argument using fl shows that

Ext2((2, 10), (2, 6))Extl((2, 10), (2, 8))
(since (2, 8) U((2, 6))). Using V, which is in ((2, 10)) but not in
((2, 8)), this becomes

Home,,((2, 10), Uv((2, 8))).
By Theorems 4.12 and 4.14, Uv((2, 8))(2, 5)@(2, 6), so the Hom has
dimension 1. This proves that (2, 9) is a direct summand of U((2, 8)). We
have shown that

U((2, 8))= (2, 6) (2, 9) @ X,

where O(X)= x. 19(1, 4), and X contains (1, 4) exactly once as a subrep-
resentation. But g((R)) acts by scalars on X by 3.9(b); so by Proposition 6.1, X is
completely reducible. So x 1. The rest of Table 6.2 is easy to compute.

Table 6.2 (and in fact composition series for all rank one groups) was first
obtained by Wallach (unpublished). It is a triviality to invert the formulas of 6.2
to obtain formulas for the O(,) in terms of the O(,). It is not obvious that the
present derivation of the results is easier than Wallach’s; the point is simply to
illustrate the results of this paper.
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