NEW FINDINGS OF RARE MINERALS FROM FORMER SOVIET UNION COUNTRIES

Anatolv V. Kasatkin

Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, anatoly.kasatkin@gmail.com

ver last few years many rare minerals have been reliably identified by us in the specimens from various deposits and occurrences in the Russian Federation, Ukraine, and Kazakhstan. The source of such findings was both new material from local mineral collectors, and old specimens from the collection of the Fersman Mineralogical Museum, Russian Academy of Sciences and private collections that were restudied by modern analytical methods.

In this paper, 51 minerals are reported; 35 of them were found in Russia or its regions for the first time. Documentation of such findings is very important in order to replenish the general list of minerals of the Russian Federation as well as regional mineral cadastres.

The described mineral species are grouped under regions, within which minerals follow in alphabetical order.

North European Part

Abellaite, $NaPb_2(CO_2)_2(OH)$, has been identified in the specimen from the collection of Mikhail L. Uchitel recovered from the Karnasurt underground Mine in the Lovozero alkaline massif, Lovozero District, Murmansk Oblast, Kola Peninsula. Abellaite occurs as white thin films with pearly luster coating oxidized galena embedded in pale pink natrolite (Fig. 1) in association with sphalerite, manganoneptunite, and seidite-(Ce).

2. Segregation of fluorcalciobritholitefluorbritholite-(Ce), in which bastnäsite-(Nd) is identified. 3.5 x 3.5 x 3 cm. Britholitovyi Loq, Western Keivy, Lovozero District, Kola Peninsula. Collected by N.I. Frishman and V.M. Kozlovskiy in the summer of 1997. Specimen: Anatoly V. Kasatkin. Photo: Anastasia D. Kasatkina.

3. Thin **bastnäsite-(Nd)** rim (white) overgrows **albite** grain (gray). White grains to the left of albite are monazite-(Ce) Britholitovyi Log, Western Keivy, Lovozero District, Kola Peninsula. Back-scattered electron image: Atali A. Agakhanov.

1. White films of **abellaite** with pearly luster on lead-gray galena in pale pink natrolite. Karnasurt Mine, Lovozero alkaline massif, Kola Peninsula. Specimen: Mikhail L. Uchitel. Photo: Anatoly V. Kasatkin.

Only Na and Pb in the ratio close to 1: 2 were determined by electron microprobe analysis.

The hexagonal unit cell parameters calculated from the powder X-ray diffraction data are consistent with those of abellaite: a = 13.5635(5) Å, c =5.8938(6) Å, V = 939.01(8) Å³.

Abellaite was also identified by I.V. Pekov (personal communication) in the samples collected in August, 2017 at the Yubileinaya-2 pegmatite (level 400 m, Karnasurt Mt.) in the same Karnasurt underground Mine. Here, white with pearly luster abellaite aggregates replace galena embedded in microcline and natrolite in association with aegirine, fluorapatite, manganoneptunite, murmanite, raite, and steenstrupine-(Ce).

Abellaite is a very rare mineral; previously it was reported only at its type locality, Eureka Mine, Catalonia, Spain (Ibáñez-Insa et al., 2017). Our finding of this mineral is obviously first in Russia and second in the world.

Bastnäsite-(Nd), Nd(CO₂)F, has been found in the specimen from the so called Britholitovyi Log located in the northern part of the Sakharyok alkaline massif, Western Keivy, Lovozero District, Murmansk Oblast, Kola Peninsula. The specimen was found by Nikolay I. Frishman and Vasiliy M. Kozlovskiy in the summer of 1997 and occurs as dark brown with resinous luster segregation of fluorcalciobritholite-fluorbritholite-(Ce) (Ca and REE concentrations in the mineral are around 1:1 ratio) coated by yellow earthy bastnäsite-(Ce), black annite, and pinkish to colorless albite (Fig. 2).

Bastnäsite-(Nd) occurs as veinlets and rims up to 0.08 mm thick around albite grains in association with Th, Si-bearing monazite-(Ce) and zircon (Fig. 3).

The chemical composition of bastnäsite-(Nd) is (wt.%; CO₂ and H₂O contents are calculated by stoichiometry): CaO 0.40, Y₂O₂ 7.75, La₂O₂ 17.66, Ce₂O₂ 5.61, Pr₂O₂ 6.32, Nd₂O₂ 22.78, Sm₂O₂ 4.73, Eu₂O₂ 1.08, Gd₂O₂ 3.34, Tb₂O₂ 1.22, Dy₂O₂ 2.13, Ho₂O₂ 0.58, Er₂O₂ 0.54, Yb₂O₂ 0.53, CO₂ 20.35, H₂O 1.91, F 4.77, O = F -2.01, total 99.69. It corresponds to the empirical formula calculated on the basis of O + F + OH = 4): $(Nd_{0.29}La_{0.23}Y_{0.15}Pr_{0.08}Ce_{0.07}Sm_{0.06}$ $Gd_{_{0.04}}Dy_{_{0.02}}Eu_{_{0.01}}Tb_{_{0.01}}Ho_{_{0.01}}Er_{_{0.01}}Yb_{_{0.01}}Ca_{_{0.02}})_{_{\Sigma 1.01}}(CO_3)[F_{_{0.54}}(OH)_{_{0.46}}]_{_{\Sigma 1.00}}.$

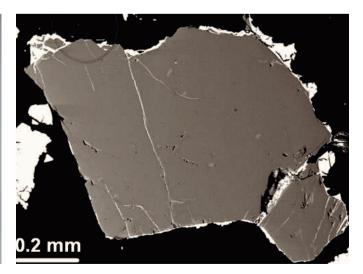


Table 1. Chemical composition of wodginite-group minerals from Ognevka deposit, Eastern Kazakhstan

Analysis	1	2	3	4	5	6	7	8	9	10	11	n/a
componen	t					wt.%						
Mn0	6.89	8.24	8.53	8.43	8.45	5.45	5.15	5.42	5.68	5.23	4.63	6.05
Fe0	4.97	3.78	3.36	3.26	3.68	6.29	6.30	6.37	6.44	6.86	7.94	3.33
Fe ₂ 0 ₃	1.31	1.05	2.13	2.09	1.41	0.45	0.68	0.82	0.67	0.54	1.34	1.72
Ti0 ₂	4.55	4.85	6.81	6.51	6.81	3.97	4.52	4.89	4.23	4.76	6.96	0.31
Sn0 ₂	14.48	14.68	10.02	10.82	11.19	15.82	15.02	14.78	14.86	14.32	10.12	4.94
Nb ₂ 0 ₅	8.53	11.56	8.80	8.48	11.37	6.49	6.41	6.92	6.97	6.78	9.27	10.69
Ta ₂ 0 ₅	58.99	55.81	60.48	60.65	56.76	60.29	60.97	61.96	60.37	60.85	59.59	72.93
Σ	99.72	99.97	100.13	100.24	99.67	98.76	99.05	101.16	99.22	99.34	99.85	99.97
			Fo	rmula calcu	lated on th	e basis of 8 () atoms and	Ta + Nb = 2				
Mn	0.59	0.69	0.71	0.70	0.69	0.48	0.45	0.46	0.49	0.45	0.38	0.54
Fe ²⁺	0.42	0.31	0.28	0.27	0.30	0.54	0.54	0.53	0.55	0.59	0.65	0.29
$\sum A$	1.01	1.00	0.99	0.97	0.99	1.02	0.99	0.99	1.04	1.04	1.03	0.83
Fe ³⁺	0.10	0.08	0.16	0.15	0.10	0.04	0.05	0.06	0.05	0.04	0.10	0.14
Ti	0.34	0.36	0.50	0.48	0.50	0.31	0.35	0.37	0.33	0.37	0.51	0.02
Sn ⁴⁺	0.58	0.58	0.39	0.42	0.43	0.65	0.62	0.59	0.61	0.58	0.40	0.21
Та	-	-	-	-	-	-	-	-	-	-	-	0.60
$\sum B$	1.02	1.02	1.05	1.05	1.03	1.00	1.02	1.02	0.99	0.99	1.01	0.97
Nb	0.39	0.51	0.39	0.38	0.50	0.30	0.30	0.31	0.32	0.31	0.41	0.51
Та	1.61	1.49	1.61	1.62	1.50	1.70	1.70	1.69	1.68	1.69	1.59	1.49
ΣC	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
0	8	8	8	8	8	8	8	8	8	8	8	8

Notes: (1-2) wodginite, (3-5) titanowodginite, (6-10) ferrowodginite, (11) ferrotitanowodginite, (N/A) tantalowodginite. Fe /Fe,0, is calculated from charge balance.

> The powder X-ray diffraction pattern of one large grain and calculated monoclinic unit cell parameters $[a = 9.50(3) \text{ Å}, b = 11.46(4) \text{ Å}, c = 5.132(19) \text{ Å}, \beta =$ 90.0(3)°, V = 559(3) Å³] undoubtedly show the wodginite structure type.

> While wodginite was mentioned in the post-Soviet area at several deposits of Russia and Kazakhstan (including Ognevka), we could not find in the literature any analyses corresponding to ferrowodginite, titanowodginite, and ferrotitanowodginite for the minerals found at the territory of the former Soviet Union. Particular attention worth our finding of ferrotitanowodginite, certainly the rarest mineral of this group in nature. Previously, this mineral was reported only in granite pegmatites La Viquita and San Elias in Argentina (Galliski et al., 1999), and in Marko pegmatite in Canada (Tindle et al., 1998).

> With regard to tantalowodginite, despite it was approved by the Commission on New Minerals, Nomenclature, and Classification of IMA as individual mineral species only in 2017, the corresponding compositions were known long before. For example, in 2000s, Igor V. Pekov identified tantalowodginite in the sample collected in 1940s from one of the pegmatites in the Kalba Range and in the material from the Vishnyakovskoe Ta-Li deposit, East Sayan, Tayshet District, Irkutsk Oblast (personal communication). The sample of tantalowodgnite from the Vishnyakovskoe deposit donated by Dmitry I. Belakovskiy in 2003 is now de-

62. Dark brown to black pods composed of fine grains of cassiterite, wodginite-group (titanowodginite, wodginite, ferrowodginite, ferrotitanowodginite and tantalowodginite), and microlite-group (fluorcalciomicrolite, fluornatromicrolite) minerals in association with white **feldspar**. 6 x 4 x 3.5 cm. Ognevka deposit. Kalba Range, Ulanskiv District, Eastern Kazakhstan. Collected in 1970s. Specimen: Anatoly V. Kasatkin. Photo: Anastasia D. Kasatkina.

63. Chemically zoned grain consisting of wodginite-group minerals: (1, 2) wodginite, (3-5) titanowodginite, (6-10) ferrowodginite, (11) ferrotitanowodginite, (12) **fluorocalciomicrolite**, and (13–16) **cassiterite**. Points 1–11 correspond to numbers in Table 1. Ognevka deposit, Kalba Range, Ulanskiy District, Eastern Kazakhstan. Back-scattered electron image: Anatoly V. Kasatkin.

posited in the collection of the Fersman Mineralogical Museum, Russian Academy of Sciences under the #91254. We analytically confirmed the identification of the mineral as tantalowodginite in 2016.

Conclusions

Most findings described in this paper would not have been possible without fruitful cooperation of the author with both professional mineralogists and mineral amateurs, who regularly provide samples from their collections for identification. We are convinced that the continuation of such cooperation and careful study of old specimens deposited in the museum collections by modern analytical techniques will obviously ensure the further success in searching of rare minerals and updating the mineral cadastres of Russia and whole post-Soviet area by new mineral species.

Acknowledgments

The author is grateful to Igor V. Pekov for fruitful discussion and editing of the paper. Mikhail Yu. Anosov (Russian Minerals), Mikhail A. Blokhin, Sergey G. Epanchintsev, Pavel S. Kozlov, Alexey M. Kuznetsov, Victor V. Levitskiy, Vladimir S. Lednyov, Mikhail M. Murashko, Victor I. Nekrasov, Irina E. Rudenko (Sevastopol Mineral Museum), Sergey Yu. Stepanov, Alexander I. Tishchenko, Mikhail L. Uchilel, Mikhail V. Tsyganko (Mineralogical Museum "Shtufnoy Kabinet", Severouralsk), and Dmitry I. Cherepanov kindly provided specimens from their collections. Dmitry I. Belakovskiv has actively contributed to the study of specimens from the collection of the Fersman Mineralogical Museum, Russian Academy of Sciences. Atali A. Agakhanov, Fabrizio Nestola, Luca Nodari, Igor V. Pekov, Nikita V. Chukanov, and Radek Škoda took part in the analytical investigation of the minerals, while Anastasia D. Kasatkina, Alexey M. Kuznetsov, and Victor V. Levitskiy have contributed to their photographing.

The author expresses his deep appreciation to all these people.

Alphabetical Index of Minerals

Mineral

27 Kettnerite

28 Lisiguangite

29 Minrecordite

30 Mixite

31 Mohite

32 Orlymanite

33 Oxy-dravite

34 Oxyphlogopite

35 Parádsasvárite

36 Perhamite

37 Petitjeanite

38 Rhodium

39 Rossovskyite

41 Tintinaite

40 Tantalowodginite

42 Titanowodginite

43 Wakabayashilite

44 Windhoekite

45 Wittichenite

46 Wodginite

47 Yangzhumingite

48 Yuanjiangite

50 Zincocopiapite

51 Zincovoltaite

49 Yukonite

Formula

CaBi(CO₃)OF

PtCuBiS,

 $CaZn(CO_3)_2$

Cu₂SnS₃

 $BiCu_6(AsO_4)_3(OH)_6 \bullet 3H_2O$

 $Ca_4Mn_3^{2+}Si_80_20(0H)_6 \cdot 2H_20$

 $Na(MgAl_2)MgAl_5(Si_6O_{18})(BO_3)_3(OH)_3O_3(OH)_3(OH)_3O_3(OH)_3O_3(OH)_3O_3(OH)_3O_3(OH)$

K(Mg,Ti,Fe)₃[(Si,Al)₄0₁₀](0,F)₂

Ca₃Al_{7.7}Si₃P₄O_{23.5}(OH)_{14.1}•8H₂O

 $Zn_{2}(CO_{3})(OH)_{2}$

 $Zn_{2}(CO_{3})(OH)_{2}$

(Fe,Ta)(Nb,Ti)04

(Mn²⁺_{0.5}D_{0.5})TaTa₂O₈

Pb₁₀Cu₂(Sb,Bi)₁₆S₃₅

Mn²⁺TiTa₂0₈

(As,Sb)₆As₄S₁₄

Mn²⁺Sn⁴⁺Ta₂O₈

KMg_{2.5}(Si₄0₁₀)F₂

Cu₃BiS₃

AuSn

 $Ca_2Fe_{3-x}^{3+}(Si_8O_{20})(OH)_4 \bullet 10H_2O$

 $Ca_{2}Fe_{3}^{3+}(AsO_{4})_{3}(OH)_{4}\bullet 4H_{2}O$

 $ZnFe_{4}^{3+}(SO_{4})_{6}(OH)_{2} \bullet 2OH_{2}O$

K₂Zn₅Fe³⁺Al(SO₄)₁₂•18H₂O

(Rh,Pt)

lineral	Formula	Locality	Find in	Find in
AL 11 *			Russia	world
Abellaite	$NaPb_2(CO_3)_2(OH)$	Karnasurt Mine, Lovozero alkaline massif,	First	Second
AL */ #		Kola Peninsula, Russia	F' 1	
Alpersite*	(Mg,Cu)SO ₄ •7H ₂ O	Petropavlovskiy Quarry near Petropavlovka Village,	First	
rmanita		Simferopol District, Crimea Peninsula, Russia	First	
rmenite	$BaCa_2Al_6Si_9O_{30}$ •2H ₂ O	Vorontsovskoe Au deposit, Krasnoturinsk Mining District, Sverdlovskaya Oblast, Northern Urals, Russia	FIISL	
alkanite	Cu _q Ag ₅ HgS ₈	Badzhiraevka deposit, Krasnyi Chikoy District,	First	
Jatkannte		Zabaykaľ skiy Krai, Siberia, Russia	TIISC	
Bastnäsite-(Nd)	Nd(CO ₃)F	Britholitovyi Log, Western Keivy, Lovozero District,	First	
usenusite (nu)	14(003)	Kola Peninsula, Russia	THSC	
Bianchite	ZnSO ₄ •6H ₂ 0	Muzhievo deposit, Beregovo District,		
	4 2	Zakarpatskaya Oblast, Ukraine		
Boyleite	ZnS0 ₄ •4H ₂ 0	Muzhievo deposit, Beregovo District,		
-	4 Z	Zakarpatskaya Oblast, Ukraine		
Burckhardtite	Pb ₂ (Fe ³⁺ Te ⁶⁺)[AlSi ₃ 0 ₈]0 ₆	Aginskoe Au deposit, Bystrinskiy District,	First	Fourth
	5040	Kamchatskiy Krai, Far East, Russia		
Butlerite	Fe ³⁺ (SO ₄)(0H)•2H ₂ 0	Irokinda Mine, Muyskiy District, Republic of Buryatia,		
	·	Siberia, Russia		
habazite-Mg	$(Mg_{0.7}K_{0.5}Ca_{0.5}Na_{0.1})[Al_{3}Si_{9}O_{24}]\bullet 10H_{2}O$	Makar-Ruz Occurrence, Rai-Iz massif, Polar Urals,	First	Third
		Yamalo-Nenetskiy AO, Tyumen Oblast, Russia		
hapmanite	$Fe_{2}^{3+}Sb^{3+}(SiO_{4})_{2}(OH)$	Vorontsovskoe Au deposit, Krasnoturinsk Mining District,	First	
		Sverdlovskaya Oblast, Northern Urals, Russia		
oloalite	CuPb(TeO ₃) ₂	Aginskoye Ore Body, Aginskoe Au deposit, Bystrinskiy District,	First	
		Kamchatskiy Krai, Far East, Russia		
audetite	As ₂ 0 ₃	Vorontsovskoe Au deposit, Krasnoturinsk Mining District,	First	
		Sverdlovskaya Oblast, Northern Urals, Russia		
rnwallite	$Cu_5(AsO_4)_2(OH)_4$	Aginskoe Cu-Pb-Zn deposit, Aginskiy District,	Second	
	M=3+0/011)	Zabaykal'skiy Krai, Siberia, Russia	Conned	
itknechtite	Mn ³⁺ O(OH)	Zmeinogorskoe Mn deposit, Chebarkul District,	Second	
rri-fluoro nubaita	NaNa (Ma Ea^{3+1}) ALS: 0) E	Chelyabinsk Oblast, Southern Urals, Russia	First	First
n-nuoro-nypolte	$NaNa_2(Mg_3Fe_2^{3+})(AlSi_7O_{22})F_2$	Vein #124, Vishnevye Mountains, Kasli District, Chelyabinsk Oblast, Southern Urals, Russia	First	FIISU
rrihollandite	Ba(Mn ₆ ⁴⁺ Fe ³⁺ ₂)O ₁₆	Murzinskoe-1 Au deposit, Krasnoshchyokovo District,	First	Fifth
	2,016	Altaiskiy Krai, Siberia, Russia	11136	i ii uli
erri-kaersutite	NaCa ₂ (Mg ₃ Fe ³⁺ Ti)(Al ₂ Si ₆ O ₂₂)O ₂	Uluk-Tyuk Stream, Patynskiy gabbro-syenite pluton,	First	
	20.33	Tashtagol District, Kemerovo Oblast, Siberia, Russia		
errotitanowodginite	Fe ²⁺ Sn ⁴⁺ Ta ₂ 0。	Ognevka deposit, Kalba Range, Ulanskiy District,		Fourth
	2 8	Eastern Kazakhstan		
errowodginite	Fe ²⁺ Sn ⁴⁺ Ta ₂ 0 ₈	Ognevka deposit, Kalba Range, Ulanskiy District,		
-	2.0	Eastern Kazakhstan		
luor-schorl	NaFe ₃ ²⁺ Al ₆ Si ₆ O ₁₈ (BO ₃) ₃ (OH) ₃ F	Sherlovyi pegmatite, 2.5 km West from the Taiginka Village,	First	
		Kyshtym District, Chelyabinsk Oblast, Southern Urals, Russia		
pordite	Sn ²⁺ (Nb,Ta) ₂ 0 ₆	Bakennoe Ta deposit, Kalba Range, Ulanskiy District,		Third
		Eastern Kazakhstan		
etchellite	AsSbS ₃	Vorontsovskoe gold deposit, Krasnoturinsk Mining District,	First	
		Sverdlovskaya Oblast, Northern Urals, Russia		
insdalite	$PbAl_{3}(PO_{4})(SO_{4})(OH)_{6}$	South Kontrolnyi area, Kontrolnoe Au deposit, Uchaly District,	Third	
		Republic of Bashkortostan, Southern Urals, Russia	-	
ulgoldite-(Fe ³⁺)	$Ca_2Fe^{3+}(Fe^{3+})_2Si_2O_7(SiO_4)O(OH) \bullet H_2O$	Pervomaiskiy Quarry near Trudolyubovka Village,	First	
	C- M-(E-34) C' O (C'O) (OU) -U O	Bakhchisarai District, Crimea Peninsula, Russia	First	F 1. 1
ulgoldite-(Mg)	$Ca_2Mg(Fe^{3+})_2Si_2O_7(SiO_4)(OH)_2\bullet H_2O$	Pervomaiskiy Quarry near Trudolyubovka Village,	First	First
		Bakhchisarai District, Crimea Peninsula, Russia		

* Might be not alpersite but a new phase MgSO₄•7H₂O.

** More probable locality is Svetlinskoe Au deposit, Chelyabinsk Oblast, Southern Urals.

Locality	Find in	Find in	
	Russia	world	
East Kounrad Mine, Aktogay District, Karaganda Oblast,			
North Balkhash Region, Kazakhstan			
Srednyaya Padma U-V deposit, Zaonezhskiy Peninsula,	First	Second	
Medvezhyegorsk District, Southern Karelia, Russia			
Kurbinskoe polymetallic occurrence, Khorinsk District,	First		
Republic of Buryatia, Siberia, Russia			
Lukavaya Hill, Sherlovaya Gora, Borzya District,	First		
Zabaykal'skiy Krai, Siberia, Russia			
Khinganskoe deposit, Obluch'e District,	First		
Jewish Autonomous Oblast, Far East, Russia			
Pervomaiskiy Quarry near Trudolyubovka Village,	First	Third	
Bakhchisarai District, Crimea Peninsula, Russia			
Prishosseinaya Pit at Karabash-Kyshtym road near the exit			
to Taiginka settlement, Kyshtym District, Chelyabinsk Oblast,			
Southern Urals, Russia	First		
District of the Bartoy paleovolcano group, Bartoy Valley,	First		
Dzhida District, Republic of Buryatia, Siberia, Russia	First	Second	
Verkhniy Mine, Dalnegorsk, Primorskiy Krai, Far East, Russia	First	Second	
Eremkinskiy Quarry, 15 km West fromf Plast city, Chelyabinsk Oblast, Southern Urals, Russia**	FIISC		
Placers on the Tatarka riverhead, Yeniseiskiy Ridge,	First		
Severo-Yeniseyskiy District, Krasnoyarsk Krai, Siberia, Russia	THE		
Placer of the Veresovka River, near Kos'ya settlement,	First		
Nizhneturinsk Mining District, Sverdlovskaya Oblast,	TH5C		
Middle Urals, Russia			
Dumortieritovaya Pit, 10 km north-west from Karabash city,	First	Second	
Uvildy Lake, Chelyabinsk Oblast, Southern Urals, Russia			
Ognevka deposit, Kalba Range, Ulanskiy District,			
Eastern Kazakhstan			
Kochkar Au deposit, Plast District, Chelyabinsk Oblast,	Second		
Southern Urals, Russia			
Ognevka deposit, Kalba Range, Ulanskiy District,			
Eastern Kazakhstan			
Vorontsovskoe gold deposit, Krasnoturinsk Mining District,	Second		
Sverdlovskaya Oblast, Northern Urals, Russia			
Pervomaiskiy Quarry near Trudolyubovka Village,	First	Second	
Bakhchisarai District, Crimea Peninsula, Russia			
Sosedka vein, Malkhan pegmatite field, Krasnyi Chikoy			
District, Zabayakal'skiy Krai, Siberia, Russia			
Ognevka deposit, Kalba Range, Ulanskiy District,			
Eastern Kazakhstan			
Ermakovskoe Be deposit, Kizhinga District,	First	Fourth	
Republic of Buryatia, Siberia, Russia	Film (2)		
Kazakovskaya placer, Nerchinsk District, Zabaykal'skiy Krai,	First?		
Siberia, Russia Khawa Alaya danagata Chadi Khalalain District	Constant		
Khovu-Aksy deposit, Chedi-Kholskiy District,	Second		
Republic of Tuva, Siberia, Russia			
Muzhievo deposit, Beregovo District,			
Zakarpatekaya Oblact Ukraina			
Zakarpatskaya Oblast, Ukraine Muzhievo deposit, Beregovo District,		Third	