Revision 1 1 2 Scottyite, the natural analogue of synthetic BaCu₂Si₂O₇, a new mineral 3 4 from the Wessels mine, Kalahari Manganese Fields, South Africa 5 Hexiong Yang¹, Robert T. Downs¹, Stanley H. Evans¹, and William W. Pinch² 6 7 ¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A. 8 ²19 Stonebridge Lane, Pittsford, New York 14534, U.S.A. 9 10 Corresponding author: hyang@u.arizona.edu 11 12 Abstract 13 A new mineral species, scottyite, ideally BaCu₂Si₂O₇, has been found in the 14 Wessels mine, Kalahari Manganese Fields, Northern Cape Province, South Africa. The 15 mineral appears to have formed as a result of a hydrothermal event and is associated with 16 wesselsite, pectolite, richterite, sugilite, and lavinskyite. Scottyite forms blocky grains 17 with striations parallel to the c axis. Crystals are found up to 0.4 x 0.3 x 0.3 mm. No 18 twinning is observed. The mineral is dark-blue in transmitted and under incident lights, 19 transparent with pale blue streak and vitreous luster. It is brittle and has a Mohs hardness 20 of 4~5; cleavage is perfect on {100} and {010} and no parting was observed. The calculated density is 4.654 g/cm³. Optically, scottyite is biaxial (-), with $\alpha = 1.750(1)$, β 21 22 =1.761(1), and γ =1.765(1), $2V_{\text{meas.}}$ = 66(2)°. It is insoluble in water, acetone, or 23 hydrochloric acid. An electron microprobe analysis produced an average composition 24 (wt.%) (8 points) of CuO 36.98(31), BaO 35.12(16), SiO₂ 27.01(61), SrO 0.28(5), and $Na_2O 0.06(2)$, and total = 99.45(65), yielding an empirical formula (based on 7 O apfu) 25 26 $Ba_{1\ 00}Sr_{0\ 01}Na_{0\ 01}Cu_{2\ 04}Si_{1\ 97}O_7.$ 27 Scottvite is the natural analogue of synthetic BaCu₂(Si,Ge)₂O₇, which exhibits 28 novel one-dimensional quantum spin-1/2 antiferromagnetic properties with tunable super-

29 exchange interactions. It is orthorhombic, with space group *Pnma* and unit-cell parameters a = 6.8556(2), b = 13.1725(2), c = 6.8901(1) Å, and V = 622.21(6) Å³. The 30 31 structure of scottyite is characterized by flattened CuO₄ tetrahedra sharing corners with 32 one another to form chains parallel to the c axis. These chains are interlinked by Si_2O_7 tetrahedral dimers and Ba²⁺. The Ba²⁺ cations are bonded to seven O atoms in a rather 33 34 irregular coordination. The average Si-O, Cu-O, and Ba-O bond lengths are 1.630, 1.941, 35 and 2.825 Å, respectively. Scottyite is topologically related to a group of compounds with the general formula $BaM^{2+}_{2}Si_{2}O_{7}$, where M = Be (barylite and clinobarylite), Fe 36 37 (andremeyerite), Mg, Mn, Co, and Zn. 38 39 **Key words:** scottyite, BaCu₂Si₂O₇, crystal structure, X-ray diffraction, Raman spectra 40 41 42 Introduction 43 A new mineral species, scottyite, ideally BaCu₂Si₂O₇, has been found in the 44 Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South 45 Africa. It is named after Mr. Michael M. Scott "Scotty", the co-founder and first CEO of 46 Apple Computer Corporation (February 1977 to March 1981), and the founding sponsor 47 of the RRUFF project — an Internet-based, internally-consistent, and integrated database 48 of Raman spectra, X-ray diffraction, and chemistry data for minerals. The vivid color of 49 the mineral reflects his spectroscopic interests, and the synthetic analogue's high-tech 50 applications mirror his role in introducing the desktop computer to the world. The new 51 mineral and its name have been approved by the Commission on New Minerals, 52 Nomenclature and Classification (CNMNC) of the International Mineralogical 53 Association (IMA 2012-027). Part of the cotype sample has been deposited at the 54 University of Arizona Mineral Museum (Catalogue # 19334) and the RRUFF Project 55 (deposition # R120077). The holotype sample is in the collection of W.W. Pinch.

Silicates with only Ba and Cu as essential structural constituents are relatively
rare in nature and only two such minerals have been documented thus far, including
effenbergerite BaCuSi ₄ O ₁₀ (Giester and Rieck 1994) and scottyite, both originating from
the same locality. Nevertheless, Ba-silicate compounds characterized by the general
chemical formula $BaM^{2+}_{2}Si_{2}O_{7}$ ($M^{2+}=Be, Mg, Mn, Fe, Co, Zn, and Cu$) have been a
subject of extensive investigations for their scientific and industrial interests. For
example, the materials with M = Be, Mg, and Zn are suitable hosts for luminescent
activating ions. In particular, Pb ²⁺ -doped BaBe ₂ Si ₂ O ₇ is used commercially as a UV
emitting material in moth-killing lamps and $(Eu^{2+} + Mn^{2+})$ -doped $BaMg_2Si_2O_7$ is a deep-
red luminescent emitter through effective energy transfers from Eu ²⁺ to Mn ²⁺ (Barry
1970; Yao et al. 1998). Moreover, compounds with M = Cu, Co, and Mn are ideal
prototypical quasi-one-dimensional quantum spin (=1/2, 3/2, and 5/2, respectively)
Heisenberg antiferromagnets with adjustable superexchange interactions, which is vital
for our understanding of high-Tc superconductivity (e.g., Janczak et al. 1990; Adams and
Layland 1996; Lu et al. 2000; Yamada et al. 2001a, 2001b; Ohta et al. 2004a, 2004b;
Bertaina and Haya 2006; Zvyagin 2006; Zheludev et al. 2007). Among the $BaM_{2}^{2+}Si_{2}O_{7}$
family, the Be- and Fe-bearing members have been found in nature, namely barylite,
clinobarylite, and andrémeyerite. This paper describes the physical and chemical
properties of scottyite and its crystal structure determined from the single-crystal X-ray
diffraction data, demonstrating that scottyite is the natural analogue to the synthetic Cu-
member of the $BaM_{2}^{2+}Si_{2}O_{7}$ family.
Sample Description and Experimental Methods
Occurrence, physical and chemical properties, and Raman spectra
Scottyite was found on two specimens originating from the central-eastern ore
body of the Wessels mine, Kalahari Manganese Fields, Northern Cape Province,

83	Republic of South Africa. It is in a massive assemblage associated with wesselsite
84	$SrCuSi_4O_{10},\ lavinsky ite\ K(LiCu)Cu_6Si_8O_{22}(OH)_4,\ pectolite\ NaCa_2Si_3O_8(OH),\ richterite$
85	$Na(CaNa)Mg_5Si_8O_{22}(OH)_2, \ and \ sugilite \ KNa_2Fe^{3+}{}_2(Li_3Si_{12})O_{30} \ (Figs.\ 1\ and\ 2). \ The$
86	mineral assemblage probably formed as a result of a hydrothermal event. Conditions
87	during metamorphism were in the range of 270-420 °C at 0.2-1.0 kbar (Kleyenstuber
88	1984; Gutzmer and Beukes 1996). Detailed reviews on the geology and mineralogy of the
89	Kalahari Manganese Fields have been given by Kleyenstuber (1984), Von Bezing et al.
90	(1991), and Gutzmer and Beukes (1996). It should be pointed out that scottyite was
91	actually first reported as an unnamed Ba-Cu silicate from Eifel, Germany (Hentschel
92	1993; Blaß et al. 2009; Blaß and Schüller 2011). However, this unnamed mineral was not
93	fully described and documented in the list of the IMA valid or invalid unnamed minerals.
94	Since scottyite was approved as a new mineral species based on our mineralogical data,
95	we consider the Wessels Mine, South Africa, rather than Eifel, Germany, as its type
96	locality.
97	Scottyite forms blocky grains with striations parallel to the ${\bf c}$ axis. Crystals are
98	found up to 0.4 x 0.3 x 0.3 mm. No twinning is observed. The mineral is dark blue,
99	transparent with pale blue streak and vitreous luster. It is brittle and has a Mohs hardness
100	of $4\sim5$; cleavage is perfect on $\{100\}$ and $\{010\}$ and no parting was observed. The
101	measured and calculated densities are 4.63(3) and 4.654 g/cm ³ , respectively. Optically,
102	scottyite is biaxial (-), with $\alpha = 1.750(1)$, $\beta = 1.761(1)$, $\gamma = 1.765(1)$ (white light), 2V
103	(meas.) = $66(2)^{\circ}$, 2V (calc.) = 62° , and the orientation $X = a$, $Y = b$, $Z = c$. The
104	pleochroism is $X =$ medium blue, $Y =$ dark blue, and $Z =$ medium blue, and the absorption
105	Y > X = Z. No dispersion was observed. Scottyite is insoluble in water, acetone, or
106	hydrochloric acid.
107	The chemical composition was determined using a CAMECA SX-100 electron
108	microprobe (15 kV, 20 nA, \leq 1 μm beam diameter) (<u>http://rruff.info/scottyite</u>). The
109	standards used included chalcopyrite (Cu), NBS_K458 (Ba), diopside (Si), SrTiO ₃ (Sr),

110 and albite (Na), yielding an average composition (wt.%) (8 points) of CuO 36.98(31), 111 BaO 35.12(16), SiO_2 27.01(61), SrO 0.28(5), and Na_2O 0.06(2), and total = 99.45(65). 112 The resultant chemical formula, calculated on the basis of 7 O apfu (from the structure 113 determination), is Ba_{1.00}Sr_{0.01}Na_{0.01}Cu_{2.04}Si_{1.97}O₇, which can be simplified to BaCu₂Si₂O₇. 114 The Raman spectrum of scottyite was collected on a randomly oriented crystal 115 from 12 scans at 60 s and 100% power per scan on a Thermo Almega microRaman 116 system, using a solid-state laser with a wavelength of 532 nm and a thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm⁻¹ resolution and a spot size of 1 117 118 μm. 119 120 *X-ray crystallography* 121 Because of the limited amount of available material, no powder X-ray diffraction 122 data were measured for scottyite. Listed in Table 1 are the powder X-ray diffraction data calculated from the determined structure using the program XPOW (Downs et al. 1993). 123 124 Single-crystal X-ray diffraction data of scottyite were collected from a nearly equi-125 dimensional, untwinned crystal (0.04 x 0.05 x 0.05 mm) with frame widths of 0.5° in ω 126 and 30 s counting time per frame. All reflections were indexed on the basis of an 127 orthorhombic unit-cell (Table 2). The intensity data were corrected for X-ray absorption 128 using the Bruker program SADABS. The systematic absences of reflections suggest 129 possible space groups Pnma (#62) or $Pn2_1a$ (#33). The crystal structure was solved and 130 refined using SHELX97 (Sheldrick 2008) based on the space group *Pnma*, because it 131 yielded better refinement statistics in terms of bond lengths and angles, atomic 132 displacement parameters, and R factors. The positions of all atoms were refined with 133 anisotropic displacement parameters. During the structure refinements, the ideal 134 chemistry was assumed, as the overall effects of the trace amounts of other elements (Sr 135 and Na) on the final structure results are negligible. Final coordinates and displacement

parameters of atoms in scottyite are listed in Table 3, and selected bond-distances in

Discussion

Crystal structure

Scottyite is identical with synthetic BaCu₂Si₂O₇ (Janczak et al. 1990; Yamada et al. 2001a) and isostructural with BaCu₂Ge₂O₇ (Oliveira 1993; Yamada et al. 2001a). Our structure data agree well with those determined for synthetic BaCu₂Si₂O₇ by Janczak et al. (1990) using single-crystal X-ray diffraction (Tables 2 and 4). The structure of scottyite is based on a tetrahedral framework consisting of SiO₄ and CuO₄ tetrahedra. The CuO₄ tetrahedra are considerably flattened and share corners to form chains parallel to the c axis. The chains are interlinked by the Si₂O₇ dimers oriented parallel to the b axis. The Ba²⁺ cations are in the framework channels (Fig. 3). The Cu-O-Cu angle within the CuO₄ tetrahedral chain is 124.49°, which is responsible for the antiferromagnetic coupling in BaCu₂Si₂O₇ (Yamada et al. 2001a).

The Ba²⁺ cation in scottyite is bonded to seven O atoms within 3.0 Å in a rather irregular coordination. The next two nearest O atoms (O4) are 3.263 Å away. The bond-valence sum for Ba²⁺, calculated using the parameters given by Brese and O'Keeffe (1991), is only 1.69 v.u. (Table 5), indicating that it is significantly under-bonded (Table 5). In contrast, the Ba²⁺ cations in effenbergerite are bonded to eight O atoms in a distorted cube coordination with a bond-valence sum of 1.95 u.v. (Chakoumakos et al. 1993; Giester and Rieck 1994). The Cu²⁺ cations in both scottyite and effenbergerite, however, exhibit a similar, nearly planar square coordination. The difference between the Cu coordinations in the two minerals is that the four O atoms bonded to Cu²⁺ in effenbergerite lie in the same plane, with Cu²⁺ slightly (0.67Å) off the plane (Giester and Rieck 1994), whereas they form a markedly flattened tetrahedron in scottyite. The similar planar or nearly planar square coordinations for Cu²⁺ have also been observed in other

163 synthetic Ba-Cu-silicates, such as I-4m2 BaCuSi₂O₆ (Finger et al. 1989), as well as 164 I4₁/acd and I4/mmm BaCuSi₂O₆ (Sparta and Roth 2004). The Si-O-Si angle within the Si₂O₇ dimer in scottyite is 134.3°, which is the 165 second largest in the BaM²⁺₂Si₂O₇ group, only smaller than that in clinobarylite (138.5°) 166 167 (Table 6). However, an examination of the clinobarylite structure (Krivovichev et al. 168 2004) reveals a rather peculiar feature: the Si-O_{br} (bridging O atom) distance (1.597 Å) is 169 significantly shorter than the Si-O_{nbr} (non-bridging O atoms) distances (1.619-1.631 Å). 170 This contradicts the previous observations for disilicate compounds (e.g., Lin et al. 1999; 171 Fleet and Liu 2001; Kolitsch et al. 2009), including all other compounds in the $BaM^{2+}_{\ 2}Si_2O_7$ group. Our redetermination of the clinobarylite structure with a crystal from 172 173 the type locality (Khibiny Massif, Kola Peninsula, Rassia) confirmed its true space group 174 $Pmn2_1$ ($R_1 = 0.011$ and $R_w = 0.026$), as that reported by Krivovichev et al. (2004), but 175 yielded the Si-O_{br} length of 1.657(1) Å and the Si-O-Si angle of 128.82(8)° (Di Domizio et al. 2012). Regardless, the Si-O-Si angles for the compounds in the BaM²⁺₂Si₂O₇ group 176 177 are among the smallest of disilicate materials, which generally exhibit Si-O-Si angles 178 ranging from 120 to 180° (Lin et al. 1999; Fleet and Liu 2001; Kolitsch et al. 2009 and 179 references therein). There is a strong resemblance in the structural topology among the BaM²⁺₂Si₂O₇ 180 181 compounds, despite their diverse structural symmetries (Table 6): they are all composed 182 of corner-shared MO₄ tetrahedral chains that are interlinked by Si₂O₇ tetrahedral dimers and Ba²⁺ cations. The major differences among these compounds consist in the relative 183 arrangements of Ba²⁺ and Si₂O₇ with respect to the MO₄ tetrahedral chains, thus giving 184 rise to different coordination environments around Ba²⁺ and M²⁺. For example, the Ba²⁺ 185 cation is only coordinated by five O atoms in high-temperature Ccm2₁ BaZn₂Si₂O₇, but 186 187 seven in scottyite, and nine in barylite and clinobarylite. Moreover, there is only one type 188 of symmetrically-distinct MO₄ tetrahedra in scottyite, barylite, clinobarylite, and hightemperature $Ccm2_1$ BaZn₂Si₂O₇, but two in andrémeyerite, and three in C2/c compounds in the BaM²⁺₂Si₂O₇ group.

Raman spectra

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

The Raman spectrum of scottyite is plotted in Figure 4, along with the spectra of barylite and clinobarylite (R060620 and R060606, respectively, from the RRUFF Project) for comparison. Based on previous experimental and theoretical Raman spectroscopic studies on various disilicate compounds (e.g., Sharma et al. 1988; Fleet and Henderson 1997; Makreshi et al. 2007; Kaminskii et al. 2011; Becker et al. 2012), we made a tentative assignment of major Raman bands for scottyite (Table 7). Evidently, the Raman spectra of scottyite, barylite, and clinobarylite are quite similar. In general, they can be divided into four regions. Region 1, between 800 and 1100 cm⁻¹, contains bands attributable to the Si-O symmetric and anti-symmetric stretching vibrations (v₁ and v₃ modes) within the SiO₄ tetrahedra. Region 2, between 660 and 700 cm⁻¹, includes bands resulting from the Si-O_{br}-Si bending vibrations within the Si₂O₇ tetrahedral dimers. Major bands in region 3, ranging from 420 to 660 cm⁻¹, are ascribed to the O-Si-O symmetric and anti-symmetric bending vibrations (v_2 and v_4 modes) within the SiO₄ tetrahedra. The bands in region 4, below 420 cm⁻¹, are mainly associated with the rotational and translational modes of SiO₄ tetrahedra, as well as the Cu-O interactions and lattice vibrational modes.

One of the noticeable features in Figure 4 is that the wavenumbers of the bands due to the Si-O_{br}-Si bending mode for barylite and clinobarylite are nearly identical (~685 cm⁻¹), indicating that the Si-O_{br} bond lengths and the Si-O_{br}-Si angles in these two minerals are rather comparable. This is indeed the case. The Si-O_{br} distance and the Si-O_{br}-Si angle are 1.657 Å and 128.59°, respectively, in barylite (Robinson and Fang 1977), and 1.657 Å and 128.82° in clinobarylite (Di Domizio et al. in review). For scottyite, the corresponding band occurs at a wavenumber (674 cm⁻¹) smaller than that for barylite or

clinobarylite. This shift is mostly related to the larger Si-O_{br}-Si angle in scottyite, as the Si-O_{br} bond length in scottyite is identical to that in barylite or clinobarylite. A similar correlation between the positions of the bands stemming from the Si-O_{br}-Si bending vibrations and the Si-O_{br}-Si angles has also been observed in chain silicates with the same or similar structures (Huang et al. 2000 and references therein).

221222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

216

217

218

219

220

Ba-Sr distribution between scottyite and wesselsite

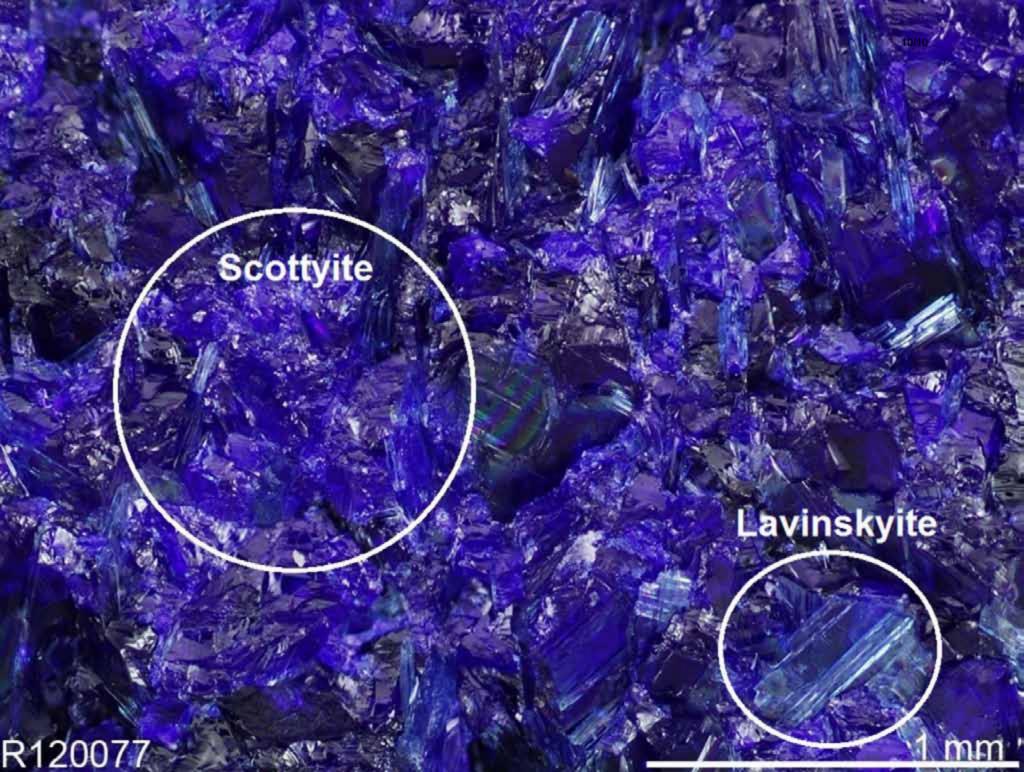
As shown in Figure 2, scottyite is intimately associated with wesselsite and lavinskyite. The chemical composition of wesselsite in our sample, determined under the same experimental conditions as those for scottyite, is $(Sr_{0.98}Ba_{0.04})_{\Sigma=1.02}Cu_{1.05}Si_{3.97}O_{10}$ (the average of 10 analysis points). Wesselsite is isostructural with effenbergerite (BaCuSi₄O₁₀) (Chakoumakos et al. 1993; Giester and Rieck 1994, 1996) and a complete solid solution between them, (Sr,Ba)CuSi₄O₁₀, has been observed experimentally (Knight et al. 2010). Very intriguingly, while wesselsite in our sample contains little Ba, scottyite contains essentially no Sr. Thus far, no compound with the composition SrCu₂Si₂O₇ has been reported. In fact, there is no documentation for any SrM₂Si₂O₇ compounds. It then begs the question whether scottyite in particular and the BaM₂Si₂O₇ compounds in general are capable of accommodating a significant amount of smaller Sr²⁺ [The radii of Ba²⁺ and Sr²⁺ in eight-fold coordination are 1.42 and 1.26 Å, respectively (Shannon 1976)]. As described above, the Ba²⁺ cations in the BaM₂Si₂O₇ compounds are situated in the cavities in the framework formed by the Si₂O₇ dimers and the MO₄ tetrahedral chains. Conceivably, any substantial replacement of large Ba²⁺ by smaller Sr²⁺ would require, in addition to the other structural adjustments (such as the tilting or distortion of MO₄ and/or SiO₄ tetrahedra), further narrowing of the Si-O-Si angles in the Si₂O₇ dimers in order to better satisfy the bonding environment for Sr²⁺. This, however, would not be energetically favorable, because the Si-O-Si angles in the BaM₂Si₂O₇ compounds are already among the smallest of disilicate materials. For scottyite, the Ba²⁺ cation is

243	appreciably underbonded (Table 5), suggesting that the current framework is unable to
244	provide it with a tighter bond environment through additional distortion. Accordingly,
245	any sizable substitution of Sr^{2+} for Ba^{2+} would worsen the bonding energetics for this site
246	and thus destabilize the entire structure. Nevertheless, we cannot rule out the possible
247	existence of $SrM_2Si_2O_7$ compounds at different conditions, such as under high pressures.
248	
249	Acknowledgements
250	This study was funded by the Science Foundation Arizona.
251	
252 253	References Cited
254	Adams, R.D. and Layland, R. (1996) Syntheses, structural analyses, and unusual
255	magnetic properties of Ba ₂ CoSi ₂ O ₇ and BaCo ₂ Si ₂ O ₇ . Inorganic Chemistry, 35,
256	3492-3497.
257	Barry, T.L. (1970) Luminescent properties of Eu ²⁺ and Eu ²⁺ + Mn ²⁺ activated
258	BaMg ₂ Si ₂ O ₇ . Journal of Electrochemical Society, 117, 381-385.
259	Becker, P. Libowitzky, E., Bohaty, L., Liebertz, J., Rhee, H., Eichler, HJ., and
260	Kaminskii, A.A. (2012) Temperature-dependent thermo-mechanical and Raman
261	spectroscopy study of the SRS-active melilite-type crystal Ca ₂ ZnSi ₂ O ₇
262	(hardystonite) at its incommensurate-commensurate phase transition. Physica
263	Status of Solidi, A209, 327-334.
264	Bertaina, S. and Hayn, R. (2006) Exchange integrals and magnetization distribution in
265	$BaCu_2X_2O_7$ (X=Ge,Si). Physical Review B, 73, 212409.
266	Blaβ, G., Graf, HW., Kolitsch, U., and Sebold, D. (2009) The new finds from the
267	volcanic Eifel (II). Mineralien-Welt, 20, 38-49. (in German)
268	Bla β , G., Schüller, E., and Schüller, W. (2011) "Unglaubliche" Kupfermineralien aus der
269	Vulkaneifel: Aufm Kopp bei Neroth, Lapis, 22, 21-28, 90. (in German)

270	Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
271	Crystallographica, B47, 192–197.
272	Cannillo, E., Mazzi, F., and Rossi, G. (1988) Crystal structure of andremeyerite,
273	BaFe(Fe,Mn,Mg)Si ₂ O ₇ . American Mineralogist 73, 608-612.
274	Chakoumakos, B.C., Fernandez-Baca, J.A., and Boatner, L.A. (1993) Refinement of the
275	structures of the layer silicates MCuSi ₄ O ₁₀ (M=Ca,Sr,Ba) by Rietveld analysis of
276	neutron powder diffraction data. Journal of Solid State Chemistry 103, 105-113.
277	Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B., Jr. (1993) Interactive
278	software for calculating and displaying X-ray or neutron powder diffractometer
279	patterns of crystalline materials. American Mineralogist, 78, 1104-1107.
280	Finger, L.W., Hazen, R.M., and Hemley, R.J. (1989) BaCuSi ₂ O ₆ : a new cyclosilicate
281	with four-membered tetrahedral rings. American Mineralogist, 74, 952-955.
282	Fleet, M.E., and Henderson, G.S. (1997) Structure-composition relations and Raman
283	spectroscopy of high-pressure sodium silicates. Physics and Chemistry of
284	Minerals, 24, 234-355.
285	Fleet, M.E. and Liu , X. (2001) High-pressure rare earth disilicates REE $_2$ Si $_2$ O $_7$ (REE =
286	Nd, Sm, Eu, Gd): type K. Journal of Solid State Chemistry, 161, 166-172.
287	Giester, G. and Rieck, B. (1994) Effenbergerite, BaCu[Si ₄ O ₁₀], a new mineral from the
288	Kalahari manganese field, South Africa: description and crystal structure.
289	Mineralogical Magazine, 58, 663-670.
290	Giester, G. and Rieck, B. (1996) Wesselsite, $SrCu[Si_4O_{10}]$, a further new gillespite-group
291	mineral from the Kalahari Manganese Field, South Africa. Mineralogical
292	Magazine, 60, 795-798.
293	Gutzmer, J. and Beukes, N.J. (1996) Mineral paragenesis of the Kalahari manganese
294	field, South Africa. Ore Geology Reviews, 11, 405-428.
295	Hentschel, G. (1993) Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel.
296	Lapis 12 (9), 11-23. (in German)

297 Huang, E., Chen, C.H., Huang, T., Lin, E.H., and Xu, J.-A. (2000) Raman spectroscopic 298 characteristics of Mg-Fe-Ca pyroxenes. American Mineralogist, 85, 473-479. 299 Janczak, J., Kubiak, R., and Glowiak, T. (1990) Structure of barium copper pyrosilicate 300 at 300 K. Acta Crystallographica, C46, 1383-1385. 301 Kaminskii, A.A., Rhee, H., Lux, O., Eichler, H.J., Bohaty, L., Becker, P., Liebertz, J., 302 Ueda, K., Shirakawa, A., Voltashev, V.V., Januza, J., Dong, J., and Stavrovskii, 303 D.B. (2011) Many-phonon stimulated Raman scattering and related cascaded and cross-cascaded $\chi^{(3)}$ -nonlinear optical effects in melilite-type crystal Ca₂ZnSi₂O₇. 304 305 Laser Physics Letters, 8, 859-874. 306 Kleyenstuber, A.S.E. (1984) The mineralogy of the manganese-bearing Hotazel 307 Formation of the Proterozoic Transvaal sequence of Griqualand West, South 308 Africa. Trans. Geol. Soc. South Africa, 87, 267-275. 309 Knight, K.S., Henderson, C.M.B., and Clark, S.M. (2010) Structural variations in the 310 wesselsite-effenbergerite (Sr_{1-x}Ba_xCuSi₄O₁₀) solid solution. European Journal of 311 Mineralogy, 22, 411-423. 312 Kolitsch, U., Wierzbicka-Wieczorek, M., and Tillmanns, E. (2009) Crystal chemistry and 313 topology of two flux-grown yttrium silicates, BaKYSi₂O₇ and Cs₃YSi₈O₁₉. 314 Canadian Mineralogist, 47, 421-431. 315 Krivovichev, S.V., Yakovenchuk, V.N., Armbuster, T., Mikhailova, Y., Pakhomovsky, 316 Y. A. (2004) Clinobarylite, BaBe₂Si₂O₇: structure refinement and revision of 317 symmetry and physical properties. Neues Jahrbuch für Mineralogie, Monatshefte, 318 2004, 373-384. 319 Lin, J.H., Lu, G.X., Du, J., Su, M.Z., Loong, C.-K., and Richardson, J.W., Jr. (1999) 320 Phase transition and crystal structures of BaZn₂Si₂O₇. Journal of Physics and Chemistry of Solids, 60, 975-983. 321 322 Lu, G.X., Yang, L.Q., and Lin, J.H. (2000) One-dimensional magnetic interaction in 323 BaMn₂Si₂O₇. Solid State Communications, 114, 113-116.

324	Makreski, P., Jovanovski, G., Kaitner, B., Gajovic, A., and Biljan, T. (2007) Minerals
325	from Macedonia XVII. Vibrational spectra of some sorosilicates. Vibrational
326	Spectroscopy, 44, 162-170.
327	Ohta, H., Okubo, S., Inagaki, Y., Hiroi, Z., Kikuchi, H. (2004a) Recent high field ESR
328	studies of low-dimensional quantum spin systems in Kobe. Physica, B346-347,
329	38–44.
330	Ohta, H., Okubo, S., Fukuoka, D., Inagaki, Y., Kunimoto, T., Kimata, M., Koyama, K.,
331	Motokawa, M., Hiroi, Z. (2004b) Breather excitation observed by high-field ESR
332	in one-dimensional antiferromagnet BaCu ₂ (Si _{1-x} Ge _x) ₂ O ₇ (x=0.65). Journal of
333	Magnetism and Magnetic Materials, 272-276, 929-930.
334	Oliveira, J.A.S. (1993) Crystal-chemical investigations in the systems CuO-BaO-SiO ₂ -
335	GeO ₂ and BaO-Rh ₂ O ₃ . Heidelberger Geowissenschaftliche Abhandlungen, 63, 1-
336	185.
337	Park, CH. and Choi, YN. (2009) Crystal structure of BaMg ₂ Si ₂ O ₇ and Eu ²⁺
338	luminescence. Journal of Solid State Chemistry, 182, 1884-1888.
339	Robinson, P.D. and Fang, J.H. (1977) Barylite, BaBe ₂ Si ₂ O ₇ : its space group and crystal
340	structure. American Mineralogist 62, 167-169
341 342	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
343	distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
344	Sharma, S.K., Yoder, Jr., H.S., and Matson, D.W. (1988) Raman study of some melilites
345	in crystalline and glassy states. Geochemica et Cosmochemica Acta, 52, 1961-
346	1967.
347	Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-
348	122.
349	Sparta, K.M. and Roth, G. (2004) Reinvestigation of the structure of BaCuSi ₂ O ₆ –
350	evidence for a phase transition at high temperature. Acta Crystallographica B60,
351	491-495.
352	Von Bezing, K.L., Dixon, R.D., Pohl, D., and Cavallo, G. (1991) The Kalahari


10/10


353	Manganese Field, an update. Mineralogical Record, 22, 279-297.
354	Yamada, T., Hiroi, Z., and Takano, M. (2001a) Spin-1/2 Quantum antiferromagnetic
355	chains with tunable superexchange interactions found in $BaCu_2(Si_{1-x}Ge_x)_2O_7$.
356	Journal of Solid State Chemistry, 156, 101-109.
357	Yamada, T., Takano, M., and Hiroi, Z. (2001b) Spin-1/2 quantum antiferromagnetic
358	chains with adjustable superexchange interactions found in $BaCu_2(Si_{1-x}Ge_x)_2O_7$.
359	Journal of Alloys and Compounds, 317–318, 171–176.
360	Yao, G.Q., Lin, J.H., Zhang, L., Lu, G.X., Gong, M.L., and Su, M.Z. (1998) Luminescent
361	properties of BaMg ₂ Si ₂ O ₇ :Eu ²⁺ , Mn ²⁺ . Journal of Materials Chemistry, 8, 585-
362	588.
363	Zheludev, A., Masuda, T., Dhalenne, G., Revcolevschi, A., Frost, C. and Perring, T.
364	(2007) Scaling of dynamic spin correlations in BaCu ₂ (Si _{0.5} Ge _{0.5}) ₂ O ₇ . Physical
365	Review B, 75, 054409.
366	Zvyagin, A.A. (2006) Effect of doping on the magnetic ordering of quasi-one
367	dimensional antiferromagnets. Low Temperature Physics, 32, 158-161.
368	
369	
370	
371	

10/10

372	List of Tables
373	
374	Table 1. Calculated powder X-ray diffraction data for scottyite.
375	
376	Table 2. Summary of crystallographic data and refinement results for scottyite.
377	
378	Table 3. Coordinates and displacement parameters of atoms in scottyite.
379	
380	Table 4. Selected bond distances (Å) in scottyite.
381	
382	Table 5. Bond-valence sums for scottyite.
383	
384	Table 6. Comparison of crystallographic data for BaM ₂ Si ₂ O ₇ compounds.
385	
386	Table 7. Tentative assignment of Raman bands for scottyite.
387	
388	
389	
390	
391	
392 393	List of Figure Contions
393 394	List of Figure Captions
395	Figure 1. (a) Rock samples on which scottyite crystals are found; (b) A microscopic view
396	of scottyite, associated with light blue platy lavinskyite.
397	of scottylic, associated with right olde platy lavinskylic.
398	Figure 2. A backscattered electron image, showing the assemblage of scottyite (bright),
399	wesselsite (gray), and lavinskyite (dark gray).
400	(gray), and raymony no (dark gray).
401	Fig. 3. Crystal structure of scottyite.
402	8
403	Fig. 4. Raman spectra of scottyite, barylite, and clinobarylite. The spectra are shown with
404	vertical offset for more clarity.
405	•
406	
407	
408	

255

223

191

159

128

95.63

63.75

31.88

.000

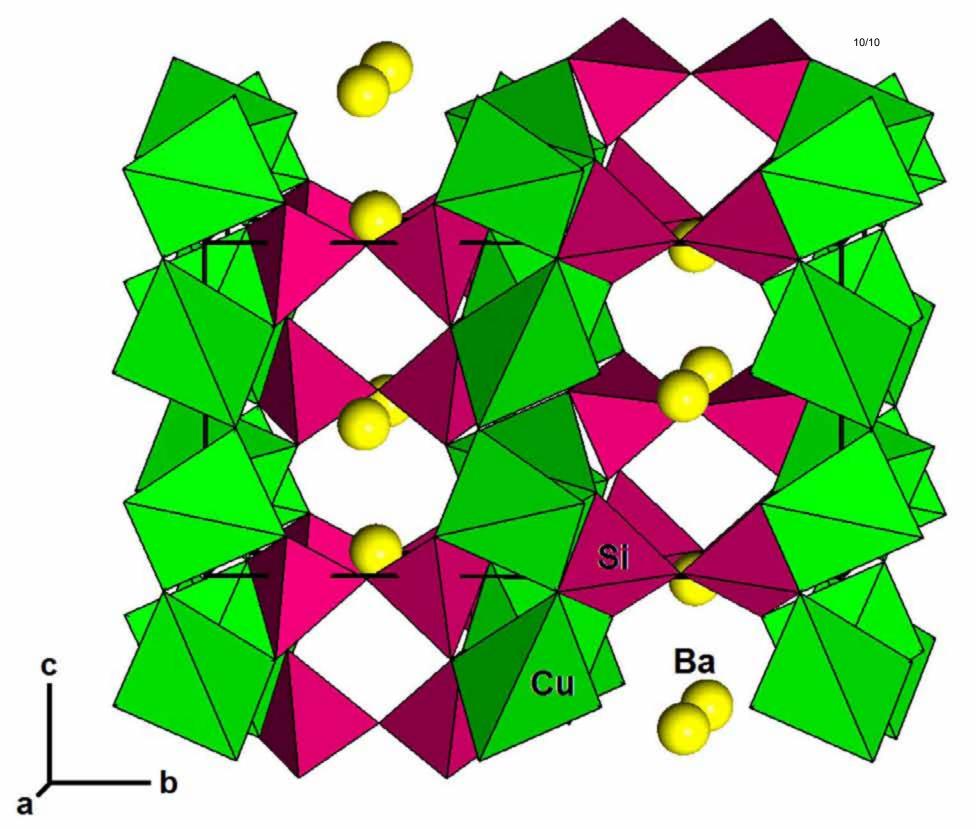


Table 1. Calculated powder X-ray diffraction data for scottyite

		=====	=====	=====	==
Intensity	$d_{ m calc}.$	h 	k 	1 	
51.70	6.5862	0	2	0	
1.46	6.1053	0	1	1	
4.92	4.8598	1	0	1	
21.96	3.9105	1	2	1	
1.50	3.7029	0	3	1	
2.03	3.3173	2	1	0	
10.74	3.2931	0	4	0	
16.92	3.0782	1	0	2	
5.41	3.0690	2	0	1	
63.84	3.0527	0	2	2	
100.00	3.0406	2	2	0	
5.41	2.9975	1	1	2	
2.09	2.9889	2	1	1	
12.31	2.7887	1	2	2	
11.74	2.7818	2	2	1	
51.65	2.7262	1	4	1	
3.38	2.5205	1	3	2	
10.71	2.5154	2	3	1	
1.94	2.4608	0	5	1	
37.15	2.4299	2	0	2	
1.05	2.3896	2	1	2	
5.44	2.3805	0	4	2	
16.44	2.3748	2	4	0	
4.61	2.3161	1	5	1	
1.56	2.2797	2	2	2	
3.74	2.2626	0	1	3	
2.99	2.2488	1	4	2	
2.95	2.2452	2	4	1	
1.42	2.1954	0	6	0	
1.18	2.1690	3	0	1	
1.96	2.1486	1	1	3	
2.15	2.1261	2	3	2	
2.02	2.0888	2	5	0	
4.78	2.0676	1	2	3	
4.27	2.0602	3	2	1	
5.06	2.0007	1	6	1	
20.52	1.9552	2	4	2	
1.20	1.9510	1	3	3	
2.18	1.9080	2	0	3	
2.43	1.9043	3	0	2	
5.18	1.8847	3	1	2	
12.93	1.8514	0	6	2	
15.11	1.8487	2	6	0	

2.53	1.8294	3	2	2	
3.04	1.8165	1	4	3	
5.90	1.8114	3	4	1	
6.35	1.7874	1	6	2	
2.24	1.7499	2	3	3	
4.88	1.7225	0	0	4	
7.82	1.7139	4	0	0	
6.96	1.6706	1	0	4	
4.51	1.6573	1	1	4	
2.72	1.6485	3	4	2	
11.99	1.6466	0	8	0	
4.77	1.6290	2	6	2	
10.00	1.6193	1	2	4	
3.70	1.6126	4	2	1	
1.18	1.5614	1	3	4	
2.11	1.5461	1	6	3	
2.64	1.5453	2	5	3	
5.94	1.5430	3	6	1	
2.92	1.5203	4	4	0	
4.65	1.4987	2	2	4	
9.34	1.4945	4	2	2	
6.31	1.4899	1	4	4	
7.26	1.4846	4	4	1	
1.11	1.4556	0	7	3	
10.60	1.4536	3	4	3	
3.65	1.4519	1	8	2	
1.19	1.4386	3	6	2	
3.42	1.3943	2	4	4	
2.79	1.3909	4	4	2	
1.63	1.3755	3	0	4	
2.46	1.3681	3	1	4	
14.20	1.3631	2	8	2	
4.20	1.3465	3	2	4	

Table 2. Summary of crystal data and refinement results for scottyite and synthetic $BaCu_2Si_2O_7$.

	Scottyite	synthetic BaCu ₂ Si ₂ O ₇
Ideal chemical formula	BaCu2Si2O7	BaCu ₂ Si ₂ O ₇
Crystal symmetry	Orthorhombic	Orthorhombic
Space group	Pnma (#62)	Pnma (#62)
a(Å)	6.8556(2)	6.866(2)
b(Å)	13.1725(2)	13.190(3)
c(A)	6.8901(1)	6.909(2)
$V(Å^3)$	622.21(6)	627.7(3)
Z	4	4
$\rho_{\rm cal}({\rm g/cm}^3)$	4.654	4.592
λ (Å, Mo $K\alpha$)	0.71073	0.71069
$\mu (\mathrm{mm}^{-1})$	13.41	13.75
2θ range for data collection	≤65.12	60.0
No. of reflections collected	4887	
No. of independent reflections	1180	
No. of reflections with $I > 2\sigma(I)$	1065	1039
No. of parameters refined	59	59
R(int)	0.023	0.028
Final R_1 , wR_2 factors $[I > 2\sigma(I)]$	0.017, 0.040	0.031, 0.037
Final R_1 , wR_2 factors (all data)	0.021, 0.041	
Goodness-of-fit	1.074	
Reference	This study	Janczak et al. (1990)

Table 3. Coordinates and displacement parameters of atoms in scottyite

Atom	x	у	z	$U_{ m eq}$	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
Ba	0.01303(2)	1/4	0.45688(3)	0.00970(5)	0.0089(1)	0.0108(1)	0.0095(1)	0	-0.0008(1)	0
Cu	0.27762(4)	0.00417(2)	0.20631(4)	0.00714(6)	0.0089(1)	0.0057(1)	0.0068(1)	-0.0008(1)	-0.0023(1)	0.0014(1)
Si	0.49765(7)	0.13406(5)	0.52716(8)	0.0057(1)	0.0066(2)	0.0047(2)	0.0057(3)	-0.0000(2)	0.0004(2)	0.00039(2)
O1	0.4044(3)	1/4	0.5167(3)	0.0087(4)	0.0084(9)	0.0057(9)	0.0120(9)	0	-0.0004(8)	0
O2	0.1725(2)	0.1337(1)	0.1306(2)	0.0104(3)	0.0122(6)	0.0068(7)	0.0122(7)	-0.0003(6)	-0.0053(6)	0.0022(5)
O3	0.5590(2)	0.1121(1)	0.7486(2)	0.0111(3)	0.0152(7)	0.0098(7)	0.0083(7)	-0.0017(6)	-0.0031(6)	0.0048(6)
O4	0.3173(2)	0.0596(1)	0.4658(2)	0.0078(3)	0.0105(6)	0.0076(7)	0.0053(6)	-0.0010(5)	0.0007(5)	-0.0022(5)

Table 4. Selected bond distances in scottyite and synthetic $BaCu_2Si_2O_7$.

	Scottyite	synthetic BaCu ₂ Si ₂ O ₇
	Distance (Å)	Distance (Å)
Ba-O1	2.715(2)	2.713(5)
-O2 x2	2.857(2)	2.863(3)
-O2 x2	2.932(2)	2.932(3)
-O3	2.741(2)	2.749(3)
Ave.	2.825	2.830
Cu-O2	1.924(2)	1.930(3)
-O3	1.923(2)	1.926(2)
-O4	1.950(2)	1.956(2)
-O4	1.968(2)	1.973(3)
Ave.	1.941	1.946
Si-O1	1.657(1)	1.662(2)
-O2	1.618(2)	1.619(4)
-O3	1.609(2)	1.610(4)
-O4	1.634(2)	1.635(3)
Ave.	1.630	1.632

Table 5. Calculated bond-valence sums for scottyite.

	O1	O2	О3	O4	Sum
Ba	0.317	$0.216\times2\rightarrow 0.176\times2\rightarrow$	0.296×2→		1.693
Cu		0.516	0.517	0.481 0.458	1.972
Si	0.915×2↓	1.016	1.041	0.973	3.945
Sum	2.147	1.924	1.854	1.912	

Table 6. Comparison of crystallographic data for BaM₂Si₂O₇-type minerals and compounds

	Chemical formula	S.G.	Unit-cel	l parameters	}		Si-O-Si (°)	Ba-coordination	Reference
			a (Å)	<i>b</i> (Å)	c(Å)	β(°)			
Scottyite	BaCu ₂ Si ₂ O ₇	Pnma	6.8556	13.1725	6.8901		134.3	7	(1)
Barylite	BaBe ₂ Si ₂ O ₇	Pnma	9.820	11.670	4.690		128.6	9	(2)
Clinobarylite	BaBe ₂ Si ₂ O ₇	$Pmn2_1$	11.650	4.922	4.674		138.5	9	(3)
Clinobarylite	BaBe ₂ Si ₂ O ₇	$Pnm2_1$	4.9175	11.6491	4.6746		128.8	9	(1)
Andremeyerite	BaFe ₂ Si ₂ O ₇	$P2_{1}/c$	7.488	13.785	7.085	118.23	127.2	7	(4)
Synthetic	BaCo ₂ Si ₂ O ₇	C2/c	7.2131	12.781	13.762	90.299	124.5	8	(5)
Synthetic	BaMg ₂ Si ₂ O ₇	C2/c	7.2455	12.7138	13.7481	90.211	125.2	7	(6)
Synthetic	BaMn ₂ Si ₂ O ₇	C2/c	7.2953	12.9632	14.0321	90.248	no data		(7)
Synthetic	BaZn ₂ Si ₂ O ₇ -25°C	C2/c	7.2782	12.8009	13.6869	90.093	124.8	8	(8)
Synthetic	BaZn ₂ Si ₂ O ₇ -280 °C	$Ccm2_1$	7.6199	13.0265	6.7374		131.7	5	(8)

References: (1) This work; (2) Robinson and Fang (1977); (3) Krivovichev et al. (2004); (4) Cannillo et al. (1988); (5) Adams and Layland (1996); (6) Park and Choi (2009); (7) Lu et al. (2000); (8) Lin et al. (1999).

Note: The *a* and *b* axis for clinobarylite were switched in our structure refinement to facilitate a direct comparison with the unit-cell setting for barylite.

Table 7. Tentative assignments of major Raman bands for scottyite

Bands (cm⁻¹) Intensity Assignment 1019, 958, 866 V₃ (SiO₄) anti-symmetric stretching Relatively weak v_1 (SiO₄) symmetric stretching Strong, sharp 896 675 Strong, sharp Si-O-Si bending v_4 (SiO₄) anti-symmetric bending 612, 578, 560 Relatively strong, sharp 459 Very strong, sharp ν₂ (SiO₄) symmetric bending Strong to weak SiO₄ rotational modes, lattice vibrational < 420 modes, and Cu-O interactions