1	Chlorine - hydroxyl diffusion in pargasitic amphibole
2	Wen Su ¹ , Don.R. Baker ² , Luping Pu ³ , Liping Bai ² , Xin Liu ¹ , Cedrick O'Shaughnessy ²
3 4	¹ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
5	² Earth and Planetary Sciences, GEOTOP-UQAM-McGill Research Centre, McGill University,
6	3450 rue University, Montreal, QC, Canada H3A OE8;
8	Guilin University of Technology, Guilin 541004, China
9	ABSTRACT
10	Chlorine - hydroxyl diffusion was measured in pargasitic amphibole from Yunnan
11	province, China at 1.0 GPa, 625 to 800 °C. Experiments were performed by
12	immersing unoriented crystals in water-bearing NaCl in a piston cylinder for
13	durations from 100 to 454 hours. Diffusion profiles were on the order of > 10 's of
14	micrometers in length, and electron microprobe analysis allow us to extract
15	semi-quantitative diffusivities from these experiments. The preliminary diffusion
16	coefficients for chlorine in amphibole in the water-bearing experiments are 2.6×10^{-16}
17	m ² s ⁻¹ at 625 °C, 4.9×10^{-16} m ² s ⁻¹ at 650 °C, 7.6×10^{-16} m ² s ⁻¹ at 700 °C, 1.8×10^{-15}
18	$m^2~s^{\text{-1}}$ at 750 °C, 2.8 \times 10 $^{\text{-15}}~m^2~s^{\text{-1}}$ at 800 °C. For temperatures between 625 and
19	800 °C, the Arrhenius relation for chlorine - hydroxyl diffusion has an activation
20	energy of 106.6 \pm 7.8 kJ/K mol and a D_0 of 4.53 (+7.3, -2.8) \times 10 ⁻¹⁰ m ² s ⁻¹ . Our
21	measurements do not show evidence of anisotropy in the diffusion of Cl-OH into
22	amphibole, but future experiments need to better investigate this possibility.
23	Keywords: diffusion, chlorine - hydroxyl, pargasitic amphibole,

24 crystal-chemistry, high temperature and pressure

26	INTRODUCTION
27	Understanding the exchange of volatiles in geochemical reservoirs and recycling
28	in Earth's interior are one of the central issues of terrestrial geodynamics (e.g.
29	Magenheim et al., 1995; Philippot et al., 1998; Su et al., 2004; Wallace, 2005; Wood
30	and Normand, 2008). The major volatiles in Earth's crust and upper mantle are H_2O ,
31	CO ₂ , S, F, and Cl (e.g. Symonds et al., 1994; Philippot et al., 1998; Wallace, 2001;
32	Berlo et al., 2004; Self et al., 2008; Koleszar et al., 2007; Aiuppa et al., 2009; Rowe et
33	al., 2009), but their partitioning between various phases and their mechanisms of
34	transport in the crust and upper mantle still remain somewhat enigmatic despite
35	decades of research. In particular, the behaviour of chlorine and fluorine at high-grade
36	metamorphic conditions is little understood (Xiao et al., 2005; Liu et al., 2009).
37	Knowledge of F-Cl-OH partitioning between various minerals as a function of
38	temperature and pressure will help to constrain the Cl and F budgets of the Earth (e.g.
39	Zhu et al., 1991; Siahcheshm et al., 2012; Rasmussen and Mortensen, 2013).
40	Amphiboles are important reservoirs for volatile components such as H ₂ O, Cl and
41	F (e.g. Kullerud, 1996; McCormick et al., 1999) and are stable in a wide range of
42	pressure-temperature conditions (e.g. Wones and Gilbert, 1982; Maresch et al., 2007;
43	Ruiz Cruz, 2010). They can be used as indicators of temperature, pressure, volatile
44	content, and oxidation state of their host rocks (e.g. Popp et al., 1995; Hawthorne et al.,
45	1998; King et al., 1999; 2000; Evans, 2007; Oberti et al., 2007). They also provide
46	information on the petrogenesis and thermo – mechanical evolution of rocks through

7/9

47	their structural phase transitions and crystal - chemical behavior (Boffa Ballaran et al.,
48	2004; Iezzi et al., 2006; Oberti et al., 2007; Tiepolo et al., 2007; Welch et al., 2007; Su
49	et al., 2009).

50	Cl concentrations in amphibole can be used to study the salinity of the fluid with
51	which they were last in equilibrium (e.g. Vanko, 1986; Stakes et al., 1991; Markl et al.,
52	1998a; 1998b; Philippot et al., 1998). If brine is involved in metamorphism this fluid
53	can not only affect the stability of the minerals in the rocks, but its presence should be
54	also recorded in the compositions of minerals (Philippot et al., 1995; Glassley, 2001;
55	Svensen et al., 2001; Liu et al., 2009). Therefore, the study of Cl concentrations in
56	amphiboles is particularly helpful in interpretation of the chlorinity of the fluid, and
57	the variation of Cl concentrations in amphibole possibly provides information on the
58	compositional evolution of fluids during tectonic evolution (e.g., Thompson and
59	England, 1984; Sharp and Barnes, 2004; Rowe et al., 2009; Engvik et al., 2011).
60	The rate of attainment of equilibrium concentrations of Cl in amphibole is most
61	probably controlled by Cl diffusion in many cases. However investigations of Cl
62	diffusion in amphibole are lacking (Cherniak and Dimanov, 2010; Farver, 2010),
63	although the diffusion kinetics of the hydrogen, oxygen, F-OH, Sr and Ar were
64	measured in amphiboles by Graham et al. (1984), Ingrin and Blanchard (2000, 2006),
65	Farver and Giletti (1985), Brabander et al. (1995), Brabander and Giletti (1995),
66	Harrison (1981) and Baldwin et al. (1990), respectively. In order to improve
67	knowledge of Cl diffusion in amphibole, reconnaissance experiments were performed
68	at 1.0 GPa and temperatures between 625 and 800 °C in the presence of a binary

69	(H_2O-N_2C) brine to measure the diffusion coefficients of chlorine in pargasitic
07	(1120 Theor) of the to incustore the diffusion eventerents of enforme in purgustite
70	amphiboles. Although diffusion itself cannot explain large scale transport properties,
71	this process represents a fundamental mechanism in the modeling of chlorine
72	behavior in amphiboles.
73	
74	EXPERIMENTAL AND ANALYTICAL TECHNIQUES
75	Starting material
76	Sample JL used in this study was collected from marble of Yunnan province,
77	China. The rock is composed of very coarse homogeneous crystals of amphibole (Fig.
78	1a, b), clinopyroxene, orthopyroxene, epidote, plagioclase (Fig. 1b-d, Table 1). The
79	fine grained matrix mainly consists of calcite, dolomite (Fig. 1a, b, c) and minor
80	quartz, biotite, titanite, apatite, zircon, magnetite, ilmenite and chromite (Fig. 1c, d,
81	Table 1). The amphibole is emerald-green, translucent to transparent, with a vitreous
82	luster. The individual crystals are large (from 12 to 15×8 to 10 mm, and sometimes
83	as large as 36×14 mm) and well-formed (Fig. 1a). The amphiboles are optically pure
84	and free of major fractures and inclusions. Table 1 lists the chemical composition of
85	the starting amphibole. Electron microprobe analysis and back-scattered electron
86	images show that the amphibole crystal is homogeneous in composition from core to
87	rim (Table 1, Fig. 1e). Crystal chemical formulae were calculated on the basis of 23
88	oxygens with all iron considered to be ferrous. According to the classification of
89	Leake et al. (1997), sample JL is a pargasite. These pargasitic amphiboles are

90 characterized by higher MgO (20.4 wt %), CaO (13.5 wt %) contents, and the lower

91	FeO_T contents (0.15 wt %) (Table 1), than parasites from other geological
92	environments (e.g., Liu et al., 2009). They contain a high fluorine content with 0.34 -
93	0.38 wt% (Table 1), which is similar to that of Mg-rich amphiboles in
94	high-temperature marbles (e.g., Petersen et al., 1982; Valley et al., 1982). They also
95	contain low chlorine concentrations, ranging from 0.036 to 0.041 wt% (average 0.039
96	wt %).
97	The rock was crushed with a hammer, and the amphibole crystals hand-picked.
98	The crystals were cleaved into sub-cubic pieces by hand with an average grain size of
99	approximately 1-2 mm on edge for loading into capsules. Other portions of the
100	amphiboles were ground under alcohol in an agate mortar and pestle to powder of less
101	than 50 micrometers in size. This powder was mixed with reagent-grade NaCl in a
102	weight ratio of 2:1 (NaCl to amphibole).
102	

104 **Experimental procedure**

105	Experiments on chlorine - hydroxyl diffusion of pargasitic amphibole were
106	performed at a piston cylinder at Earth and Planetary Sciences in McGill University.
107	The capsules used in the experiment are platinum tubes with a 3.0 mm outer diameter
108	that cut to 6.0-7.0 mm in length, and cleaned in concentrated hydrofluoric acid,
109	repeatedly washed with distilled water, cleaned in the ultrasonic bath, annealed to
110	orange heat, and the bottom crimped and welded. For each diffusion experiment a Pt
111	capsule was approximately half-filled with the amphibole-NaCl mixture then a
112	randomly oriented piece of amphibole crystal was loaded followed by more of the

113	amphibole-NaCl mixture. Water (0.23-3.81µg, Table 2) was also introduced into the
114	capsule prior to the addition of the amphibole-NaCl mixture. The Pt capsule was
115	welded closed without volatile loss, and put into the oven a 120 °C for 24 hours, and
116	weighed again to check for leakage. The Pt capsule was then placed inside a graphite
117	cylinder with a 3.0 mm inner diameter and covered with graphite lid. Two Pt capsules
118	(one with water, another without water) were inserted into a graphite cylinder, placed
119	into crushable alumina and surrounded by pyrophyllite powder to ensure that the
120	water was not lost during experiments. The capsules were located in the center of a
121	19.1 mm crushable alumina – graphite – Pyrex – NaCl assembly (Baker, 2004). The
122	assemblies were pressurized and heated to 1.0 GPa, and temperatures between 625
123	and 800 °C in a piston-cylinder apparatus. The run procedure consisted of
124	simultaneously pressurizing and heating the assembly. A constant heating rate of
125	100 °C /min was used, which resulted in less than a 5 °C overshoot of the run
126	temperature. Temperatures were measured with type C thermocouples. Pressures were
127	controlled within \pm 0.08 GPa and temperatures within \pm 2 °C of desired conditions.
128	All experimental durations (between 100 and 454 hours, Table 2) are based upon the
129	time at which the experiment reached the desired run temperature. Samples were
130	quenched from run temperature within 30 s by turning off the power of the
131	piston-cylinder. After quenching, the capsules were mounted in epoxy, sectioned
132	longitudinally and polished for electron microprobe analysis of the Cl concentrations
133	to acquire the diffusion profiles.

135 Electron microprobe analysis

136	Electron microprobe analysis (EMPA) was first performed using the JEOL 8900
137	Electron Microprobe at McGill University. The accelerating voltage was 15 kV, with a
138	beam current of 20 nA; the beam size was 1 μm in diameter. One of the main caveats
139	associated with diffusion modeling is ensuring that the chemical profile used within
140	the model is of sufficient spatial resolution so as to avoid complications linked with
141	overlapping analyses and the smearing out of profiles that result in convolution effects
142	(e.g., Ganguly et al. 1988; Costa and Morgan 2010). The effects of convolution
143	become less severe as the diffusion profile lengthens (Ganguly et al. 1988). To
144	minimize the convolution problem, the diffusion profiles were also measured by the
145	JXA-8100 Electron Microprobe at the State Key Laboratory of Lithospheric Evolution,
146	Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). The
147	diffusion profile was analyzed using a step size of 3 micrometers by sweeping the
148	electron beam across the interface of a diffusion couple of a fixed sample stage, with a
149	beam size of 1 μm in diameter. The standards were diopside for Si, Ca and Mg,
150	hematite for Fe, orthoclase for Al and K, albite for Na, chromite for Cr, rutile for Ti,
151	spessartine for Mn, fluorite for F and vanadinite for Cl. The accelerating voltage was
152	15 kV, with a beam current of 40 nA. A counting time of 20 s on the peak was used for
153	all the elements except F and Cl. 40 s and 80 s counting time on the peak was used for
154	F (LDE1) and Cl (PETH) measurements, respectively. Backgrounds were measured
155	for half the counting times used on the peaks. Additionally, X-ray distribution
156	maps of the Cl, Fe, Mg concentrations in the amphiboles were performed using a

157	Camcea SX Five Electron Microprobe. The accelerating voltage was 15 kV, with a
158	beam current of 200 nA and dwell of 100 ms; the step size for the maps was 1
159	micrometers the map size was 1024×1024 pixels.
160	In order to further identify EMPA data accuracy, ³⁷ Cl/ ³⁰ Si profile of the
161	amphibole was conducted using a CAMECA Nano-SIMS 50L at the State Key
162	Laboratory of Lithospheric Evolution, IGGCAS. An amphibole transverse and depth
163	profile consists of monitoring the intensities of ¹⁶ O, ³⁵ Cl, ³⁷ Cl, ³⁰ Si, and ¹⁹ F signals as
164	the primary ion beam sputters into the amphibole using the multi-collector mode. The
165	instrument was operated with Cs ⁺ primary ion beam, which was accelerated at 16 keV,
166	with an intensity of ~70 pA and a beam size of ~0.5 μm in diameter at the sample
167	surface. The beam was scanning within an area of 1.5 μm . The mass resolution was
168	set to 6000 (CAMECA definition) to obtain a flat top at the mass peak. There was an
169	acquisition time of \sim 150 s for each analyses point, a data was obtained by 30 cycles
170	for 15 s, and 10 sections of data in the same position.
171	

RESULTS

173 Calculation of chlorine diffusion coefficients from concentration profiles

174 The back-scattered electron images show no evidence that the experimental

- amphibole crystals experience dissolution or regrowth (Fig. 2). The analytical
- traverses were used to calculate chlorine diffusivity. Chlorine concentrations were
- 177 plotted vs. distance (Fig. 3, 4), and the diffusion coefficients were calculated for each
- 178 experiment (Table 2). Diffusivities were determined from chlorine profiles using

Equation 3.13 in Crank (1975), which assumes a constant diffusivity and that the diffusion from the surface of a single crystal has not reached the center of the sample

181 (hence a semi-infinite medium):

182
$$C(\mathbf{x},t) = (C_0 - C_1) * erf(x/(2*(Dt)^0.5) + C_1)$$
(1)

where C(x, t) is the chlorine concentration along the diffusion profile plotted in a 183 concentration vs. distance diagram; x is the distance along the profile (in meters); and 184 t is the experimental duration (in seconds); C_0 is the original concentration in the 185 186 sample; C_I is the surface concentration of the chlorine; *erf* is the error function; D is the diffusion coefficient or diffusivity $(m^2 s^{-1})$. The error of each diffusivity 187 measurement is estimated based upon multiple microprobe traverses on the same 188 189 experiment. The run products of almost all experiments were analyzed by performing 190 multiple microprobe traverses: 8 traverses for No. 1 (4 perpendicular to the long axis and others parallel to the long axis, respectively); 8 traverses each for No. 3, No. 5, (4 191 192 perpendicular to the long axis and others parallel to the long axis, respectively); 6 traverses for No. 7 (all perpendicular to the long axis); 6 traverses for No. 10 (3 193 perpendicular to the long axis and others parallel to the long axis, respectively). The 194 step size for all of the traverses is 3 micrometers. In order to avoid the convolution 195 effect of the surrounding NaCl, each calculation of the Cl diffusion coefficient did not 196 use the first two points of the profile. In addition, one traverse profile of the run No. 3 197 198 of the experiment was measured by Nano-SIMS. This profile has 22 points (Fig. 4b). The beam is rastered upon the surface of the sample to produce a homogeneously 199 200 sputtered flat-bottomed crater of approx 3 x 2µm area (Fig. 4a). The sputtering rate

201	for each analysis point in the amphibole was determined by monitoring crater depth as
202	a function of time. Sputtering was allowed to proceed for about 150 seconds so as to
203	define the complete diffusion profile and produce the ${}^{37}\text{Cl}/{}^{30}\text{Si}$ ratio to a depth of
204	$0.66 \mu m$ with 10 sections of data in the same position. The signal from each mass was
205	monitored for 15 seconds to provide a statistically significant count rate by measuring
206	30 cycles. A computer program written in Scilab was used to compute diffusivities
207	from each diffusion profile (Figs. 3, 4).
208	
209	Diffusivity calculations for the experiments
210	All experiments produced extremely short diffusion profiles due to the slow

diffusivity of Cl in amphibole at metamorphic conditions. Thus, we consider the results of this study to be preliminary, but nevertheless important because of the paucity of Cl diffusion measurements in amphiboles and the importance of Cl in amphibole.

The diffusivity was $2.6 \times 10^{-16} \text{ m}^2 \text{ s}^{-1}$ (Fig. 3a, Table 2) in the experiment at 215 625 °C and 454 h. At 650 °C, 100 h, the diffusion coefficient for Cl in amphibole in 216 the experiment was 4.9×10^{-16} m² s⁻¹ (Fig. 3b, Table 2). The 700 °C, 200 h experiment 217 yielded a diffusion coefficient of $7.6 \times 10^{-16} \text{ m}^2 \text{ s}^{-1}$ (Fig. 3c, Table 2). At 750 °C and 218 200 h, the diffusion coefficients of experiment are $1.8 \times 10^{-15} \text{ m}^2 \text{ s}^{-1}$ by EMP analysis 219 and 1.9×10^{-15} m² s⁻¹ by SIMS analysis (Figs. 3d and 4, Table 2). The diffusivity of Cl 220 in the amphibole at 800 °C measured in the 100 h experiment is 2.8×10^{-15} m² s⁻¹ (Fig. 221 3e, Table 2). 222

223	Although we did not orient our crystals, we used cleaved samples and performed
224	diffusion profiles along approximately perpendicular traverses of the polished
225	sections to search for anisotropic diffusion. Our measurements do not demonstrate
226	any evidence of anisotropy in the diffusion on Cl into amphibole; however anisotropic
227	effects might be smaller than our estimated uncertainty in the diffusion measurements
228	of \pm 50 relative percent.
229	
230	DISCUSSION
231	Effect of temperature
232	The temperature dependency of chlorine diffusion was characterized via an
233	Arrhenius equation (Fig. 5) at constant pressure:
234	$D = D_0 \exp\left(-Ea / RT\right) \tag{2}$
235	where <i>D</i> is the diffusion coefficient (m ² s ⁻¹), D_0 is the preexponential factor, <i>E</i> a is the
236	activation energy (kJ mol ⁻¹), R is the gas constant (J K ⁻¹ mol ⁻¹) and T the temperature
237	(degrees Kelvin).
238	The Arrehenius plot describing chlorine diffusion is displayed in Figure 5. Fitting
239	the water-bearing experiments between 625 °C and 800 °C yields an activation energy
240	for Cl diffusion of 106.6 \pm 7.8 kJ/K mol and a D_0 of 4.53 (+7.3/-2.8) \times 10 ⁻¹⁰ m ² s ⁻¹
241	with a correlation coefficient of 0.9921 (Fig. 5). These data are for $P = 1$ GPa.
242	
243	Comparisons with the diffusion of other elements in amphibole
244	Very few studies have been performed on the diffusion of cations and anions in

245	amphiboles, although the importance of understanding metasomatic processes in such
246	common minerals is great. Graham et al. (1984) reported the hydrogen diffusion
247	kinetics in amphiboles for a range of compositions including hornblende, tremolite,
248	and actinolite at 350 - 800 °C, 0.2 - 0.8 GPa confining pressure. The value of
249	diffusion coefficients were obtained from bulk exchange with water of different
250	hydrogen isotope composition, and yielded Arrhenius relations with activation
251	energies of 79-84 kJ/mol for hornblende, 71.5 kJ/mol for tremolite, and 99 kJ/mol for
252	actinolite. Ingrin and Blanchard (2000) measured the hydrogen diffusion coefficient in
253	natural kaersutite crystals at 600 - 900 °C and 0.01 GPa pressure and found an
254	activation energy of 104 ± 12 kJ/mol. In addition, Ingrin and Blanchard's (2000, 2006)
255	data clearly demonstrate that hydrogen diffusion in amphibole is anisotropic: transport
256	along the <i>c</i> -axis faster than along the <i>b</i> -axis. The only experimental data on oxygen
257	diffusion in amphiboles was reported by Farver and Giletti (1985); they measured
258	oxygen diffusivity in a range of amphibole compositions including hornblende,
259	tremolite, and fluor-richterite at 650 - 800 °C at 0.1 GPa pressure, and determined
260	activation energies of 172 ± 25 kJ/mol for hornblende, 163 ± 21 kJ/mol for tremolite,
261	and 238 ± 8 kJ/mol for fluor-richterite. Brabander et al (1995) measured F-OH
262	interdiffusion in tremolite over the temperature range 500 - 800 °C and 0.2 GPa
263	pressure and obtained an activation energy of 41 ± 5 kJ/mol and a pre-exponential
264	factor of 3.4×10^{-17} m ² s ⁻¹ . Measurements of Ar diffusion in amphibole were reported
265	by Harrison (1981) and Baldwin et al. (1990).

Figure 6 summarizes all published diffusion data for amphibole and the

267	comparison to our results. Our measured Cl diffusivities lie between those obtained
268	for hydrogen isotopic exchange (Graham et al., 1984), F-OH interdiffusion
269	(Brabander et al. 1995) and oxygen isotopic exchange (Farver and Giletti, 1985).
270	The measured activation energy in this study of Cl is similar to that of H diffusion, but
271	significantly higher than F-OH diffusion (Fig. 6).
272	It is well known that both ionic charge and radius affect diffusion in crystals
273	(Van Orman et al., 2001; Tirone et al., 2005; Carlson et al., 2012). When ions have the
274	same charge and reside in the similar crystalline sites it is expected that the smaller
275	ion would display a higher diffusivity than the larger ion (Zhang et al., 2006, 2010).
276	Oberti et al. (1993) found that F and OH, with radii of 0.130 nm and 0.135 nm,
277	respectively (Hawthorne and Oberti, 2007), are found in the O(3) amphibole site, but
278	that larger Cl, with a 0.181 nm radius (Shannon, 1976), is found in a slightly
279	displaced position, the $O(3)$ ' site. Because of the same charge and the occupancy of
280	similar sites in amphibole, Cl is expected to diffuse more slowly than F, opposite to
281	the comparison of Brabander et al.'s results (1995) and this study.
282	The anomalous behavior of Cl in comparison to F is reflected in its high
283	pre-exponential factor in the Arrhenius equation. The pre-exponential factor is
284	classically associated with the square of the distance between two stable sites
285	multiplied by a vibrational frequency of the atom (see Eqn. 158 in Glasstone et al.,
286	1941). We speculate that the small differences in the location of the sites for Cl and F
287	in the amphibole structure are significant enough to affect the pre-exponential factor
288	through modification of the distance between two stable sites and the vibrational

289	frequency of the Cl. However, we have no further evidence to support this speculation
290	and perhaps the differences in the experimental procedures (e.g., pressure, chemical
291	potential gradients) and amphibole compositions between our study and that of
292	Brabander et al. (1995) might play a significant role in explaining the surprising
293	measurements of F and Cl diffusion in amphibole.
294	
295	Effect of Cl on the amphibole chemistry and structure
296	The $M(1)$ and $M(3)$ sites of amphibole are coordinated by the O(3) or O(3)' site,
297	which contains (OH), F^- and Cl^- or O^{2-} These are the only anion sites in the amphibole
298	structure (e.g. Leake, 1968; Leake et al., 1997; Leake et al., 2003; Hawthorne and
299	Oberti, 2007). The bond-valence of the $$ varies in different amphibole
300	structures, such that the \leq M(3)-O(3) \geq distance is 0.382 A°, 0.367 A°, 0.361 A°, 0.300
301	A° for pargasite, cummingtonite, tremolite, and fluororichterite, respectively
302	(Hawthorne and Oberti, 2007). Comodi et al. (1991) found that the sequence of
303	isothermal polyhedral bulk moduli are $KM(3) > KM(1) > KM(4) > KM(2)$ in their
304	study of tremolite, pargasite and glaucophane to 4.0 GPa. It is obvious that $M(3)$ and
305	M(1) are more controlled by pressure, as Zhu et al. (1991) suggested the Cl ⁻ contents
306	of fluids depend strongly on pressure when temperature is below 500°C. Variation of
307	the $M(1)$ and $M(3)$ site volumes can lead to variations in $(M(1)-O(3))$ and
308	< M(3)-O(3)> distances and variable occupancy of OH, F, Cl and O in the different
309	amphiboles. Cl is negatively correlated with F in the amphiboles (Fig. 7a): Cl
310	concentrations increase with decreasing F concentrations. This behavior implies that

311	the incorporation of Cl in amphibole may result in replacement of F at $O(3)$ in the
312	amphibole structure. Cl and F are coupled in the amphiboles studied (Figs. 2, 7b-e):
313	Cl concentrations increase with increasing FeO and decreasing MgO (Figs. 7b and c),
314	whereas F concentrations demonstrate the opposite behavior (Figs. 7d, e). However,
315	how the diffusion coefficients of Fe and Mg in the amphibole compare to Cl is
316	currently not clear. Therefore, further research on correlations between (Cl, F, OH)
317	occupancy on the hydroxyl site and (Mg, Fe) occupancy on the octahedral site during
318	Cl replacement with F or OH at high temperature and pressure are needed.
319	

IMPLICATIONS

321 Diffusion of chlorine in amphibole is an important area of study, with 322 applications in improving understanding of volatile transport, so the first chlorine 323 diffusion results of the pargasitic amphibole have value. Although Cl diffusion itself 324 cannot explain large- or micro- scale transport properties, this process represents a 325 fundamental mechanism controlling Cl behavior during crystallization, assimilation and metamorphism. Compositionally zoned minerals, combined with kinetic 326 327 modeling of chemical gradients, can be used to provide a chronological tool that can access a large range of time scales and can be applied to rocks of any age (e.g., 328 Zellmer et al., 1999; Coombs et al., 2000; Klügel, 2001; Pan and Batiza, 2002; 329 330 Morgan et al., 2004; Costa and Chakraborty, 2008), if the processes responsible for zoning and the relevant diffusivities are available. Broader implications and 331 applications of our study are that modeling the Cl chemical gradients in amphiboles 332

333	and combining these results with modeling of other cations can provide a unique
334	window into the time scales of metamorphic/metasomatic process, which is
335	impossible to achieve by any isotopic method, because often the durations of events,
336	particularly retrograde metamorphic events, may be too short to measure isotopically.
337	
338	ACKNOWLEDGMENTS
339	This study was funded by the NNSFC (No. 41172066 and 41021063), the State
340	Key Laboratory of Superhard Materials, and a Canadian Discovery Grant. We greatly
341	appreciate Mr. Tianwen Lan for very generously donated the amphibole-bearing
342	marble samples, Prof. Jingbo Liu for the amphibole profile of the eclogite from the
343	Yangkou, China, Dr. Lang Shi, Dr. Qian Mao and Jianchao Zhang for microprobe and
344	Nano-SIMS measurements. We also thank Dr. Youxue Zhang for critical and
345	constructive comments. The paper benefited considerably from the critical reviews of
346	Drs F. Costa, D.J. Cherniak and H. Sato.
347	
348	REFERENCES CITED
349	Aiuppa, A., Webster, J.D., and Baker, D.R. (2009) Halogens in volcanic systems.
350	Chemical Geology, 263, 1-18.
351	Baker, D.R. (1990) Chemical interdiffusion of dacite and rhyolite: anhydrous
352	measurements at 1 atm and 10 kbar, application of transition state theory, and
353	diffusion in zoned magma chambers. Contributions to Mineralogy and Petrology,
354	104, 407-423.

355	Baker, D.R. (2004) Piston-cylinder calibration at 400 to 500 MPa: a comparison of
356	using water solubility in albite melt and NaCl melting. American Mineralogist,
357	89, 1553-1556.
358	Baldwin, S.L., Harrison, T.M., and Fitz Gerald, J.D. (1990) Diffusion of 40 Ar in
359	metamorphic hornblende. Contributions to Mineralogy and Petrology, 105,
360	691-703.
361	Beard, J.S. and Day, H.W. (1986) Origin of gabbro pegmatite in the Smartville
362	intrusive complex, northern Sierra Nevada, California. American Mineralogist,
363	71, 1085-1099.
364	Berlo, K., Blundy, J., Turner, S., Cashman, K., Hawkesworth, C., and Black, S. (2004)
365	Geochemical precursors to volcanic activity at Mount St. Helens, USA, Science,
366	306, 1167-1169.
367	Boffa Ballaran, T., Carpenter, M.A., and Domeneghetti, M.C. (2004) Order-parameter
368	variation through the $P2_1/m \leftrightarrow C2/m$ phase transition in cummingtonite.
369	American Mineralogist, 89, 1717-1727.
370	Brabander, D.J., Hervig, R.L., and Jenkins, D.M. (1995) Experimental determination
371	of F-OH interdiffusion in tremolite and significance to fluorine-zoned
372	amphiboles. Geochimica et Cosmochimica Acta, 59, 3549-3560.
373	Candela, A., and Holland, D. (1984) The partitioning of copper and molybdenum
374	between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta, 4,
375	373-380.
376	Carlson W.D. (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet.

377 American Mineralogist, 97, 1598-1618. Castelli, D. (1998) Chlorpotassium ferro-pargasite from Sesia-Lanzo Marbles 378 (Western Italian Alps): a record of highly saline fluids. Rend SIMP, 43, 129-38. 379 380 Cherniak, D.J. (2010) Cation diffusion in feldspars. Reviews in Mineralogy and Geochemistry, 72, 691-734. 381 382 Chew, D.J., Sylvester, P.J., and Tubrett, M.N. (2011) U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chemical Geology, 280, 200-216. 383 Chukanov, N.V., Konilov, A.N., Zadov, A.E., Belakovsky, D.I., and Pekov, I.V. (2002) 384 The new amphibole potassic chloropargasite (K,Na) Ca_2 (Mg,Fe²⁺)₄Al (Si₆Al₂ 385 O₂₂) (Cl, OH)₂ and conditions of its formation in the granulite complex of 386 Salnye Tundry Massif (Kola Peninsula). Zapiski, VMO, 131, 58-62. 387 388 Coombs, M.L., Eichelberger, J.E., and Rutherford, M.J. (2000) Magma mixing and storage conditions for the 1953-1974 eruptions of Southwest trident volcano, 389 katmai National ark, Alaska. Contributions to Mineralogy and Petrology, 140, 390 99-118. 391 Costa, F., and Chakraborty, S. (2008) The effect of water on Si and O diffusion rates 392 in olivine and implications for transport properties and processes in the upper 393 394 mantle. Physics of the Earth and Planetary Interiors, 166, 11-29. Costa, F., and Morgan, D. (2010) Time constraints from chemical equilibration in 395 magmatic crystals. In A. Dosseto, S.P. Turner, and J.A. Van-Orman, Eds., 396 Timescales of Magmatic Processes: From Core to Atmosphere, 397 398 Wiley-Blackwell, New York, p. 126-159.

399	Crank, J. (1975) Mathematics of Diffusion, 2nd ed. Oxford University, London Press.
400	Davis, D.W., Krogh, T.E., and Williams, I.S. (2003) Historical Development of Zircon
401	Geochronology. Reviews in Mineralogy and Geochemistry, 53, 145-181.
402	Deer, W.A., Howie, R.A., and Zussman, J. (1997) Rock Forming Minerals, Volume
403	2B, Second Edition, Double-chain Silicates. The Geological Society, London.
404	Dick, L.A., and Robinson, G.W. (1979) Chlorine-bearing potassian hastingsite from a
405	sphalerite skarn in the southern Yukon. Canadian Mineralogist, 17, 25-26.
406	Enami, M., Liou, J.G., and Bird, D.K. (1992) Cl-bearing amphibole in the Salton Sea
407	geothermal system, California. Canadian Mineralogist, 30, 1077-1092.
408	Engvik, A. K., Mezger, K., Wortelkamp, S., Bast, R., Corfu, F., Korneliussen, A.,
409	Ihlen, P., Bingen, and Austrheim, H. (2011) Metasomatism of gabbro; mineral
410	replacement and element mobilization during the Sveconorwegian metamorphic
411	event. Journal of Metamorphic Geology, 29, 399-423.
412	Evans, B.W. (2007) The Synthesis and Stability of Some End-Member Amphiboles.
413	Reviews in Mineralogy and Geochemistry, 67, 261-286.
414	Evans, B.W., and Guggenheim, S. (1988) Talc, pyrophyllite, and related minerals.
415	Reviews in Mineralogy and Geochemistry, 19, 225-294.
416	Farver, J.R. (2010) Oxygen and hydrogen diffusion in minerals. Reviews in
417	Mineralogy and Geochemistry, 72, 447-507.
418	Farver, J. R., and Giletti, B. J. (1985) Oxygen diffusion in amphiboles. Geochimica et
419	Cosmochimica Acta, 49, 1403-1411.
420	Fortier, S.M., and Giletti, B.J. (1991) Volume self-diffusion of oxygen in biotite,

421	muscovite, and phlogopite micas. Geochimica et Cosmochimica Acta, 55,
422	1319-1330.
423	Ganguly, J., Bhattacharya, R.N., Chakraborty, S. (1988) Convolution effect in the
424	determination of compositional profiles and diffusion coefficients by
425	microprobe step scans. American Mineralogist, 73, 901-909.
426	Giletti, B.J., Semet, M.P., and Yund, R.A. (1978) Studies in diffusion-III. Oxygen in
427	feldspars: An ion microprobe determination. Geochimica et Cosmochimica Acta,
428	42, 45-57.
429	Glassley, W.E. (2001) Elemental composition of concentrated brines in subduction
430	zones and the deep continental crust. Precambrian Research, 105, 371-383.
431	Glasstone, S., Laidler, K.J., and Eyring, H. (1941) The Theory of Rate Processes.
432	McGraw-Hill, New York, 611 p.
433	Graham, C. M., Harmon, R. S., and Sheppard, S. M. F. (1984) Experimental hydrogen
434	isotope studies: Hydrogen isotope exchange between amphibole and water.
435	American Mineralogist, 69, 128-138.
436	Gulyaeva, T.Y., Gorelikova, N.V., and Karabtsov, A.A. (1986) High
437	potassium-chlorine-bearing hastingsites in skarns from Primorye, far east USSR.
438	Mineralogical Magazine, 50, 724-728.
439	Harrison, T. M. (1981) Diffusion of ⁴⁰ Ar in hornblende. Contributions to Mineralogy
440	and Petrology, 78, 324-331.
441	Hawthorne, F.C., Oberti, R., Zanetti, A., and Czamanske, G.K. (1998) The role of Ti
442	in hydrogen-defi cient amphiboles: Sodic-calcic and sodic amphiboles from

- 443 Coyote Peak, California. Canadian Mineralogist, 36, 1253-1265.
- 444 Hawthorne, F.C., and Oberti, R. (2007a) Amphiboles: crystal chemistry. Reviews in
- 445 Mineralogy and Geochemistry, 67, 1-54.
- 446 Hawthorne, F.C., and Oberti, R. (2007b) Classification of the Amphiboles. Reviews in
- 447 Mineralogy and Geochemistry, 67, 55-88.
- 448 Hedenquist, J.W., and Lowenstern, J.B. (1994) The role of magmas in the formation
- of hydrothermal ore deposits. Nature, 370, 519-527.
- 450 Heinrich, C.A. (2005) The physical and chemical evolution of low to medium-salinity
- 451 magmatic fluids at the porphyry to epithermal transition: a thermodynamic452 study. Mineralium Deposita, 39, 864-889.
- 453 Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated
- 454 temperatures and pressures. American Journal of Science, 267, 729-804.
- 455 Helgeson, H.C. (1964) Complexing and Hydrothermal Ore Deposition. MacMillan,
- 456 New York, pp 128.
- 457 Iezzi. G., Liu, Z., and Della Ventura, G. (2006). Synchrotron infrared spectroscopy of
- 458 synthetic Na(NaMg)Mg5Si8O22(OH)2 up to 30 GPa: Insight on a new
- high-pressure amphibole polymorph. American Mineralogist, 91, 479-482.
- 460 Ingrin, J., and Blanchard, M. (2000) Hydrogen mobility in single crystal kaersutite.
- 461 EMPG VIII, Journal of Conference Abstracts, 5, 52.
- 462 Ingrin, J., and Blanchard, M. (2006) Diffusion of hydrogen in minerals. Reviews in
- 463 Mineralogy and Geochemistry, 62, 291-320.

464	Ito, E., and Anderson, A.T. (1983) Submarine metamorphism of gabbros from the
465	Mid-Cayman Rise: petrographic and mineralogic constraints on hydrothermal
466	process at slow-spreading ridges. Contributions to Mineralogy and Petrology, 82,
467	371-388.
468	Kamenetsky, V.S., Wolfe, R.C., Eggins, S.M., Mernagh, T.P., and Bastrakov, E. (1999)
469	Volatile exsolution at the Dinkidi Cu–Au porphyry deposit, Philippines: a
470	melt-inclusion record of the ore-forming process. Geology, 27, 691-694.
471	Kamineni, D.C. (1986) A petrochemical study of calcic amphiboles from the East Bull
472	Lake anorthosite-gabbro layered complex, District of Algoma, Ontario.
473	Contributions to Mineralogy and Petrology, 93, 471-481.
474	King, P.L., Hervig, R.L., Holloway, J.R., Delaney, J.S., and Dyar, M.D. (2000)
475	Partitioning of Fe ³⁺ /Fe ^{total} between amphibole and basanitic melt as a function
476	of oxygen fugacity. Earth and Planetary Science Letters, 178, 97-112.
477	King, P.L., Hervig, R.L., Holloway, J.R., Vennemann, T.W., and Righter, K. (1999)
478	Oxy-substitution and dehydrogenation in mantle-derived amphiboles
479	megacrysts. Geochimica et Cosmochimica Acta, 62, 3635-3651.
480	Klügel, A. (2001) Prolonged reactions between harzburgite xenoliths and
481	silica-undersaturated melt: implications for dissolution and Fe-Mg interdiffusion
482	rates of orthopyroxene. Contributions to Mineralogy and Petrology, 141, 1-14.
483	Koleszar, A. M., Kent, A. J., Wallace, P. J., and Woodhead J. D. (2007) Volatile (H, C,
484	Cl, S) concentrations in ocean island basalt glasses from Pitcairn and the
485	Society Islands, Eos, 88 (Suppl.).

486	Kullerud, K. (1996) Chlorine-rich amphiboles: interplay between amphibole
487	compositions and an evolving fluid. European Journal of Mineralogy, 8,
488	355-370.
489	Kullerud, K., and Erambert, M. (1999) Cl-scapolite, Cl-amphibole, and plagioclase
490	equilibria in ductile shear zones at Nusfjord, Lofoten, Norway; implications for
491	fluid compositional evolution during fluid-mineral interaction in the deep crust.
492	Geochimica et Cosmochimica Acta, 63, 3829-3844.
493	Kullerud, K., Flaat, K., and Davidsen, B. (2001) High-pressure fluid-rock reactions
494	involving Cl-bearing fluids in lower-crustal ductile shear zones of the
495	Flakstadoy Basic Complex, Lofoten, Norway. Journal of Petrology, 42,
496	1349-1372.
497	Leake, B.E. (1968) A catalog of analyzed calciferous and subcalciferous amphiboles
498	together with their nomenclature and associated minerals. Geological Society of
499	America, Spec. Pap. 98.
500	Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D.,
501	Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J.,
502	Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C.,
503	Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Guo, Y.
504	(1997) Nomenclature of amphiboles: Report of the subcommittee on
505	amphiboles of the International Mineralogical Association, Commission on New
506	Minerals and Mineral Names. Canadian Mineralogist, 35, 219-246.
507	Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D.,

508	Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson,
509	N.C.N., and Whittaker, E.J.W. (2003) Nomenclature of amphiboles: additions
510	and revisions to the International Mineralogical Association's amphibole
511	nomenclature. Canadian Mineralogist, 41, 1355-1370.
512	Li, Q.L., Lin, W., Su, W., Li, X.H., Shi, Y.H., Liu, Y., and Tang, G.Q. (2011) SIMS
513	U-Pb rutile age of low-temperature eclogites from southwestern Chinese
514	Tianshan, NW China. Lithos, 122, 76-86.
515	Liu, J.B., Liu, W.Y., Ye K., and Mao, Q. (2009) Chlorine-rich amphibole in Yangkou
516	eclogite, Sulu ultrahigh-pressure metamorphic terrane, China, European Journal
517	of Mineralogy, 21, 1265-1285.
518	Magenheim, A.J., Spivack, A.J., Michael, P.J., and Gieskes, J.M. (1995) Chlorine
519	stable isotope composition of the oceanic crust: implications for the Earth's
520	distribution of chlorine. Earth and Planetary Science Letters, 131, 427-432.
521	Maresch, W.V. and Czank, M. (2007) The Significance of the Reaction Path in
522	Synthesizing Single-Phase Amphibole of Defined Composition. Reviews in
523	Mineralogy and Geochemistry, 67, 287-322.
524	Markl, G., and Bucher, K. (1998a). Metamorphic salt in granulites: implications for
525	the presence and composition of fluid in the lower crust. Nature, 391, 781-783.
526	Markl, G., and Piazolo, S. (1998b) Halogen-bearing minerals in syenites and
527	high-grade marbles of Dronning Maud Land, Antarctica: monitors of fluid
528	compositional changes during late-magmatic fluid-rock interaction processes.
529	Contributions to Mineralogy and Petrology, 132, 246-268.

- 530 Matsubara, S., and Motoyoshi, Y. (1985) Potassium pargasite from Einstodingen
- 531 Lutzow-Holm Bay, east Antarctica. Mineralogical Magazine, 49, 703-707.
- 532 Mazdab, F.K. (2003) The diversity and occurrence of potassium-dominant amphiboles.
- 533 Canadian Mineralogist, 41, 1329-1344.
- 534 McCormick, K.A., and McDonald, A.M. (1999) Chlorine-bearing amphiboles from
- 535 the Fraser mine, Sudbury, Ontario, Canada: Description and crystal chemistry.
- 536 Canadian Mineralogist, 37, 1383-1403.
- 537 Meyer, C., and Hemley, J.J. (1967) Wall rock alteration. In: Barnes HL (ed)
- 538 Geochemistry of hydrothermal ore deposits, 1st ed. Holt, Rinehart and Winston,
- 539 New York. pp. 166-235.
- 540 Morgan, D., A. der ven, Van., and Ceder, G. (2004) Li conductivity in LixMPO4 (M =
- 541 Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid State Letters, 7, A30-A32.
- 542 Morrison, J. (1991) Compositional constraints on the incorporation of Cl into
- 543 amphiboles. American Mineralogist, 76, 1920-1930.
- 544 Munoz, J.L. (1984) F-OH and Cl-OH exchange in micas with applications to
- 545 Hydrothermal Ore Deposits. In Micas (ed. S.W. Bailey); Reviews in Mineralogy
- 546 13, pp. 469-493.
- 547 Oberti, R., Ungaretti, L., Cannillo, E., and Hawthorne, F. (1993) The mechanism of Cl
- 548 incorporation in amphibole. American Mineralogist, 78, 746-752.
- 549 Oberti, R., Della Ventura, G., and Camara, F. (2007) New amphibole compositions:
- natural and synthetic. Reviews in Mineralogy and Geochemistry, 67, 89-123.
- 551 Pan, Y., and Fleet, M.E. (1992) Mineralogy and genesis of calc-silicates associated

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4779

7/9

with Archean volcanogenic massive sulphide deposits at the manitouwadge 552 553 mining camp, Ontario. Canadian Journal of Earth Sciences, 29, 1375-1388. 554 Pan, Y., and Batiza, R. (2002) Mid-ocean ridge magma chamber processes: Constraints from olivine zonation in lavas from the East Pacific Rise at 9°30'N 555 and 10⁰30'N. Journal of Geophysical Research, 107, 1-13. 556 Parry, W.T., and Jacobs, D.C. (1975) Fluorine and chlorine in biotite from Basin and 557 Range plutons. Economic Geology, 70, 554-558. 558 559 Pekov, I.V., Chukanov, N.V., Nefedova, M.E., Pushcharovsky, D.Yu., and Rastsvetaeva, R.K. (2005) Chloro-potassichastingsite (K,Na) Ca₂(Fe²⁺,Mg)₄ 560 Fe^{3+} [Si₆Al₂O₂₂](Cl.OH)₂: revalidation and the new name of dashkesanite. 561 562 Zapiski. VMO. 134, 31-36 (Russian with English abstract). 563 Peterson, E. U., Essene, E. J., Peacor, D. R., and Valley, J. W. (1982) Fluorine end member micas and amphiboles. American Mineralogist, 67, 538-544. 564 565 Philippot, P., Chevallier, P., Chopin, C., and Dubessy, J. (1995) Fluid composition and evolution in coesite-bearing rocks (Dora-Maira massif, western Alps): 566 implication for element recycling during subduction. Contributions to 567 Mineralogy and Petrology, 121, 29-44. 568 Philippot, P., Agrinier, P., and Scambelluri, M. (1998) Chlorine cycling during 569 subduction of altered oceanic crust, Earth and Planetary Science Letters, 161, 570 571 33-44. Philippot, P., Chevallier, P., Chopin, C., and Dubessy, J. (1995) Fluid composition and 572 evolution in coesite-bearing rocks (Dora-Maira massif, western Alps): 573

574	implication for element recycling during subduction. Contributions to
575	Mineralogy and Petrology, 121, 29-44.
576	Popp, R.K., Virgo, D., and Phillips, M.W. (1995) H deficiency in kaersutitic
577	amphiboles: experimental verification. American Mineralogist, 80, 1347-1350.
578	Rasmussen, K.L., and Mortensen, J.K. (2013) Magmatic petrogenesis and the
579	evolution of (F:Cl:OH) fluid composition in barren and tungsten
580	skarn-associated plutons using apatite and biotite compositions: Case studies
581	from the northern Canadian Cordillera. Ore Geology Reviews, 50, 118-142.
582	Rowe, M.C., and Lassiter, J.C. (2009) Chlorine enrichment in central Rio Grande Rift
583	basaltic melt inclusions: Evidence for subduction modification of the
584	lithospheric mantle, Geology, 37, 439-442.
585	Rubatto, D., Gebauer, G., and Compagnoni, R. (1999) Dating of eclogite-facies
586	zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western
587	Alps). Earth and Planetary Science Letter, 167, 141-158.
588	Ruiz Cruz, M. D. (2010) Zoned Ca-amphibole as a new marker of the Alpine
589	metamorphic evolution of phyllites from the Jubrique unit, Alpujárride Complex,
590	Betic Cordillera, Spain, Mineralogical Magazine, 74, 773-796.
591	Sato, H., Yamaguchi, Y., and Makino, K. (1997) Cl incorporation into successively
592	zoned ampiboles from the Ramnes cauldron, Norway. American Mineralogist,
593	82, 316-324.
594	Sato, H., Holtz, F., Behrens, H., Botcharnikov, R., and Nakada, S. (2005).
595	Experimental Petrology of the 1991–1995 Unzen Dacite, Japan. Part II: Cl/OH

596	Partitioning between Hornblende and Melt and its Implications for the Origin of
597	Oscillatory Zoning of Hornblende Phenocrysts. Journal of Petrology, 46,
598	197-212.

- 599 Self, S., Blake, S., Sharma, K., Mike, W., and Sephton, S. (2008) Sulfur and chlorine
- in Late Cretaceous Deccan magmas and eruptive gas release. Science, 319,
- 601 1654-1657.
- 602 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of
- 603 interatomic distances in halides and chalcogenides. Acta Crystallographica, A32,
- 604 751B767.
- Sharp, Z.D., and Barnes, J.D. (2004) Water-soluble chlorides in massive sea-floor
 serpentinites: a source of chloride in subduction zones. Earth and Planetary
 Science Letters, 226, 243-254.
- 608 Siahcheshm, K., Calagaria, A.A., Abedini, A., and Lentz D.R. (2012) Halogen
- 609 signatures of biotites from the Maher-Abad porphyry copper deposit, Iran:
- 610 characterization of volatiles in syn- to post-magmatic hydrothermal fluids.
- 611 International Geology Review 54, 1353-1368.
- 612 Sisson, V. B. (1987) Halogen chemistry as indicator of metamorphic fluid interaction
- 613 with the Ponder Pluton, Coast Plutonic Complex, British Columbia, Canada.
- 614 Contributions to Mineralogy and Petrology, 95, 123-131.
- 615 Sotnikov, V. I., Berzina, A. N., and Berzina, A. P. (2006) The role of metasomatism of
- enclosing rocks in the balance of chlorine and fluorine during the ore formation

617	at porphyry Cu-Mo deposits. Russian Geology and Geophysics, 47, 945-955.
618	Stakes, D., Mevel, C., Cannat, M., and Chaput, T. (1991) Metamorphic stratigraphy of
619	Hole 735B, in: R.P. Von Herzen, P.T. Robinson et al. (Eds.), Proc. ODP, Sci.
620	Results 118, College Station, TX, pp. 153-180.
621	Su, W., Zhang, M., Redfern, S. A. T., Gao, J., and Klemd, R. (2009) OH in zoned
622	amphiboles of eclogite from the western Tianshan, NW-China, International
623	Journal of Earth Sciences, 98, 1299-1309.
624	Su,W., Ji, Z.P., Ye. K., You, Z.D., Liu J., Yu, J., and Cong, B. (2004) Distribution of
625	hydrous components in jadeite of the Dabie Mountains. Earth and Planetary
626	Science Letters, 222, 85-100.
627	Su, W., Gao, J., Klemd, R., Li, J.L., Zhang, X., Li, X.H., Chen, N.S., and Zhang, L.
628	(2010) U–Pb zircon geochronology of Tianshan eclogites in NW China:
629	implication for the collision between the Yili and Tarim blocks of the
630	southwestern Altaids. European Journal of Mineralogy, 22, 473-478.
631	Svensen, H., Jamteit, B., Banks, D.A., and Austrheim, H. (2001) Halogen contents of
632	eclogite facies fluid inclusions and minerals: Caledonides, western Norway.
633	Journal of Metamorphic Geology, 19, 165-178.
634	Symonds, R.B., Rose, W.I., Bluth, G.J.S., and Gerlach, T.M. (1994) Volcanic-gas
635	studies: methods, results and applications. In: Carroll, M.R., Holloway, J.R.
636	(Eds.), Volatiles in Magmas. Reviews in Mineralogy and Geochemistry, 30,
637	1-60.

638 Thompson, A.B., and England, P.C. (1984) Pressure temperature time paths of

639	regional metamorphism: 2. Their inference and interpretation using mineral
640	assemblages in metamorphic rocks. Journal of Petrology, 25, 929-955.
641	Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R., and Foley, S.F. (2007)
642	Trace-element partitioning between amphibole and silicate melt. Reviews in
643	Mineralogy and Geochemistry, 67, 417-451.
644	Tirone, M., Ganguly, J., Dohmen, R., Langenhorst, F., Hervig, R., and Becker, HW.
645	(2005) Rare earth diffusion kinetics in garnet: Experimental studies and
646	applications. Geochimica et Cosmochimica Acta, 69, 2385-2398.
647	Trommsdorff, V., Skippen, G., and Ulmer, P. (1985) Halite and sylvite as solid
648	inclusions in high-grade metamorphic rocks. Contributions to Mineralogy and
649	Petrology, 89, 24-29.
650	Tumiati, S., Godard, G., Martin, S., Kloetzli, U., and Monticelli D. (2007)
651	Fluid-controlled crustal metasomatism within a high-pressure subducted
652	melange (Mt. Hochwart, Eastern Italian Alps) (in Melting, metasomatism and
653	metamorphic evolution in the lithospheric mantle). Lithos, 94, 148-167.
654	Valley, J.W., Petersen, E.U., Essene, E.J., and Bowman, J.R. (1982) Fluorphlogopite
655	and fluortremohte in Adirondack marbles and calculated C-O-H-F fluid
656	compositions. American Mineralogist, 67, 545-557.
657	Van Orman, J.A., Grove, T.L., and Shimizu, N. (2001) Rare earth element diffusion in
658	diopside: Influence of temperature, pressure, and ionic radius, and an elastic
659	model for diffusion in silicates. Contributions to Mineralogy and Petrology, 141,
660	687-703.

661 Vanko, D.A. (1986) High-chlorine amphiboles from oceanic rocks: prod
--

- highly-saline hydrothermal fluids? American Mineralogist, 71, 51-59.
- 663 Wallace, P.J. (2001) Volcanic SO2 emissions and the abundance and distribution of
- 664 exsolved gas in magma bodies. Journal of Volcanology and Geothermal
- 665 Research, 101, 85-106.
- 666 Wallace, P.J. (2005) Volatiles in subduction zone magmas: concentrations and fluxes
- based on melt inclusion and volcanic gas data. Journal of Volcanology and
- 668 Geothermal Research, 140, 217-240.
- 669 Webster, J.D. (2004) The exsolution of magmatic hydrosaline chloride liquids.
- 670 Chemical Geology, 210, 33-48.
- 671 Webster, J.D., and Holloway, R. (1990) Partitioning of F and Cl between magmatic
- hydrothermal fluids and highly evolved granite magmas. In Ore-bearing Granite
- 673 Systems; Petrogenesisa nd Mineralizing Processes (eds. H. J. Stein and J. C.
- Hannah); GSA Special Paper 246. pp. 21-34.
- 675 Welch, M.D., Cámara, F., Ventura, G.D., and Iezzi, G. (2007) Non-Ambient in situ
- 676 Studies of Amphiboles. Reviews in Mineralogy and Geochemistry, 67, 223-260.
- Wones, D.R., and Gilbert, M.C. (1982) Amphiboles in the igneous environment.
- 678 Reviews in Mineralogy and Geochemistry, 9B, 355-390.
- 679 Wood, S. A., and Normand, C. (2008) Mobility of palladium chloride complexes in
- 680 mafic rocks: insights from a flow-through experiment at 25 degrees C using
- air-saturated, acidic, and Cl-rich solutions, Mineralogy and Petrology, 92,
- 682 **81-97**.

683	Xiao, Y.L., Hoefs, J., and Kronz, A. (2005) Compositionally zoned Cl-rich
684	amphiboles from North Dabie Shan, China. Monitor of high-pressure
685	metamorphic fluid/rock interaction processes. Lithos, 81, 279-295.
686	Zellmer, G.F., Blake, S., Vance, D., Hawkesworth, C., and Turner, S. (1999)
687	Plagioclase residence times at two island arc volcanoes (Kameni Islands,
688	Santorini,, Soufriere, St. Vincent) determined by Sr diffusion systematics.
689	Contributions to Mineralogy and Petrology, 136, 345-357.
690	Zhang, X.Y., Cherniak, D.J., and Watson, E.B. (2006) Oxygen diffusion in titanite:
691	lattice diffusion and fast-path diffusion in single crystals. Chemical Geology,
692	235, 105-123.
693	Zhang, Y. (2010) Diffusion in Minerals and Melts: Theoretical Background. Reviews
694	in Mineralogy and Geochemistry, 72, 5-59.
695	Zheng, Y. F., Fu, B., Gong, B., and Li, L. (2003) Stable isotope geochemistry of
696	ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China:
697	implications for geodynamics and fluid regime. Earth Science Review, 62,
698	105-161.
699	Zhu, C., and Sverjensky, D. (1991) Partitioning of F-Cl-OH between minerals and
700	hydrothermal fluids. Geochimica et Cosmochimica Acta, 55, 1837-1858.
701	
702	
703	
704	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4779

705

FIGURE LEGENDS

706	Figure 1. Photographs of the marble sample from the Yunnan province, China. (a)
707	The marble contains very coarse homogeneous crystals of amphibole, clinopyroxene,
708	orthopyroxene, and epidote. The fine-grained matrix mainly consists of calcite +
709	dolomite. Hand specimen. (b-d) Micro-photographs reveal that the mineral
710	assemblage consists of clinopyroxene, orthopyroxene, epidote (b), calcite, dolomite
711	(c), and plagioclase, biotite, titanite and ilmenite (d). (e) Secondary electron image of
712	starting amphibole. It shows no compositional zonation. The spots in the figure are
713	analysis spots of the analytical traverse. Amphibole: Amp; clinopyroxene: Cpx;
714	orthopyroxene Opx; epidote: Epi; calcite:Cc; dolomite: Dol; plagioclase: Pl; biotite:
715	Bt; titanite: Ti; and ilmenite: Ilm.
716	Figure 2. Images of backscattered electron imaging and X-ray mapping of Cl, Fe,
717	Mg of amphibole of water-bearing experimental runs performed at 1.0 GPa, 750 °C
718	and 200 hours.
719	Figure 3. Measured chlorine diffusion profiles in water-bearing experiments. a:
720	Run number JL10, T = 625 °C, P = 1.0 GPa, $t = 454$ h; b: Run number JL1, T =
721	650 °C, P = 1.0 GPa, $t = 100$ h; c: Run number JL5 T = 700 °C, P = 1.0 GPa, $t = 200$ h;
722	d: Run number JL3, T = 750 °C, P = 1.0 GPa, $t = 200$ h; e: Run number JL7, T =
723	800 °C, P = 1.0 GPa, $t = 100$ h. The smooth curve is the best fit of the EMPA data
724	with a diffusion model.

Figure 4. Traverse of ${}^{37}\text{Cl}/{}^{30}\text{Si}$ in amphibole of experiment number JL3 (T = 750 °C, P = 1.0 GPa, t = 200 h). The smooth curve is the best fit of the SIMS data

- with a diffusion model. a: micro-image of sputtered crater within the sample by FIB;
- b: Traverse profile of 37 Cl/ 30 Si.
- Figure 5. Arrhenius plot of Chlorine (Cl) diffusion in amphibole of runs
- performed at 1.0 GPa, from 625 °C to 800 °C.
- Figure 6. Arrhenius plot summarizing diffusion studies in amphiboles. Hydrogen
- 732 data from Ingrin et al. (2000) [H(1)], Graham et al. (1984) [H(2), H(3)], respectively.
- F-OH data from Brabander et al. (1995). Oxygen data from Farver and Giletti (1985).
- Ar data from Harrison (1981). Sr data from Brabander and Giletti (1995). Chlorine
- 735 (Cl) data are from this study.
- Figure 7. Plots of Cl, F and other elements in amphibole from water-bearing
- experimental runs performed at 1.0 GPa, from 625 °C to 800 °C, respectively. a: Cl vs
- F; b: Cl vs FeO; c: Cl vs MgO; d: F vs FeO; e: F vs MgO.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4779

7/9

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4779

Mineral/Spots	SiO2	TiO2	Cr2O3	Al2O3	FeO	MgO	MnO	CaO	Na2O	K2O	Cl	F	Total
Amphibole	44.30	0.54	0.09	14.18	0.14	20.52	0.00	13.38	2.38	0.20	0.031	0.34	96.11
Line1	44.68	0.53	0.08	14.35	0.13	20.52	0.00	13.31	2.43	0.21	0.032	0.33	96.58
Line2	44.30	0.53	0.07	14.54	0.14	20.48	0.00	13.23	2.41	0.22	0.033	0.35	96.29
Line3	44.17	0.58	0.05	14.45	0.17	20.36	0.01	13.33	2.40	0.21	0.030	0.35	96.11
Line4	44.40	0.56	0.08	14.39	0.15	20.50	0.00	13.44	2.43	0.21	0.033	0.36	96.55
Line5	44.23	0.60	0.05	14.53	0.13	20.45	0.00	13.39	2.39	0.23	0.033	0.34	96.37
Line6	44.14	0.55	0.11	14.46	0.11	20.67	0.01	13.27	2.38	0.22	0.031	0.33	96.27
Line7	44.06	0.57	0.05	14.32	0.16	20.55	0.00	13.32	2.42	0.22	0.031	0.37	96.07
Line8	44.25	0.57	0.08	14.33	0.10	20.62	0.00	13.37	2.41	0.23	0.033	0.37	96.36
Line9	44.36	0.58	0.03	14.22	0.13	20.59	0.00	13.31	2.41	0.22	0.030	0.37	96.24
Line10	44.21	0.56	0.05	14.37	0.12	20.68	0.01	13.32	2.41	0.21	0.030	0.36	96.33
Line11	44.29	0.55	0.06	14.24	0.14	20.40	0.02	13.45	2.39	0.23	0.032	0.38	96.18
Line12	44.24	0.55	0.05	14.26	0.18	20.43	0.01	13.38	2.41	0.21	0.031	0.33	96.06
Line13	44.35	0.56	0.04	14.36	0.13	20.56	0.00	13.34	2.47	0.22	0.030	0.38	96.43
Line14	43.96	0.56	0.07	14.75	0.14	20.35	0.00	13.43	2.43	0.22	0.030	0.37	96.28
Line15	44.40	0.61	0.10	14.24	0.15	20.59	0.01	13.39	2.40	0.22	0.032	0.34	96.49
Clinopyroxene	53.31	0.18	0.05	0.74	7.20	14.55	0.25	22.49	0.20	0.03	0.00	un	99.00
Orthopyroxene	54.36	0.09	0.01	0.62	20.51	23.35	0.63	0.84	0.05	0.00	0.01	un	100.47
Epidote	38.44	0.06	0.01	28.80	5.20	0.04	0.08	23.51	0.01	0.01	0.00	un	96.16
Plagioclase	56.03	0.07	0.00	28.18	0.29	0.03	0.00	10.70	5.20	0.24	0.00	un	100.74
Biotite	35.48	4.76	0.02	13.15	21.98	9.65	0.14	0.05	0.16	8.57	0.15	un	94.11
Ilmenite	0.02	50.52	0.05	0.02	46.19	0.04	2.49	0.25	0.01	0.00	0.01	un	99.60
Titanite	30.78	36.73	0.08	1.88	0.68	0.03	0.00	28.60	0.04	0.02	0.01	un	98.85
Dolomite	0.00	0.00	0.00	0.00	0.06	19.52	0.05	30.50	0.01	0.00	0.00	un	50.14
Calcite	0.00	0.00	0.03	0.03	0.04	1.45	0.00	52.78	0.01	0.01	0.00	un	54.35

Table 1. Electron microprobe analyses of starting amphiboles and its paragenous minerals from the marble (sample No. JL) (wt %)

un—unanalysis.

Run No.	Τ()	P (GPa)	Time (h)	H ₂ O(ug)	No. traverses/ error	D(m ² /s)	Analysis method
JL10	625	1.0	454	Add(0.23)	6/20%	2.6×10 ⁻¹⁶	EMPA
JL1	650	1.0	100	Add(0.49)	8/18%	4.9×10 ⁻¹⁶	EMPA
JL5	700	1.0	200	Add(1.36)	8/16%	7.6×10 ⁻¹⁶	EMPA
JL3	750	1.0	200	Add(3.29)	8/16%	1.8×10^{-15}	EMPA
JL3	750	1.0	200	Add(3.29)	1	1.9×10 ⁻¹⁵	SIMS
JL7	800	1.0	100	Add(3.81)	4/16%	2.8×10^{-15}	EMPA

Table 2. Experimental conditions and diffusion coefficients for chlorine at 1.0 GPa in the amphibole

Table 3. Summarize best fit parameters to the Arrhenius equations for elements diffusion in the amphiboles

Element	Т (°С)	P (GPa)	D ₀ (m ² /s)	Ea(kJ/K mol)	Reference	
				79-84(Hb)		
hydrogen	350 - 800	0.2-0.8		71.5(Tr)	Graham et al. (1984)	
				99(Act)		
hydrogen	600 - 900	0.01		$104 \pm 12(Kat)$	Ingrin and Blanchard (2000)	
				172 ± 25 (Hb)		
oxygen	650 - 800	0.1		$163 \pm 21(Tr)$	Farver and Giletti (1985)	
				$238 \pm 8(\text{F-Rict})$		
F-OH	500 - 800	0.2	3.4×10^{-17}	41 ± 5	Brabander et al. (1995)	
Sr			4.9×10^{-8}	260 ± 12 (Hb)	Brabander and Giletti (1995)	
Ar					Harrison (1981)	
Ar					Baldwin et al. (1990)	
Cl	625-800	1.0	4.53(+7.3, -2.8) ×10 ⁻¹⁰	106.6 ± 7.8	This study	