1	REVISION 2
2	Thermodynamic investigation of uranyl vanadate minerals: implications for structural
3	stability
4	Tyler L. Spano ^{1*} , Ewa A. Dzik ¹ , Melika Sharifironizi ¹ , Megan K. Dustin ¹ , Madison
5	TURNER ¹ , PETER C. BURNS ^{1,2}
6 7	¹ Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556
8 9	² Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
10	
11	ABSTRACT
12	Understanding the crystal chemistry, materials properties, and thermodynamics of uranyl
13	minerals and their synthetic analogues is an essential step for predicting and controlling the long
14	term environmental behavior of uranium. Uranyl vanadate minerals are relatively insoluble and
15	widely disseminated within U ore deposits and mine and mill tailings. Pure uranyl vanadate
16	mineral analogues were synthesized for investigation using high-temperature drop solution
17	calorimetry. Calculated standard-state enthalpies of formation were found to be -4928.52 \pm
18	13.90, -5748.81 \pm 13.59, and -6402.88 \pm 21.01, kJ/mol for carnotite, curienite, and francevillite
19	respectively. Enthalpies of formation from binary oxides for uranyl vanadate minerals exhibit a
20	positive linear correlation as a function of the acidity of oxides. Normalized charge deficiency
21	per anion (NCDA) is presented to relate bonding requirements of the structural units and
22	interstitial complexes. An exponential correlation was observed between NCDA and energetic
23	stability (enthalpy of formation from binary oxides) for the studied minerals. Additionally,
24	NCDA and oxide acidity exhibit an exponential correlation where decreasing oxide acidity

results in an exponential decrease in NCDA. The number of occurrences of uranyl vanadate
mineral species are found to correlate with both enthalpy of formation from oxides, and NCDA.

27

INTRODUCTION

28	In 1948, the US Atomic Energy Commission guaranteed a minimum price for uranium
29	ore mined in the United States to decrease dependence on foreign sources (Brugge and Goble,
30	2002). The resulting expansion of exploration and mining in the southwestern United States led
31	to identification of over 7,000,000 tons of U ore (Brugge and Goble, 2002). Carnotite, ideally
32	$K_2(UO_2)_2V_2O_8$ •3H ₂ O, and other uranyl vanadate minerals, are widespread in U deposits of the
33	American Southwest, and were thus especially important during this mining "boom". Uranium
34	and vanadium ore deposits located within the Uravan mineral belt in western Colorado and
35	eastern Utah accounted for nearly 13% of the total U produced by the United States (Chenoweth,
36	1981). In addition to the American Southwest, uranyl vanadate minerals originating from Africa
37	were an important source of U for the development of both nuclear weapons and nuclear energy
38	during and after World War II (Dumett, 1985). The solid solution series between curienite
39	$(Pb(UO_2)_2V_2O_8\bullet 5H_2O)$ and francevillite $(Ba(UO_2)_2V_2O_8\bullet 5H_2O)$ was first observed in samples
40	from the mines of the Belgian Congo (now the Democratic Republic of the Congo), but has since
41	been observed in other localities (Janeczek, 1999; Mereiter, 1986).

In the American Southwest and Africa, uranyl vanadate minerals are most common in areas where reduced uranium and reduced vanadium species are undergoing oxidation (Finch and Murakami, 1999). Primary U and V minerals that may alter to form uranyl vanadates include uraninite (UO_{2+x}), montroseite (V^{3+} , Fe²⁺, V^{4+})O(OH), and davidite

46 $(La(Y,U)Fe_2(Ti,Fe,Cr,V)_{18}(O,OH,F)_{38})$ (Krivovichev and Plášil, 2013; Weeks, 1961). Carnotite

47 and other uranyl vanadates occur in Colorado Plateau-type U-V deposits, located on or near

48 fossil carbonaceous matter, and as alteration products in close proximity to uraninite (Dahlkamp,

49 1993; Evans and Garrels, 1958).

Over a range of conditions, uranyl vanadate minerals are amongst the most insoluble 50 alteration products of supergene U oxides, which are also significant ore sources (Barton, 1957; 51 52 Krivovichev and Plášil, 2013; Plasil, 2014; Weeks, 1961). Owing to their insolubility, they retain uranium in natural systems. Between pH-Eh ranges of 4.5-8, and 1.0-0.0V, respectively, 53 carnotite is stable, and uranyl vanadate minerals precipitate when dilute UO_2^{2+} and VO_4^{3-} are 54 present in aqueous systems (Langmuir, 1978; Schindler et al., 2000). The solubility of carnotite 55 56 in groundwater is very low, having been noted as being approximately 1ppb U in the pH range of 57 5.5-7.5 (Barton, 1957). Carnotite precipitation from U-contaminated groundwater has been proposed as a potential method for treatment and remediation of groundwater and legacy wastes 58 59 from mining operations (Tokunaga et al., 2009). A decrease in U concentrations in water below the drinking water standard of 30 ppb U, as outlined by the United States Environmental 60 Protection Agency, was observed in batch experiments and calculations in which carnotite was 61 precipitated (Tokunaga et al., 2009). 62

Over one century of research concerning uranyl vanadate minerals has yielded limited 63 insight into the thermodynamic properties of these materials (Karyakin et al., 2003). Quantitative 64 thermodynamic data are needed to define the relations between structural and energetic 65 characteristics of these environmentally important phases (Karyakin et al., 2003). All uranyl 66 vanadate minerals contain topologically identical uranyl vanadate sheets and substitution of 67 interlayer cations is common. It has been suggested that the geometric arrangement of the 68 interlayer cations is similar for all uranyl vanadate minerals, and thus does not substantially alter 69 the stability of members of this group (Schindler et al., 2004b). Thermodynamic studies 70

presented here clarify the effect of structural arrangement and interlayer occupancy on the stabilities of mineral species that are chemically similar and occur in comparable geologic environments. Furthermore, investigating the thermodynamic properties of these minerals will aid in understanding the environmental behavior of U.

75 Previous studies have investigated the thermochemistry of some synthetic alkaline-earth uranyl vanadate mineral analogues (Karyakin et al., 2003). An adiabatic vacuum calorimeter was 76 used to determine the heat capacities of synthetic crystalline alkaline-earth (Mg, Ca, Sr, and Ba) 77 78 uranyl vanadates in the temperature range of 80-300K (Karyakin et al., 2003). High temperature 79 calorimetry is necessary for rapid and reproducible data acquisition for refractory materials (Navrotsky, 1997). This technique is particularly applicable for enthalpy measurements of uranyl 80 minerals as it ensures complete dissolution of materials regardless of chemical composition or 81 82 structure (Shvareva et al., 2012).

83

STRUCTURES OF URANYL VANADATE MINERALS

84 Uranium is removed from primary minerals largely by oxidative dissolution, which forms the relatively soluble and environmentally mobile uranyl ion, UO_2^{2+} (Finch and Murakami, 85 1999). Aqueous U(VI) chemistry is dominated by this near-linear uranyl ion. The uranyl moiety 86 is ubiquitous in secondary uranium minerals and synthetic hexavalent uranium phases (Burns, 87 88 2005). The formal charge of +2 on the uranyl ion requires further coordination by four, five, or 89 six ligands in the equatorial planes of bipyramids about the uranyl. The coordination geometries include square, pentagonal, and hexagonal bipyramidal units (Burns, 2005). Owing to the uneven 90 91 distribution of bond strengths in uranyl polyhedra, linkages through the equatorial ligands favor an abundance of sheet structures (Burns, 2005; Burns, 1997). 92

93	The sheets in the crystal structures of all uranyl vanadate minerals are topologically				
94	identical. In 2013, Krivovichev & Plasil (Krivovichev and Plášil, 2013) listed 13 naturally				
95	occurring uranyl vanadates (Table 1), all of which contain the $[(UO_2)_2(V_2O_8)]^{2-}$ sheet that is				
96	based on the francevillite anion topology, and either mono, di, or tri-valent interstitial cations				
97	(Abraham et al., 1993; Cesbron and Morin, 1968; Mereiter, 1986). The anionic sheet possesses				
98	V_2O_8 dimers consisting of edge-sharing $V^{5+}O_5$ square pyramidal units that are linked by uranyl				
99	ions in pentagonal bipyramidal coordination (Burns, 2005) (Figure 1). Neutrality is achieved by				
100	incorporation of interlayer cations between successive sheets. Hydration ranges from anhydrous				
101	to 11 water molecules per formula unit (Krivovichev and Plášil, 2013).				
102	Experimental Methods				
103	Synthesis				
103 104	Synthesis Carnotite, francevillite, and curienite used in this study were synthesized through mild				
104	Carnotite, francevillite, and curienite used in this study were synthesized through mild				
104 105	Carnotite, francevillite, and curienite used in this study were synthesized through mild hydrothermal reactions of uranyl pyrovanadate (UPV) (Karyakin et al., 2000) and KOH,				
104 105 106	Carnotite, francevillite, and curienite used in this study were synthesized through mild hydrothermal reactions of uranyl pyrovanadate (UPV) (Karyakin et al., 2000) and KOH, Ba(OH) ₂ , or Pb(NO ₃) ₂ . UPV was synthesized by the high temperature solid-state reaction of				
104 105 106 107	Carnotite, francevillite, and curienite used in this study were synthesized through mild hydrothermal reactions of uranyl pyrovanadate (UPV) (Karyakin et al., 2000) and KOH, Ba(OH) ₂ , or Pb(NO ₃) ₂ . UPV was synthesized by the high temperature solid-state reaction of NH ₄ VO ₃ (MV Laboratories, 99.99%) and γ -UO ₃ (previously synthesized) (Appleman and Evans,				
104 105 106 107 108	Carnotite, francevillite, and curienite used in this study were synthesized through mild hydrothermal reactions of uranyl pyrovanadate (UPV) (Karyakin et al., 2000) and KOH, $Ba(OH)_2$, or $Pb(NO_3)_2$. UPV was synthesized by the high temperature solid-state reaction of NH_4VO_3 (MV Laboratories, 99.99%) and γ -UO ₃ (previously synthesized) (Appleman and Evans, 1965; Requena Yáñez et al., 2012). To synthesize UPV, stoichiometric quantities of NH_4VO_3				
104 105 106 107 108 109	Carnotite, francevillite, and curienite used in this study were synthesized through mild hydrothermal reactions of uranyl pyrovanadate (UPV) (Karyakin et al., 2000) and KOH, Ba(OH) ₂ , or Pb(NO ₃) ₂ . UPV was synthesized by the high temperature solid-state reaction of NH ₄ VO ₃ (MV Laboratories, 99.99%) and γ -UO ₃ (previously synthesized) (Appleman and Evans, 1965; Requena Yáñez et al., 2012). To synthesize UPV, stoichiometric quantities of NH ₄ VO ₃ and UO ₃ were weighed and ground together with acetone to promote homogeneity. The resulting				
104 105 106 107 108 109 110	Carnotite, francevillite, and curienite used in this study were synthesized through mild hydrothermal reactions of uranyl pyrovanadate (UPV) (Karyakin et al., 2000) and KOH, Ba(OH) ₂ , or Pb(NO ₃) ₂ . UPV was synthesized by the high temperature solid-state reaction of NH ₄ VO ₃ (MV Laboratories, 99.99%) and γ -UO ₃ (previously synthesized) (Appleman and Evans, 1965; Requena Yáñez et al., 2012). To synthesize UPV, stoichiometric quantities of NH ₄ VO ₃ and UO ₃ were weighed and ground together with acetone to promote homogeneity. The resulting powder was dried for 6 hours at 150° C and was then slowly heated in a Thermolyne 47900 box				

114	To synthesize carnotite, 1.57g of UPV and 0.25g of KOH (Fisher, ACS grade) were
115	weighed and ground together to ensure homogeneity. Approximately 450 mg of the mixture was
116	placed in each of four Teflon-lined 23 mL Parr reaction vessels with 8 mL of 18 M Ω H_2O in
117	each. The pH of the mixture was initially between 12.3 and 12.4, and was adjusted to 2.3 by
118	adding 0.4M HCl. Prior to all pH measurements, BDH Buffer Reference Standards were used
119	for calibration. Similar methods were used to synthesize francevillite. For this, 1.57 g of UPV
120	and 0.76g Ba(OH) ₂ (Fisher, ACS grade) were weighed, ground, and divided evenly amongst 4
121	reaction vessels. Upon addition of 8 mL of 18 M Ω H ₂ O the pH of the mixtures ranged from 11.9
122	to 12.5, and each was adjusted to 2.2 by adding 0.4M HCl. Curienite was synthesized by the
123	reaction of 1.74g of UPV with 0.80g of Pb(NO ₃) ₂ (Alfa Aesar, 99.99%). Reagents were weighed,
124	ground, and placed in 4 reaction vessels with 8 mL 18 M Ω H ₂ O in each. Initial pH values for
125	these mixtures ranged from 2.9-3.5 and were adjusted to 2.3 by adding 0.4M HCl. For all
126	hydrothermal reactions, limited initial solubility of reagents was observed.
127	The increase of temperature and pressure in the hydrothermal reactions promoted
128	solubility of reagents and enabled formation of uranyl vanadate mineral analogues. After
129	determining appropriate parameters from preliminary experiments, reaction vessels for all
130	syntheses were sealed and placed in a Fisher Scientific Isotemp oven at 170°C for 5 days.
131	Subsequent to cooling to room temperature, the products were recovered via vacuum filtration
132	and rinsed with several aliquots of 18 M Ω H ₂ O. No significant change in pH was observed
133	following hydrothermal reactions.

Whereas uranyl vanadates are stable and form over a broad pH range, preliminary
experiments had demonstrated that high purity material, as required for thermochemical studies,
was obtained when the initial pH was adjusted to 2.2-2.3 (Barton, 1957; Karyakin et al., 2003;

Murata et al., 1949). As is commonly the case in hydrothermal synthesis, the exact speciation of
U and V during the 5 day reaction time is not known. However, the aqueous speciation of both
uranyl and vanadyl is strongly dependent on pH (Barton, 1957; Hostetler and Garrels, 1962).
Under acidic conditions such as used here, U(VI) speciation is dominated by the uranyl ion,
whereas vanadyl hydrolyzes significantly to form complex polyatomic species. (Gorman-Lewis
et al., 2008; Hostetler and Garrels, 1962; Plasil, 2014; Weeks, 1961).

143 **Powder X-ray diffraction**

Powder X-ray diffraction data were collected using a Bruker D8 Advance Davinci 144 powder diffractometer in Bragg-Brentano configuration. Cu-Kα radiation was produced with an 145 146 accelerating voltage of 40 kV and 40 mA current. An incident-beam slit of 1.0 mm was reduced by a 0.6 mm slit in combination with 0.02 mm absorber and diffraction (0.6 mm) slits. Data 147 were collected using a step scan with a step velocity of 0.8° min⁻¹ in the range of 5-55 degrees 20 148 149 using a LynxEye solid-state detector. Diffraction patterns all exhibited sharp profiles consistent 150 with simulated powder diffraction patterns for carnotite, curienite, and francevillite, without additional peaks attributable to impurities. 151

152 Chemical Analysis

153 Chemical analyses were done using a Perkin Elmer Optima 8000 inductively coupled 154 plasma-optical emission spectrometer (ICP-OES) with an analytical uncertainty of 3.5%. 155 Analysis parameters were: 1400W torch power; nebulizer flow rate of 0.6 L/min; sample flow 156 rate of 1.8 mL/min and a 45 second read delay. Approximately 25 mg of synthetic mineral 157 powders were dissolved in 15 mL aqueous HNO₃ (5%) in triplicate. U, V, K, Ba, and Pb 158 concentrations were determined using linear regression of seven standard solutions after background subtraction. Calculated calibration coefficients were 0.99 or better for all elements ofinterest.

161 Thermogravimetric analysis

162	Thermogravimetric analyses were completed on a Netzsch TG209 F1 Iris thermal			
163	analyzer for ~25 mg aliquots of synthetic carnotite, curienite, and francevillite. Synthetic			
164	minerals were heated at 5°C/min from room temperature to 900°C under a stream of Ar gas at a			
165	rate of 50mL/min. Mass loss in the range of 30-105°C was assigned to the water present in each			
166	compound. No mass loss was observed for carnotite, indicating an anhydrous material as is			
167	typical of synthetic carnotite (Appleman and Evans, 1965). Observed mass loss for curienite and			
168	francevillite was in agreement with the chemical formulae $Pb(UO_2)_2V_2O_8$ •4.5H ₂ O and			
169	Ba(UO ₂) ₂ V ₂ O ₈ •5H ₂ O, respectively. Limited quantities of analyzed material precluded analysis of			
170	final products after heating, although mixed U and V oxides are the likely result.			
171	Calorimetry			
171 172	Calorimetry Calorimetric data were collected using a Setaram AlexSys Calvet-type high-temperature			
172	Calorimetric data were collected using a Setaram AlexSys Calvet-type high-temperature			
172 173	Calorimetric data were collected using a Setaram AlexSys Calvet-type high-temperature calorimeter. Pellets of pressed synthetic carnotite, curienite, and francevillite weighing ~5mg			
172 173 174	Calorimetric data were collected using a Setaram AlexSys Calvet-type high-temperature calorimeter. Pellets of pressed synthetic carnotite, curienite, and francevillite weighing ~5mg were dropped from room temperature into the molten 3Na ₂ O-4MoO ₃ solvent at 700°C under a			
172 173 174 175	Calorimetric data were collected using a Setaram AlexSys Calvet-type high-temperature calorimeter. Pellets of pressed synthetic carnotite, curienite, and francevillite weighing ~5mg were dropped from room temperature into the molten 3Na ₂ O-4MoO ₃ solvent at 700°C under a stream of O ₂ . Complete dissolution of sample pellets in solvent was confirmed by visual			
172 173 174 175 176	Calorimetric data were collected using a Setaram AlexSys Calvet-type high-temperature calorimeter. Pellets of pressed synthetic carnotite, curienite, and francevillite weighing ~5mg were dropped from room temperature into the molten $3Na_2O-4MoO_3$ solvent at 700°C under a stream of O ₂ . Complete dissolution of sample pellets in solvent was confirmed by visual inspection. The well-established heat content of α -Al ₂ O ₃ was used as a calibrant (Shvareva et al.,			

enthalpy of solution in the 3Na₂O-4MoO₃ solvent (Navrotsky, 1977; Navrotsky, 1997; Shvareva 180 et al., 2012). 181

182

RESULTS

Enthalpies of reaction 183

184	The standard-state enthalpies of formation from the elements are -4928.52 \pm 13.90 kJ/mol
185	for carnotite, -5748.81 \pm 13.59 kJ/mol for curienite, and -6402.88 \pm 21.01 kJ/mol for
186	francevillite. Calculated enthalpies of formation from binary oxides can be compared to reveal
187	energetic trends of synthetic uranyl vanadate mineral analogues and are -566.62 ± 12.11 , -244.70
188	\pm 11.90, and -427.18 \pm 19.86 kJ/mol for carnotite, curienite, and francevillite, respectively.
189	Carnotite is thus more energetically favorable than curienite or francevillite when compared with
190	the mechanical mixture of their constituent oxides.

Experimentally determined enthalpies of formation from binary oxides indicate that all 191 uranyl vanadate minerals examined here are more energetically favorable than uranyl oxide 192 hydrates, peroxides, phosphates, and silicates (Shvareva et al., 2012). The only uranyl minerals 193 194 that are more energetically favorable with respect to calculated enthalpies of formation from binary oxides are the uranyl carbonates and ersonite (Na₂Ca[(UO₂)(CO₃)₃]•5H₂O) and grimselite 195 $(K_3NaUO_2(CO_3)_3 \cdot 3H_2O)$, with enthalpies of formation from binary oxides of -710.4±9.1, and -196 989.3±14.0 kJ•mol⁻¹, respectively (Navrotsky et al., 2013). The strongly negative formation 197 enthalpies from oxides for uranyl carbonates has been attributed to robust acid-base interactions 198 between acidic zero-dimensional uranyl tricarbonate clusters and basic interstitial cations Na, Ca, 199 and K (Shvareva et al., 2012). 200

201	As carnotite, curienite, and francevillite contain identical uranyl vanadate sheets, it is
202	possible to compare the contribution of acid-base interactions with counter cations to formation
203	energetics. The interactions between charge-balancing cations and the $[(UO_2)_2(V_2O_8)]^{2-}$ sheet are
204	probed by plotting the measured formation enthalpies of oxides as a function of the acidity of the
205	oxide as indexed on the Smith scale in which binary oxides have been assigned a numerical
206	value based on stoichiometry (Smith, 1987). The observed linear relationship in Figure 2
207	confirms the correlation between formation enthalpies from oxides and oxide acidity. Similar
208	experimentally determined linear trends have been reported for uranyl silicates and uranyl
209	hydroxide oxides (Navrotsky et al., 2013; Shvareva et al., 2012).
210	DISCUSSION
211	Structural stability, in addition to being quantified through thermodynamic
212	managingments can be informed by companing the belonce of band strongths between the
212	measurements, can be inferred by comparing the balance of bond strengths between the
212	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and
213	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and
213 214	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and Hawthorne, 2008). The
213 214 215	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and Hawthorne, 2008). The structural unit of a crystalline solid is usually an anionic moiety of strongly bonded coordination
213 214 215 216	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and Hawthorne, 2008). The structural unit of a crystalline solid is usually an anionic moiety of strongly bonded coordination polyhedra (Hawthorne, 2012). Interstitial complexes consist of lower-valence cations and water
213 214 215 216 217	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and Hawthorne, 2008). The structural unit of a crystalline solid is usually an anionic moiety of strongly bonded coordination polyhedra (Hawthorne, 2012). Interstitial complexes consist of lower-valence cations and water (Hawthorne, 2012). The number of bonds required by a structural unit can be estimated and
213 214 215 216 217 218	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and Hawthorne, 2008). The structural unit of a crystalline solid is usually an anionic moiety of strongly bonded coordination polyhedra (Hawthorne, 2012). Interstitial complexes consist of lower-valence cations and water (Hawthorne, 2012). The number of bonds required by a structural unit can be estimated and related to its formal charge and number of O atoms (Hawthorne, 2012). The total number of
213 214 215 216 217 218 219	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and Hawthorne, 2008). The structural unit of a crystalline solid is usually an anionic moiety of strongly bonded coordination polyhedra (Hawthorne, 2012). Interstitial complexes consist of lower-valence cations and water (Hawthorne, 2012). The number of bonds required by a structural unit can be estimated and related to its formal charge and number of O atoms (Hawthorne, 2012). The total number of bonds (NB _T) in a structure is the sum of cation coordination numbers modified by the number of
213 214 215 216 217 218 219 220	structural unit and interstitial complexes (Hawthorne, 2012; Hawthorne, 2015; Hawthorne and Schindler, 2008; Schindler and Hawthorne, 2004; Schindler and Hawthorne, 2008). The structural unit of a crystalline solid is usually an anionic moiety of strongly bonded coordination polyhedra (Hawthorne, 2012). Interstitial complexes consist of lower-valence cations and water (Hawthorne, 2012). The number of bonds required by a structural unit can be estimated and related to its formal charge and number of O atoms (Hawthorne, 2012). The total number of bonds (NB _T) in a structure is the sum of cation coordination numbers modified by the number of each cation in the chemical formula (Hawthorne, 2012). The number of bonds within the

224	The number of bonds required (NB_R) by the structural unit can be further modified by
225	calculating the charge deficiency per anion (CDA). CDA is calculated by dividing the formal
226	charge (FC) of the structural unit by the number of oxygen atoms (N_o) within the structural unit
227	(Schindler and Hawthorne, 2008). In all uranyl vanadate minerals, $FC = -2$ and $N_0 = 12$, therefore
228	the CDA for all uranyl vanadate minerals is 0.166 valence units (v.u.) (Schindler et al., 2004a;
229	Schindler et al., 2004b). The charge deficiency per anion may be normalized, for the purpose of
230	comparison across different structures, by dividing by NB _R , yielding the normalized charge
231	deficiency per anion (NCDA). Calculated NCDA values for carnotite, curienite, and francevillite
232	are 0.0093, 0.0208, and 0.0185 v.u. respectively. Experimentally determined enthalpies of
233	formation plotted as a function of NCDA in Figure 3, reveals an exponential decrease in stability
234	(less-negative ΔH_{f-ox}) as NCDA increases. NCDA is a measure of the degree of unsatisfied
235	bonding of the structural unit and structure stability depends on the degree to which this can be
236	accounted for by linkages to the interstitial complex. This model confirms that a higher degree of
237	unsatisfied bonding requirements correlates exponentially to a decrease in energetic favorability.
238	Oxide acidity of the interstitial complex is exponentially related to calculated NCDA
239	values. Decreasing oxide acidity results in an exponential decrease in normalized charge
240	deficiency per anion. This observation, coupled with the relationship between oxide acidity and
241	enthalpy of formation from oxides clarifies the relation between structure and thermodynamics.
242	Correlations between NCDA and energetics have yet to be investigated in other mineral systems
243	that have identical structural units.

244

246

IMPLICATIONS

247	Observed enthalpies of formation for carnotite, curienite, and francevillite indicate that
248	uranyl vanadate phases are energetically stable relative to the oxides at 298 K. Each of these
249	minerals contain identical uranyl vanadate sheets, and differences in stabilities therefore relate to
250	the identity and bonding behavior of interstitial complexes. There is an exponential relationship
251	between the enthalpies of formation of these minerals from the oxides and the normalized charge
252	deficiency of the anions in the structural unit. This confirms the importance of charge density
253	matching between the structural unit and interstitial complex in determining the thermodynamic
254	properties of these minerals. In addition to element availability in a given set of geochemical
255	conditions, these energetic considerations impact mineral occurrences.
256	ACKNOWLEDGEMENTS
257	We thank Editor Julien Mercadier, referee Michael Schindler and an anonymous referee
258	for their insightful comments on this paper, and Lei Zhang for her assistance with
	for their motificitier commons on this puper, and Der Zhang for her abbistance with
259	thermodynamic calculations. This research is supported by the Materials Science of Actinides
259 260	
	thermodynamic calculations. This research is supported by the Materials Science of Actinides
260	thermodynamic calculations. This research is supported by the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of
260 261	thermodynamic calculations. This research is supported by the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. Partial support
260 261 262	thermodynamic calculations. This research is supported by the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. Partial support of this project is from the Patrick and Jana Eilers graduate student fellowship. Chemical analyses
260 261 262 263	thermodynamic calculations. This research is supported by the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. Partial support of this project is from the Patrick and Jana Eilers graduate student fellowship. Chemical analyses were conducted at the Center for Environmental Science and Technology, and the ND Energy
260 261 262 263 264	thermodynamic calculations. This research is supported by the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. Partial support of this project is from the Patrick and Jana Eilers graduate student fellowship. Chemical analyses were conducted at the Center for Environmental Science and Technology, and the ND Energy
260 261 262 263 264 265	thermodynamic calculations. This research is supported by the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. Partial support of this project is from the Patrick and Jana Eilers graduate student fellowship. Chemical analyses were conducted at the Center for Environmental Science and Technology, and the ND Energy

268

269 Figures and Tables

270 TABLE 1. Recognized Uranyl Vanadate Mineral Species

271 Modified from Krivovichev and Plášil (Krivovichev and Plášil, 2013)

Chemical Formula	Mineral Name	Space Group	<i>a</i> [Å]/α[°]	<i>b</i> [Å]/β[°]	<i>c</i> [Å]/γ[°]
Cu[(UO ₂) ₂ (V ₂ O ₈)](OH)(H ₂ O) ₃	sengierite	$P2_1/a$	10.60/ 90	8.09/ 103.4	10.09/ 90
$K_2[(UO_2)_2(V_2O_8)]$	carnotite	$P2_{I}/a$	10.47/ 90	8.42/ 103.8	6.59/90
$Cs_2[(UO_2)_2(V_2O_8)]$	margaritasite	$P2_{I}/a$	10.51/90	8.45/ 106.1	7.32/90
$Pb[(UO_2)_2(V_2O_8)](H_2O)_5$	curienite	Pcan	10.42/90	8.49/ 90	16.41/90
Ba[(UO ₂) ₂ (V ₂ O ₈)](H ₂ O) ₅	francevillite	Pcan	10.48/ 90	8.45/90	16.65/90
$Ca[(UO_2)_2(V_2O_8)](H_2O)_8$	tyuyamunite	Pnna	10.63/90	8.36/90	20.40/90
Ca[(UO ₂) ₂ (V ₂ O ₈)](H ₂ O) ₅	metatyuyamunite	O^*	10.63/90	8.36/90	16.96/90
Al[(UO ₂) ₂ (V ₂ O ₈)](OH)(H ₂ O) ₁₁	vanuralite	M^*	10.33/90	8.44/ 103.0	24.52/90
Al[(UO ₂) ₂ (V ₂ O ₈)](OH)(H ₂ O) ₈	metavanuralite	P-1	10.46/ 75.9	8.44/ 102.8	10.43/90
$Na_2[(UO_2)_2(V_2O_8)](H_2O)_5$	strelkinite	Pnmm	10.64/ 90	8.36/90	32.73/90
$Na_2[(UO_2)_2(V_2O_8)](H_2O)_2$	metastrelkinite I	P2 ₁ /n	10.50/ 90	8.28/97.6	16.24/90
Na ₂ [(UO ₂) ₂ (V ₂ O ₈)](H ₂ O) ₂	metastrelkinite II	$P2_{1}/a$	10.48/ 90	8.51/113.2	7.72/90
$Na_2[(UO_2)_2(V_2O_8)]$	metastrelkinite III	$P2_{I}/a$	10.42/90	8.34/ 100.5	6.02/90

* Space group unknown. *O*= orthorhombic, *M*= monoclinic

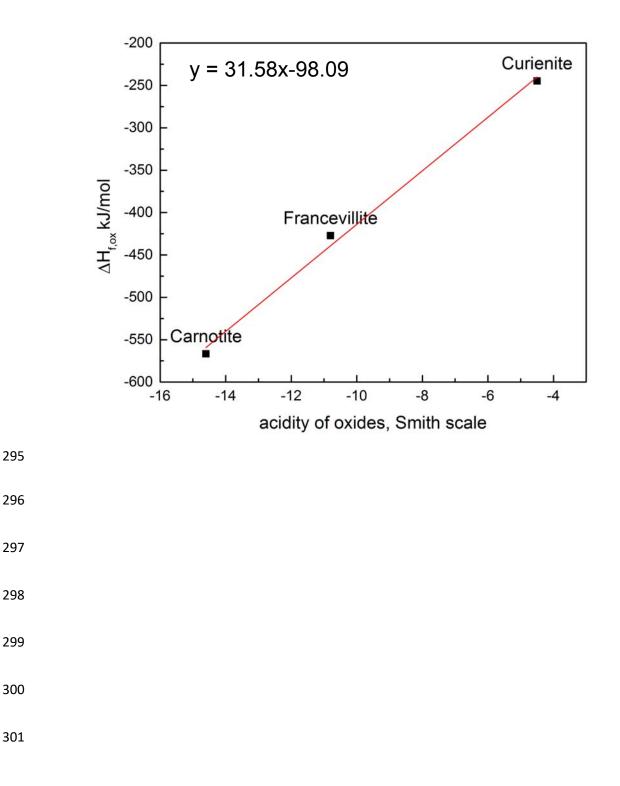
274 TABLE 2. Calorimetric cycles for enthalpy of formation calculations for uranyl vanadate minerals

Carnotite

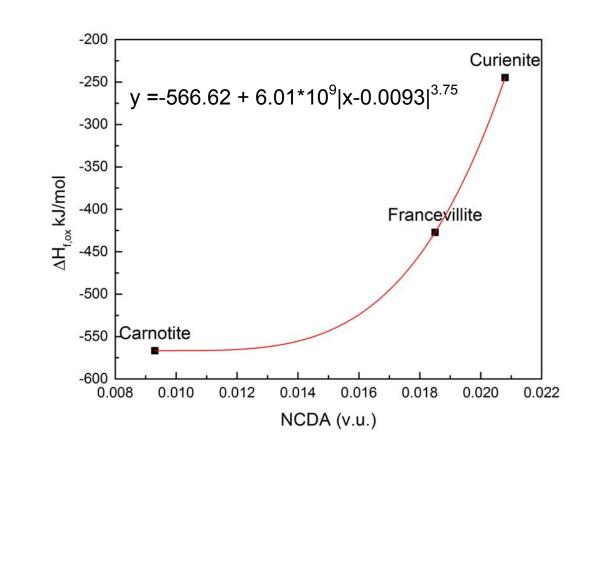
 $\Delta H_{f-ox} (carnotite) = -\Delta H1 + \Delta H5 + 2\Delta H4 + \Delta H6$ $2UO_3 (xl, 298K) + K_2O (xl, 298K) + V_2O_5 (xl, 298K) = K_2(UO_2)_2(VO_4)_2 (xl, 298K)$ $\Delta H_f^0 (carnotite) = -\Delta H1 + \Delta H5 + 2\Delta H4 + \Delta H6 + \Delta H11 + 2\Delta H10 + \Delta H12$ $2K (xl, 298K) + 2U (xl, 298K) + 2V (xl, 298K) + 6O_2 = K_2(UO_2)_2(VO_4)_2 (xl, 298K)$

Curienite

 $\Delta H_{f-ox} (curienite) = -\Delta H3 + \Delta H9 + 2\Delta H4 + \Delta H6 + 4.5\Delta H7$ $2UO_3 (xl, 298K) + PbO (xl, 298K) + V_2O_5 (xl, 298K) + 4.5H_2O (l, 298K) = Pb(UO_2)_2(VO_4)_2 \cdot 4.5H_2O (xl, 298K)$ $\Delta Hf^0 (curienite) = -\Delta H3 + \Delta H9 + 2\Delta H4 + \Delta H6 + 4.5\Delta H7 + \Delta H15 + 2\Delta H10 + \Delta H12 + 4.5\Delta H13$ $Pb (xl, 298K) + 2U (xl, 298K) + 2V (xl, 298K) + 4.5H_2 (g, 298K) + 16.5/2 O_2 = Pb(UO_2)_2(VO_4)_2 \cdot 4.5H2O (xl, 298K)$


Francevillite

$$\begin{split} &\Delta Hf\text{-}ox \ (francevillite) = -\Delta H2 + \Delta H8 + 2\Delta H4 + \Delta H6 + 5\Delta H7 \\ &2 UO_3 \ (xl, 298K) + BaO \ (xl, 298K) + V_2O_5 \ (xl, 298K) + 5H_2O \ (l, 298K) = Ba(UO_2)_2(VO_4)_2 \bullet 5H_2O \ (xl, 298K) \\ &\Delta Hf^0 \ (francevillite) = -\Delta H2 + \Delta H8 + 2\Delta H4 + \Delta H6 + 5\Delta H7 + \Delta H14 + 2\Delta H10 + \Delta H12 + 5\Delta H13 \\ &Ba \ (xl, 298K) + 2U \ (xl, 298K) + 2V \ (xl, 298K) + 5H_2 \ (g, 298K) + 17/2 \ O_2 = Ba(UO_2)_2(VO_4)_2 \bullet 5H_2O \ (xl, 298K) \end{split}$$

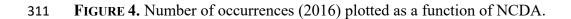

Reactions	ΔH (kJ/mol)	ΔH (kJ/mol)	$\Delta H (kJ/mol)$	REF
1	ΔH_{ds} (Carnotite)	$\begin{array}{l} K_2(UO_2)_2(VO_4)_{2~(xl,~298K)} = K_2O_{~(soln,~976K)} + 2UO_{3~(soln,~976K)} \\ _{976K)} + V_2O_{5~(soln,~976K)} \end{array}$	407.62 ± 11.12	
2	ΔH_{ds} (Francevillite)	Ba(UO ₂) ₂ (VO ₄) ₂ •5H ₂ O (xl, 298k) = BaO (soln, 976K) + 2UO ₃ (soln, 976K)+ V ₂ O ₅ (soln, 976K)+ 5H ₂ O (g,976K)	746.58 ± 19.26	
3	ΔH_{ds} (Curienite)	$Pb(UO_2)_2(VO_4)_2$ •4.5H2O (xl, 298K) = PbO (soln, 976K) + 2UO ₃ (soln, 976K)+ V ₂ O ₅ (soln, 976K)+ 4.5H ₂ O (g, 976K)	698.80 ± 11.27	
4	$\Delta H_{ds}(UO_3)$	$UO_3(xl, 298K) = UO_3(soln, 976K)$	9.5 ± 1.50	(Helean et al., 2002)
5	$\Delta H_{ds} (K_2 O)$	$K_2O(xl, 298K) = K_2O(soln, 976K)$	-318 ± 3.10	(Molodetsky et al., 2000)
6	$\Delta H_{ds}\left(V_{2}O_{5}\right)$	$V_2O_5 (xl, 298K) = V_2O_5 (soln, 976K)$	140 ± 2.10	(Navrotsky, 2014)
7	$\Delta H_{hc} (H_2 O)$	$H_2O(l, 298K) = H_2O(g, 976K)$	69 ± 0	(Robie and
8	ΔH_{ds} (BaO)	BaO (xl, 298K) = BaO (soln, 976K)	-184.6 ± 3.2	Hemingway, 1995) (Robie and Hemingway, 1995)
9	ΔH_{ds} (PbO)	PbO (xl, 298K) = PbO (soln, 976K)	$\textbf{-15.4} \pm 1.10$	(Navrotsky, 2014)
10	$\Delta H_{f}^{0}(UO_{3})$	$U (xl, 298K) + 3/2 O_2 (g, 298K) = UO_3 (xl, 298K)$	$\textbf{-1224}\pm0.80$	(Robie and Hemingway, 1995)
11	$\Delta H_{f}^{0}\left(K_{2}O\right)$	2K (xl, 298K) + $1/2$ O ₂ (g, 298K) = K ₂ O (xl, 298K)	-363.2 ± 2.10	(Robie and Hemingway, 1995)
12	$\Delta H_{\rm f}^{\ 0} \left(V_2 O_5 \right)$	$2V (xl, 298K) + 5/2 O_2 (g, 298K) = V_2O_5 (xl, 298K)$	-1550.6 ± 6.30	(Robie and Hemingway, 1995)
13	$\Delta H_{f}^{\ 0}\left(H_{2}O\right)$	$H_2(g, 298k) + 1/2 O_2(g, 298K) = H_2O(l, 298K)$	-285.8 ± 0.10	(Robie and Hemingway, 1995)
14	ΔH_{f}^{0} (BaO)	Ba (xl, 298K) + $1/2 O_2$ (g, 298K) = BaO (xl, 298K)	-548.1 ± 2.10	(Robie and Hemingway, 1995)
15	ΔH_{f}^{0} (PbO)	Pb (xl, 298K)+ 1/2 O ₂ (g, 298K) = PbO (xl, 298K)	-219.41 ± 0.80	(Robie and Hemingway, 1995)

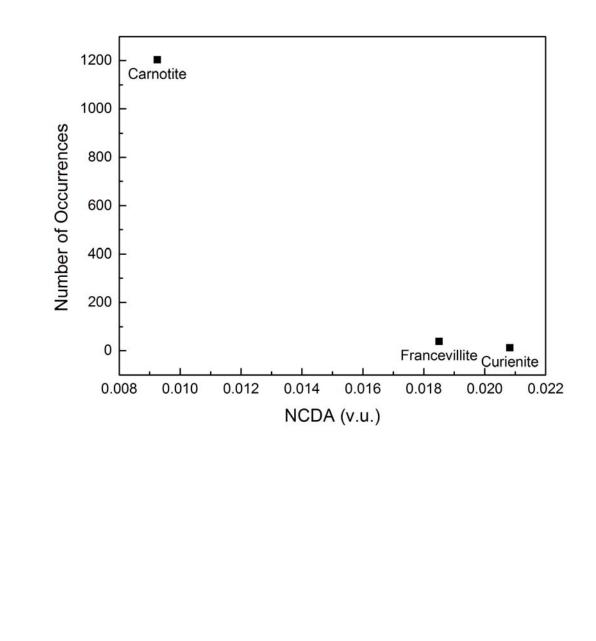
- **FIGURE 1.** The francevillite anion topology (left) and population of the francevillite anion
- topology (right) by pentagonal bipyramids of uranium and square pyramids of vanadium.
- 277 Modified from Burns (Burns, 2005).

- 293 FIGURE 2. Enthalpies of formation from oxides for carnotite, curienite, and francevillite as a
- function of acidity of oxides (Smith, 1987).

- 303 FIGURE 3. Enthalpies of formation from oxides for carnotite, curienite, and francevillite as a
- 304 function of normalized charge deficiency per anion (NCDA).

307


305


306

308

309

310

324

REFERENCES CITED

325	Mindat.org (2016), p. http://www.mindat.org/min-907.html, http://www.mindat.org/min-
326	1196.html, http://www.mindat.org/min-1589.html. Hudson Institute of Mineralogy.
327	Abraham, F., Dion, C., and Saadi, M. (1993) Carnotite analogues: synthesis, structure and
328	properties of the Na ₁ -KUO ₂ VO ₄ solid solution ($0 \le x \le 1$). Journal of Materials Chemistry,
329	3(5), 459-463.
330	Appleman, D.E., and Evans, H. (1965) The crystal structures of synthetic anhydrous carnotite,
331	K_2 (UO ₂) $_2V_2O_8$, and its cesium analogue, Cs_2 (UO ₂) $_2V_2O_8$. Am. Mineral, 50(7), 8.
332 333	Barton, P.B. (1957) Synthesis and properties of carnotite and its alkali analogues. Trace Elements Investigations.
334	Brugge, D., and Goble, R. (2002) The History of Uranium Mining and the Navajo People.
335	American Journal of Public Health, 92(9), 1410-1419.
336	Burns, P.C. (2005) U ⁶⁺ minerals and inorganic compounds: insights into an expanded structural
337	hierarchy of crystal structures. The Canadian Mineralogist, 43(6), 1839-1894.
338	Burns, P.C.E., R. C.; Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium:
339	Polyhedron geometries, bond-valence parameters and polymerization polyhedra. The
340	Canadian Mineralogist, 35.
341	Cesbron, F., and Morin, N. (1968) Curienite, a new mineral species. A study of the series
342	francevillite-curienite. Laboratoire de Mineralogie-Cristallographie, Paris.
343	Chenoweth, W.L. (1981) The uranium-vanadium deposits of the Uravan Mineral Belt and
344	adjacent areas, Colorado and Utah. New Mexico Geological Society 32nd Annual Fall
345	Field Conference Guidebook, p. 165-170.
346	Dahlkamp, F.J. (1993) Uranium Ore Deposits. Springer-Verlag.
347	Dumett, R. (1985) Africa's strategic minerals during the Second World War. The Journal of
348	African History, 26(4), 381-408.
349	Evans, H.T., and Garrels, R.M. (1958) Thermodynamic equilibria of vanadium in aqueous
350	systems as applied to the interpretation of the Colorado Plateau ore deposits. Geochimica
351	et Cosmochimica Acta, 15(1), 131-149.
352	Finch, R., and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Reviews
353	in Mineralogy and Geochemistry, 38(1), 91-179.
354	Gorman-Lewis, D., Burns, P.C., and Fein, J.B. (2008) Review of uranyl mineral solubility
355	measurements. The Journal of Chemical Thermodynamics, 40(3), 335-352.
356	Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal
357	structure, chemical composition and chemical reactions. Physics and Chemistry of
358	Minerals, 39(10), 841-874.
359	(2015) Roebling Medal Paper. Toward theoretical mineralogy: A bond-topological approach.
360	American Mineralogist, 100(4), 696-713.
361	Hawthorne, F.C., and Schindler, M. (2008) Understanding the weakly bonded constituents in
362	oxysalt minerals. Zeitschrift für Kristallographie, 223(01-02), 41-68.
363	Helean, K., Navrotsky, A., Vance, E., Carter, M., Ebbinghaus, B., Krikorian, O., Lian, J., Wang,
364	L., and Catalano, J. (2002) Enthalpies of formation of Ce-pyrochlore,
365	$Ca_{0.93}Ce_{1.00}Ti_{2.035}O_{7.00}$, U-pyrochlore, $Ca_{1.46}U^{4+}_{0.23}U^{6+}_{0.46}Ti_{1.85}O_{7.00}$ and Gd-pyrochlore,
366	Gd ₂ T ₂ O ₇ : three materials relevant to the proposed waste form for excess weapons
367	plutonium. Journal of Nuclear Materials, 303(2), 226-239.

368	Hostetler, P.B., and Garrels, R.M. (1962) Transportation and precipitation of uranium and
369	vanadium at low temperatures, with special reference to sandstone-type uranium deposits.
370	Economic Geology and the Bulletin of the Society of Economic Geologists, 57(2), 137-
371	167.
372	Janeczek, J. (1999) Mineralogy and geochemistry of natural fission reactors in Gabon. Reviews
373	in Mineralogy and Geochemistry, 38(1), 321-392.
374	Karyakin, N., Chernorukov, N., Suleimanov, E., and Alimzhanov, M. (2003) Chemical
375	thermodynamics of alkaline-earth metal uranovanadates. Radiochemistry, 45(5), 457-
376	468.
377	Karyakin, N.V., Chernorukov, N.G., Sulejmanov, E.V., Alimzhanov, M.I., Trostin, V.L., and
378	Knyazev, A.V. (2000) The thermodynamic properties of uranyl pyrovanadate and
379	uranovanadic acid. Zhurnal Fizicheskoj Khimii, 74(8), 1366-1371.
380	Krivovichev, S.V., and Plášil, J. (2013) Mineralogy and crystallography of uranium. Uranium:
381	From Cradle to Grave. Mineralogical Association of Canada Short Courses, 43, 15-119.
382	Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications
383	to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6), 547-569.
384	Mereiter, K. (1986) Crystal structure refinements of two francevillites, (Ba, Pb)[(UO ₂) $_2V_2O_8$].
385	$5H_2O$. Neues Jahrbuch für Mineralogie-Monatshefte, 1986, 552-560.
386	Molodetsky, I., Navrotsky, A., DiSalvo, F., and Lerch, M. (2000) Energetics of oxidation of
387	oxynitrides: Zr-N-O, Y-Zr-N-O, Ca-Zr-N-O, and Mg-Zr-N-O. Journal of Materials
388	Research, 15(11), 2558-2570.
389	Murata, K.J., Cisney, E.A., Stieff, L.R., and Zworykin, E.V. (1949) Synthesis, Base Exchange,
390	and Photosensitivity of Carnotite, Tyuyamunite, and Related Minerals. Trace Elements
391	Investigations.
392	Navrotsky, A. (1977) Progress and new directions in high temperature calorimetry. Physics and
393	Chemistry of Minerals, 2(1), 89-104.
394	(1997) Progress and new directions in high temperature calorimetry revisited. Physics and
395	Chemistry of Minerals, 24(3), 222-241.
396	(2014) Progress and new directions in calorimetry: A 2014 perspective. Journal of the
397	American Ceramic Society, 97(11), 3349-3359.
398	Navrotsky, A., Shvareva, T., and Guo, X. (2013) Thermodynamics of uranium minerals and
399	related materials. In P.C. Burns, and G.E. Sigmon, Eds. Uranium: Cradle to Grave, 43, p.
400	147-164. Mineralogical Association of Canada, Winnipeg, Manitoba.
401	Plasil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge.
402	Journal of Geosciences, 59(2), 99-114.
403	Requena Yáñez, J., Reyes Cortés, M., Torres Moye, E., Lardizabal, D., Riveros, H., and Montero
404	Cabrera, M. (2012) Synthesis of potassium and calcium uranovanadates, analogues of
405	carnotite and metatyuyamunite minerals. Revista mexicana de física, 58(3), 253-257.
406	Robie, R.A., and Hemingway, B.S. (1995) Thermodynamic properties of minerals and related
407	substances at 298.15 K and 1 bar (10 ⁵ pascals) pressure and at higher temperatures.
408	Bulletin.
409	Schindler, M., and Hawthorne, F.C. (2004) A bond-valence approach to the uranyl-oxide
410	hydroxy-hydrate minerals: chemical composition and occurrence. The Canadian
411	Mineralogist, 42(6), 1601-1627.
412	(2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-
413	oxysalt minerals The Canadian Mineralogist, 46(2), 467-501.

- Schindler, M., Hawthorne, F.C., and Baur, W.H. (2000) A crystal-chemical approach to the
 composition and occurrence of vanadium minerals The Canadian Mineralogist, 38(6),
 1443-1456.
- Schindler, M., Mutter, A., Hawthorne, F.C., and Putnis, A. (2004a) Prediction of crystal
 morphology of complex uranyl-sheet minerals. I. Theory. The Canadian Mineralogist,
 419 42(6), 1629-1649.
- -. (2004b) Prediction of crystal morphology of complex uranyl-sheet minerals. II. Observations.
 The Canadian Mineralogist, 42(6), 1651-1666.
- Shvareva, T.Y., Fein, J.B., and Navrotsky, A. (2012) Thermodynamic properties of uranyl
 minerals: Constraints from calorimetry and solubility measurements. Industrial &
 Engineering Chemistry Research, 51(2), 607-613.
- Smith, D.W. (1987) An acidity scale for binary oxides. Journal of Chemical Education, 64(6),
 480.
- Tokunaga, T.K., Kim, Y., and Wan, J. (2009) Potential remediation approach for uranium contaminated groundwaters through potassium uranyl vanadate precipitation.
- 429 Environmental Science & Technology, 43(14), 5467-5471.
- Weeks, A.D. (1961) Mineralogy and geochemistry of vanadium in the Colorado Plateau. Journal
 of the Less Common Metals, 3(6), 443-450.