Automated Reasoning in Differential Geometry and Mechanics
 Using Characteristic Method ${ }^{1}$

IV. Bertrand Curves

Shang-Ching Chou
Department of Computer Science
The Wichita State University
Wichita, KS 67208, USA

Xiao-Shan Gao
Institute of Systems Science
Academia Sinica
Beijing 100080, P.R. China

Abstract

This paper reports the study of properties of the curve pairs of the Bertrand types using our automated reasoning program based on Wu's method of mechanical theorem proving for differential geometry. A complete list of results about Bertrand curves in metric and affine spaces is derived mechanically. The list includes most of the known results of various Bertrand curves. We also derive some new results about Bertrand curves.

Keywords Mechanical theorem proving, metric differential geometry, affine differential geometry, Bertrand curves.

Abbreviated title: Automated Reasoning in Differential Geometry

[^0]
1. Introduction to the Problem

This paper reports results about various Bertrand curves obtained using a computer program based on an improved version of Ritt-Wu's zero decomposition algorithm [2]. We adopt two approaches to the problems. First, we use Formulation II to prove known results under some explicitly given non-degenerate conditions [3]. Second, we derive "unknown" relations among certain variables using Ritt-Wu's characteristic method [4]. In this way, we have proved or derived most of the known results for various Bertrand curves mechanically. We have also derived some results which we have not found in textbooks of differential geometry or relevant papers.

The Bertrand curves problem is first studied using a computer by Wu in [6]. This paper is a further study of the same problem, but contains more results than those of Wu's: totally 18 types of Bertrand curves in metric and affine differential geometries are studied and a complete list of results are given. Also our study here follows a different approach: we use the complete decomposition algorithm to derive or prove certain results under some explicitly given conditions. Also, the proving procedure for the known or derived results is automatically carried out by our program without any human assistance.

Theorems on various Bertrand curves are among the most eminent results in the local theory of space curves. The success of our method in dealing with these problems shows that our program based on the Ritt-Wu's decomposition algorithm can be used to solve quite difficult problems in elementary differential geometry, or even to discover new results.

A pair of space curves having their principal normals in common are said to be associate Bertrand curves [1]. Here following Wu [6], we shall consider more general problems. Given two space curves C_{1} and C_{2} in a one to one correspondence, let us attach moving triads ($C_{1}, e_{11}, e_{12}, e_{13}$) and ($C_{2}, e_{21}, e_{22}, e_{23}$) to C_{1} and C_{2} at the corresponding points of C_{1} and C_{2} respectively. We denote the arcs, curvatures and torsions of C_{1} and C_{2} by s_{1}, k_{1}, t_{1} and s_{2}, k_{2}, t_{2} respectively. Then all the quantities introduced above can be looked as functions of s_{1}. Let $r=\frac{d s_{2}}{d s_{1}}$, and let

$$
\begin{align*}
& C_{2}=C_{1}+a_{1} E_{11}+a_{2} E_{12}+a_{3} E_{13} \tag{1.1}\\
& e_{21}=u_{11} e_{11}+u_{12} e_{12}+u_{13} e_{13} \\
& e_{22}=u_{21} e_{11}+u_{22} e_{12}+u_{23} e_{13} \tag{1.2}\\
& e_{23}=u_{31} e_{11}+u_{32} e_{12}+u_{33} e_{13}
\end{align*}
$$

where a_{i} are variables and $\left(u_{i j}\right)$ is a matrix of variables satisfying certain relations which will be given in the following sections.

Roughly speaking, the problem is to find under what conditions for the curve pairs (C_{1} and C_{2}) their moving triads will satisfy some given relations. For example, the original Bertrand curve problem is to ask under what conditions C_{1} and C_{2} will have identical principal normals at the corresponding points, i.e. $e_{22}=e_{12}$ at the corresponding points.

In this paper, we mainly consider the following three groups of problems.
$M I_{i j}(1 \leq i \leq j \leq 3)$ means that $e_{2 j}$ is identical with $e_{1 i}$ in metric differential geometry. $M P_{i j}(1 \leq i \leq j \leq 3)$ means that $e_{2 j}$ is parallel to $e_{1 i}$ in metric differential geometry.
$A I_{i j}(1 \leq i \leq j \leq 3)$ means that $e_{2 j}$ has the same direction with $e_{1 i}$ in affine differential geometry.

So totally 18 kinds of Bertrand curves are studied.
In this paper, we assume the reader has already known the Ritt-Wu's decomposition algorithm and Wu's method of mechanical theorem proving in the differential case. A detailed description of the algorithm can be found in $[7]$ or $[2,3]$.

2. Bertrand Curves In Metric Space

Let $\left(e_{11}, e_{12}, e_{13}\right)$ and $\left(e_{21}, e_{22}, e_{23}\right)$ be the Frenet triads of C_{1} and C_{2} at their corresponding points respectively, then we have the following Frenet formulae.

$$
\begin{align*}
& e_{11}^{\prime}=k_{1} e_{12}, \quad e_{12}^{\prime}=-k_{1} e_{11}+t_{1} e_{12}, \quad e_{13}^{\prime}=-t_{1} e_{12} \tag{2.1}\\
& e_{21}^{\prime}=r k_{2} e_{22}, \quad e_{22}^{\prime}=-r k_{2} e_{21}+r t_{2} e_{22}, \quad e_{23}^{\prime}=-r t_{2} e_{22} \tag{2.2}
\end{align*}
$$

where $r=\frac{d s_{2}}{d s_{1}}$ and the differentiations here and in what follows are all with respect to (abbreviated to wrpt) s_{1}.

Differentiating (1.1) and (1.2); eliminating $e_{11}^{\prime}, e_{12}^{\prime}, e_{13}^{\prime}, e_{21}^{\prime}, e_{22}^{\prime}$ and e_{23}^{\prime} using (2.1) and (2.2); eliminating e_{21}, e_{22}, and e_{23} using (1.2); at last, comparing coefficients for the vectors e_{11}, e_{12}, and e_{13}, we have:

$$
\begin{align*}
& a_{2} t_{1}-r u_{13}+a_{3}^{\prime}=0 \\
& a_{3} t_{1}-a_{1} k_{1}+r u_{12}-a_{2}^{\prime}=0 \\
& a_{2} k_{1}+r u_{11}-a_{1}^{\prime}-1=0 \\
& r u_{23} k_{2}-u_{12} t_{1}-u_{13}^{\prime}=0 \\
& r u_{22} k_{2}+u_{13} t_{1}-u_{11} k_{1}-u_{12}^{\prime}=0 \\
& r u_{21} k_{2}+u_{12} k_{1}-u_{11}^{\prime}=0 \\
& r u_{33} t_{2}-r u_{13} k_{2}-u_{22} t_{1}-u_{23}^{\prime}=0 \tag{2.3}\\
& r u_{32} t_{2}-r u_{12} k_{2}+u_{23} t_{1}-u_{21} k_{1}-u_{22}^{\prime}=0 \\
& r u_{31} t_{2}-r u_{11} k_{2}+u_{22} k_{1}-u_{21}^{\prime}=0 \\
& r u_{23} t_{2}+u_{32} t_{1}+u_{33}^{\prime}=0 \\
& r u_{22} t_{2}-u_{33} t_{1}+u_{31} k_{1}+u_{32}^{\prime}=0 \\
& r u_{21} t_{2}-u_{32} k_{1}+u_{31}^{\prime}=0
\end{align*}
$$

To transform a right-handed orthogonal system $\left\{e_{11}, e_{12}, e_{13}\right\}$ to another right-handed orthogonal system $\left\{e_{21}, e_{22}, e_{23}\right\},\left(u_{i j}\right)$ must satisfy

$$
\begin{align*}
& u_{13}^{2}+u_{12}^{2}+u_{11}^{2}-1=0 \\
& u_{23}^{2}+u_{22}^{2}+u_{21}^{2}-1=0 \\
& u_{33}^{2}+u_{32}^{2}+u_{31}^{2}-1=0 \\
& u_{13} u_{23}+u_{12} u_{22}+u_{11} u_{21}=0 \tag{2.4}\\
& u_{13} u_{33}+u_{12} u_{32}+u_{11} u_{31}=0 \\
& u_{23} u_{33}+u_{22} u_{32}+u_{21} u_{31}=0 \\
& \left(u_{11} u_{22}-u_{12} u_{21}\right) u_{33}+\left(-u_{11} u_{23}+u_{13} u_{21}\right) u_{32}+\left(u_{12} u_{23}-u_{13} u_{22}\right) u_{31}-1=0
\end{align*}
$$

(2.3) and (2.4) are first given by Wu in [6] except the last equation in (2.4) which is added by us to preserve the right-handness of the moving triads.

2.1. The Identical Case

At case $M I_{i j}$, the a_{i} and $u_{i, j}$ must satisfy

$$
\begin{equation*}
a_{m}=0 \text { for } m \neq i ; u_{j i}-1=0 ; u_{j n}=0 \text { for } n \neq i ; u_{k i}=0 \text { and } k \neq j \tag{2.5}
\end{equation*}
$$

The following non-degenerate conditions are often used: $k_{1} \neq 0$ means curve C_{1} is not a straight line. $k_{2} \neq 0$ means curve C_{2} is not a straight line. $r \neq 0$ means the arc length of C_{2} as a function of the arc length of C_{1} is not a constant, i.e., C_{2} is not a fixed point. At first, we list some known results.

Case $M I_{11}$. Under the non-degenerate condition $r k_{1} k_{2} \neq 0, C_{1}$ and C_{2} must be identical, i.e. $C_{1}=C_{2}$.

Case $M I_{12}$. Under condition $r \neq 0, C_{2}$ and C_{1} are both plane curves satisfying

$$
\begin{array}{ll}
e_{21}=-e_{12}, e_{22}=e_{11}, e_{23}=e_{13} ; & k_{1}=-r / a_{1}, k_{2}=-1 / a_{1}, a_{1}^{\prime}=-1 \text { or } \\
e_{21}=e_{12}, e_{22}=e_{11}, e_{23}=-e_{13} ; & k_{1}=r / a_{1}, k_{2}=-1 / a_{1}, a_{1}^{\prime}=-1
\end{array}
$$

The geometric meaning of the above results can be stated as follows.
If C_{2} is the involute of C_{1} in the strong sense that the principal normals of C_{2} are identical with the tangent vectors of C_{1}, then both curves must be plane curves, and
(i) $C_{2}=C_{1}+\left(c_{0}-s_{1}\right) e_{11}$ for a constsnt c_{0};
(ii) $C_{1}=C_{2}+\frac{1}{k_{2}} e_{22}$, i.e C_{1} is the locus of the curvature center of C_{2};
(iii) The arc length of C_{1} between two points of C_{1} equals the difference of the reciprocal of the curvatures of C_{2} at the corresponding points.

Case $M I_{13}$. There exist no curves satisfying $e_{11}=e_{23}$ under the condition $r \neq 0$.
Case $M I_{22}$. Under the non-degenerate condition $r a_{2} \neq 0\left(C_{2} \neq C_{2}\right)$, we have
a. The distance from C_{1} to C_{2} is a constant.
b. The angle formed by the tangent lines at C_{1} and C_{2} respectively is a constant.
c. (Bertrand) There exists a linear relation between k_{1} and t_{1} with constant coefficients.
d. (Schell) The production of t_{1} and t_{2} is a constant.

Case $M I_{23}$. Under the non-degenerate condition $r k_{1} \neq 0$, we have
a. The distance from C_{1} to C_{2} is a constant.
b. (Mannheim) $\quad k_{1}^{2}+t_{1}^{2}=c k_{1}$ for a constant c.

Case $M I_{33}$. Under the non-degenerate condition $r k_{1} k_{2} \neq 0$, we have either $C_{2}=C_{1}$ or C_{2} and C_{1} are on two parallel planes respectively and C_{2} is the translation of C_{1} along the binormal of C_{1}.

Take $M I_{22}$, the original case of Bertrand, as an example. Other cases can be proved similarly. Using Ritt-Wu's decomposition algorithm under the following variable order $r<a_{1}<a_{2}<$ $a_{3}<u_{11}<u_{12}<u_{13}<u_{21}<u_{22}<u_{23}<u_{31}<u_{32}<u_{33}<k_{1}<t_{1}<k_{2}<t_{2}$, we have $Z \operatorname{ero}\left((2.3) \cup(2.4) \cup(2.5) / \operatorname{ra}_{2}\right)=\cup_{i=1}^{3} \operatorname{Zero}\left(P D\left(A S C_{i}\right)\right)$ where

$A S C_{1}=$	$A S C_{2}=$	$A S C_{3}=$
a_{1}	a_{1}	a_{1}
a_{2}^{\prime}	a_{2}^{\prime}	a_{2}^{\prime}
a_{3}	a_{3}	a_{3}
$u_{11}-1$	$u_{11}+1$	u_{11}^{\prime}
u_{12}	u_{12}	u_{12}
u_{13}	u_{13}	$u_{13}^{2}+u_{11}^{2}-1$
u_{21}	u_{21}	u_{21}

$u_{22}-1$	$u_{22}-1$	$u_{22}-1$
u_{23}	u_{23}	u_{23}
u_{31}	u_{31}	$u_{31}+u_{13}$
u_{32}	u_{32}	u_{32}
$u_{33}-1$	$u_{33}+1$	$u_{33}-u_{11}$
$a_{2} k_{1}+r-1$	$a_{2} k_{1}-r-1$	$a_{2} k_{1}+r u_{11}-1$
t_{1}	t_{1}	$a_{2} t_{1}-r u_{13}$
$r a_{2} k_{2}+r-1$	$r a_{2} k_{2}+r+1$	$r a_{2} k_{2}-u_{11}+r$
t_{2}	t_{2}	$r a_{2} t_{2}-u_{13}$

The four conclusions of $M I_{22}$ are equivalent to $c_{1}=a_{2}^{\prime}=0, c_{2}=u_{11}^{\prime}=0, c_{3}=k_{1}^{\prime \prime} t_{1}^{\prime}-t_{1}^{\prime \prime} k_{1}^{\prime}=$ 0 , and $c_{4}=\left(t_{1} t_{2}\right)^{\prime}=0$ respectively. The pseudo remainders of $c_{i}, i=1, \ldots, 4$, wrpt $A S C_{i}$, $i=1,2,3$, are zero which implies the results are correct.

On the other hand, we can obtain the results from $A S C_{3}$, the main component of the problem (see [3]) directly. The differential equations representing results a ($a_{2}^{\prime}=0$) and b $\left(u_{11}^{\prime}=0\right)$ are already in $A S C_{3}$. Eliminating r from the last four equations of $A S C_{3}$, we have:

$$
\begin{align*}
& a_{2} u_{11} t_{1}+a_{2} u_{13} k_{1}-u_{13}=0 \\
& a_{2}^{2} t_{1} t_{2}-u_{13}^{2}=0 \tag{2.6}\\
& a_{2}^{2} t_{1} k_{2}+a_{2} t_{1}-u_{11} u_{13}=0
\end{align*}
$$

As a_{2}, u_{11}, (and hence $u_{13}=\sqrt{1-u_{11}^{2}}$) are constants, the first two formulae of (2.6) actually give the concrete expression for Bertrand's theorem and Schell's theorem. From (2.6) we can derive the following formulae.

$$
\begin{aligned}
& \left(1-a_{2} k_{1}\right)\left(1+a_{2} k_{2}\right)-u_{11}^{2}=0 \\
& a_{2}^{2} k_{1} t_{2}-a_{2} t_{2}+u_{11} u_{13}=0 \\
& a_{2} u_{11} t_{2}-a_{2} u_{13} k_{2}-u_{13}=0
\end{aligned}
$$

The above formulae are proved (mechanically) correct under condition $k_{1} k_{2} r \neq 0$.
For $M I_{23}$, we can find the following formulae among k_{1}, t_{1}, and t_{2} similarly

$$
\begin{aligned}
& a_{2} t_{1}^{2}+a_{2} k_{1}^{2}-k_{1}=0 \\
& a_{2}^{2} t_{1} t_{2}^{2}-t_{2}+t_{1}=0 \\
& a_{2} t_{1} t_{2}-k_{1}=0 \\
& k_{1}^{2}+t_{1}^{2}-t_{1} t_{2}=0 \\
& \left(a_{2}^{2} k_{1}-a_{2}\right) t_{2}^{2}+k_{1}=0
\end{aligned}
$$

where a_{2} is a constant. For r, we have

$$
r=u_{11}=\sqrt{t_{1} / t_{2}}=\sqrt{t_{1}^{2} /\left(t_{1}^{2}+k_{1}^{2}\right)}
$$

All the above results are true under the nondegenerate condition $k_{1} k_{2} r \neq 0$.

2.2. The Parallel Case

For $M P_{i j}$, the $u_{i j}$ must satisfy $u_{j k}=0$ for $k \neq i ; \quad u_{m i}=0$ for $m \neq j$. The following results can be derived automatically under condition $k_{1} k_{2} r \neq 0$ similar to Section 2.1.

Case $M P_{11} . C_{2}$ and C_{1} must satisfy one of the following conditions.
a. $\quad e_{21}=-e_{11}, e_{22}=e_{12}, e_{23}=-e_{13}$
$r=-k_{1} / k_{2}=-t_{1} / t_{2}$ and $a_{3} a_{3}^{\prime}+a_{2} a_{2}^{\prime}+a_{1} a_{1}^{\prime}+(r+1) a_{1}=0$.
b. $\quad e_{21}=-e_{11}, e_{22}=-e_{12}, e_{23}=e_{13}$
$r=k_{1} / k_{2}=-t_{1} / t_{2}$ and $a_{3} a_{3}^{\prime}+a_{2} a_{2}^{\prime}+a_{1} a_{1}^{\prime}+(r+1) a_{1}=0$.
c. $\quad e_{21}=e_{11}, e_{22}=-e_{12}, e_{23}=-e_{13}$
$r=-k_{1} / k_{2}=t_{1} / t_{2}$ and $a_{3} a_{3}^{\prime}+a_{2} a_{2}^{\prime}+a_{1} a_{1}^{\prime}+(-r+1) a_{1}=0$.
$d . \quad e_{21}=e_{11}, e_{22}=e_{12}, e_{23}=e_{13}$
$r=k_{1} / k_{2}=t_{1} / t_{2}$ and $a_{3} a_{3}^{\prime}+a_{2} a_{2}^{\prime}+a_{1} a_{1}^{\prime}+(-r+1) a_{1}=0$.
Case $M P_{12} . C_{2}$ and C_{1} must satisfy one of the following conditions.

$$
\begin{array}{ll}
\text { a. } & u_{21}-1=0, r=\sqrt{\frac{k_{1}^{2}}{t_{2}^{2}+k_{2}^{2}}}=-\frac{k_{1}}{k_{2} u_{12}}=\frac{k_{1}}{t_{2} u_{13}} . \\
\text { b. } & u_{21}+1=0, r=\sqrt{\frac{k_{1}^{2}}{t_{2}^{2}+k_{2}^{2}}}=\frac{k_{1}}{k_{2} u_{12}}=\frac{k_{1}}{t_{2} u_{13}} .
\end{array}
$$

Case $M P_{13} . C_{2}$ and C_{1} must satisfy one of the following conditions.

$$
\begin{array}{ll}
a . & e_{21}=-e_{13}, e_{22}=-e_{12}, e_{23}=-e_{11} \text { and } r=-t_{1} / k_{2}=-k_{1} / t_{2} . \\
b . & e_{21}=e_{13}, e_{22}=e_{12}, e_{23}=-e_{11}, \text { and } r=-t_{1} / k_{2}=k_{1} / t_{2} \\
c . & e_{21}=-e_{13}, e_{22}=e_{12}, e_{23}=e_{11}, \text { and } r=t_{1} / k_{2}=-k_{1} / t_{2} \\
d . & e_{21}=e_{13}, e_{22}=-e_{12}, e_{23}=e_{11} \text { and } r=t_{1} / k_{2}=k_{1} / t_{2}
\end{array}
$$

Case $M P_{22} . C_{2}$ and C_{1} must satisfy one of the following conditions.

$$
\begin{array}{ll}
\text { a. } & u_{22}-1=0, u_{11}^{\prime}=0, u_{13}^{\prime}=0 . \\
& u_{13}\left(t_{1} t_{2}+k_{1} k_{2}\right)=u_{11}\left(k_{1} t_{2}-t_{1} k_{2}\right) . \\
& r^{2}=\frac{t_{1}^{2}+k_{1}^{2}}{t_{2}^{2}+k_{2}^{2}} \\
b . & u_{22}+1=0, u_{11}^{\prime}=0, u_{13}^{\prime}=0 . \\
& u_{13}\left(t_{1} t_{2}-k_{1} k_{2}\right)=u_{11}\left(k_{1} t_{2}+t_{1} k_{2}\right) . \\
& r^{2}=\frac{t_{1}^{2}+k_{1}^{2}}{t_{2}^{2}+k_{2}^{2}} .
\end{array}
$$

The second equation implies that t_{1}, k_{1}, k_{2}, and t_{2} satisfy a quadratic equation with constant coefficients. This formula cannot be found in textbooks of differential geometry.
Case $M P_{23}$. We have $r=\frac{t_{1}}{t_{2} u_{11}}=\frac{k_{1}}{t_{2} u_{13}}=\sqrt{\frac{t_{1}^{2}+k_{1}^{2}}{t_{2}^{2}}}$.
Case $M P_{33}$. We have the same results as $M P_{11}$.

3. Bertrand Curves in Affine Space

In affine differential geometry, let $e_{11}=\frac{d C_{1}}{d s_{1}}, e_{12}=\frac{d e_{11}}{d s_{1}}, e_{13}=\frac{d e_{12}}{d s_{1}}$ and $e_{21}=\frac{d C_{2}}{d s_{2}}, e_{22}=$ $\frac{d e_{21}}{d s_{2}}, e_{23}=\frac{d e_{22}}{d s_{2}}$ be the moving triads of C_{1} and C_{2} at their corresponding points respectively, where s_{i} are the arc length of curves C_{i} for $i=1,2$. Then we have the following Frenet formulae.

$$
\begin{aligned}
& e_{11}^{\prime}=e_{12}, \quad e_{12}^{\prime}=e_{13}, \quad e_{13}^{\prime}=-k_{1} e_{12}+t_{1} e_{11} \\
& e_{21}^{\prime}=r e_{22}, \quad e_{22}^{\prime}=r e_{23}, \quad e_{23}^{\prime}=-r k_{2} e_{22}+r t_{2} e_{21}
\end{aligned}
$$

where $r=\frac{d s_{2}}{d s_{1}}$. Similar to section 2 , we can get the following differential equations.

$$
\begin{aligned}
& r u_{13}-a_{3}^{\prime}-a_{2}=0 \\
& a_{3} k_{1}+r u_{12}-a_{2}^{\prime}-a_{1}=0 \\
& a_{3} t_{1}+r u_{11}-a_{1}^{\prime}-1=0 \\
& r u_{23}-u_{13}^{\prime}-u_{12}=0 \\
& u_{13} k_{1}+r u_{22}-u_{12}^{\prime}-u_{11}=0 \\
& u_{13} t_{1}+r u_{21}-u_{11}^{\prime}=0 \\
& r u_{33}-u_{23}^{\prime}-u_{22}=0 \\
& u_{23} k_{1}+r u_{32}-u_{22}^{\prime}-u_{21}=0 \\
& u_{23} t_{1}+r u_{31}-u_{21}^{\prime}=0 \\
& r u_{13} t_{2}+r u_{23} k_{2}+u_{33}^{\prime}+u_{32}=0 \\
& r u_{12} t_{2}+r u_{22} k_{2}-u_{33} k_{1}+u_{32}^{\prime}+u_{31}=0 \\
& r u_{11} t_{2}+r u_{21} k_{2}-u_{33} t_{1}+u_{31}^{\prime}=0
\end{aligned}
$$

We also have $\left(e_{11}, e_{12}, e_{13}\right)=1$ and $\left(e_{21}, e_{22}, e_{23}\right)=1$. Then by (1.2), the determinant of the matrix ($u_{i j}$) is 1, i.e.,

$$
\left(u_{11} u_{22}-u_{12} u_{21}\right) u_{33}+\left(-u_{11} u_{23}+u_{13} u_{21}\right) u_{32}+\left(u_{12} u_{23}-u_{13} u_{22}\right) u_{31}-1=0 .
$$

Let $A I_{i j}$ be the case such that $e_{2 j}$ has the same direction ${ }^{2}$ In affine space, there is no identical case as in Section 2.1. as $e_{1 i}$ at the corresponding points. Then for case $A I_{i j}$, we have:

$$
a_{k}=0 \text { for } k \neq i ; \quad u_{j m}=0 \text { for } m \neq i .
$$

Similar to section 2.1, we have derived the following results mechanically.
Case $A I_{11} . C_{2}$ and C_{1} are identical under the non-degenerate condition $r \neq 0$.
Case $A I_{12}$. There exist no curves such that e_{11} has the same direction as e_{22}.
Case $A I_{13}$. Under condition $r \neq 0$, we have $k_{2}=0$ and $t_{2}=-r^{3} / a_{1}^{3}=-u_{31} / a_{1}$.
Case $A I_{22}$. Under the non-degenerate condition $r a_{2} \neq 0$, we have two conditions:

$$
\begin{array}{ll}
r^{2} a_{2} k_{2}+a_{2} k_{1}+2 r^{3}-2=0 & r^{2} a_{2} k_{2}+a_{2} k_{1}-2 r^{3}-2=0 \\
t_{2}=t_{1}=-\frac{r^{\prime}}{r a a^{\prime}}=-\frac{2 a_{2}^{\prime}}{a_{2}^{2}} & t_{2}=-t_{1}=\frac{r^{\prime}}{r a_{2}}=\frac{2 a_{2}^{\prime}}{a_{2}^{2}} \\
k_{1}+k_{2}=\frac{2-2 r^{3}}{a_{2}} & k_{1}+k_{2}=\frac{2+2 r^{3}}{a_{2}}
\end{array}
$$

For k_{1} and t_{1}, we obtain an algebraic equation for $k_{1}, k_{1}^{\prime}, k_{1}^{\prime \prime} . t_{1}, t_{1}^{\prime}, t_{1}^{\prime \prime}$, and $t_{1}^{\prime \prime \prime}$ of 55 terms. We have $r=c a_{2}^{2}$ for a constant c. For the transformation matrix, we have $u_{11}=\frac{1}{r}, u_{12}=\frac{a_{2}^{\prime}}{r}$, $u_{13}=\frac{a_{2}}{r}, u_{22}= \pm r, u_{31}=0, u_{32}= \pm r^{\prime}, u_{33}= \pm 1$. Our mechanically obtained results here are more complete than that in [5].
Case $A I_{23}$. We obtain the following equations for k_{1}, t_{1}, k_{2}, and t_{2} under condition $r k_{1} k_{2} \neq 0$.

$$
\begin{aligned}
& r^{2} a_{2} k_{1}-3 r^{2} a_{2}^{\prime \prime}+6 r r^{\prime} a_{2}^{\prime}+\left(r r^{\prime \prime}-3 r^{\prime 2}\right) a_{2}-r^{2}=0 \\
& a_{2}^{2} u_{32} t_{1}+2 a_{2}^{\prime} u_{32}+r^{3}=0 \\
& r^{2} k_{2}-u_{32}^{2}=0 \\
& r^{4} a_{2} t_{2}+\left(2 r a_{2}^{\prime}-r^{\prime} a_{2}\right) u_{32}^{2}+r^{4} u_{32}=0
\end{aligned}
$$

Case $A I_{33}$. We have $k_{1} / k_{2}=r^{2} / u_{33}^{2}$ under the non-degenerate condition $r a_{3} \neq 0$.

References

[1] Bertrand M.J., Memoire sur la Theorie des Courbes a Double Courbure, Journal de Mathematiques Pures et Appliquees, 15, 1850, pp. 332-350.
[2] S.C. Chou and X.S. Gao, Automated Reasoning in Differential Geometry and Mechanics: Part I. An Improved Version of Ritt-Wu's Decomposition Algorithm, Journal of Automated Reasoning, 10:161-172,1993, Kluwer Academic Publishers.
[3] S.C. Chou and X.S. Gao, Automated Reasoning in Differential Geometry and Mechanics: Part II. Mechanical Theorem Proving, Journal of Automated Reasoning, 10:173-189, 1993, Kluwer Academic Publishers.
[4] S.C. Chou and X.S. Gao, Automated Reasoning in Differential Geometry and Mechanics: Part III. Mechanical Formula derivation, IFIP Transaction on , Automated Reasoning, p.1-12, North-Holland,1993.
[5] Ogiwara S., Ueber Affine Bertrand'sche Kurven, Jap. J. Math. 4(1927), 93-99.
[6] Wu Wen-tsün, A Mechanization Method of Geometry and Its Applications II. Curve Pairs of Bertrand Type, Kexue Tongbao, 32(1987), 585-588.
[7] Wu Wen-tsün, A Constructive Theory of Differential Algebraic Geometry, Lect. Notes in Math., No. 1255, pp 173-189, Springer-verlag, 1987.

[^0]: ${ }^{1}$ The work reported here was supported in part by the NSF Grant CCR-8702108.

