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1. Introduction to the Problem

This paper reports results about various Bertrand curves obtained using a computer program
based on an improved version of Ritt-Wu’s zero decomposition algorithm [2]. We adopt two
approaches to the problems. First, we use Formulation II to prove known results under some
explicitly given non-degenerate conditions [3]. Second, we derive “unknown” relations among
certain variables using Ritt-Wu’s characteristic method [4]. In this way, we have proved or
derived most of the known results for various Bertrand curves mechanically. We have also
derived some results which we have not found in textbooks of differential geometry or relevant
papers.

The Bertrand curves problem is first studied using a computer by Wu in [6]. This paper
is a further study of the same problem, but contains more results than those of Wu’s: totally
18 types of Bertrand curves in metric and affine differential geometries are studied and a
complete list of results are given. Also our study here follows a different approach: we use
the complete decomposition algorithm to derive or prove certain results under some explicitly
given conditions. Also, the proving procedure for the known or derived results is automatically
carried out by our program without any human assistance.

Theorems on various Bertrand curves are among the most eminent results in the local
theory of space curves. The success of our method in dealing with these problems shows
that our program based on the Ritt-Wu’s decomposition algorithm can be used to solve quite
difficult problems in elementary differential geometry, or even to discover new results.

A pair of space curves having their principal normals in common are said to be associate
Bertrand curves [1]. Here following Wu [6], we shall consider more general problems. Given
two space curves C1 and C2 in a one to one correspondence, let us attach moving triads
(C1, e11, e12, e13) and (C2, e21, e22, e23) to C1 and C2 at the corresponding points of C1 and C2

respectively. We denote the arcs, curvatures and torsions of C1 and C2 by s1, k1, t1 and s2, k2, t2
respectively. Then all the quantities introduced above can be looked as functions of s1. Let
r = ds2

ds1
, and let

C2 = C1 + a1E11 + a2E12 + a3E13 (1.1)

e21 = u11e11 + u12e12 + u13e13

e22 = u21e11 + u22e12 + u23e13 (1.2)
e23 = u31e11 + u32e12 + u33e13

where ai are variables and (uij) is a matrix of variables satisfying certain relations which will
be given in the following sections.

Roughly speaking, the problem is to find under what conditions for the curve pairs (C1 and
C2) their moving triads will satisfy some given relations. For example, the original Bertrand
curve problem is to ask under what conditions C1 and C2 will have identical principal normals
at the corresponding points, i.e. e22 = e12 at the corresponding points.

In this paper, we mainly consider the following three groups of problems.

MIij (1 ≤ i ≤ j ≤ 3) means that e2j is identical with e1i in metric differential geometry.

MPij (1 ≤ i ≤ j ≤ 3) means that e2j is parallel to e1i in metric differential geometry.

AIij (1 ≤ i ≤ j ≤ 3) means that e2j has the same direction with e1i in affine differential
geometry.
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So totally 18 kinds of Bertrand curves are studied.

In this paper, we assume the reader has already known the Ritt-Wu’s decomposition al-
gorithm and Wu’s method of mechanical theorem proving in the differential case. A detailed
description of the algorithm can be found in [7] or [2, 3].

2. Bertrand Curves In Metric Space

Let (e11, e12, e13) and (e21, e22, e23) be the Frenet triads of C1 and C2 at their corresponding
points respectively, then we have the following Frenet formulae.

e′11 = k1e12, e′12 = −k1e11 + t1e12, e′13 = −t1e12 (2.1)
e′21 = rk2e22, e′22 = −rk2e21 + rt2e22, e′23 = −rt2e22 (2.2)

where r = ds2
ds1

and the differentiations here and in what follows are all with respect to (abbre-
viated to wrpt) s1.

Differentiating (1.1) and (1.2); eliminating e′11, e′12, e
′
13, e

′
21, e

′
22 and e′23 using (2.1) and (2.2);

eliminating e21, e22, and e23 using (1.2); at last, comparing coefficients for the vectors e11, e12,
and e13, we have:

a2t1 − ru13 + a′3 = 0
a3t1 − a1k1 + ru12 − a′2 = 0
a2k1 + ru11 − a′1 − 1 = 0
ru23k2 − u12t1 − u′13 = 0
ru22k2 + u13t1 − u11k1 − u′12 = 0
ru21k2 + u12k1 − u′11 = 0
ru33t2 − ru13k2 − u22t1 − u′23 = 0 (2.3)
ru32t2 − ru12k2 + u23t1 − u21k1 − u′22 = 0
ru31t2 − ru11k2 + u22k1 − u′21 = 0
ru23t2 + u32t1 + u′33 = 0
ru22t2 − u33t1 + u31k1 + u′32 = 0
ru21t2 − u32k1 + u′31 = 0

To transform a right-handed orthogonal system {e11, e12, e13} to another right-handed orthog-
onal system {e21, e22, e23}, (uij) must satisfy

u2
13 + u2

12 + u2
11 − 1 = 0

u2
23 + u2

22 + u2
21 − 1 = 0

u2
33 + u2

32 + u2
31 − 1 = 0

u13u23 + u12u22 + u11u21 = 0 (2.4)
u13u33 + u12u32 + u11u31 = 0
u23u33 + u22u32 + u21u31 = 0
(u11u22 − u12u21)u33 + (−u11u23 + u13u21)u32 + (u12u23 − u13u22)u31 − 1 = 0

(2.3) and (2.4) are first given by Wu in [6] except the last equation in (2.4) which is added by
us to preserve the right-handness of the moving triads.

2.1. The Identical Case

At case MIij , the ai and ui,j must satisfy

am = 0 for m 6= i;uji − 1 = 0; ujn = 0 for n 6= i; uki = 0 and k 6= j. (2.5)
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The following non-degenerate conditions are often used: k1 6= 0 means curve C1 is not a straight
line. k2 6= 0 means curve C2 is not a straight line. r 6= 0 means the arc length of C2 as a
function of the arc length of C1 is not a constant, i.e., C2 is not a fixed point. At first, we list
some known results.

Case MI11. Under the non-degenerate condition rk1k2 6= 0, C1 and C2 must be identical, i.e.
C1 = C2.

Case MI12. Under condition r 6= 0, C2 and C1 are both plane curves satisfying

e21 = −e12, e22 = e11, e23 = e13; k1 = −r/a1, k2 = −1/a1, a
′
1 = −1 or

e21 = e12, e22 = e11, e23 = −e13; k1 = r/a1, k2 = −1/a1, a
′
1 = −1.

The geometric meaning of the above results can be stated as follows.

If C2 is the involute of C1 in the strong sense that the principal normals of C2 are identical
with the tangent vectors of C1, then both curves must be plane curves, and

(i) C2 = C1 + (c0 − s1)e11 for a constsnt c0;

(ii) C1 = C2 + 1
k2

e22, i.e C1 is the locus of the curvature center of C2;

(iii) The arc length of C1 between two points of C1 equals the difference of the reciprocal
of the curvatures of C2 at the corresponding points.

Case MI13. There exist no curves satisfying e11 = e23 under the condition r 6= 0.

Case MI22. Under the non-degenerate condition ra2 6= 0 (C2 6= C2), we have

a. The distance from C1 to C2 is a constant.

b. The angle formed by the tangent lines at C1 and C2 respectively is a constant.

c. (Bertrand) There exists a linear relation between k1 and t1 with constant coefficients.

d. (Schell) The production of t1 and t2 is a constant.

Case MI23. Under the non-degenerate condition rk1 6= 0, we have

a. The distance from C1 to C2 is a constant.

b. (Mannheim) k2
1 + t21 = ck1 for a constant c.

Case MI33. Under the non-degenerate condition rk1k2 6= 0, we have either C2 = C1 or C2 and
C1 are on two parallel planes respectively and C2 is the translation of C1 along the binormal
of C1.

Take MI22, the original case of Bertrand, as an example. Other cases can be proved similarly.
Using Ritt-Wu’s decomposition algorithm under the following variable order r < a1 < a2 <
a3 < u11 < u12 < u13 < u21 < u22 < u23 < u31 < u32 < u33 < k1 < t1 < k2 < t2, we have
Zero((2.3) ∪ (2.4) ∪ (2.5)/ra2) = ∪3

i=1Zero(PD(ASCi)) where
ASC1 = ASC2 = ASC3 =
a1 a1 a1

a′2 a′2 a′2
a3 a3 a3

u11 − 1 u11 + 1 u′11
u12 u12 u12

u13 u13 u2
13 + u2

11 − 1
u21 u21 u21
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u22 − 1 u22 − 1 u22 − 1
u23 u23 u23

u31 u31 u31 + u13

u32 u32 u32

u33 − 1 u33 + 1 u33 − u11

a2k1 + r − 1 a2k1 − r − 1 a2k1 + ru11 − 1
t1 t1 a2t1 − ru13

ra2k2 + r − 1 ra2k2 + r + 1 ra2k2 − u11 + r
t2 t2 ra2t2 − u13

The four conclusions of MI22 are equivalent to c1 = a′2 = 0, c2 = u′11 = 0, c3 = k′′1 t′1−t′′1k′1 =
0, and c4 = (t1t2)′ = 0 respectively. The pseudo remainders of ci, i = 1, ..., 4, wrpt ASCi,
i = 1, 2, 3, are zero which implies the results are correct.

On the other hand, we can obtain the results from ASC3, the main component of the
problem (see [3]) directly. The differential equations representing results a (a′2 = 0) and b
(u′11 = 0) are already in ASC3. Eliminating r from the last four equations of ASC3, we have:

a2u11t1 + a2u13k1 − u13 = 0
a2

2t1t2 − u2
13 = 0 (2.6)

a2
2t1k2 + a2t1 − u11u13 = 0

As a2, u11, (and hence u13 =
√

1− u2
11) are constants, the first two formulae of (2.6) actually

give the concrete expression for Bertrand’s theorem and Schell’s theorem. From (2.6) we can
derive the following formulae.

(1− a2k1)(1 + a2k2)− u2
11 = 0

a2
2k1t2 − a2t2 + u11u13 = 0

a2u11t2 − a2u13k2 − u13 = 0

The above formulae are proved (mechanically) correct under condition k1k2r 6= 0.

For MI23, we can find the following formulae among k1, t1, and t2 similarly

a2t
2
1 + a2k

2
1 − k1 = 0

a2
2t1t

2
2 − t2 + t1 = 0

a2t1t2 − k1 = 0
k2

1 + t21 − t1t2 = 0
(a2

2k1 − a2)t22 + k1 = 0

where a2 is a constant. For r, we have

r = u11 =
√

t1/t2 =
√

t21/(t21 + k2
1).

All the above results are true under the nondegenerate condition k1k2r 6= 0.

2.2. The Parallel Case

For MPij , the uij must satisfy ujk = 0 for k 6= i; umi = 0 for m 6= j. The following results
can be derived automatically under condition k1k2r 6= 0 similar to Section 2.1.
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Case MP11. C2 and C1 must satisfy one of the following conditions.

a. e21 = −e11, e22 = e12, e23 = −e13

r = −k1/k2 = −t1/t2 and a3a
′
3 + a2a

′
2 + a1a

′
1 + (r + 1)a1 = 0.

b. e21 = −e11, e22 = −e12, e23 = e13

r = k1/k2 = −t1/t2 and a3a
′
3 + a2a

′
2 + a1a

′
1 + (r + 1)a1 = 0.

c. e21 = e11, e22 = −e12, e23 = −e13

r = −k1/k2 = t1/t2 and a3a
′
3 + a2a

′
2 + a1a

′
1 + (−r + 1)a1 = 0.

d. e21 = e11, e22 = e12, e23 = e13

r = k1/k2 = t1/t2 and a3a
′
3 + a2a

′
2 + a1a

′
1 + (−r + 1)a1 = 0.

Case MP12. C2 and C1 must satisfy one of the following conditions.

a. u21 − 1 = 0, r =
√

k2
1

t22+k2
2

= − k1
k2u12

= k1
t2u13

.

b. u21 + 1 = 0, r =
√

k2
1

t22+k2
2

= k1
k2u12

= k1
t2u13

.

Case MP13. C2 and C1 must satisfy one of the following conditions.

a. e21 = −e13, e22 = −e12, e23 = −e11 and r = −t1/k2 = −k1/t2.
b. e21 = e13, e22 = e12, e23 = −e11, and r = −t1/k2 = k1/t2.
c. e21 = −e13, e22 = e12, e23 = e11, and r = t1/k2 = −k1/t2.
d. e21 = e13, e22 = −e12, e23 = e11 and r = t1/k2 = k1/t2.

Case MP22. C2 and C1 must satisfy one of the following conditions.

a. u22 − 1 = 0, u′11 = 0, u′13 = 0.
u13(t1t2 + k1k2) = u11(k1t2 − t1k2).

r2 = t21+k2
1

t22+k2
2
.

b. u22 + 1 = 0, u′11 = 0, u′13 = 0.
u13(t1t2 − k1k2) = u11(k1t2 + t1k2).

r2 = t21+k2
1

t22+k2
2
.

The second equation implies that t1, k1, k2, and t2 satisfy a quadratic equation with constant
coefficients. This formula cannot be found in textbooks of differential geometry.

Case MP23. We have r = t1
t2u11

= k1
t2u13

=
√

t21+k2
1

t22
.

Case MP33. We have the same results as MP11.

3. Bertrand Curves in Affine Space

In affine differential geometry, let e11 = dC1
ds1

, e12 = de11
ds1

, e13 = de12
ds1

and e21 = dC2
ds2

, e22 =
de21
ds2

, e23 = de22
ds2

be the moving triads of C1 and C2 at their corresponding points respectively,
where si are the arc length of curves Ci for i = 1, 2. Then we have the following Frenet
formulae.

e′11 = e12, e′12 = e13, e′13 = −k1e12 + t1e11;
e′21 = re22, e′22 = re23, e′23 = −rk2e22 + rt2e21.
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where r = ds2
ds1

. Similar to section 2, we can get the following differential equations.

ru13 − a′3 − a2 = 0
a3k1 + ru12 − a′2 − a1 = 0
a3t1 + ru11 − a′1 − 1 = 0
ru23 − u′13 − u12 = 0
u13k1 + ru22 − u′12 − u11 = 0
u13t1 + ru21 − u′11 = 0
ru33 − u′23 − u22 = 0
u23k1 + ru32 − u′22 − u21 = 0
u23t1 + ru31 − u′21 = 0
ru13t2 + ru23k2 + u′33 + u32 = 0
ru12t2 + ru22k2 − u33k1 + u′32 + u31 = 0
ru11t2 + ru21k2 − u33t1 + u′31 = 0

We also have (e11, e12, e13) = 1 and (e21, e22, e23) = 1. Then by (1.2), the determinant of the
matrix (uij) is 1, i.e.,

(u11u22 − u12u21)u33 + (−u11u23 + u13u21)u32 + (u12u23 − u13u22)u31 − 1 = 0.

Let AIij be the case such that e2j has the same direction2In affine space, there is no identical
case as in Section 2.1. as e1i at the corresponding points. Then for case AIij , we have:

ak = 0 for k 6= i; ujm = 0 for m 6= i.

Similar to section 2.1, we have derived the following results mechanically.

Case AI11. C2 and C1 are identical under the non-degenerate condition r 6= 0.

Case AI12. There exist no curves such that e11 has the same direction as e22.

Case AI13. Under condition r 6= 0, we have k2 = 0 and t2 = −r3/a3
1 = −u31/a1.

Case AI22. Under the non-degenerate condition ra2 6= 0, we have two conditions:

r2a2k2 + a2k1 + 2r3 − 2 = 0 r2a2k2 + a2k1 − 2r3 − 2 = 0
t2 = t1 = − r′

ra2
= −2a′2

a2
2

t2 = −t1 = r′
ra2

= 2a′2
a2
2

k1 + k2 = 2−2r3

a2
k1 + k2 = 2+2r3

a2

For k1 and t1, we obtain an algebraic equation for k1, k
′
1, k

′′
1 .t1, t

′
1, t

′′
1, and t′′′1 of 55 terms. We

have r = ca2
2 for a constant c. For the transformation matrix, we have u11 = 1

r , u12 = a′2
r ,

u13 = a2
r , u22 = ±r, u31 = 0, u32 = ±r′, u33 = ±1. Our mechanically obtained results here are

more complete than that in [5].

Case AI23. We obtain the following equations for k1, t1, k2, and t2 under condition rk1k2 6= 0.

r2a2k1 − 3r2a′′2 + 6rr′a′2 + (rr′′ − 3r′2)a2 − r2 = 0
a2

2u32t1 + 2a′2u32 + r3 = 0
r2k2 − u2

32 = 0
r4a2t2 + (2ra′2 − r′a2)u2

32 + r4u32 = 0

Case AI33. We have k1/k2 = r2/u2
33 under the non-degenerate condition ra3 6= 0.

2*
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