
Section 1.2, Solutions of Some Differential Equations (expanded) 

 
Types of Solutions 

 

A solution to a differential equation may be represented in different forms, often depending on the 
method used to obtain it. 

 
Analytical Solutions:  An analytical representation of a solution may take one of two forms: 

1.  In the explicit form  y = f(t),  the dependent variable is completely isolated and appears only to 
the first power on one side of the equation.  The other side of the equation is an expression 
involving only the independent variable t and constants. 
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2.  The implicit form is an equation  h(t,y) = 0 involving both the dependent and independent 
variables but no derivatives.  In this form the dependent variable y is not expressly given as a 
function of the independent variable t.  We assume that the implicit form is satisfied by at least 
one function that also satisfies the differential equation. 
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In general the analytic solution of a first-order o.d.e. will have one arbitrary constant, the 
solution of a second-order o.d.e. will have two arbitrary constants, while the solution of an nth-
order o.d.e. will have n arbitrary constants.  We refer to these as one-parameter, two-

parameter, or n-parameter solutions.  Because the arbitrary constants (parameters) can take on 
infinitely many values, these  
one-, two-, or n-parameter solutions represent families of solutions. 
 

A general solution to an nth-order o.d.e. is an n-parameter analytic solution (expressed explicitly or 
implicitly) that contains all possible solutions over an interval I.   All linear nth-order o.d.e.s 
have general solutions. 

 

Example 1.  Solve the o.d.e. y′′(t) = 6t + 2 to obtain a 2-parameter general solution. 
 
 
 
 
 
 
 

 
Graphical Solutions:  A graphical solution of a first-order o.d.e. is a curve whose slope at any 

point is the value of the derivative there as given by the differential equation. 
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Graphical solutions may be quantitative in nature; i.e., the graph may be sufficiently precise so 
that the values of the solution function can be read directly from the graph. 

 
Graphical solutions may be qualitative in nature where the graph is imprecise as far as 

numerical values are concerned yet still revealing of the general shape and features of the 
solution curves. 

 
Graphical solutions can be produced in different ways:  from a table of numerical values, by 

plotting an analytic solution, or by using a direction or tangent field of the differential 
equation. 

 
Numerical Approximations:  A solution to a differential equation may also be approximated 

numerically.  In this case the form of the solution is a sequence or table of values of the 
dependent variable y for a preselected sequence of values of the independent variable t.  
 

Initial Value Problems:  An nth-order Initial Value Problem (I.V.P.) consists of an nth-order o.d.e. 
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The solution of an nth-order I.V.P. is a specific solution where the arbitrary constants have been 
assigned number values in order to satisfy the initial conditions.  This solution must be continuous on an 
interval containing the initial t value, t0, and must have the value y0 at t0. 
 

Example 2.  Solve the initial value problem  y′′(t) = 6t + 2,  y(1) = 1, y′(1) = 2. 
 
 
 
 
 
 
  
 
 
 
 
 

 
The graphical solution of a first-order I.V.P. will pass through the point of the initial condition (t0, y0).  
Observe that the solution to Example 2 passes through the point (1,1).  What is the slope of the tangent 
line to the solution at the point (1,1)? 
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Example 3.  a) Solve the differential equation, y′(t) = 2t to obtain a one-parameter family of curves. 

Graph several representative curves of this family.  Note that the solution of y′(t) = 2t represents an 
infinite family of solutions.  Geometrical representations of the  infinite family of curves are called 
integral curves. 

 
 
 
 
 
 
 
 
 

 
 
 
 

b)  Solve the initial value problem, y′(t) = 2t,  y(2) = 1 to find a specific solution. Sketch the 
integral curve for this specific solution.  Sketch two other integral curves that do not pass 
through the point (2, 1). 

 
 

 

 

 

More Model Examples 

Example 4.  Compound Interest: When interest is compounded continuously, the rate of change of the 
principal is proportional to the principal.  The constant of proportionality is called the interest rate.   

a) Set up a differential equation to model the principal y(t) in an account accruing interest at 8% per 
year, compounded continuously. 

 
 
 
b) How does the model change if money is deposited into the account at the constant rate of $1000 

per year? 
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Example 5.  Radioactive Decay: The atoms of a radioactive substance tend to decompose into atoms of a 
more stable substance at a rate proportional to the number y(t) of unstable atoms present.  Suppose 
that the initial amount present of the substance is y(0)=y0.   

a) Set up an initial value problem to model radioactive decay. 
 
 
 
 
 

 
b) If the solution of the differential equation of part a) is ���� � ���

�	, find the value of r if we 
know that the half-life is 10 years. 
 
 
 
 
 
 

 
c) Sometimes you will see the solution to a radioactive decay model written with a negative 

exponent as ���� � ���

�	.  Does the negative exponent change the final solution result? 

 

 

Example 6.  A drug is absorbed by the body at a rate proportional to the amount y(t) present in the 
bloodstream.  Suppose that initially there is no drug in the bloodstream but at time t = 0 the patient 
begins to receive the drug intravenously at the constant rate of 15 milligrams per hour.  The drug is 
absorbed at the rate of 0.5y(t) per hour.  
a)  Set up an I.V.P. (differential equation plus initial condition) to model this situation. 
 
 
 
b)  Find and classify the equilibrium solution of the differential equation. 
 
 
 
c)   Express the long-term behavior (or limiting value) of the solution below as a limit. 

 
 
d)  Sketch a phase line for the model 
e)   Suppose that 10 mg of the drug is initially in the blood stream.  Will 

this change the long-term behavior of the drug in the blood? 
                       Phase line 


