

RESPONSES OF AN OMBROTROPHIC BOG ECOSYSTEM TO AMMONIA OXIDISED

Lucy Sheppard & Ian Leith et al

CEH Edinburgh

8.5 -10.5 kg N ban yr

Transitional raised / blanket bog (280 m asl)- Scottish Borders NVC M19 Calluna-Eriophorum

950-1100 mm rainfall yī1.....

Funded by GANE, Defra and CEH

Whim Moss: Automated N manipulation system

Treatments coupled to: wind direction, wind speed and rainfall.

Wet treatments cover the full range of UK N deposition (8 - 64 kg N ha⁻¹y⁻¹) and dry gaseous NH₃ concentrations $(0.4 - 200 \ \mu g \ m^{-3})$.

Centre for

Ecology & Hydrology

EARCH COUNCIL

WET TREATMENTS oxidised vs reduced N

	Treatment	N form	P & K added	Wet N depn. kg N ha ⁻¹ y ⁻¹	Number of replicate plots
Γ	CONTROL		No	8	4
Γ	NIT 16	NaNO ₃	No	Ambient + 8	4
	NIT 32	NaNO ₃	No	Ambient + 24	4
ſ	NIT 64	NaNO ₃	No	Ambient + 56	4
Γ	AMM 16	NH ₄ CI	No	Ambient + 8	4
	AMM 32	NH ₄ CI	No	Ambient + 24	4
	AMM 64	NH ₄ CI	No	Ambient + 56	4
1	NIT+PK 16	NaNO ₃	Yes	Ambient + 8	4
	NIT +PK 64	NaNO ₃	Yes	Ambient + 56	4
	AMM <mark>+PK</mark> 16	NH ₄ CI	Yes	Ambient + 8	4
TURAL VIRONMENT	AMM+PK 64	NH ₄ CI	Yes	Ambient + 56	4

NATURAL INVIRONMENT

NH₃ Sampling

Samplers at 0.1, 0.5 & 1.0 m above vegetation

 NB Ammonia network monitoring occurs at 1.5 m

Alpha sampler

Timing and duration of NH₃ release recorded

Mean monthly ammonia concentrations at 0.1m since 2002

- Ammonia exposure ranges from 1 14 % of each month.
- Actual [NH₃]'s range from 6 – 1600 μg m⁻³.
- Exponential decline in [NH₃] along transect.
 - Ambient [NH₃] ~ 0.3 0.6 µg m⁻³.
 - Maximum [NH₃] 8m from source.

N deposition from released ammonia in 2004 - calculated for a mixed *Calluna* community

- Calculation based on an R_c for moorland vegetation (Jones 2006), [NH₃] at 0.1m, stomatal opening (day, night) and windspeed.
- R_c varies with species:

Calluna >>>Eriophorum > Cladonia = Sphagnum.

- Sphagnum and Cladonia are 'sinks' for ammonia and probably receive a lot more N than shown here.
- N deposition is relatively modest, max N dose < 30 kg N ha⁻¹ y⁻¹ falling 5 kg every 20 m.

AIMS

- Separate the effects of reduced (agricultural sources) versus oxidised (combustion, transport) N.
- Mimic real world treatment scenarios with respect to timing, frequency and concentration.
- Determine if NH₃ is more damaging to an acid organic ecosystem than NH₄⁺, for both above and below ground responses.
- Evaluate critical N loads and levels for an ombrotrophic bog ecosystem.

Losers:

Cladonia, Calluna, Sphagnum, Hypnum

Beneficiaries:

Erica, V. myrtillus, Empetrum, S. papillosum

What does the ammonia do?

Ammonia damage to *Calluna* after one winter

Winter desiccation

Proportion of damaged young *Calluna* shoots, Autumn 2004

ARCH COUNCIL

May be linked to Botrytis fungus Not found on wet N plots Level of damage increased with time ➢pH effect on leaf surface?

Cladonia portentosa NH₃ Transect

Centre for Ecology & Hydrology

Pre-treatment March 2002

May 2002

November 2002

February 2003

Cladonia portentosa was irreversibly damaged within 3 months at 8m. NH_3 damage includes: destruction of usnic acid – bleaching, reduction in photosystem II efficiency, loss of membrane integrity and K leakage.

The algal greening and bleaching have also been found in the wet plots, treated with high N, 3 years on.

Cladonia portentosa - %N

- October 2003: Lichens barely sorediate, most apices were broken, > 85 % bleached at 16 m, >50 % bleached at 32 m.
- At some point, the damage affects the membranes so that %N values no longer correlate with ammonia concentrations. This may explain the lower % N in 2005. There were no thallii to

Damage to Sphagnum capillifolium

Centre for Ecology & Hydrology

Ammonia concentration causing the death of *Cladonia portentosa* and > 85% death of *Calluna vulgaris* over time

- Threshold [] for ammonia effects decreases with increasing length of exposure.
- Van der Eerden's 1991 annual CL of 8 µgm⁻³ provides inadequate protection for *Cladonia*.

Effects of NH₃

- Effects of NH₃ gas on N sensitive species are more damaging than those of NH₄⁺ or NO₃⁻ in precipitation (for a specified N dose ?). Intermittent high [NH₃], concealed by the long-term average [], are probably responsible.
- Negative effects of NH₃ gas are species specific.
- Critical Levels of NH₃ gas depend on accumulated exposure duration.
- *Hypnum* is recovering and new propagules of *Calluna* are recolonising the transect. Neither *Cladonia* nor *Sphagnum* appear to be recovering.

After 4 years No large scale visible damage on the wet N plots, *cf* the ammonia transect

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNC

Visible Damage by wet NH_4^+ or NO_3^- to vegetation in wet plots

- No large scale annihilation of vegetation RATHER some patchy damage, represented as a reduction in vitality index. Dose more important than form, reduced N slightly more damaging than oxidised N.
- PK additions mitigate damage.
- *Calluna* is **NOT** showing damage.
- Hypnum was also badly affected by NH₃.
- Hypnum is reviving under all N treatments.

Are these effects :

- Both *Sphagnum* and *Hypnum* take up and accumulate N from both dry and wet N.
- If plant material is damaged the foliar N status may not be indicative of N uptake.
- Indication of 'memory effects'.
- *Hypnum* preferentially takes up reduced N.

Amino acids in Sphagnum capillifolium, treated since summer 2002 with NH_3 , NH_4^+ or NO_3^-

(de Lange & vanZetten unpub)

• All N forms significantly enhanced arginine relative to the control.

Centre for Ecology & Hydrology

- Reduced N caused the greatest enhancement.
- Arginine concentrations were raised all along the NH_3 transect and for wet inputs.
- Wet N inputs significantly increased arginine at >32 kg N ha⁻¹ y⁻¹, but the visible damage was restricted.
- In *Calluna* there was no clear N effect on amino acid concentration.

Whim Moss Site Characteristics

Above-ground biomass 3.5 kg m²

pH (water 1:5)	3.78
pH (CaCl_) 2	2.89
Exchangeable acidity	1143 meq H kg ⁻¹
% Base saturation	10
Al, Fe and Mn	Negligible
Available P	43 mg kg⁻¹
Available K	90 mg kg⁻¹
% C	51.6
% N	1.55
C:N	33.3

Change in the litter/peat C:N ratios -? (Prendergast unpub)

Effect of 3 years of NH₃ exposure on the amount of KCI extractable N (Prendergast unpub)

- KCI extractable NH₄⁺ 20 fold higher than NO₃⁻
- 90% of the variation explained by [NH₃].
- NO₃⁻ N much higher in surface 0-3 cm suggesting some nitrification at the surface, at least in the summer.

Soil water collected with minirhizons

Centre for Ecology & Hydrology

CEH

Pore water N in response to ammonia

- Large increases in pore water N (3 yrs fumigation).
- Lower $[NH_4 N]$ in autumn whereas $[NO_3^- N]$ more similar.
- Exponential decline in both reduced and oxidised N reflect [NH₃] rather than the linear N deposition.
- [NO₃⁻ N] near source indicate nitrification in response to higher pH.

N effects on soil chemistry

- The N form has important implications for soil pH and processes that are pH dependent *eg.* nitrification.
- Total soil N (%N) has not yet responded significantly, but so far inputs represent < 10% of the N store.
- Inorganic N pore water N and KCI extractable N have been significantly increased.
- Exponential decline in both reduced and oxidised N reflect [NH₃] rather than the linear N deposition.

Effects of NH₃

- Effects of NH₃ gas on N sensitive species are more damaging than those of NH₄⁺ or NO₃⁻ in precipitation, for a specified N dose. Intermittent high [NH₃], concealed by the long-term average, are probably responsible.
- Negative effects of NH₃ gas are species specific.
- Critical Levels of NH₃ gas depend on accumulated exposure duration.
- Hypnum is recovering and new propagules of Calluna are recolonising the transect. Neither Cladonia nor Sphagnum appear to be recovering.

Reduced vs Oxidised NH₄⁺, NO₃⁻

- The high frequency, low concentration, N deposition scenario suggests the accumulated N dose is the key driver for effects as plant tissues become N enriched. Significant changes in the physiology and biochemistry of the sensitive species were detected within one year of wet treatment at doses of ≥ 32 kg N ha⁻¹ y⁻¹ irrespective of N form.
- Visible effects above-ground were not related to N form.
- Amino acids increased most in response to reduced N.
- Species cover has taken longer to respond and damage is patchy.
- Hypnum is recovering but not Cladonia in the wet plots.

