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1. Introduction

Let X be a variety defined over an algebraically closed field, k. We will
say that X is seminormal if OX,x is seminormal in its integral closure for
every x E X. For the definition and basic properties of seminormal rings
we will refer to [14] and [5] but it seems worthwhile to mention one
characterization of seminormal varieties which follows from [14, 1.1].
Saying that X is seminormal is equivalent to saying that if v = g 0 f is a
factorization of the normalization map v:  ~ X such that f and g are
finite and birational but g: Y - X is not an isomorphism, then either g is
not bijective (as a map of topological spaces) or there exists y E Y such
that the extension of residue fields k(x) ~ k(y), where x = g(y), is

nontrivial. The plane curve y2 = x3 is the simplest example of a variety
which is not seminormal.

Bombieri [2], and Andreotti and Holm [1, p. 91], have asked whether a
projective variety which is the image of a nonsingular variety, under a
generic projection, is seminormal. Greco and Traverso [5, Theorem 3.7]
proved that if X c Pg is a nonsingular r-dimensional projective variety
and 11": X ~ Pr+ 1 is a generic projection, then X’ = 03C0(X) is seminormal.
They also proved [5, Theorem 3.5] that if X is a projective variety over an
arbitrary algebraically closed field k, then X is birationally equivalent to
a seminormal hypersurface. In the proof of this result, they studied
generic projections of a suitable projective embedding of the normaliza-
tion of X. But they observed that it was not known whether a generic
projection of an arbitrary embedding of X would yield a seminormal
hypersurface. (Of course, this was an open question only when char( k ) &#x3E;

0.) Our first main result answers that question.

* Partially supported by NSF Grant MCS-80-01869.
** The paper was written while this author was a graduate student at the University of

Minnesota.
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THEOREM 1.1: Let X ~ Pn be a normal projective variety, defined over an
algebraically closed field k, and let r = dim(X). If 03C0: X ~ Pr+ 1 is a

generic projection and X’ = 03C0(X), then 03C0: X ~ X’ is finite and birational,
and X’ is a seminormal hypersurface.

The proof of this result uses some geometric properties of the singular
locus of X’. Thus, if Y is a hypersurface in Pr+1 1 and x is a closed point
of Y, we say that Y is analytically bihyperplanar at x if (9 Y",
k[[x1, ... ,xr+1]]/(x1x2).

THEOREM 1.2: Let X ~ Pn be as in Theorem 1.1, and let 7r: X ~ X’ =

03C0(X) ~ Pr+1 be a generic projection. Then Sing(X’) = 03C0(Sing X) U V,
where v is purely of dimension r - 1, and X’ is analytically bihyperplanar at
every closed point of some dense open subset of V.

We will prove Theorem 1.2 in Section 3, as a fairly direct consequence
of Proposition 3.1. Here, we will use Theorem 1.2 to prove Theorem 1.1.
The main ideas of our proof are exactly the same as in the proofs of
Theorems 3.5 and 3.7 of [5].

PROOF oF THEOREM 1.1: By [5, Corollary 2.7 (vi)], a hypersurface
X’ ~ Pr+1, or more generally a variety X’ whose local rings satisfy Serre’s
criterion S2 [9, §17.I], is seminormal if and only if OX’,03BE is seminormal for
every point 03BE of codimension 1. Since Sing(X) has dimension  r - 2, it
will suffice to check seminormality in the case where e is the generic point
of a component of V. Since a localization of a seminormal ring is
seminormal [5, Corollary 2.2], it is enough to show that OX’,x’ is seminor-
mal for some closed point x’ of each irreducible component of V. Now
C2x’,x’ ~ k[[x1,..., xr+1]]/(x1x2) for every x’ in some dense open subset
of V, and it is well known that this latter ring is seminormal. But

seminormality of X’,x’ implies seminormality of (9x,@x, [5, Corollary 1.8],
so this completes the proof.

In Section 2 we will prove some results about embedded projective
varieties, which are needed in the proofs of Theorem 1.2 and Proposition
3.1. Those two results are proved in Section 3.
We will say that a ring A is seminormal if it is a Mori ring (i.e. A is

reduced and the integral closure is finitely generated as an A-module),
and coincides with + A, the seminormalization of A in its integral
closure. We will say that a scheme is seminormal if all of its local rings are
seminormal. In Section 4, we consider a hypersurface X’ ~ Pr+1 1 whose
normalization is a nonsingular variety. Let 03C0: X ~ X’ be the normaliza-
tion map and let D c X’ be the double locus, defined as in [13].
Proposition 4.1 says, among other things, that if 0394 = 03C0-1(D) is a semi-
normal scheme, then so is D. When X’ is a surface, this implies that the
singular points of D must be either nodes or triple points with indepen-
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dent tangent lines. (See Corollary 4.2.) We conclude Section 4 by giving
an example which shows that both possibilities can actually occur.
A proof of Theorem 3.1 appeared in [11], in a slightly different form,

but the connection with seminormality was not even suspected at the
time. Theorem 1.1 was proved in [15] by the same methods used here, but
it was assumed there that X is nonsingular. A version of the results of
Section 4 also appeared there. Other main results of [15] pertain to

seminormality for strongly generic projections 7T X ~ X’ = 03C0(X) ~ Pm,
where m &#x3E; (3 dim(X) - 4)/2 and X is nonsingular. Those results will be
published as a revised version of [15].

2. Strange varieties

If t  0, then an embedded variety X c Pg is said to be t-strange if there
is a t-dimensional linear subspace L c pn with L ~ tX,x for every closed
point x E X. (Here, and in the rest of this paper, t x, x denotes the

embedded tangent space.) If char(k) = 0, the only t-strange varieties are
cones. But if char(k) &#x3E; 0, it is easy to construct examples of t-strange
varieties which are not cones, for any t  dim(X). A variety which is
0-strange is often said to be strange.

LEMMA 2.1: Let X be a closed subvariety of p n, and set r = dim(X).
(a) If X is nonsingular in codimension 1, then X is not ( r - 1)-strange.
(b) If X is not ( r - 1)-strange and X is not a hypersurface in some

Pr+1 ~ Pn, then dim(tX,x ~ tx,y)  r - 1 for all ( x, y ) in some dense open
subset of X X X - A. ( Here, 0 is the diagonal.)

(c) If X is not ( r - 1)-strange, then the line xy meets X only at x and y
(and is not tangent to X) for all (x, y) in some dense open subset of
xx x- A.

PROOF: For a proof of (c), we refer to [7, Theorem 2.5] or [8, Lemma 15].
To prove (a) we observe that if Y = X ~ L, where L c Pg is an ( n - r +
l)-subspace in general position, then Y is a nonsingular curve and

Y ~ P2. If X were (r - 1)-strange, then Y would be a strange curve. But
the only nonsingular strange curves are straight lines pl c Pg and also
(nonsingular) plane conics if char(k) = 2. (See [6, Chapter IV, Theorem
3.9].) Both are impossible since Y ~ P2.
To prove (b) we fix 2 nonsingular closed points xl, x2 E X such that

L = tX,x1 ~ tX,x2 is (r - l)-dimensional. Then M = Span(t X,Xl’ t X,X2) is

(r + l)-dimensional. If the conclusion of (b) were false, then for every
x ~ Reg(X) = f nonsingular points of X} the inequalities dim( tX,x ~
tX,xl)  r - 1, i = 1, 2, imply that either (1) tX,x ~ L or (2) tX,x c M. But
the set of points satisfying each condition is closed. Irreducibility of
Reg(X) implies that X must be (r - 1)-strange or else that Reg(X) c M,
which would given X ~ M = Pr+1. This would contradict the hypothesis.

Q.E.D.
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3. Incidence conditions and generic projections

Consider a variety Y c Pmk and a closed point x E Y, and let r = dim( Y ).
We will say that Y is transversally biplanar at x ( in the weak sense) if the
tangent cone C = Spec(gr(OY,x)) is the union of two r-dimensional linear
spaces, C = LI U L2, with dim( L n L2 ) = 2 r - m. We will say that Y is

transversally biplanar at x in the strong ( or analytic) sense if, in addition,
 Y,x ~ C,x. If M, and M2 are linear subspaces of P n, then Span( Ml, M2)
is defined to be the smallest linear subspace containing both of them.

PROPOSITION 3.1: Let X be an irreducible closed subvariety of pn; assume
that X is not (r - 1)-strange, where r = dim(X). Suppose that

Span(tX,x, tX,y) is d-dimensional for (x, y) in a dense open subset of
X  X - A. If r + 1  m  d - 1, 03C0: X ~ Pm is a generic projection, and
X’ = 03C0(X) c Pu, then Sing(X’) = 03C0(Sing X) U V, where :

(i) V is closed in X’ and of pure dimension 2 r - m;
(ii) X’ is transversally biplanar in the analytic sense at every closed point

of some dense open subset of V.

REMARK: Since d  r + 2, the assumption that X is not (r - l)-strange
follows from the other hypotheses, by Lemma 2.1. It is also interesting to
note that if char( k ) = 0, then d is the dimension of Sec(X), the variety of
secant lines of X. (See [4, Lemma 2.1] or [16]). Thus, if char(k) = 0, it
follows that Sing(X’) = qr(Sing X) for m  d. In particular, if char( k ) = 0
and X is nonsingular, then X’ is either nonsingular or else transversally
biplanar at every point of some dense open subset of Sing( X’).

Before proving the proposition, we will use it to prove Theorem 1.2.

PROOF OF THEOREM 1.2: A normal variety is nonsingular in codimension
1, so Lemma 2.1 implies that X is not (r - 1)-strange. By the same
Lemma, we also conclude that Span(tX,x, tX,y) has dimension  r + 2 for
(x, y) in a dense open subset of Reg(X) X Reg(X) - A, where Reg(X) is
the set of nonsingular points of X and A is the diagonal. Taking
m = r + 1 in Proposition 3.1, we immediately deduce the conclusions of
Theorem 1.2.

PROOF OF PROPOSITION 3.1: There is a dense open subset U c Reg(X) X
Reg(X) -,à such that if ( x, y ) E U, then

(a) Span( tX,x, tX,y) is d-dimensional;
(b) xy ~ X = {x, y 1, and xy is not tangent to X.

Here, xy is the line j oining x and y. We set Y = X  X - (0394 ~ U). This
notation will be used throughout the proof.

It is known that the set of ( n - m - l)-subspaces L ~ Pn, with L n X
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= Ø, is open in the Grassmann variety G = G(n, n - m - 1). It is also

fairly well known that each of the following additional properties
Po, ... , P4 of the projection qr = 11" L: X ~ Pm holds for all L in some dense
open subset of G.

( Po ) 7r, : X ~ X’ = 03C0( X) c P "’ is birational.
( Pl ) D7T = ((x, y ) E X  X - 0394|03C0(x) = 03C0(y)} has pure dimension

2r - m, or is empty.
(P2) D§ = {(x, y) E Y|03C0(x) = i7(y» has dimension  2r - m.

(P3) S03C0 = {x ~ Reg(X)|L ~ tX,x ~ Ø} has pure dimension 2 r - m - 1,
or is empty.

(P4) If T7T consists of all non-collinear triples (x, y, z) such that

03C0(x) = 03C0(y) = 03C0(z), then T7T has pure dimension 3r - 2 m, or is empty.
For ( Po ), see [12, Proposition 3]. For ( Pl ) and ( P2 ) we consider the

closed subsets Z, Z’ of (X  X - 0394 ) X G, where Z = {(x, y, L)|L n xy =1=
,01, and Z’ = Z ~ ( Y X G). The methods of [12] can be used to show that
Z has pure dimension = 2 r - m + dim(G), while dim(Z’)  2r - m +
dim(G). So if q: Z ~ G and q’ : Z’ - G are induced by the projection
X  X  G ~ G, then dim q-1(03BB) = 2r - m (or q-1(03BB) = Ø) and
dim q’-1(03BB)  2 r - m for all À in a dense open subset of G, which is
what we need for ( Pl ) and ( P2 ). For (P3) we consider the general fiber of
the projection 03A3 ~ G, where 03A3 = {(x, L ) c Reg(X) X G|L ~ tX,x = Ø}. In
particular, the methods of [12] imply that E is a closed subset of

Reg(X) X G, and that dim(03A3) = 2r - m - 1 + dim(G). Finally, if U3 con-
sists of all (x, y, z) ~ X X X X X such that x, y, and z are not collinear,
and

Z3 = {((x, y, z), L) ~ U3  G|dim(L ~ Span(x, y, z))  1}

then one can use the methods of [12] to show that Z3 is closed in U3 X G
and of pure dimension = 3r - 2m + dim(G). So we study the general
fiber of the projection Z3 ~ G to complete the verification.

Thus, it follows that if L is chosen from a dense open subset of G,
then 03C0L: X ~ X’ ~ Pm is finite and birational, that D7T has pure dimen-
sion 2 r - m (or is empty), and that S03C0, T7T and D’03C0 have strictly smaller
dimension. Let M2 = M2,03C0 = p1(D03C0), M2 = p1(D03C0), and M3 = p1(T03C0) where
pl is the projection of X X X, or X X X X X, to the first factor. It is clear
that x E M2 if and only if there exists y E X, with y ~ x and 03C0(y) = 03C0(x),
and that x E M3 if and only if there exist y, z E X such that x, y, and z
are not collinear but 03C0(x) = 03C0(y) = 03C0(z). Therefore M3 c M2 . Similarly
M2 c M2. We can also show that S03C0 c M2, the closure of M2 in X. In fact,
if Z is defined as before and "cl( )" denotes closure in X X X X G, then
(x, x, L) E cl(Z) if and only if L ~ tX,x =1= j), by [12, Proposition 5]. This
gives 03B4 (S03C0)  {L} ~ q-1({L}), where 8 sends x ~ (x, x ) and q: cl(Z) ~
G extends q: Z - G. By considering dimensions, we find 03B4(S03C0) c D03C0, so
that S03C0 c M2,7T’ Therefore, if L is chosen as above, we conclude that
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Sing(X’) = 03C0(Sing X) U V, where V = 11"( M2), and that:
(i) V ~ X’ is a closed subset of pure dimension 2 r - m;

(ii) for each closed point x’ in some dense open subset of V, 03C0-1(x’)
consists of exactly 2 closed points of X, and both of the corresponding
analytic branches of X’ at x’ are simple.

(Recall that the analytic branches of X’ at x’ are the minimal prime
ideals S c X’,x’ and that if 03C0-1(x’) consists of normal points of X, then
there is a bijection 03C0-1(x’) ~ {analytic branches of X’ at x’l under
which x ~ 03C0-1(x’) corresponds to the ideal Ker(X’,x’ ~ X,x); see

[12, §3] or [10, pp. 394-5]. We say that .p is simple when X’/x’/P is a
regular local ring. We know that )3 is simple if and only if L n t x,x = Ø, by
[12, Proposition 3].) 

To complete the proof, we will show that if L is chosen from a

(possibly smaller) dense open subset of G = G(n, n - m - 1), then X’ =
03C0(X) will be transversally biplanar in the analytic sense at every closed
point x’ of some dense open subset of V. If 03C0-1L(x’) = {x1, x2}, then this
condition will be satisfied if:

(a) x, and x2 are nonsingular points of X,
(b) L n tX,xl =j) for i = 1, 2, and
(c) Span(03C0L(tX,x1), 03C0L(tX,x2)) = Pm.

(For (a) and (b), see [12, Proposition 3 and Lemma 3]. For (c) one
considers the natural homomorphismy j# : Pm,x’ ~ X’,x’ coming from j :
X’ ~Pm. Then (c) says that (j#)-1(p1) and (j#)-1(p2) are generated
by disjoint subsets of a system of parameters). It is also easy to check the
geometric statement:

We recall that Z ~ (X  X - 0394 )  G consists of all (x, y, L ) such that
L ~ xy ~ Ø, and we set Z0 = Z ~ (U  G) where U is the open set

mentioned at the beginning of the proof. Let Z, consist of all (x, y, L ) E
Zo such that dim(L ~ Mxy) &#x3E; d - m - 1, where Mxy = Span(tX,x, lx,y).
Lemma 8 of [12] implies that Z, is a closed subset of Zo. Moreover, if p:
Z0 ~ U sends (x, y, L) - ( x, y ), then p-1(x, y) ~ Z1 ~ p-1(x, y) for each
(x, y) ~ U. To see this, observe that if (x, y) ~ U then there exists an
( n - m - l)-space L with L ~ xy = Ø and dim( L ~  Mxy) = d - m - 1,
because m + 1  d. For such an L we have (x, y, L) ~ p-1(x, y) - Z1.
We can also observe that p-1(x, y) is irreducible and of dimension =
dim(G) - m. (In fact, p-1(x, y) is isomorphic to the Schubert variety
S={L|L ~ xy ~ Ø}.) Thus, dim(p-1(x, y) ~ Z1)  dim(p-1(x, y)) for

all ( x, y ), and we conclude that dim(Z1)  dim(Z) = dim(G) + 2r - m.
Therefore, the following property holds for all L in some dense open
subset of G.

(PS) D"03C0 = {(x, y) ~ U|03C0(x) = 03C0(y) and dim(L ~ Mxy) &#x3E; d - m - 1}
has dimension  2 r - m.
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Consequently, L can be chosen so that (P0),..., (P5) all hold. With
such a choice of L we have, for all (xl, x2 ) in a dense open subset of D03C0:

Because of (*) these conditions imply condition (c), above. But condi-
tions (a) and (b) also hold for all (xl, x2 ) in a dense open subset of D03C0.
Therefore, X’ is transversally biplanar (in the analytic sense) at every
point of some dense open subset of V. Q.E.D.

4. Seminormality of hypersurf aces with nonsingular normalization

Let X be a complete nonsingular variety of dimension r. Let 7r: X ~ X’
be a finite birational morphism, where X’ is a hypersurface in Pr+1k. Thus
X is the normalization of X’. Moreover there is an exact sequence of
sheaves on X’ :

Let W be the conductor of (9x, in 03C0*OX. By definition W is the largest
sheaf of ideals in (9x, which annihilates (03C0*OX)/OX’. The double locus of
X’ is the closed subscheme D c X’ whose structure sheaf is (9x,IW. Then
x E D if and only if (9x,@x is not normal. Since X’ has nonsingular
normalization, x E D if and only if x is a singular point of X’. D is a
Cohen-Macaulay scheme of pure dimension r - 1 [13, Theorem 3.1].
Since qr is an affine morphism, the conductor L ~ OX’ lifts to a sheaf of
ideals in (9x [6, page 163]. Let A be the closed subscheme of X whose
structure sheaf is (9xl W. Then à = 03C0-1(D). à is called the inverse image
of the double locus of X’ by 03C0, or, the double locus of ’1T.

PROPOSITION 4.1: With the notation as above we have:

(a) X’ is a seminormal variety if and only if à is a reduced subscheme of
X.

(b) If 0 is seminormal, then D is seminormal.

PROOF: Being reduced and being seminormal both are local properties.
Let V = Spec(A) be an affine open subset of X’, and let U = 03C0-1(V) =
Spec( 1), where A is the integral closure of A. Let C be the conductor of
A. Then (a) amounts to saying that A is seminormal if and only if A/C is
a reduced ring. Since A is S2, the assertion of (a) follows by [14, Lemma
1.3] and [5, Corollary 2.7].

To prove (b), we show that D is covered by seminormal affine open
sets. The scheme structures of D ~ V and 0 n U are given by C taken as
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an ideal of A and A respectively. By (a), A is seminormal. Thus AIC is
reduced. AIC is a finitely generated k-algebra, hence AIC is a Mori ring
[17, Vol. I, Page 267, Theorem 9]. A is a finite A-module, thus AIC is an
overring of A/C which is a finite A/C-module. Therefore by [5, Proposi-
tion 2.5] AIC is seminormal in A/C. By assumption AIC is seminormal.
Thus if we show that the integral closure of AIC is a subset of the
integral closure of AIC, AIC would be seminormal, and hence the
seminormality of D will follow. Let C = Q1 r1 ... ~ Qn be the minimal
prime decomposition of C in A. Then C = ( Qj ~ 4) n ... ~ ( Qn ~ A) = Pl
~ ... r1 Pm is the minimal prime decomposition of C in A for some

m  n. The map A/P ~ A/Q is injective whenever Q lies over P. Thus
we have the following commutative diagram:

where k(Pl) is the residue field Ap/PIAp, and so on. If x E 03A0ml k(Pl)
and x is integral over 03A0ml=1(A/Pl), then x E 03A0nl=1k(Ql) and it is integral
over 11" i(AIQ,). But since (A/C)_ = 03A0ml=1(A/Pl)- and (A/C)- -
03A0nl=1(A/Ql)-, we have (A/C)- c (A/C)-, as required.

COROLLARY 4.2: In Proposition 4.1 let r = 2. if à is seminormal, then
D c p3 is a curve with only nodes and triple points with three independent
tangent lines.

PROOF: This follows by [3, Corollary 4]. Observe also that the only
singularities of à can be nodes, because X is a nonsingular surface, and
thus at every point there is a unique tangent plane, and the tangent lines
to the curve à lie on this plane, and are linearly independent.

EXAMPLE 4.3: It is well known that if in Corollary 4.2 03C0 is a generic
projection, then D is seminormal and its singularities are only ordinary
triple points. However by the following simple example D may have
nodes when qr is just a finite birational morphism.

Let X’ be the surface given by the following polynomial over the field
of complex numbers,
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Figure 4.3.1.

F is irreducible in C[x, y, z]. At P = (0, 1, 0), X’ has two analytic
branches, and it locally looks like the union of the hyperboloid 1 - y2 +
z2 - x 2 = 0 and the plane 1 - y = 0 (Fig. 4.3.1). A direct calculation of
aF/ax, aF/a y, aflaz shows that Sing(X’) is the union of the two lines
{x ± z = 0, 1 - y = 0}. Since the normalization of X’ is nonsingular, D is
the union of these two lines, and hence D has a node at P. Let F = FI F2
be the factorization of F in C [[ x, 1 - y, z ]], then X’,P~C[[x,1 -
y, z]]/(F1F2). The conductor of X’,p as an idéal of mx’,p is

( Fl , F2)/(FI F2). Thus as an ideal of C[[x, 1 - y, z]]/(F1) X CUx, 1 -
y, z]]j(F2), the normalization of X’,p, the conductor is ( Fl, F2)/(F1) X
( Fl , F2)/(F2). By isomorphism of power series rings, we have C[[x, 1 -
y, z]]/(F1, F2) ~ C[[x, z]Jj (z 2 - x2). This means that if we let 03C0-1(P) =
{Q1, Q2}, then 0 has a node at QI and another node at Q2. In particular
à is seminormal.
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