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Introduction
A Fréchet topological space (also Fréchet-Urysohn) is one with the following property:
For every subset X of the domain of the space and for any point x in the closure of X
there is a sequence of points from X converging to x. For example, spaces with countable
characters have this property, namely metric spaces do.

A lot of properties are preserved by making product. The product of Hausdorff
spaces is a Hausdorff space, the product of compacts is a compact, the countable product
of metrizable spaces is metrizable. However it is not the case of the Fréchet property.
We will show a simple counter-example.

ω + 1 ×

Sω

Figure 0.1. A non-Fréchet product of two Fréchet spaces.

Consider the space ω+1, i. e. an infinite sequence of isolated points which converges
to a point∞. Further take the space Sω, i. e. a space with domain (ω×ω)∪ {∞} and with
the weekest possible topology such that for each n the sequence (n, i) converges to ∞
when i goes to∞.

Both these spaces has Fréchet property. Yet their product does not. Consider a subset
X = {(n, (n, i)) : n, i ∈ ω}, thus one converging sequence in Sω is taken in each floor. The
closure of X contains all points (n,∞), so also the point (∞,∞) is there. On the other hand
there is no sequence of points from X converging to (∞,∞). If a sequence converges to∞
within the projection to Sω it intersects one sequence from Sω at infinitely many points.
Therefore the sequence can not converge to∞within the projection to ω + 1.

This work investigates under what assumptions such counter-examples can be con-
structed. Article [1] shows all these counter-examples under the assumption of Martin’s
axiom 2.17. As usually we use almost disjoint systems for the construction. They are
handy for use and the resulting space will be compact as a bonus.
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Introduction

The aim of the work was to examine following questions without Martin axiom:

a) Is there an n-tuple of (compact) Fréchet spaces such that their product is not Fréchet
but all products of subtuples of the length n − 1 are Fréchet?

b) The question a) under the assumption of existence of an infinite completely separable
MAD system.

c) Is there a countable system of Fréchet spaces such that their product is not Fréchet
but all finite products of spaces from the system are Fréchet?

The question c) in this form is answered by remark 1.3 but it is rather a special case
without an opportunity of generalization. The main contribution of the work consists of
the examination of the question b). Even a stronger form of the question c) is involved
in it. Exact specification of the question is described in definition 1.2. The construction
is not found under the assumption of only infinite completely separable MAD system.
Despite this it is found under a similar slightly stronger assumption of the existence of
infinite strong completely separable MAD system.

Paper [5] describes a construction of an infinite completely separable MAD system
under the assumption s ≤ a. In the chapter 5 we will show a generalization of this result
for the construction of an infinite strong completely separable MAD system under a
similar assumption s ≤ aω. It is the weekest assumption which is already known.

Paper [2] uses a slightly different approach. It showes a counter-example with two
compact spaces without additional set theoretical assumptions. We will repeat this re-
sult in the section 3.3 but we are not able to generalize it.

2



Chapter 1
Basic notation
As usual in set theory, zero is considered as a natural number and each natural n is iden-
tified with the set {0, 1, . . . ,n−1}. Symbolω denotes the set of all naturals, or equivalently
the supremum of all naturals in ordinal numbers. Natural numbers, exceptionally in-
cluding ω, will be denoted by small letters i, j, k,n, . . ..

Sets of numbers or points will be usually denoted by capital letters. For any set S one
can consider some systems of subsets. Systems of sets will be denoted by calligraphic
letters. The system of all subsets of S is denoted by P (S). For example: A ⊂ P (S).

Natural numbers are extended to ordinal numbers. We usually denote them by small
Greek letters α, γ, . . .. Ordinal ω1 denotes the first uncountable ordinal and c denotes
continuum, i. e. the cardinality of P (ω).

As usual in set theory, a map ϕ: A → B is identified with its graph, i. e. a subset of
the Cartesian product A × B containing pairs (a, ϕ(a)). Namely notation ψ ⊂ ϕ for map
ψ: A0 → B0 is equivalent to ϕ � (A ∩ A0) = ψ. Further we say that maps ϕ and ψ are
compatible if ϕ∪ψ is still a map, equivalently ϕ � (A∩A0) = ψ � (A∩A0). In the opposite
case we call them incompatible.

A map ϕ followed by square brackets instead of parentheses denotes the pointwise
image. To be precise ϕ[X] = {ϕ(x) : x ∈ X}.

For sets or spaces S0, ...,Sk−1 consider the Cartesian product

S0 × · · · × Sk−1 =
∏
i∈k

Si.

In case of all sets Si equal we will simply write Sk. In every such case we define simple
projections π0, . . . , πk−1 as follows.

πi:
∏
j∈k

Sj → Si, πi(x0, . . . , xk−1) = xi.

The indexing set of simple projections is the same as the indexing set of the product.
Next to simple projections, we also define projections to a set: Assume indexing set

I and J ⊂ I. We define a projection

πJ :
∏
i∈I

Si →
∏
i∈J

Si

preserving all simple projections πj, where j ∈ J. Finally we define a special case of a
projection to the set: For i ∈ I let π¬i denote πI\{i}.

Topological spaces, as pairs (domain, topology), will be denoted by bold capital let-
ters. For example X = (S, τ).

Topological spaces will usually contain a special point denoted by ∞. If some such
spaces are multiplied there is also a special point (∞, . . . ,∞) in the product. For brevity,
it will be denoted still just by∞.

1.1 Fréchet property

We will repeat and specify definitions from the introduction.

3



1. Basic notation

Definition 1.1. A topological space X is said to be Fréchet if for any X ⊂ X and x ∈ X
there is a sequence x0, x1, . . . ∈ X converging to x. More precisely, each neighborhood of
x contains all points xi up to finitely many of them.
Definition 1.2. Let k > 1 be a natural number. Then a k-counter-example is defined to
be a k-tuple of compact spaces X0, . . . ,Xk−1 such that the product ∏

i∈k Xi is not a Fréchet
space but for any map σ: (k − 1)→ k the product ∏

i∈(k−1) Xσ(i) is a Fréchet space.
Similarly ω-counter-example is a infinite sequence of compact spaces X0,X1, . . . such

that the product ∏
i∈ω Xi is not a Fréchet space but for any k ∈ ω and any map σ: k → ω

the product ∏
i∈k Xσ(i) is a Fréchet space.

Remark 1.3. Assume a weeker ω-counter-example such that. spaces X0,X1, . . . are not required to be compact,. the map σ is just the identity on k.
Then the following example would work: Set X0 to be the space Sω described in intro-

duction. All other spaces Xi will be two element discrete spaces. Then all partial prod-
ucts has the Fréchet property because they are just discrete disjoint unions of Fréchet
spaces. Yet the whole product is not Fréchet since ω + 1 is a subspace of ∏

0<i<ω Xi.
One may require a special case of a k-counter-example such that all its spaces are

equal. Namely a space X such that X k (Xω) is not Fréchet but X k−1 (all finite powers) is.
We will show that the existence of such a spesific counter-example is equivalent to the
existence of a general one.
Proposition 1.4. Fix k ≤ ω. Assume that a k-counter-example exists. Then there is a
k-counter-example in which all spaces are identical.
Proof: Take a k-counter-example X0,X1, . . . There is no lost of generality in assuming pair-
wise disjoint domains of these spaces. At first, we prove the case k < ω. Consider the
sum of these spaces X =

⋃
i∈k Xi. Then one can write the (k − 1)-th power as follows

X k−1 =
⋃
σ∈S

∏
i∈(k−1)

Xσ(i),

where S denotes the set of all maps from (k − 1) to k.
Spaces Xi form a k-counter-example so each summand is a Fréchet space. Also a

finite sum of them is a Fréchet space. Yet the power X k is not a Fréchet space since it
contains a non-Fréchet subspace ∏

i∈k Xi.
It remains to prove the case k = ω. In that case we can again consider the sum of

spaces Xi but it is not compact anymore. Therefore we add a point ∞ to the sum such
that each neighborhood of∞ contains all but finitely many Xi. It is easily seen that such
modification of X forms a compact space and that the power Xω is not a Fréchet space.
What is left is to show that all finite powers are Fréchet spaces.

Consider a set X ⊂ X n, where n ∈ ω. Pick x ∈ X. For each coordinate there can be
two cases.
(i) πi(x) , ∞. Then πi(x) ∈ Xσ(i) for someσ(i). So it suffices to restrict X to an open subset
π−1

i [Xσ(i)].
(ii) πi(x) = ∞. Then consider the space ω + 1, its domain is ω ∪ {∞}, elements of ω are

isolated and converging to∞. Further take a map f : X → ω∪ {∞} defined as follows:

f (y) =
{

i if y ∈ Xi
∞ if y = ∞ .

The sequence x0, x1, . . . ∈ X converges to ∞ ∈ X if and only if the sequence
f (x0), f (x1), . . . converges to f (πi(x)) = ∞. So we factorize the space X by the mapping

4



1.1 Fréchet property

f obtaining ω + 1. Since the product of spaces Xi is not Fréchet, it is not possible to
be isolated for all Xi. Therefore we can embed ω + 1 to some Xσ(i).

By applying this process to all coordinates we transform the original problem to the
Fréchet property of a product ∏

i∈n Xσ(n).

5



Chapter 2
Ideals
In this chapter, we will not consider the requirement of compactness. The property x ∈ X
and the existence of a sequence converging to x clearly depends only on the system
of neighborhoods of the point x. So we transfer from the language of open sets and
topological spaces to the language of ideals. We will explain the relation between these
views in this chapter.

Definition 2.1. An ideal on a set S is a system I ⊂ P (S) satisfying:. For each I, J ∈ I it holds I ∪ J ∈ I,. if I ∈ I and J ⊂ I than also J ∈ I,. for any x ∈ S we have {x} ∈ I.

Remark 2.2. Usually the third condition is not required for ideals. Nevertheless it is
useful and not restricting here.

Now we will describe the conversion from ideals to spaces and vice versa.

Definition 2.3. Let I be an ideal on S, suppose∞ < S. Then we define X (I) to be a space
on domain S∪{∞}with the following topology: A set U is open if and only if it does not
contain∞ or if S \U ∈ I.

Definition 2.4. Consider a T1 space X = (S, τ) and a point x ∈ X . We define a system
I(X , x) of subsets of S \ {x} such that I ∈ I(X , x) if and only if there is a U ∈ τ containing
x and being disjoint with I.

Observation 2.5.. X (I) defines a Hausdorff topological space, the Hausdorff property yields from the
third property of ideals,. I(X , x) is an ideal, third property follows from the T1 property of the space,. for any ideal I it holds I(X (I),∞) = I,. let X be a T1 space with a point ∞. Then X (I(X ,∞)) has identical domain to the
one of X . Moreover neighborhoods of ∞ are equal in both spaces. Hence following
conditions are preserved.. The closure of a given set contains point∞.. A sequence x0, x1, . . . converges to∞.

We see that all key properties for the Fréchet property are preserved. Further we will
describe more of ideal terminology.

Definition 2.6. LetA be a system of subsets of S. The ideal generated byA, denoted by
〈A〉, is defined to be the smallest ideal containingA. In other words 〈A〉 is defined to be
the system of all finite unions of elements ofA together with finitely many extra points
and all subsets of such unions.

Definition 2.7. LetA be a system of subsets of S. The orthogonal complement, denoted
by A⊥, is defined to be the system of all such sets which intersects all A ∈ A at only
finitely many points.

6



2.1 Spaces with small character

Observation 2.8.. A⊥ forms an ideal,. A⊥ = 〈A〉⊥.

Moreover the orthogonal complement forms a Galois connection with itself via re-
lation “have finite intersection”. So for instance (A⊥)⊥ ⊃ A. Equality occurs if and only
ifA is an orthogonal complement.

Definition 2.9. LetA be a system of sets. We define orthogonal closure ofA,A = (A⊥)⊥.
An ideal I is said to be orthogonally closed if I = I.

It remains to realize the correspondence of these concepts with properties of topo-
logical spaces.

Observation 2.10. Let I be an ideal on a set S and X = X (I). Furthermore pick any basis
B of neighborhoods of point∞ and setA = {S \ B : B ∈ B}. Then following holds:. I = 〈A〉.. A sequence x0, x1, . . . ∈ S converges to∞ if and only if each element of S occurs only

finitely many times in it and if {xi : i ∈ ω} ∈ I⊥. One can use A⊥ instead of I⊥ since
I⊥ = A⊥.. The closure of a set X ⊂ S contains the point∞ if and only if X < I.. The non-existence of a sequence of points from a set X converging to∞ is equivalent
to the fact that each sequence converging to ∞ intersects X at only finitely many
points. Equivalently X ∈ I, or X ∈ A.. The space X has the Fréchet property if and only if each set X such that X < I satisfy
X < I. Equivalently if I is orthogonally closed.

So the orthogonal complement provides a nice operation making a Fréchet space
from a non-Fréchet one. Unfortunately it is not compatible with products well so we are
not going to use it further.

Example 2.11. The spaces mentioned in the introduction can be actually simply con-
structed by ideals. Let I be the ideal of finite subsets of ω. Let B be a disjoint decom-
position of a countable domain to infinitely many infinite sets. Then ω + 1 ' X (I) and
Sω ' X (B⊥). Obviously, I is orthogonally closed. The ideal B⊥ is orthogonally closed
just from the fact that the ideal B⊥ is an orthogonal complement. This illustrates that
both these spaces are Fréchet.

2.1 Spaces with small character

As mentioned in the introduction, spaces with countable character has the Fréchet prop-
erty. We will prove this simple observation.

Observation 2.12. Take a space X , a subset X ⊂ X and a point x ∈ X. Under the assump-
tion that X has a finite local basis, there exists a sequence x0, x1, . . . ∈ X converging to
x.

Proof: We may choose the local basis of the point x in the form B0 ⊃ B1 ⊃ · · ·. Then it
suffices to pick xi ∈ X ∩ Bi.

Accordingly, we may ask about the minimal cardinality of a local basis in a
non-Fréchet space. In such general case the first uncountable cardinal will suffice.

Example 2.13. Take the ideal of all countable subsets of ω1. Its orthogonal complement
contains no infinite set. Yet it is generated by the system

{Aα : α ∈ ω1}, where Aα = {γ : γ < α}.

7



2. Ideals

Note that by the set theoretical view Aα = α.
The pointω1 has equal system of neighborhoods as in the spaceω1+1 with the usual

ordinal topology. Hereby we constructed even a compact space with weight ω1 which
is not Fréchet.

We can continue with this example: The space ω1 + 1 can be embedded to the un-
countable power {0, 1}ω1 . Therefore no uncountable product of at least two-element
spaces have the Fréchet property.

So we are interested just in countable spaces and countable products.

Definition 2.14. The symbol p (pseudo-intersection number) denotes the smallest
weight of a countable non-Fréchet space.

Usual definition of the cardinal p is slightly different, yet equivalent.

Definition 2.15. LetA be a system of sets. A set P is said to be its pseudo-intersection if
P is infinite and the set difference P \ A is finite for each A ∈ A.

Observation 2.16. One can define the cardinality p by the following way. The number p
is the smallest possible cardinality of a systemA of subsets ofω such that the intersection
of any finite sets of it is non-empty but there is no pseudo-intersection of wholeA.

Axiom 2.17. (Martin’s) Let P be a partially ordered set such that for any uncountable set
C ⊂ P one can find a triple x, y, z ∈ P such that x , y, x, y ∈ C, z ≤ x, z ≤ y (the c.c.c.
condition).

Furthermore assume D ⊂ P (P) satisfying |D| < c and for any D ∈ D and p ∈ P there
is a q ∈ D, q ≤ p (the condition of density). Then there is a set F ⊂ P, such that:

(1) For any p, q ∈ F there is an r ∈ F, r ≤ p, r ≤ q.
(2) F intersects every D ∈ D.

Proposition 2.18. Under the assumption of Martin’s axiom it holds p = c. In other words
for every countable set S and a system of sets A ⊂ P (S) satisfying |A| < c and S < 〈A〉
there is an infinite set X ∈ A⊥.

Proof: We are going to use Martin’s axiom. So we construct an appropriate partially
ordered set P as follows.

P = {(n, σ,K) : n ∈ ω, σ is an injective map n→ S, K is a finite subset ofA}

(n, σ,K) ≥ (m, τ,L)⇔ n ≤ m, σ ⊂ τ, K ⊂ L, ∀i ∈ (m \ n)∀K ∈ K : τ(i) < K.

We verify the condition c.c.c.: Take uncountable set C ⊂ P. Since S is countable, there
are only finitely many functions of a type n → S. Thus there are two elements of the
following form in C.

x = (n, σ,K), y = (n, σ,L).

Then it suffices to use z = (n, σ,K ∪ L).
Now we are going to construct the system of dense sets D. It will consist of sets

Dm = {(n, σ,K) ∈ P : n ≥ m} for all m ∈ ω and DA = {(n, σ,K) ∈ P : A ∈ K} for all A ∈ A.
Obviously the number of such sets is less than continuum and all of them are dense.
According to Martin’s axiom there is a set F ⊂ P satisfying conditions (1), (2).

Due to the condition (2) the set F contains triples (n, σ,K) where n is arbitrarily large.
Due to the condition (1) for any pair of elements (n, σ,K), (m, τ,L) ∈ F functions σ and
τ are compatible. Therefore the union all such functions from F is an injective map
f :ω→ S. We will show that the infinite set X = f [ω] is a member ofA⊥.

Assume A ∈ A. Due to the condition (2) the set F intersects DA at a point (n, σ,K).
Then due to the condition (1) for every i, (m, τ,L), where m > n and i ∈ (m \ n), elements
τ(i) have to be outside of set A. Therefore the intersection X ∩ A is allowed to contain
only elements of the set σ[n] so there are only finitely many of them.

8



2.2 Products of ideals

2.2 Products of ideals

Definition 2.19. Let I be an indexing set and Ii form a system of ideals on domains Si,
where i ∈ I. We define the product of ideals ∏

i∈I Ii on the domain ∏
i∈I Si to be the ideal

generated by sets of the form π−1
i [A], where i ∈ I and A ∈ Ii.

Observation 2.20. Under assumptions of the previous definition consider X ⊂
∏

i∈I Si.
Then following statements are equivalent.. X ∈ (

∏
i∈I Ii)⊥,. For each i ∈ I following holds.

(1) πi[X] ∈ I⊥i ,
(2) no set of the form πi[Si] intersects X at infinitely many points.

Observation 2.21. The space X (
∏

i∈I Ii) is a subspace of the product of spaces ∏
i∈I X (Ii).

The preceding observation gives a subspace. One may ask if remaining elements
may spoil something. The following proposition shows that for the purpose of this work
one do not have to worry about them.

Proposition 2.22. Assume an n-tuple of ideals I0, . . . ,In−1 on domains S0, . . . ,Sn−1 re-
spectively. Further for each I ⊂ n suppose the ideal ∏

i∈I Ii to be orthogonally closed.
Then the product of spaces X =

∏
i∈n Xi has the Fréchet property.

Proof: The proof is by induction on n. Observation 2.10 gives the validity of the case
n = 1. Further suppose n ≥ 2. Consider X ⊂ X and a point z ∈ X. If πi(z) , ∞ for some
i ∈ n it suffices to restrict everything to an open subset π−1

i (πi(z)) and the claim follows
from the induction assumption. So assume it is not the case and z = ∞.

If there is an i such that the closure of the set X ∩ π−1
i (∞) contains the point ∞ ∈ X

it suffices to restrict everything to the subspace π−1
i (∞) and the induction assumption

proves the proposition. So assume the opposite.
Then for

X2 = X ∩
∏
i∈I

Si it holds∞ ∈ X2.

Thus X2 < I =
∏

i∈I Ii. So by the assumption X2 < I. Hence there is an Y′ ∈ I⊥
having an infinite intersection with X2. Finally, it gives the desired countable sequence
Y ∈ P (X2) ∩ I⊥.

One may ask why the previous proposition demands the orthogonal closedness of
all partial products. In fact, the only reason is a degenerated ideal containing the whole
domain. Such ideal causes that the product will be also degenerated so it will be orthog-
onally closed. On the other hand whenever there is a non-Fréchet factor, the product is
also non-Fréchet.

The following proposition shows that if we suppressed such ideals it would suffice
to check the condition just for the whole product of all ideals.

Proposition 2.23. Assume an orthogonally closed product of ideals I × J on domains
S × T. If T < J then I is orthogonally closed.

Proof: Consider a set X ⊂ S, X < I. We need to find a set Y ⊂ S satisfying Y ∈ I⊥. The
proposition will be proven by it.

Since T < J also X × T is not a member of the orthogonally closed product I × J .
Therefore we find an Y0 ∈ (I × J)⊥ intersecting X × T at infinitely many points. The
desired Y is π0[Y0].

9



2. Ideals

We have described a tool how to recognize whether a product of spaces Xi is a Fréchet
space or not. However this tool is quite week yet, it is actually just a reformulation. A
stronger tool for some specific spaces will be described in chapter 4. Now we will show
how to achieve a non-Fréchet product of spaces.

Observation 2.24. Let Ii be ideals on one domain S, where i ∈ I. Then the space
X (〈

⋃
i∈I Ii〉) is embeddable into the space ∏

i∈I X (Ii). Namely one can map it on the diag-
onal i. e. an element x ∈ X (〈

⋃
i∈I Ii〉) is mapped to the corresponding element (x, x, . . . , x)

on the diagonal.

Corollary 2.25. Let I be an indexing set and Ii be an ideal on one domain S, where i ∈ I.
Suppose

S <
〈⋃

i∈I
Ii

〉
and at the same time

S ∈
⋃
i∈I

Ii.

Then ∏
i∈I X (Ii) is not a Fréchet space.

10



Chapter 3
AD systems
Ideals describe local properties of a space in general. Further we are going to investigate
a specific type of ideals. There is a lost of generality but there are lots of useful properties.
For instance it allows to construct compact spaces.

Definition 3.1. Almost disjoint system, briefly AD system, on an infinite domain S is a
system of infinite setsA ⊂ P (S) such that each pair of elements of the system has a finite
intersection.

Observation 3.2. There is an AD system on a countable set of the cardinality of contin-
uum.

Figure 3.1. AD system of the cardinality c

Proof: Consider an infinite countable rooted binary tree. There are continuum many
paths begining at the root in the tree. Yet each two such paths intersect at only finitely
many nodes. So they form an AD system.

3.1 The space

Definition 3.3. LetA be an AD system on a domain S. Then the space constructed from
A, denoted Y (A), is defined as follows. Its domain is the disjoint union S∪A∪ {∞} and
the topology is the weekest possible such that:. For every x ∈ S the set {x} is clopen,. for every A ∈ A the set {A} ∪ A is clopen.

∞

A

S

Figure 3.2. The space Y (A).

11



3. AD systems

Proposition 3.4. For any AD systemA the space Y (A) is a compact Hausdorff space.

Proof: The Hausdorff property follows from the fact that each two points can be sepa-
rated by a clopen set. To verify the compactness it suffices to check it for elements of a
subbasis. Take the subbasis consisted of. sets {x}, where x ∈ S,. sets {A} ∪ A, where A ∈ A,. complements of sets above.

Consider a coverage by elements of the subbasis. The point ∞ has to be covered by
either a complement of a singleton or by a complement of a set of the form {A}∪A, where
A ∈ A. The first case is trivial. Let us focus on the second one. There are three possible
forms of a set covering the point A.

a) The set {A} ∪ A. Thus the whole space is covered by two sets.
b) A complement of a set {x}, where x ∈ S. Then it remains to cover a single point x.

One more set will suffice.
c) A complement of a set {B} ∪ B, where B ∈ A is different from A. Then it remains to

cover finitely many points A ∩ B. Finitely many extra sets will suffice.

Observation 3.5. Let A be an AD system. Then the space X (〈A〉) is a subspace of the
space Y (A).

Yet there are points A ∈ A in Y (A) outside of X (〈A〉). The following observations
will show that these points does not interfere in investigation of the Fréchet property.

Observation 3.6. AssumeA to be an AD system and X be a subset of the space Y (A).. If a point A ∈ A is an element of X \X then the intersection X ∩A contains infinitely
many points. Hence any sequence of different points of the intersection converges
to A.. If the closure of X ∩A contains the point∞ then X ∩A is infinite and any sequence
of different points of X ∩A converges to∞.. The space Y (A) has the Fréchet property if and only if the space X (〈A〉) has the
Fréchet property.

3.2 Terminology

Definition 3.7. Maximal AD system, briefly MAD system, is defined to be such AD
system that there is no AD system on the same domain which is a proper super-system
of the MAD system.

Observation 3.8. By Zorn’s lemma, each AD system may be extended to a MAD system.

Definition 3.9. LetA be an AD system on a set S and let S0 be a subset of S. We define
the restriction A � S0 of A to S0 to be the AD system {S0 ∩ A : A ∈ A \ {S0}

⊥}. An AD
system is called nowhere MAD ifA � S0 is not an infinite MAD system for any S0 ⊂ S.

Remark 3.10. There is a rather degenerated case of a finite AD system A. Such an AD
system is always nowhere MAD but it may form a MAD system either, in the case when⋃
A covers whole domain up to finitely many points. Though this is the only case of a

MAD which is also nowhere MAD. The definition allows finite AD systems but they are
rather marginal. We usually consider infinite AD systems.

Types of sets in AD systems are called differently in different papers. This work
introduces its own complex terminology in the area.

12



3.3 Decomposition of a MAD system

Definition 3.11. Consider an AD system A on S. We talk about following subsets of
X ⊂ S.. We call X basic if X ∈ A.. We call X small if X ∈ 〈A〉.. We call X non-small if X < 〈A〉, well if it is not small.. We call X missing if X < A and A ∪ {X} forms an AD system. Equivalently if X is

infinite and X ∈ A⊥.. We call X large if it intersects infinitely many elements ofA at infinitely points. For-
mally if |{A ∈ A : |A ∩ X| = ω}| = ω. We call X non-large if it is not large.. We call X MAD-ish if it is finite orA � X forms an AD system. Equivalently if X ∈ A.

We will use notationA-basic,A-small, . . . to specify the corresponding AD system.

basic missing
sm

all
large

finite

M
A

D
-ish

missing ∪ small

Figure 3.3. Illustration of terminology of sets corresponding to AD system in the lattice
P (S)

Observation 3.12.. Small sets form an ideal.. MAD-ish sets form an ideal.. Non-large sets form an ideal.. Missing and finite sets form together an ideal.. Each missing set is both non-small and non-large.. Each set which is both non-small and non-large is an union of a missing set and a
small set.. In MAD system, large sets are identical to non-small sets.. A set is small if and only if it is both non-large and MAD-ish.

Observation 3.13. Let A be an infinite MAD system A on S. Then S < 〈A〉 but S ∈ A.
So an AD systemA is nowhere MAD if and only if Y (A) is a Fréchet space.

Definition 3.14. We call an AD system completely separable if each large set contains a
basic subset.

Observation 3.15. Following statements about an AD system are equivalent.. Is it a completely separable MAD system.. Each non-small set contains a basic subset.

3.3 Decomposition of a MAD system

In this section, we will show a construction based on [2] enhanced by E. K. van Douwen.
Due to observation 2.24 a decomposition of an infinite MAD system into two nowhere
MAD systems gives a 2-counter-example. The idea of the construction is to try to dissect
the MAD system somehow. In the case of failure, we will focus to the corresponding
subset. At the end, we will get a contradiction by the following lemma about a non-small
pseudo-intersection.

13



3. AD systems

In general, we can construct a decomposition of MAD system up to countably many
nowhere MAD systems. Unfortunately, this does not yield a k-counter-example. The
best what one can derive from it is a tuple of compact spaces such that the diagonal in
the product of all of them is not a Fréchet space but diagonals of products of proper
subtuples are.

Lemma 3.16. Consider an AD system and an infinite decreasing sequence of non-small
sets X0 ⊃ X1 ⊃ · · ·. Then there is a non-small pseudo-intersection of them i. e. a non-small
set Y such that Y \ Xi is finite for each i.

One could prove it just elementarily. Nevertheless we will skip the proof now and
wait for a more general version as a corollary of proposition 4.7.

Lemma 3.17. Let M be a MAD system and A ⊂ M be a subsystem. Then following
statements are equivalent.. Each set X isM-large if and only if it isA-large.. M\A is nowhere MAD.

Proof:

⇒ Consider a (M\A)-non-small set X. We will find A ∈ A having an infinite intersect
with X. If X is M-small the existence of such set follows from the fact that is not
(M\A)-small. Otherwise X isM-large, by assumption alsoA-large, so there is such
set A ∈ A. Finally, A ∩ X is the required (M\A)-missing set.

⇐ Each A-large X is clearly M-large either. Reversely, consider for contradiction a
A-non-large, M-non-small set X. Then X is A-non-small so there is a A-missing
set Y = X \ Z, where Z is A-small. Therefore (M \ A) � Y = M � Y. So Y is a
(M\A)-non-small MAD-ish set.

Lemma 3.18. LetM be an infinite MAD system on countable domain S. Further assume
a disjoint decomposition M = A ∪ B. Suppose each M-large set is also a B-large set.
Then there is a disjoint decomposition B = C ∪ D and anM-large set X ⊂ S such that
eachM-large set Y ⊂ X is both C-large andD-large.

Proof: Consider an arbitrary countable set of decompositions Ci, Di, where i ∈ ω, such
that: Ci ∪Di = B, Ci ∩Di = ∅ and moreover for any I ⊂ ω it holds∣∣∣∣∣∣∣⋂i∈I Ci ∩

⋂
i<I
Di

∣∣∣∣∣∣∣ ≤ 1.

If I = ω or I = ∅, the formula in the absolute value means ⋂
i∈ω Ci or ⋂

i∈ωDi respectively.
One can find such countable system of decompositions according to the fact that the

cardinality of B is at most continuum. The set {0, 1}ω can be divided into singletons by
cuts along particular projections.

We will show that there is the required decomposition in one of these decomposi-
tions. Suppose the contrary. Then we begin with aM-large set X0 = S and perform the
following process for i = 0, 1, . . ..

The set Xi is M-non-small. Thus there is an M-large subset X′i+1 ⊂ Xi which is ei-
ther Ci-non-large or Di-non-large. Let Ei denote the system Ci or Di such that X′i+1 is
Ei-non-large. So there are only finitely many elements in Ei intersecting X′i+1 at an infi-
nite set. By subtracting of these elements we construct theM-large set

Xi+1 = X′i+1 \
⋃{

E ∈ Ei :
∣∣∣E ∩ X′i+1

∣∣∣ = ω}
.

Futhermore Xi+1 ∈ E
⊥
i .

After that process, lemma 3.16 gives aM-non-small pseudo-intersection Y of all Xi.
Nevertheless Y can not have an infinite intersection with any element of ⋃

{Ei : i ∈ ω}.
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3.3 Decomposition of a MAD system

Yet the complement of such union to B has only one element due to the choice of de-
compositions. It contradicts the fact that Y is a B-large set.

Moreover an analogical observation to 2.24 holds for AD systems too.

Observation 3.19. Let Ai, where i ∈ I, be a system of AD systems on one domain S. In
additional suppose that A = ⋃

i∈IAi is again an AD system. Then Y (A) can be embed-
ded into ∏

i∈I Y (Ai). Points x ∈ S and ∞ may be mapped to the corresponding element
of the diagonal and points A ∈ Ai may be mapped to a point in the product such that
i-th coordinate is A and remaining coordinates are equal to∞.

Theorem 3.20. For any 2 ≤ n ∈ ω there is an infinite MAD systemMn on a countable
domain and its decomposition into disjoint partsA0, . . . ,An−1 such that the union of any
n − 1 of them is nowhere MAD. Moreover there exists an infinite MAD systemMω on
a countable domain and its decomposition into countably many parts A0,A1, . . . such
that for every i ∈ ω the union ⋃

j,iAj is nowhere MAD.

Proof: We begin by taking an arbitrary infinite MAD systemM on a set S0. We use the
preceding lemma forA = ∅,B =M. There is a set S1 ⊂ S0 and a decomposition ofM � S1
to two AD systems C0 � S1, D0 � S1 with equal large sets. We continue recursively by
applying the lemma for

A =
⋃
j≤i
Cj � Si+1, B = Di � Si+1

and getting the decomposition of Di � Si+2 to systems Ci+1 and Di+1 on domain Si+2 ⊂
Si+1. Yet Si+2 is a M-non-small set and both parts of the decomposition have identical
large sets. The obtained decomposition ofM � Sn−1 to

C0�Sn−1 ∪ . . . ∪ Cn−2�Sn−1 ∪ Dn−2�Sn−1.

is the required one by lemma 3.17.
For the countable case we use lemma 3.16 again and obtain a M-non-small

pseudo-intersection S of sets S0 ⊃ S1 ⊃ · · ·. Then M � S is an infinite MAD sys-
tem having the same large sets as each Ci � S. Hence we build the decomposition
from systems Ci. Yet there may be missing elements from ⋂

i∈ωDi. For completing the
construction we add these elements to C0.

Corollary 3.21. A 2-counter-example exists. Moreover for any 3 ≤ n ≤ ω there is a
system of compact spaces Xi, where i ∈ n, and X ⊂

∏
i∈n Xi, x ∈ X such that:. There is no sequence of elements of X converging to x.. For each i ∈ n the subspace on the set π¬i

[
X
]

is a Fréchet space.
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Chapter 4
AD systems in finite dimensions
In this chapter finite products of AD systems are introduced. In contrast with the case
of topology spaces or ideals it is not possible to understand a product of AD systems
as a new AD system. That is why the product will be understood just formally. The
terminology of small, large, missing, . . . sets will be extended to such products.

Definition 4.1. We call a set X ⊂
∏

i∈n Si injective if all simple projections of it are injec-
tive. Equivalently if the following inequation holds for each x ∈ Si, i ∈ n

|π−1
i (x) ∩ X| ≤ 1.

Definition 4.2. Let A be a formal product of AD systems ∏
i∈nAi on a domain S =∏

i∈n Si. A set X ⊂ S is said to be A-basic if for some i ∈ n, X is a preimage of some
A ∈ Ai in the projection πi. Further a set is called A-small if it is contained by the ideal∏

i∈n〈Ai〉. Otherwise it is calledA-non-small.

Observation 4.3. An injective set is A-small if and only if it is contained by the ideal
generated byA-basic sets.

Definition 4.4. Let A be a formal product of AD systems ∏
i∈nAi on a domain S =∏

i∈n Si. A set X ⊂ S is calledA-missing if it is injective and for each i ∈ n the projection
πi[X] isAi-missing.

Observation 4.5. An infinite injective set isA-missing if and only if it is in the orthogo-
nal complement of the ideal A-small sets. Reversely each infinite set in the orthogonal
complement of a system is a super-set of a missing set.

Observation 4.6. For any infinite injective set X ⊂ S one can find an infinite subset Y ⊂ X
such that for each i ∈ n the projection πi[Y] is either an Ai-missing set or a subset of an
Ai-basic set.

In the previous chapter, it was shown that a non-small set in AD system is either
large or a union of a missing set and a small set. The following technical proposition
gives a similar characterization of non-small sets in a product of AD systems.

Proposition 4.7. LetA0, . . . ,An−1 be AD systems of infinite sets S0, . . . ,Sn−1 respectively.
Further let A denote the formal product of the AD systems. Assume a set X ⊂

∏
i∈n Si.

Then following are equivalent.. X isA-non-small.. There is an infinite sequence of infinite disjoint sets X0,X1, . . . ⊂ X such that:

(1) The union ⋃
k∈ω Xk is a countable injective set.

(2) For each i ∈ n, k ∈ ω the projection πi[Xk] is either an Ai-missing set or a subset
of anAi-basic set.

(3) For any fixed i ∈ n and any different k, l ∈ ω the projections πi[Xk], πi[Xl] are never
subsets of oneAi-basic set.
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X0

X1

X2

A 3

A 3

∈ A ∈ A ∈ A⊥

A⊥ 3

Figure 4.1. A general example of a non-small set in ω2.

Proof:

⇒We will construct infinite injective sets Yi, initially without the requirement of dis-
jointness and that the union should be injective. Yet it will satisfy requirements (2),
(3).

Next to Yk we are going to construct auxiliary non-small sets Zk. We begin with
Z0 = X and continue by following inductive process. At k-th step, pick any infinite
countable injective subset Yk ⊂ Zk. We can do that – if we got stuck during choosing
of points the Zk would be covered by finitely many preimages of points in projections.
It would contradict the fact that Zk is non-small. Due to the previous observation we
make Yk to meet the condition (2). On the end of the cycle we set

Zk+1 = Zk \
⋃{

π−1
i [A] : i ∈ n, πi[Yk] ⊂ A,A ∈ Ai

}
.

We have taken just finitely many basic sets from Zk so Zk+1 is still non-small. More-
over the condition (3) will be forced by the choice of Zk+1.

So there are injective infinite sets satisfying (2), (3). Whenever we take infinite
subsets Xi ⊂ Yi, they will also satisfy the conditions (2) and (3). Hence it suffices to
arrange particular projections πi[Xk] for fixed i to be different. Let kt be a sequence
of naturals such that each number has infinitely many occurrences in it. We will
construct a sequence xt such that for each t ∈ ω following holds.. xt ∈ Ykt ,. for any t′ < t and i ∈ n the projection πi(xt) , πi(xt′ ).

In each step there are infinitely many elements of Ykt . Since Ykt is injective, ad-
ditional conditions forbid only finitely many of them. So we can find an element
satysfying them. Finally setting Xk = {xt : kt = k} completes the construction.

⇐ Acording to the condition (3) and the fact thatAi form AD systems, eachA-basic set
intersects only finitely many sets Xi at an infinite set. Consequently X ⊃

⋃
k∈ω Xk can

not be small.

Remark 4.8. The previous proposition offers to two possibilities on each projection.
Even in total there are just finitely many of such possibilities so one can choose a se-
quence Xk such that all its elements behave in the same way. One could ask whether
even simpler generalization could be possible: “For each simple projection πi either the
set πi[

⋃
k∈ω Xk] is missing or projections πi[Xk] are subsets of different basic sets.” But

such claim is refuted by theorem 3.18. Suppose an infinite MAD system decomposed to
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4. AD systems in finite dimensions

two AD systems with identical large sets. Further consider the diagonal of the product
of these two AD systems and its subsets Xk. It is not possible for projections of fixed Xk
to be both missing neither both under a basic set. But even the case that the union of all
Xk is large via one projection and missing via the other is impossible.

Corollary 4.9. In each non-small set one can find an injective non-small subset.

Proof: It is the union ⋃
k∈ω Xk from proposition cite[adp-charnem].

Let us note that this is not a general property of topological space. The example
(ω+ 1)× Sω in the introduction refutes it. Now we show how to easily use it for proving
lemma 3.16. The previous corollary did not need results of the section 3.3.

Corollary 4.10. Assume an infinite decreasing sequence of A-non-small sets S ⊃ X0 ⊃
X1 ⊃ · · ·, whereA is a formal product of finitely many AD systems and S is the Cartesian
product of their domains. Then there is a non-small pseudo-intersection of them i. e. a
non-small set Y such that for each i ∈ ω the set Y \ Xi is finite.

Proof: Let B be an empty AD system on the domain ω. Consider a set X ⊂ ω× S defined
as follows.

X = {(i, x) : i ∈ ω, x ∈ Xi}.

The set X is (B ×A)-non-small so there is a non-small injective subset Y′ of it. Then the
projection Y = π¬0(Y′) is still a non-small set satisfying |Y \ Xi | ≤ i for each i ∈ ω.

ω

S

Figure 4.2. Illustration of the construction of a pseudo-intersection using an injective set.

Now we prepared vehicles for proving a rather technical lemma which is going to be
the tool for construction of spaces such that the product of them has the Fréchet property.
It is not just a variant of the proposition 2.22. In the following lemma, the verification is
restricted just to injective sets which are non-small in a fixed super-system.

Lemma 4.11. Consider n triples as follows: (S0,A0,B0), . . . , (Sn−1,An−1,Bn−1). Further
suppose that for each i ∈ n the AD system Ai is a subsystem of Bi and they are AD
systems on the domain Si. Then following are equivalent.. for every subset I ⊂ n and for every injective B-non-small set X ⊂

∏
i∈I Si there is an

A-missing Y ⊂ X, whereA, B denotes formal products

A =
∏
i∈I
Ai, B =

∏
i∈I
Bi

. The space
X = Y (A0) × · · · × Y (An−1)

has the Fréchet property.

Proof: The reverse implication is obvious. We will prove the forward one.
The proof is by induction primarily on the number of non-empty setsBi, secondarily

on n. If n = 0 the space of a single point has the Fréchet property.
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Let us first note that deletion of some triple (Si,Ai,Bi) or adding of a triple (S, ∅, ∅)
preserves the assumption. The case of deletion is obvious. In the case of addition empty
systems, it suffices to examine projections outside this AD system because each infinite
set is missing in empty AD system.

Consider X ⊂ X and z ∈ X. We need to find a countable set Y ⊂ X converging to z.
We first analyze some trivial cases:

a) The projection πi(z) ∈ Si for some i. We will denote πi(z) briefly by zi. The point zi
is isolated in the space Y (Ai). So the subspace X ′ ⊂ X on the domain π−1

i (zi) forms
an open subspace. Hence z ∈ X ∩ X ′ and it suffices to use the Fréchet property of
the space X ′ homeomorphic to the product ∏j,i Y (Ai). Such product has the Fréchet
property by the induction assumption upon deleting the triple (Si,Ai,Bi).

b) Some projection πi satisfies πi(z) ∈ Ai. Let us denote by A the point πi(z). Consider
a subspace X ′i ⊂ Y (Ai) on the domain {A} ∪ A. Such set is open so again we can
restrict the problem to X′ = X ∩ π−1

i [X ′i ]. Moreover X ′i is homeoporphic to the space
constructed from empty AD system on the domain A. Therefore after replacing Si
by A andAi,Bi by empty systems the induction assumption proves the case.

What is left is to resolve the case z = ∞. Consider a map

typei: Y (Ai)→ {0, 1, 2}, typei(x) =


0, where x ∈ Si
1, where x ∈ Ai
2, where x = ∞

,

type: X → {0, 1, 2}n, type((x0, . . . , xn−1)) = (type0(x0), . . . , typen−1(xn−1))

There are just finitely many possible values of the map so there is some t ∈ {0, 1, 2}n such
that∞ ∈ X ∩ type−1(t). Let us denote by X2 the set X ∩ type−1(t).

We again analyze some trivial cases.

a) For some i ∈ n it occurs πi(t) = 2. Assume deletion of (Si,Ai,Bi). By the induction
assumption on the set π¬i[X2] there is a sequence x′0, x

′
1, . . . ∈ π¬i[X2] converging to∞.

We build the requested sequence x0, x1, . . . ∈ X2 in a such way that π¬i(xk) = x′k.
Such sequence will converge to the infty even along the projection πi because it is the
constant∞ there.

b) For some i ∈ n it occurs πi(t) = 1. Let us denote by X ′i the subset of Y (Ai) on the
domain {∞} ∪ Ai. The whole set X2 ∪ {∞} is a subset of π−1

i [X ′i ]. Hence it suffices to
restrict everything to such product where Y (Ai) is replaced by X ′i . The space X ′i is
homeomorphic to the space constructed from the empty AD system on the domain
Ai. Induction assumption completes the case.

The only remaining case is t = (0, 0, . . . , 0) and z = ∞. Denote

A =
∏
i∈n
Ai, B =

∏
i∈n
Bi.

The set X2 isA-non-small. It remains to explore following two cases.

a) X2 isB-small. Then it is possible to divide X2 to finitely many subsets ofB-basic sets.
At least one of these parts inA-non-small, denote it X3 ⊂ π

−1
i (B), where i ∈ n, B ∈ Bi.

Therefore B isAi-missing. Again the subspace X ′i ⊂ Y (Ai) on the domain {∞} ∪ B is
homeomorphic to a space constructed from the empty AD system on the set B. The
induction assumption completes the case.

b) X2 isB-non-small. By corollary 4.9 there is an injectiveB-non-small X3 ⊂ X2. Finally,
we use the assumption of the proposition and get a missing subset. The missing set
is the required sequence.
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4. AD systems in finite dimensions

Remark 4.12. Similarly as in the case of ideals, due to proposition 2.23 if allBi are infinite
it suffices to test the condition of the previous lemma only where I = n.

We complete definitions of remaining terms.

Definition 4.13. Let A = ∏
i∈nAi be a formal product of AD systems on a product of

domains S =
∏

i∈n Si. Assume X ⊂ S. Then:. We call X A-MAD-ish if there is no missing set in it.. We say thatA is nowhere MAD if allA-MAD-ish sets areA-small.. We call X A-large if there is an infinite sequence of disjoint infinite injective subsets
Xk ⊂ X such that:

(1) The union ⋃
k∈ω Xk is a countable injective set.

(2) For each i ∈ n, k ∈ ω the projection πi[Xk] is a subset of anAi-basic set.
(3) For fixed i ∈ n and different k, l ∈ ω never happens that πi[Xk] and πi[Xl] are a

subset of a commonAi-basic set.. We call X A-non-large if it is notA-large.

Observation 4.14. Assume a formal product of AD systemsA =∏
i∈nAi.. If n = 1 the terminologies for the productA and for the AD systemA0 are identical.. By proposition 4.7, all A-large sets are A-non-small. In addition, if all AD systems

Ai are maximal also the reverse holds.. By lemma 4.11, all products ∏
i∈IAi are nowhere MAD, where I ⊂ n, if and only if

the product ∏
i∈n Y (Ai) has the Fréchet property.

4.1 Strong complete separability

In this section, a construction of k-counter-example will be shown under the assumption
of existence of an infinite (k + 1)-completely separable MAD system.

Definition 4.15. An AD systemA on a domain S is said to be completely k-separable if
in everyAk-large set X ⊂ Sk there is a subset Y ⊂ X such that all simple projection of Y
areA-basic. An AD system which is completely k-separable for each k ∈ ω is said to be
strongly completely separable.

Observation 4.16.. Complete 1-separability is equivalent to an ordinary complete separability from def-
inition 3.14.. If an AD system is completely k-separable it is also completely k′-separable for any
1 ≤ k′ ≤ k.. LetA be an AD system. Then following are equivalent:. the systemA is a completely k-separable MAD system,. in eachAk-non-small set there is a subset such that all its projections areA-basic.

Remark 4.17. The terminology slightly differs from the one used in [4]. That paper
uses [ω]k instead of ωk so repeating coordinates is forbidden there. On the other hand a
statement “A is a completely k-separable AD system for all k < k0” has the same meaning
in both publications.

4.1.1 An equivalent condition
The existence of a strongly completely separable MAD system may sound as a bold
assumption. Thus we will show an equivalent condition to it at first. It is enough to
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4.1 Strong complete separability

assume an existence of an infinite MAD system such that each its subsystem B ⊂ A of a
cardinality lesser than continuum satisfies that Bn is nowhere MAD for all n ∈ ω.

The assumption obviously holds in the case of p = c, namely under the assumption
of Martin’s axiom. Even weeker condition will be specified in next chapter.

Lemma 4.18. LetA be a completely n-separable AD system on S. Then in everyAn-large
set one can find continuum many different subsets Y ⊂ X such that all projections πi[Y]
areA-basic sets.

Proof: The set X is large so there are relevant sets X0,X1, . . . Choose some infinite proper
subsets Zk ⊂ Xk. Further pick arbitrary AD system C of the cardinality of continuum.
The set X(C) =

⋃
k∈C Zk is still large for each C ∈ C. By the definition of completely

n-separable system there are subsets Y(C) ⊂ X(C) havingA-basic projections.
What is left is to show that these Y(C) are different. Conversely, suppose that Y =

Y(C0) = Y(C1) but |C0 ∩ C1| < ω. Then Y ⊂
⋃

k∈C0∩C1 Zk, so it has an infinite intersection
with some of these finitely many Zk. Hence even π0[Y] has an infinite intersection with
this π0[Zk]. So π0[Y] is equal to this A-basic super-set π0[Xk]. But it is impossible since
Y is disjoint with Xk \ Zk.

Proposition 4.19. Let A be an completely k-separable MAD system and B ⊂ A be its
subsystem of a cardinality less than continuum. Then Bk is nowhere MAD.

Proof: By lemma 4.11 it suffices to show that for each k′ ≤ k and for everyAk′ -non-small
set X there is its Bk′ -missing subset. Consider such a set X. Let us denote by Y ⊂ P (X)
the system of all subsets of X having all projections A-basic. According to lemma 4.18
|Y| ≥ c. Since X is injective, different Y0,Y1 ∈ Y have different projections πi[Y0], πi[Y1],
where i is fixed. So for each i ∈ n there are less than continuum Y ∈ Y such that Y ∈ B.
Hence there is an Y ∈ Y such that all projections satisfy πi(Y) ∈ A \ B. Such Y is the
required B-missing set.

Lemma 4.20. For any infinite injective set X ⊂ Sn (n ∈ ω) there is an infinite subset Y ⊂ X
such that sets πi[Y], πj[Y] are disjoint or identical for any i, j < n.

Proof: The proof is by induction on n. If there are two indices i, j ∈ n such that the set

X1 = {x ∈ X : πi(x) = πj(x)}

is infinite then consider the projection π¬j[X1] ⊂ Sk−1. The induction assumption gives
a set Y1 ⊂ π¬j[X1]. Finally Y = π−1

¬j [X1]∩X1 satisfies the requirements since πj[Y] = πi[Y].
Now suppose there is no such pair of indices. Then following set is infinite.

X2 = {x ∈ X : ∀i, j < n : i , j ⇒ πi(x) , πj(x)}

So we pick elements x0, x1, x2 . . . ∈ X2 successively in a such way that for each i, j ∈ n,
k′ < k there inequality πi(xk′ ) , πj(xk) holds. In each step there are just finitely many of
such condition so some elements will always remain available.

Proposition 4.21. Let A be a MAD system on ω. Then there is a MAD system B such
that:

(1) The system B is completely k-separable for all 0 < k ∈ ω such that each subsystem
A0 ⊂ A of a cardinality less that continuum is nowhere MAD.

(2) 〈A〉 = 〈B〉

Proof: The case of finiteA is trivial. Assume thatA is infinite.
Let I be the set of all k satisfying the condition at item (1). We want to ensure complete

k-separability of the system B for them. Consider a set

{(k ∈ I,X ⊂ ωk) : X isAk-large}.
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4. AD systems in finite dimensions

The size of the set equals continuum. Hence we may index its elements by continuum
as (kα,Xα), where α ∈ c. By the transfinite recursion on continuum we construct pairs

(Yα ⊂ Xα, (Aα,0, . . . ,Aα,kα−1)),

such that Yα are infinite and πi[Yα] ⊂ Aα,i ∈ A holds for each i ∈ n. Moreover sets
πi[Yα], πj[Yα] will be equal or disjoint for any pair i, j ∈ n and sets Ai,α, Aj,γ will never be
equal if γ < α. We will ensure that by the following process.

Set Aα = {Aγ,i : γ < α, i < kγ}. The cardinality of the system Aα is less than contin-
uum, hence Ak

α is nowhere MAD. We may find an Ak
α-missing set X′α ⊂ Xα. Finally we

choose Yα ⊂ X′α according to observation 4.6 and the previous lemma 4.20.
It remains to build the required system B from such pairs. Each A ∈ A occurs in

at most one step so only finitely many times. In that case we replace the element A =
Aα,i ∈ A by elements πi[Yα] for all i for which A = Aα,i. Furthermore if the complement
A \

⋃
{πi[Yα] : A = Aα,i} is infinite we add it toA also.

Since we have just replaced each element of the AD system by its finite decompo-
sition, the ideal generated by it is not changed. Yet we get the condition of complete
k-separability by adding of πi[Yα].

Corollary 4.22. Assume 1 < n ≤ ω. Then following are equivalent.. There is an infinite MAD system which is completely k-separable for all 1 ≤ k < n.. There is an infinite MAD systemM such that for each 1 ≤ k < n and for any subsys-
temA ⊂ M of cardinality less than continuum the powerAk is nowhere MAD.

4.1.2 The construction of k-counter-example
Theorem 4.23. Assume a fixed 1 < k′ ≤ ω. If there is an infinite MAD system on ω
which is completely k-separable for each k ∈ k′ then for any 1 < n ≤ ω there are compact
spaces Yi (i ∈ n) such that the product ∏

i∈n Yi has not the Fréchet property but for any
non-surjective function σ: k → n, where k ∈ k′, the product ∏

j∈k Yσ(j) has the Fréchet
property.

Proof: LetM be the given MAD system. We will construct disjoint AD systemsAi (i ∈ n)
such that ⋃

i∈nAi = M a we will set Yi = Y (Ai). Observation 3.19 provides that the
product ∏

i∈n Yi will not satisfy the Fréchet property. It remains to ensure the validity
of the second condition. Lemma 4.11 will manage it. It suffices to assure that for each
k ∈ k′, each function σ: k → n and eachMk-non-small injective set X ⊂ ωk there will be
a ∏

j∈kAσ(j)-missing subset Y ⊂ X.
We index the set

{(k, i,X) : k ∈ k′, i ∈ n, X ⊂ ωk is injective andMk-large}

by c as {(kα, iα,Xα)}. By transfinite recursion, we will construct systemsAi,α (i ∈ n, α ≤ c).
Let us denote A′α =

⋃
i∈nAi,α. All Ai,0 are empty on the beginning. The limit step is

union, as usual. It remains to describe how to get from a step α to the step α + 1.
The set Xα isMkα -large. Hence by lemma 4.18 there are continuum many subsets of

Xα such that all simple projections are M-basic. Since |A′α| < c, we find Yα ⊂ Xα such
that the systemM\A′α contains all projections πj[Yα], where j ∈ kα. We put

Aiα,α+1 = Aiα,α ∪ {πj[Yα] : j ∈ kα},

Ai,α+1 = Ai,α for all i ∈ n, i , iα.

Finally, we set A0 = A0,c ∪ (M \ A′c) and for the remaining 0 < i ∈ n set Ai = Ai,c.
What is left is to verify that these constructed AD systems satisfies the assumptions of
lemma 4.11.
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4.1 Strong complete separability

Consider a non-surjective map σ: k → n and a Ak-non-small set X ⊂ ωk. We find
i ∈ n, i < σ[k] and α such that (k, i,X) = (kα, iα,Xα). Then Yα is a subset of X such that all
its projections areAi-basic. Hence it is a

(∏
j∈kAσ(j)

)
-missing set.

Corollary 4.24. Under the assumption of existence of an infinite completely k-separable
MAD system there is a (k + 1)-counter-example. If there is even strongly completely
separable MAD system then there exists a k-counter-example for each k ≤ ω.
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Chapter 5
The construction of an infinite completely
k-separable MAD system
Infinite complete separable MAD systems are quite investigated objects. The paper [5]
constructs one under the assumption s ≤ a, where s is the minimal cardinality of a split-
ting system and a is the minimal cardinality of an infinite MAD system.

According to the previous chapter, just infinite completely MAD system is not prob-
ably an object strong enough for a construction of k-counter-example. We need a com-
pletely k-separable MAD system. Fortunately the properties of completely separable
MAD systems and completely k-separable MAD systems are similar. So statements
about completely separable MAD systems can often be generalized.

It is even the case of a Shellah’s construction of a completely k-separable AD system
using ω,ω-splitting system, as it is shown in this chapter.

Convention 5.1. All AD systems in this chapter will have the domain ω.

5.1 Small cardinals

Definition 5.2. We say that a set S splits a set X if sets X ∩ S, X \ S are both infinite. A
system of sets S ⊂ P (ω) is called splitting if for any infinite X ⊂ ω there is a set S ∈ S
splitting X. A system S is called ω,ω-splitting if for any countable sequence of infinite
sets X0,X1, . . . ⊂ ω there is a set S ∈ S such that:. There are infinitely many indices i ∈ ω such that |Xi ∩ S| = ω.. There are infinitely many indices i ∈ ω such that |Xi \ S| = ω.

The splitting number, denoted by s, is defined to be the minimal cardinality of a
splitting system. Similarly, the ω,ω-splitting number, denoted by sω,ω, is the minimal
cardinality of an ω,ω-splitting system.

Observation 5.3. Any ω,ω-splitting system is also splitting. One may choose constantly
Xi as the given X. Thus s ≤ sω,ω.

Definition 5.4. The cardinality a denotes the minimal cardinality of an infinite MAD
system. For a non-zero n ∈ ω let an denote the minimal cardinality such that there are
AD systems Ai (i ∈ n), |Ai | ≤ an such that ∏

i∈nAi is not nowhere MAD. Finally let aω
denote the minimum of all an over n ∈ ω.

Observation 5.5. It holds a = a1.

One could generalize an to p described by definition 2.14 as the minimal weight of
a non-Fréchet countable space. But obviously p ≤ s. It is the reverse inequality than we
need. So it is suitable to choose a tighter estimate.

Definition 5.6. Assume a system of functions F from ω to ω. A function f :ω → ω is
said to be an upper bound of F if the set {k : f (k) < ϕ(k)} is finite for any ϕ ∈ F . The
bounding number, denoted by b, is the minimal cardinality of a system F which does
not have any upper bound.
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5.2 The construction

Proposition 5.7. It holds b ≤ an for any non-zero n ∈ ω. Thus also b ≤ aω.

Proof: Consider n AD systemsA0, . . . ,An−1. Suppose that∣∣∣∣∣∣∣⋃i∈n Ai

∣∣∣∣∣∣∣ < b.
SetA = ∏

i∈nAi and take anA-non-small set X ⊂ ωn. By the characterization in propo-
sition 4.7, we find its disjoint subsets X0,X1, . . .. Let ϕk be bijections Xk → ω.

We construct the function fA for eachA-basic set A as follows.

fA(k) =
{ max{ϕk(x) : x ∈ Xk ∩ A} + 1 if Xk ∩ A is finite,

0 otherwise.
There are less than b of such functions so there exists its upper bound f . Then there is a
required missing set {ϕ−1(f (k)) : k ∈ ω}.

To be complete, we mention following propositions.

Proposition 5.8. It holds. p ≤ b,. s = sω,ω.

For proofs we refer reader to [??]. As shown by proposition 2.18, under the assump-
tion of Martin’s axiom it holds p = c so all mentioned cardinal numbers are equal. Well,
it is a boring case.

p

b

s = sω,ω

an a1

Figure 5.1. Inequalities between small cardinals

5.2 The construction

Let us fix an ω,ω-splitting system S = {Sα : α ∈ sω,ω}.

Definition 5.9. Let α ∈ sω,ω. We denote S0
α = Sα, S1

α = ω \ Sα. Further we assume an
infinite set X ⊂ ω and define αX to be the smallest index such that SαX splits X. Moreover
we define the function σX:αX → {0, 1} as follows. ∣∣∣X ∩ SσX (α)

α

∣∣∣ = ω,. ∣∣∣X ∩ S1−σX (α)
α

∣∣∣ < ω.

Observation 5.10. If σX , σY are incompatible functions then the intersection X ∩ Y is
finite.

Our aim is to construct the strongly complete separable MADM system stepwise in
such a way that particular σA will be different for different A ∈ M. It will help with the
construction of a new element by restricting to a part of size at most sω,ω. But first we
prove some lemmas.

Lemma 5.11. Consider an AD system A, an An-non-small set X ⊂ ωn and i ∈ n. Then
there is an index α ∈ sω,ω such that both sets X ∩ π−1

i [S0
α], X ∩ π−1

i [S1
α] are non-small.

Proof: Consider sets Xk from the characterization of non-small sets 4.7. Then it suffices
to use the ω,ω-splitting property to the system of sets {πi[Xk] : k ∈ ω}. The fact that both
parts π−1

i [S0
α], π−1

i [S1
α] are still non-small follows from the reverse implication of 4.7.
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5. The construction of an infinite completely k-separable MAD system

According to this lemma we may generalize the definition of the function σ.

Definition 5.12. LetA be an AD system, i ∈ n and X ⊂ ωn be a non-small set. We define
αA,iX to be the smallest possible α given by the previous lemma. We further define the
function σA,iX :αA,iX → {0, 1} as follows

. X ∩ π−1
i

[
Sσ

A,i
X (α)

α

]
isAn-non-small,. X ∩ π−1

i

[
S1−σA,iX (α)
α

]
isAn-small.

Observation 5.13. If X ⊂ Y, or just |X \ Y| < ω, then σA,iX ⊃ σA,iY .

Observation 5.14. If the set X isAn-missing then σA,iX = σπi[X].

Lemma 5.15. Let AD system A have a cardinality less that continuum. Consider an
An-non-small set X ⊂ ωn and a coordinate i ∈ n. Then there is an An-non-small set
Y ⊂ X such that for no A ∈ A it happens σA,iY ⊂ σA.

Proof: By lemma 5.11, we divide X to two disjoint non-small sets X = X0 ∪ X1 such
that functions σA,iX0

, σA,iX1
are incompatible. We continue by dividing X0 = X00 ∪ X01,

X1 = X10 ∪ X11, X00 = X000 ∪ X001, and so on. Formally, we are indexing such sets by
functions k → {0, 1}, where k ∈ ω. Whenever indexing functions are incompatible also
corresponding sets are incompatible.

Take a function f :ω → {0, 1}. By corollary 4.10, one can find a non-small
pseudo-intersection of all Xf �k. Let us choose one an denote it by Xf . If two func-
tions f , g:ω → {0, 1} are different they are incompatible. Therefore functions σA,iXf

, σA,iXg

are also incompatible. So there are continuum many non-small sets Xf while sets of
possible functions

{τ ⊃ σA,iXf
: τ: {0, 1} → α ∈ sω,ω}

are disjoint. Consequently one may pick a set Xf such that the corresponding set of
functions does not contain any σA, where A ∈ A. It is the required Y = Xf .

Lemma 5.16. Consider an AD system A of cardinality less than continuum. Suppose
that for each function σ there is only countably many A ∈ A satisfying σA = σ. Further
consider an An-non-small set X ⊂ ωn. In addition suppose sω,ω ≤ an. Then there is an
An-missing set Y ⊂ X such that for each i ∈ n the function σπi[Y] differs from original
sets σA, where A ∈ A. Moreover in each pair of sets of π0[Y], . . . , πn−1[Y] they are equal
or disjoint.

Proof: We begin by applying the previous lemma to X successively for all i ∈ n. By that
we get a non-small set Z such that extensions τ ⊃ σA,iZ differs from current σA, where
i ∈ n, A ∈ A. Moreover by corollary 4.9 we may assume Z to be injective. We need to
construct anAn-missing subset Y ⊂ Z. By that and observation 5.14, we will assure the
requirement to σπi[Y]. The additional requirement for disjoint projections will be easily
get by lemma 4.20.

For the construction of Y we will use AD systemsAi of the cardinality less than sω,ω
chosen as follows. Consider any i ∈ n and α < αA,iZ .

(1) Up to finitely many elements it is possible to cover the set

Z ∩ π−1
i

[
S1−σA,iZ (α)
α

]
by finitely many An-basic sets. We pick one such coverage and for each basic set
π−1

j [A] we put A into the systemAj.
(2) The systemAi also contain all A ∈ A such that σA = σ

A,i
Z � α.
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5.2 The construction

The cardinality of these Ai is less than or equal to
∣∣∣∣max

{
αA,iZ : i ∈ n

}∣∣∣∣ < sω,ω. Hence
we may use the assumption sω,ω ≤ ak and find a ∏

i∈nAi-missing set Y ⊂ Z. Lemma 4.20
additionally ensures that simple projections of Y will be equal or disjoint. The proof is
completed by showing that Y is alsoAn-missing.

Consider an A ∈ A and i ∈ n. Set Y1 = Y ∩ π−1
i [A]. We need to show |Y1| < ω. If

functions σA,iY , σA are incompatible then A ∈ Ai by the item (2). Then the fact that Y is∏
i∈nAi-missing establishes the assertion. Assume conversely that they are incompati-

ble. Then there is an index α such that σA,iY (α) = 1 − σA(α). The set

Y2 = Y ∩ π−1
i

[
SσA(α)
α

]
is ∏

i∈nAi-small due to sets added at the item (1). Since Y is ∏
i∈nAi-missing, the set Y2

is finite. Yet |Y1 \ Y2| < ω by the definition of σA. So Y1 is finite.

Theorem 5.17. Assume sω,ω ≤ ak, where 1 ≤ k ≤ ω. Then there is an infinite MAD system
being completely n-separable for all naturals 1 ≤ n ≤ k.

Proof: Take all subsets of finite powers of ω with the exponent k or less and index them
by continuum. So for α ∈ c there is a set Xα ⊂ ωnα , where nα ≤ k. Let us begin with
any infinite countable AD system A0. We proceed by transfinite recursion up to c. In
each isolated step α + 1 ∈ c there are two possibilities. If the set Xα isAnα

α -small we keep
Aα+1 = Aα. Otherwise the previous lemma finds an Anα

α -missing subset Y ⊂ X. Then
Aα ∪ {πi[Y] : i ∈ nα} is an AD system. We setAα+1 to be that. The limit step is the union,
as usual. The property “Each function occurs amongσA, where A ∈ A at most countably
many times.” remains valid since each such function may be added at at most one step.
Finally we setA to be the union of allAα.

The step α, where Xα is an Anα -non-small set, assured the property of com-
pletely nα-separable MAD system for the set Xα. Therefore the final AD system is an
nα-separable MAD system for all nα ≤ k.

Together with the construction 4.23 and the proposition 5.8 we obtain following re-
sults.

Corollary 5.18. If inequality s ≤ an holds then there is a k-counter-example for all k ≤
n + 1. If even s ≤ aω then there is a strongly completely separable MAD system, hence
there is an ω-counter-example and all k-counter-examples.

Corollary 5.19. If s ≤ b there is an ω-counterexample and all k-counterexamples.
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Conclusion
The work showed that assumption s ≤ b or s ≤ ak−1 suffices for the existence of a
k-counter-example. Products of AD systems and terminology for them was introduced.
It led to cardinalities ak. By intuition, one would expect that individual cardinals ai are
closer to each other than to b. Thus there is following open problem:

Open problem. Does each ak equal to a?

Other investigation may be made among products of AD systems. AD systems in
one dimension are already quite known so some knowledge about them could be gen-
eralized.

Yet even previous chapters leaves a space for further investigation. For example it is
not clear at all whether the restriction to spaces constructed by AD systems can cause
a lost of k-counter-example. In general, it is tricky to characterize an ideal generated by
AD system.

Thus the work offers more ways for continuations. It is just the choice of readers
which way they pick if they decide to devote their time and talent to AD systems and
their products.
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Appendix A
Notation

A.1 Table of terminology

A table translating terms between three used terminologies follows.

topological space X ideal I AD systemA
S is bounced from∞ S ∈ I S isA-small
S converges to∞ S ∈ I⊥ S isA-missing

orthogonal complement (1D) MAD-ish sets (1D)
X is a Fréchet space I is orthogonally closed A is nowhere MAD

A.2 Symbols

The list of used symbols follows. Each symbol is followed by short description and the
number of the corresponding definition.

ω . . . the set of all natural numbers, see 1.0.
P (S) . . . the set of all subsets of S, see 1.0.
ω1 . . . the first uncountable ordinal, see 1.0.
c . . . the cardinality of reals, see 1.0.
ψ ⊂ ϕ . . . the map ψ is a restriction of the map ϕ, see 1.0.
ϕ[X] . . . the pointwise image of the set X, see 1.0.
πi . . . projection to the i-th coordinate, see 1.0.
πI . . . projection to coordinates from the set I, see 1.0.
π¬i . . . projection to all coordinates with the exception of the i-th one, see 1.0.
∞ . . . a special point in a topological space, see 1.0.
X (I) . . . the space constructed from an ideal I, see 2.3.
I(X , x) . . . the ideal of sets bounced from x in the space X , see 2.4.
〈A〉 . . . the ideal generated byA, see 2.6.
A⊥ . . . the orthogonal complementA, see 2.7.
A . . . the orthogonal closure of a systemA, see 2.9.
p . . . pseudo-intersection number, see 2.14.
Y (A) . . . the space constructed from AD systemA, see 3.3.∏

i∈nAi . . . a formal product of AD systems, see 4.0.
s . . . splitting number, see 5.2.
sω,ω . . . ω, ω-splitting number, see 5.2.
a, an . . . first, n-th MAD number, see 5.4.
aω . . . the minimum of all an, see 5.4.
b . . . bounding number, see 5.6.
S0
α,S1

α . . . α-th splitting set, see 5.9.
αA . . . the splitting position of a set A, see 5.9.
σA . . . function describing the passage of A through splitting sets, see 5.9.
αA,iX , σA,iX . . . generalization of the previous according to the AD systemA, see 5.12.
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A Notation

A.3 Index of terms

The index references to numbers of definitions, in parentheses follows numbers of pages.

AD system 3.1 (11)
— — completely separable 3.14 (13)
— — — k-separable 4.15 (20)
— — strongly completely separable 4.15

(20)
axiom Martin’s 2.17 (8)
bounding number 5.6 (24)
continuum 1.0 (3)
k-counter-example 1.2 (4)
ω-counter-example 1.2 (4)
Fréchet space 1.0 (4)
ideal 2.1 (6)
— orthogonally closed 2.9 (7)
MAD system 3.7 (12)
map compatible 1.0 (3)
— incompatible 1.0 (3)

orthogonal closure 2.9 (7)
— complement 2.7 (6)
projection 1.0 (3)
— simple 1.0 (3)
pseudo-intersection 2.15 (8)
— number 2.14 (8)
set basic 4.2 (13, 16)
— injective 4.1 (16)
— large 4.13 (13, 20)
— MAD-ish 4.13 (13, 20)
— missing 4.4 (13, 16)
— non-large 4.13 (13, 20)
— non-small 4.2 (13, 16)
— small 4.2 (13, 16)
splitting number 5.2 (24)

32


	TITLE
	Acknowledgement/Declaration
	Prehled/Summary
	/Contents
	Introduction 
	Basic notation 
	Frechet property 

	Ideals 
	Spaces with small character 
	Products of ideals 

	AD systems 
	The space 
	Terminology 
	Decomposition of a MAD system 

	AD systems in finite dimensions 
	Strong complete separability 
	An equivalent condition 
	The construction of $k$-counter-example 


	The construction of an infinite completely $k$-separable MAD system 
	Small cardinals 
	The construction 

	Conclusion 
	References
	Notation 
	Table of terminology 
	Symbols 
	Index of terms 


