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ABSTRACT Most swimming bacteria produce thrust by rotating helical filaments called flagella. Typically, the flagella stick out
into the external fluid environment; however, in the spirochetes, a unique group that includes some highly pathogenic species of
bacteria, the flagella are internalized, being incased in the periplasmic space; i.e., between the outer membrane and the cell wall.
This coupling between the periplasmic flagella and the cell wall allows the flagella to serve a skeletal, as well as a motile, func-
tion. In this article, we propose a mathematical model for spirochete morphology based on the elastic interaction between the
cell body and the periplasmic flagella. This model describes the mechanics of the composite structure of the cell cylinder and peri-
plasmic flagella and accounts for the morphology of Leptospiraceae. This model predicts that the cell cylinder should be roughly
seven times stiffer than the flagellum. In addition, we explore how rotation of the periplasmic flagellum deforms the cell cylinder
during motility. We show that the transition between hook-shaped and spiral-shaped ends is purely a consequence of the
change in direction of the flagellar motor and does not require flagellar polymorphism.

INTRODUCTION

Bacterial swimming is often driven by long helical filaments

that are rotated at one end by a molecular motor. In most

flagellated bacteria, the flagella protrude into the fluid envi-

ronment. Rotation of the flagellar filament or filaments exerts

force on the fluid, producing thrust. This mechanism of

motility works well if the bacterium lives in a bulk fluid, but

for those bacteria that prefer to invade a host there are at least

two disadvantages to this mechanism. First, the extracellular

environment of mammals is not a pure fluid, but is typically

gel-like, which slows down or halts many swimming bacte-

ria (1,2). Second, the immune system of mammals naturally

identifies the protein, flagellin, that composes the flagellar

filament and this interaction can lead to the innate immune

response (3,4).

Modifications of the same apparatus, though, can over-

come these difficulties. The spirochetes, a unique group of

bacteria, with some members being highly virulent in hu-

mans, embed their flagella inside their periplasmic space (the

space between the inner membrane-cell wall complex—i.e.,

cell cylinder—and outer membrane sheath; Fig. 1 c). In this

article, we focus on the Leptospiraceae, such as Leptonema
illini, Leptospira interrogans, and Leptospira biflexa. These

bacteria have a short, single periplasmic flagellum (PF) at-

tached subterminally that extends toward the center of the

cell, which is not long enough to overlap at the center with

the flagellum from the other end (5). The flagella are struc-

turally similar to those of rod-shaped bacteria, but when ob-

served by negative-stain electron microscopy, they form a

tight coil rather than being wavelike as are most bacterial

flagella (5–10). When the cells are at rest, fixed, or dead, the

ends of the cell are hook-shaped (Fig. 1, a–c) (7,11,12).

Mutants that form uncoiled PFs or lack PFs are still helically

shaped but have ends that are straight (i.e., they do not form

hook-shaped ends) (5,13). In addition, cells with their outer

membrane sheath removed are still helically shaped (14).

Rotation of the PF by a flagellar motor is believed to

induce deformations in and counter-rotation of the CC. The

combination of these deformations and rotations of the CC

produce the thrust that drives motility. Swimming Lepto-
spiraceae exhibit a number of different cell shapes. In cells

that are translating, the anterior end is spiral-shaped and the

posterior end is hook-shaped (Fig. 1 a) (7,12,15). Cells read-

ily reverse directions, with the spiral end becoming hook-

shaped and the hook-shaped end becoming spiral-shaped.

Nontranslating forms are also seen where both ends of the

cell are either hook-shaped or spiral-shaped (Fig. 1 a) (7,12,

15). Several lines of evidence indicate that the spiral-shaped

end is associated with counter-clockwise rotation (the frame

of reference is viewing the flagella along its length from its

distal end to the insertion point on the cell cylinder) of its as-

sociated PF, and the hook-shaped end is associated with

clockwise rotation. Thus, translating cells are associated with

cells that rotate their PFs in opposite direction. Taken

together, the results indicate that the direction of rotation of

the PF and its interaction with the cell cylinder determines

the morphology of the end (7,11,12,16,17).

THE MODEL

In this article, we explore the role of the elasticity of the cell

cylinder (CC) and its interaction with the PF in determining

the morphology of the Leptospiraceae. Since these bacteria

are thin, right-handed helical bacteria with a length of 6–20

mm and a diameter of 0.1–0.2 mm (11,12,18,19), we con-

sider the CC to be an elastic filamentary object that prefers

to be helical with curvature, k0
cc ¼ 4:35 mm�1, and torsion,

t0
cc ¼ 5:52 mm�1 (19). The position of the CC can be defined
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by the position of its centerline, rcc(s), where s is the

arclength (Fig. 1 c). We also consider the bacterial flagellum

to be a tightly-coiled elastic filament with preferred curva-

ture, k0
pf ¼ 11:0 mm�1 (5). The outer membrane sheath is

proposed to hold the PF at the radius of the CC. Since this

radius is smaller than the other length scales (the lengths of

the PF and CC, and the radius of curvature and the pitch for

the CC), we ignore the displacement of the flagellum from the

centerline of the CC and set rpf ¼ rcc.

It is convenient to define a material, orthonormal triad, (e1,

e2, e3), with respect to the CC and a separate triad for the

PF. Here, e3 is the tangent vector, e1 points to an imaginary

painted line on the surface of the bacterium, and e2 ¼ e3 3

e1. The curvature and twist of the CC can be defined by a

strain vector, Vcc(s), where V1,cc and V2,cc are the curvatures

about e2 and e1, respectively, and V3,cc is the twist per length

about the tangent vector. We assume that the PF is free to

rotate with respect to the cell body and define the angle, a,

between the PF orthonormal triad and that of the CC.

Therefore, the strain vector for the PF can be written as

V1;pf ¼ V1;cccosa 1 V2;ccsina

V2;pf ¼ �V1;ccsina 1 V2;cccosa

V3;pf ¼
@a

@s
1 V3;cc: (1)

Assuming linear elasticity, the energy required to deform

an elastic filament is proportional to the square of the devi-

ation of the curvatures and twist from the preferred values,

E ¼ Acc

2

Z
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� �2
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Z
dsV

2

3;pf ;

(2)

where Acc and Apf are the bending moduli for the CC and PF

and Ccc and Cpf are the twist moduli for the CC and PF. In

general, the moment along the centerline, M, is the func-

tional derivative of the energy with respect to V,

M ¼ dE

dVi

ei: (3)

This moment satisfies the dynamic Kirchoff rod equations

@M
@s
¼ �e3 3 F 1 zrv3 1 za

@a

@t

� �
e3

@F
@s
¼ z?

@rcc

@t
1 ðzk � z?Þ

@rcc

@t
� e3

� �
e3; (4)

where F is the force on the filament, zr is the drag coefficient

for rotation about the tangent vector, za is the drag coef-

ficient for rotation of the PF with respect to the CC, z? is the

drag coefficient for translational motion perpendicular to the

tangent vector, and zk is the drag coefficient for motion

parallel to the tangent vector (see the Appendices for the full

derivation of this result). In addition, the dynamics for the

rotation of the PF around the CC is given by

za

@a

@t
¼ �dE

da
: (5)

RESULTS

We begin by examining the behavior of the model equations

in the absence of applied forces and torques. We expect that

this scenario should reproduce the hook-shaped end mor-

phology that arises when the flagella are not rotating, i.e., the

bacterium is at rest, fixed, or dead (Fig. 2 a) (7,8,12). Setting

FIGURE 1 (a) Schematic diagram of the shapes of the Leptospiraceae.

The cell body of Leptonema illini is a right-handed helix with ends that are

bent into either a hook shape or a spiral shape. If both ends are bent into a

hook (top shape) or a spiral (middle shape), then the cell does not translate. If

one end is bent into a hook and the other end is bent into a spiral (bottom

shape), then the cell propagates in the direction of the spiral end. (b) A dark

field image of a cell with two hook-shaped ends. Image courtesy of Stuart

Goldstein. (c) Schematic diagram of the relative position of the periplasmic

flagellum to the cell body and the coordinate system used for our calcu-

lations. Leptospira spp. have one short flagellum at each end that is attached

to a flagellar motor located at the end of the cell in the inner membrane.
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the elastic moment equations (Eq. 3) equal to zero, we find

the dependence of the strain vector on a,

V1;cc ¼
Acck

0

cc 1 Apfk
0

pfcosa

Acc 1 Apf

V2;cc ¼
Apfk

0

pfsina

Acc 1 Apf

V3;cc ¼
1

Ccc 1 Cpf

Ccct
0

cc � Cpf

@a

@s

� �
: (6)

Minimizing the energy equation, Eq. 2 with respect to a and

using Eq. 6 leads to

@
2
a

@s
2 ¼ GTsina

GT ¼
AccApfðCcc 1 CpfÞk0

cck
0

pf

CccCpfðAcc 1 ApfÞ
: (7)

For most materials, the ratio of the twist modulus to the

bending modulus is between 2/3 and 1 (20). Since the ma-

terial properties for the CC and PF have not been measured,

we use that Ccc/Acc ¼ Cpf/Apf ¼ 1. There remains one free

parameter, the ratio of the PF bending modulus to the CC

bending modulus, Apf/Acc.

Solving Eq. 7 over a total length of 3 mm (the approximate

length of the PF determined by the length of the hook region)

and using Apf/Acc ¼ 0.15 leads to the hook-shaped mor-

phology shown in Fig. 2 b. To compare the calculated

morphology with the shape of the hook-shaped region of a

L. illini cell, we measured the radius of curvature of the hook

region, Rh, and the pitch, P, of the cell cylinder (See Fig. 2 a).

For the calculated shape shown in Fig. 2 b, the radius of cur-

vature of the hook region is 0.65 mm and the pitch of the CC

is 0.64 mm. We measured Rh and P from an electron mi-

crograph of the hook-region of L. illini shown in (7) (Fig.

2 a) and found Rh ¼ 0.70 mm and P ¼ 0.60 mm.

As the ratio, Apf/Acc, has not been measured, we explore

the behavior of the end morphology for the Leptospiraceae
as a function of this ratio. For Apf/Acc ¼ 0, the flagellum has

no effect on the morphology and the cell cylinder remains

helical (Fig. 2 c). As Apf/Acc increases, the flagellum becomes

stiffer and therefore has more effect on the shape, causing the

cell cylinder to bend into a hook shape. To quantify this

effect, we plot Rh as a function of Apf/Acc. Larger values of

Apf/Acc produce a smaller radius of curvature for the hook

shape (Fig. 2 c). As mentioned above, we find the best agree-

ment between the model predictions and the end morphology

of L. illini for values of Apf/Acc of ;0.15.

To swim, the bacterium rotates the flagellum that is

located at either end of the cell using a rotary flagellar motor.

Evidence suggests that clockwise rotation of the flagellum

maintains the hook-shaped end morphology (Fig. 1 b),

whereas counter-clockwise rotation results in a spiral-shaped

end (Fig. 3 a). To test whether our model can account for

these morphologies, we idealize the effect of the flagellar mo-

tor as a pure torque, with magnitude T1, applied to the flagel-

lum along the tangent direction of the flagellum. We assume

that the flagellum protrudes out of the inner cell membrane in

a direction tangent to the long axis of the cell at the cell end

(Fig. 3 b). Torque balance requires that the CC must feel an

equal but opposite torque to that applied on the PF. In ad-

dition, since the PF resides in the periplasmic space, the PF

must bend back 180� (Fig. 3 b). In rod-shaped bacteria, a

flexible hook connects the flagellar filament to the flagellar

motor. This hook acts like a universal joint (21) and redirects

the torque on the flagellum. In the real system, the motor is a

short distance from the tip and comes out of the side of the

CC. This offset may induce an additional wobble of the tip

that will not be accounted for in this model.

We explored the dynamic behavior of the model under an

applied torque from the flagellar motor using two methods—

steady-state analysis and the full dynamic model. We began

by solving the steady-state form of Eqs. 4 and 5 with a

torque, T1, applied to the hook portion of the flagellum (which

corresponds to a torque �T1 acting on the flagellar filament

and the cell cylinder; see Fig. 3 b and Appendices for de-

tails). For all simulations, we used that Apf ¼ 0.15 Acc, since

this value gave the closest agreement for the end morphology

in the absence of external forces or torques. We solved the

FIGURE 2 (a) Electron micrograph image of the hook region of a

serotype illini cell showing the protoplasmic cell cylinder (CC), the axial

filament (AF), and the external sheath (ES). The hook region has a radius of

curvature, Rh, and pitch, P. Electron micrograph originally published in Berg

et al. (7) and reproduced with permission from N. Charon. (b) Computed

shape of the hook region with Apf/Acc ¼ 0.15. (c) Hook region radius of

curvature as a function of the ratio of the PF bending modulus to the CC

bending modulus, Apf/Acc. Insets show the computed shapes for different

values of Apf/Acc.
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equations in the region of the PF (a 3-mm length) and as-

sumed that the remainder of the cell is rigidly fixed in space

(Fig. 4 a). By treating the rest of the cell as being fixed, we do

not expect the model to provide quantitative agreement with

measurable quantities for translating Leptospiraceae. How-

ever, since L. illini cells tethered to the coverslip via antibody-

coated microspheres still dynamically transition between

hook- and spiral-shaped ends (17), we expect the model to

provide qualitative or semiquantitative results for the mor-

phology of the ends of the cell during flagellar rotation. Be-

cause we are assuming that the region of the cell away from

the end of the cell is stationary, this treatment does not allow

us to calculate the translational or rotational velocities for the

cell. However, it is possible to calculate the total force and

moment that are required to prevent the motion of the cell.

This total force and moment can be used to estimate the pro-

pulsive thrust and rotational velocity that would occur if the

fixed position constraint were removed.

For negative applied torques, which corresponds to clock-

wise rotation of the flagellum, the model predicts that the cell

end maintains a hook-shaped morphology. However, as the

torque increases, the hook distorts by bending out of the orig-

inal hook plane (see the insets to Fig. 4 d for T1L/Acc ¼ �0.1

and T1L/Acc ¼ �0.3). For positive values of T1, we found

two solutions for the end morphology. The first solution is

hooklike and is similar to the morphologies that are observed

for clockwise rotation. The second solution resembles a left-

handed superhelical structure (Fig. 4, c and d) and is qual-

itatively similar to the spiral-shaped ends of translating or

tethered cells (Fig. 4, b and c).

To resolve which end shape would be observed for clock-

wise rotation, we solved the full dynamical problem over the

entire cell length using a finite-difference, variable-order

algorithm. We chose boundary conditions such that the total

applied force at the ends was zero and the applied moments

were T1Re3 and T1Le3 at the right and left ends, respectively.

This method confirmed the steady-state calculation in that for

counter-clockwise rotation of the flagella, the end was hook-

shaped. Furthermore, for clockwise rotation of the flagellum,

the end was spiral-shaped. One reason that the spiral shape

may be favored is that it allows a greater percentage of the

cell cylinder to lie closer to the rotational axis (the z-direction

in Fig. 4 c), which produces less dissipation due to drag and

would therefore be energetically favorable. This argument is

similar in context to that posed by Levinthal and Crane (22)

FIGURE 4 (a) Schematic of our steady shape calculation. The cell is

assumed to be anchored near one end of the cell. This anchor point holds the

cell fixed in position and applies a moment, M, to the cell. The flagellar

motor applies a torque, T1 to the free end of the cell cylinder. (b) Dark field

image of a translating L. illini cell with one hook-shaped end and one spiral-

shaped end. Image courtesy of Stuart Goldstein. (c) Computed shape of the

ends of a cell with Apf/Acc ¼ 0.15 and T1L/Acc ¼ 0.2 (left) and T1L/Acc ¼
�0.2 (right). The swimming direction is along the z-axis. (d) Moment along

the z-direction at the juncture between the cell end and the remainder of the

cell required to hold the cell stationary, Mz, as a function of torque applied on

the flagellum. The insets show the computed end shapes for representative

values of T1. A helical portion of cell is drawn attached to the computed end

shapes as a visual aid.

FIGURE 3 (a) Dark field image of the spiral-shaped end of Leptonema

illini. Image courtesy of Stuart Goldstein. (b) Schematic diagram showing

how the flagellar motor torque, T1, gets transmitted from the hook (yellow) to

the flagellar filament (green). We assume that the torque is applied tangent to

both the cell cylinder and the periplasmic flagellum.
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in the context of DNA transcription and by Goldstein et al.

(23) for polymorphic transformations of bacterial flagella.

In Fig. 4 b, we show a dark field image of a translating

L. illini cell with one hook-shaped end and one spiral-shaped

end. Comparison to the shapes computed by the model for

clockwise torque at the right end (T1L/Acc¼�0.2) and counter-

clockwise torque at the left end (T1L/Acc ¼ 0.2, Fig. 4 c) is

qualitatively similar. The model predicts that the spiral-shape

during counter-clockwise rotation has the opposite handed-

ness of the cell body, which is in agreement with the obser-

vation that L. illini has a right-handed cell cylinder and the

spiral-shape is left-handed.

To hold the remainder of the cell stationary requires a mo-

ment to be applied at the juncture between the cell end and

the remainder of the cell (Fig. 4 a). The rotation rate of the

end about the swimming direction, which we will define as

the z-direction (Fig. 4 c), should be roughly proportional to

the z-component of this moment, Mz. The magnitude of the

moment increases with increasing torque (Fig. 4 d). Inter-

estingly, the model predicts that the hook shape requires a

smaller moment than the spiral shape, which suggests that

the rotational velocity of hook-shaped ends will be smaller

than that for the spiral-shaped ends for tethered cells.

DISCUSSION

Here we have presented a model for the end morphology and

dynamics of the Leptospiraceae. This model assumes that

competition between the preferred shapes of the cell cylinder

and the periplasmic flagellum determines the morphology of

the ends of the bacterium. Since the PF is constrained to re-

side at the radius of the cell cylinder, both the PF and the CC

must deform elastically. The minimum energy configuration

in the absence of applied forces or torques is a hook shape.

The model predicts that the bending modulus of the PF is ;7

times smaller than that of the CC.

The Young’s modulus of the cell wall of the Leptospir-
aceae has not been measured; however, the modulus of other

bacteria has been. For example, optical trapping experiments

estimated the Young’s modulus of Bacillus subtilis to be 5.0

MPa (24) and atomic force microscopy has found the mod-

ulus for the cell wall of Myxococcus xanthus to be 1.3 MPa

(25), 25.0 MPa for Escherichia coli (26), and 0.085–0.15

MPa for Magnetospirillum gryphiswaldense (27). The bend-

ing modulus of the cell can be estimated using the radius of

the cell, a, and the thickness, t, of the cell wall as Acc ¼
pEa3t. If we use a moderate value of the Young’s modulus

for the cell wall of 1.0 MPa and a thickness of 10 nm, we

estimate Acc to be ;2 3 10�23 N m2. Therefore, our model

predicts the bending modulus of the PF to be ;3 3 10�24

N m2. Estimates based on experiments using Salmonella
flagellar filaments reported values ranging from 10�24 N m2

(28) to 10�22 N m2 (29). Kim and Powers reanalyzed the data

from (29) using slenderbody theory and estimated a value of

3.2 3 10�24 N m2 for the flagellar bending modulus (30).

We showed that clockwise rotation of the PF driven by a

torque applied by a rotary motor located at the end of the cell

can maintain a hook shape. As well, rotation of the flagellum

in a counter-clockwise direction can produce left-handed,

spiral-shaped end morphology. These morphologies are a

result of linear elastic deformation induced by the applied

torque from the flagellar motor and the internalization of the

PF inside the periplasmic space. Our model produces re-

alistic cell shapes when the torque of the bacterial flagellar

motor of the Leptospiraceae is between 0.1 and 0.3 Acc

mm�1. Using the estimate for the bending modulus of the CC

given above, we calculate a torque of 2000–6000 pN nm.

Berry and Berg measured the stall torque of the flagellar

motor of Escherichia coli to be ;4500 pN nm (31). There-

fore, our model predicts realistic cell shapes for reasonable

values of the applied torque.

To test this model, the bending moduli of the PF and CC

should be measured. One possible method would be to use

an optical trap to apply forces to these structures. By mea-

suring the end-to-end displacement as a function of forcing,

the bending moduli can be estimated.

APPENDIX A: GENERALIZED ELASTIC
ROD THEORY

For composite filament problems like the ones presented in this article, it is

useful to develop a generalized framework for handling the equilibrium and

dynamic behavior of these complex filamentary systems.

The configuration of the centerline of a filamentary object can be de-

scribed by its position, r(s), and the twist (angular rotation per length) about

the centerline, V3. Equivalently, the configuration of the filament can be

defined by a strain vector V. The rotation of an orthonormal material triad,

(e1, e2, e3), is described by this strain vector as

@ei

@s
¼ V 3 ei: (A1)

For a linearly elastic rod, the restoring moment, M, is related to the strain

vector,

M ¼ AðV1 �V
0

1Þe1 1 BðV2 �V
0

2Þe2 1 CðV3 �V
0

3Þe3;

(A2)

with V0
i functions that define the equilibrium configuration of the rod, A and

B the bending moduli, and C the twist modulus. In equilibrium, moment and

force balance along the length of the filament lead to the Kirchoff rod equa-

tions (20),

@M
@s

1 e3 3 F ¼ 0;
@F
@s
¼ 0; (A3)

where F is the force.

An equivalent representation of the physics defines a quadratic deforma-

tion energy of the filament,

E ¼
Z

ds
A

2
V1 �V

0

1

� �2
1

B

2
V2 �V

0

2

� �2
1

C

2
V3 �V

0

3

� �2

� �
:

(A4)

The equilibrium configuration of the filament is given by the minimum of

this energy functional, which is the same as the force per length,
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�dE

dr
¼ @F
@s
¼ 0: (A5)

Note that for this energy, the moment in Eq. A2 is equal to

M ¼ dE

dVi

ei: (A6)

For a composite filament, the configuration of the centerline can still be

described using the vector, rcc, or the strain vector, V. However, depending

on the constraints in the system, the form for the moment in terms of the V

values is not obvious. It is often easier to write the energy for these systems.

Typically, this energy will depend on V and its derivatives, in which case

the functional derivative in Eq. A5 can be quite tedious to compute and

difficult to solve for the equilibrium configuration. If a relation for the

moment, such as Eq. A6, exists that satisfies Eq. A3, it can be much easier

to solve for the equilibrium configurations of the system. In this section,

we compute the generalized moment and show that this moment satisfies

Eq. A3.

To begin we assume an energy that depends on V and its derivatives with

respect to the arclength, s,

E ¼
Z

ds g V;
@V

@s
;
@

2
V

@s
2

� �
: (A7)

To outline the calculation, we will assume that the energy does not depend

on derivatives higher than first-order, as this exemplifies the approach and

does not change the end result. Therefore, g [ gðV1;V2;V3; @V1=@s; @V2=

@s; @V3=@sÞ. A variation in the energy is

dE ¼
Z

ds +
i

@g

@Vi

dVi 1
@g

@
@Vi

@s

� � d
@Vi

@s

� �0
BB@

1
CCA1

Z
gdðdsÞ:

(A8)

Using that dðdsÞ ¼ ðe3 � @=@sðdrccÞÞds(32), we can integrate by parts to

get

In this equation, the first term is a surface term that, in the absence of

applied forces and moments, should be zero. The second term describes how

variations in the strain vector affect the energy.

We note that the bracketed piece of the second term is equal to the

functional derivative of the energy with respect to Vi and make the definition

Mi [
dE

dVi

: (A10)

Therefore,

dE ¼
Z

ds +
i

MidVi 1

Z
ds g�+

i

@g

@
@Vi

@s

� � @Vi

@s

0
BB@

1
CCA

3 e3 �
@

@s
ðdrccÞ

� �
: (A11)

The variations in Vi were worked out in Goldstein et al. (32) and are

dV1 ¼ ðdxÞV2 � 2V1 e3 �
@

@s
ðdrccÞ

� �
� e2 �

@
2

@s
2ðdrccÞ

dV2 ¼ �ðdxÞV1 � 2V2 e3 �
@

@s
ðdrccÞ

� �
1 e1 �

@
2

@s
2ðdrccÞ

dV3 ¼
@

@s
ðdxÞ1 ðV1e1 1 V2e2 �V3e3Þ �

@

@s
ðdrccÞ: (A12)

Substituting Eq. A12 into Eq. A11 and integrating the second derivative

pieces by parts once, we get

Since the force per length is the functional derivative of the energy, we

define the force, F, as the components of the integrand that multiply the

derivative of dr with respect to arclength. Therefore,

dE ¼
Z

dsðF1e1 1 F2e2 1 F3e3Þ �
@

@s
ðdrccÞ

1

Z
ds M1V2 �M2V1 �

@M3

@s

� �
dx

1 ð�M1e1 1 M2e2Þ �
@

@s
ðdrccÞ

����
boundary

; (A14)

dE ¼
Z

ds �@M2

@s
�M1V3 1 M3V1

� �
e1 1

@M1

@s
�M2V3 1 M3V2

� �
e2

	 

� @
@s
ðdrccÞ

�
Z

dsðM1V1 1 M2V2 1 M3V3Þe3 �
@

@s
ðdrccÞ1

Z
ds M1V2 �M2V1 �

@M3

@s

� �
dx

1

Z
ds g�+

i

@g

@ @Vi

@s

� � @Vi

@s

 !
e3 �

@

@s
ðdrccÞ

� �
1 ð�M1e1 1 M2e2Þ �

@

@s
ðdrccÞ

����
boundary

: (A13)

dE ¼ +
i

@g

@
@Vi

@s

� � dVi

����
boundary

1

Z
ds +

i

@g

@Vi

� @

@s

@g

@
@Vi

@s

� �
0
BB@

1
CCA

0
BB@

1
CCAdVi

1

Z
ds g�+

i

@g

@
@Vi

@s

� � @Vi

@s

0
BB@

1
CCA e3 �

@

@s
ðdrccÞ

� �
:

(A9)
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where

F1 ¼ �
@M2

@s
�M1V3 1 M3V1

F2 ¼
@M1

@s
�M2V3 1 M3V2

F3 ¼ M1V1 1 M2V2 1 M3V3 1 g�+
i

@g

@
@Vi

@s

� � @Vi

@s

0
BB@

1
CCA:

(A15)

Equation A15 can be rewritten using Eq. A1 and that the functional

derivative of E with respect to x and r is zero to recover Eq. A3. Therefore,

the components of the moment along a filament with a general energy func-

tional is given by Eq. A10.

APPENDIX B: DERIVATION OF THE DYNAMIC
EQUATIONS FOR THE MORPHOLOGY
OF THE LEPTOSPIRACEAE

For low Reynolds number motions, as occur with swimming bacteria, the

restoring moments and forces are balanced by viscous drag from the fluid.

For long, thin objects, slenderbody hydrodynamic theory (33) suggests that

local drag coefficients can be defined for motion parallel to the long axis of

the filament, zk ¼ 2ph=ðlnðL=2aÞ11=2Þ, motion perpendicular to the long

axis, z? ¼ 2zk, and rotation about the centerline, zr ¼ 4pha2, where a is the

radius, L is the length of the filament, and h is the viscosity of the fluid. If the

flagellum rotates at velocity va, we assume that the drag force on the cell

cylinder is �zava. Balancing the drag moments and forces with the re-

storative moments and forces leads to the dynamic equations

@M
@s

1 e3 3 F ¼ ðzrv3 1 zavaÞe3

@F
@s
¼ z?

@rcc

@t
1 ðzk � z?Þ

@rcc

@t
� e3

� �
e3; (B1)

with v3 the rotational velocity of the filament about its axis. Likewise, we

balance the drag on the flagellum against the elastic restoring moment that

is calculated from the functional derivative of the energy with respect to a,

zava ¼ �
dE

da
: (B2)

The rotational velocity of the centerline, v, is related to the rotation rate of

the material orthonormal triad as

@ei

@t
¼ v 3 ei: (B3)

At steady state, we expect that the bacterium is deformed and rotating, but

with a fixed cell shape. Therefore, we expect that

@Vi

@t
¼ 0: (B4)

for all i. Using Eq. B3, it is possible to show that Eq. B4 is equivalent to

@v

@s
¼ 0: (B5)

By differentiating the second equation of Eq. B1 and using Eq. B3, we find

that

@
2F

@s2 ¼ z?ðv2e1�v1e2Þ1
2ðzk � z?Þ

z?

@F
@s
� e3

� �
ðV2e1�V1e2Þ

1
ðzk � z?Þ

z?
V2

@F
@s
� e1 �V1

@F
@s
� e2

� �
e3: (B6)

Eqs. B1, B2, B5, and B6 form a closed system of first-order equations that

can be solved for the steady-state dynamics of the morphology of the

Leptospiraceae. We used MatLab function bvp4c to solve these equations

with the following boundary conditions:

At s ¼ 0, we assume that the velocity and angular velocity are zero and

that the moments on the flagellum and CC are zero:

@F
@s
¼ 0; v ¼ 0; M3 ¼ 0;

@a

@s
1 V3 ¼ 0: (B7)

At s ¼ L, we assume that the force is equal to zero and that the moments on

the PF and CC are equal to T1:

F ¼ 0; M ¼ T1e3;
@a

@s
1 V3 ¼

T1

Cpf

: (B8)

For the static calculations, Eq. 7 was solved using the MatLab boundary

value problem solver (bvp4c) with no external moment acting on the PF,

which leads to the boundary condition, @a=@s ¼ �t0
cc. For the dynamic

calculations, we solved Eqs. 4 and 5 by turning the dynamic problem into a

steady-state, boundary value problem. MatLab bvp4c was used to integrate

the steady-state equations.

To measure the hook radius of curvature, we used a compass to draw the

best fit-by-eye curve through the image shown in Fig. 2 a. To determine the

hook radius of curvature from our simulations, we solved Eq. 7 and used that

solution in Eq. 6. These V values were used to integrate the material frame

to get the position of the centerline of the CC. The discrete points for the

centerline were then fit to a circle of radius Rh using a least-squares mini-

mization routine.
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