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Introduction

Bacteria living in microbial communities use sev-
eral functions and strategies to survive or coexist with 
other microorganisms, competing to obtain nutrients 
and colonize space in their habitat (Hibbing et al. 2010). 
One of the strategies used by bacteria to guarantee their 
growth in communities is antagonism, which effectively 
limits the growth of other microorganisms (Russel et al. 
2017). To accomplish antagonism, bacteria must pro-
duce inhibitory substances such as antibiotics, organic 
acids, siderophores, volatile organic compounds, anti-
fungals, and bacteriocins (Riley 2009). In addition to 
inhibiting the growth of other microorganisms, bacte-
riocins have different traits that make them attractive 
for biotechnological applications. For example, while 
resistance against nisin exists, in general, the bacterio
cin mechanism of action less often induces resistance as 
it happens with conventional antibiotics (Behrens et al. 
2017). Furthermore, some bacteriocins are compounds 
produced by the natural host-associated microbiome; 

therefore, they are harmless to the host. Bacteriocins 
also show selective cytotoxicity toward cancer cells 
compared to normal cells (Kaur and Kaur 2015).

Classification, mechanism of action,
and structural characteristics

Bacteriocins are antimicrobial peptides synthesized 
by the ribosome representing the most abundant and 
diverse group of bacterial defense systems (Silva et al. 
2018). Bacteriocins were considered to have a narrow 
antimicrobial spectrum that could only inhibit bacterial 
strains closely related to produced bacteria; however, 
several studies have shown that there are bacteriocins 
able to kill different genera of bacteria and even certain 
yeasts, parasites, and cancer cells (Kaur and Kaur 2015; 
Baindara et al. 2018).

The success of bacteriocins in eliminating multi-
drug resistant pathogens (MDR) has led to medical 
applications to treat bacterial infections. In vivo tests 
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have demonstrated the effectiveness of bacteriocins 
to treat infections in animal models, too (McCaughey 
et al. 2016; Van Staden et al. 2016). Lactic acid bacteria 
(LAB) produce bacteriocins, being nisin from Lacto­
coccus lactis, the most well-known example (Silva et al. 
2018). Nisin was approved for use as a food preservative 
for preventing the growth of Listeria monocytogenes and 
other Gram-positive pathogens (Price et al. 2018). The 
Bacillus genus also produces bacteriocins with attractive 
characteristics (Salazar-Marroquín et al. 2016), includ-
ing subtilin (produced by Bacillus subtilis) and coagulin 
(produced by Bacillus coagulans). Bacillus thuringien­
sis produces bacteriocins with broad-spectrum activity, 
inhibiting various pathogens such as L. monocytogenes, 
Staphylococcus aureus, Klebsiella pneumoniae, Pseudo­
monas aeruginosa, and Vibrio cholerae, in addition to 
the Aspergillus fungus (Salazar-Marroquín et al. 2016).

Bacteriocins of Gram-positive bacteria are cationic 
and amphiphilic molecules whose mass varies from < 5 
to more than 30 kDa (Balciunas et al. 2013) (Fig. 1). 
Many classifications of bacteriocins are available, but 
their diverse chemical structures and inhibitory activi-
ties make their classification into a specific group quite 
difficult. Class I bacteriocins, also known as lanti- 
biotics, contain in their primary structure uncommon 
amino acids like lanthionine, β-methyl lanthionine, 
and dehydroalanine. These unique amino acids formed 
by post-translational modifications can provide anti-
microbial activity and peptide stability. For example, 
they can create covalent bridges that result in internal 
rings that give stability to the peptide structure. In 
addition, internal rings contribute to the formation of 
a secondary structure in water that favors antimicro
bial activity (Almeida and Pokorni 2012). Around 30% 

of lantibiotics already identified have been purified 
from lactic acid bacteria, including the well-known 
nisin, mersacidin, and lacticin 3147 (Stoyanova et al. 
2012). The class II bacteriocins are membrane-active 
and heat-stable peptides known as non-lantibiotics 
or pediocin-like antibiotics (Balandin et al. 2019). 
They do not harbor modified amino acids, and their 
molecular weights are lower than 10 kDa. Prototype 
bacteriocins of this group are pediocin PA-1, pentocin 
31–1, enterocin P, sakacin G, enterocin A, two-peptide 
components (enterocin DD14, plantaracin E/F), sec-
dependent secreted (acidocin B), and other not yet 
subclassified (bactofencin A peptides) (Liu et al. 2008; 
Balandin et al. 2019; Ladjouzi et al. 2020). The class III 
bacteriocins are large (> 30 kDa) heat-labile peptides 
composed of an N-terminal endopeptidase domain 
and a C-terminal substrate recognition domain. Bac-
teriocins of this group can lyse the cell wall of sensi-
tive bacteria, although there are non-lytic bacteriocins 
in this group too, like helveticin J. Some examples of 
Class III bacteriocins are helveticin M, zoocin A and 
enterolysin A (bacteriolysins), and millericin B (murein 
hydrolase) (Alvarez-Sieiro et al. 2016; Sun et al. 2018). 
Class IV are complex peptide structures associated with 
lipid and carbohydrate moiety forming glycoproteins 
and lipoproteins. These structural characteristics make 
them sensitive to the action of glycolytic or lipolytic 
enzymes. Lactocin 27 and leuconocin S are prototype 
bacteriocins of this group and are recognized to disrupt 
bacterial cell membranes (Simons et al. 2020). Class V 
includes cyclic peptide structures like enterocin AS-48, 
pumilarin, lactocyclicin Q, and plantaricyclin A (Perez 
et al. 2018; Sánchez-Hidalgo et al. 2011). The circular 
nature of their structures provides Class V with supe-
rior stability against several stresses compared to most 
linear bacteriocins. Biosynthesis of circular bacteriocins 
involves cleavage of the leader peptide, circularization, 
and export to the extracellular space.

Gram-negative bacteria produce both high mole
cular weight (> 30 kDa) and low molecular weight 
(< 10 kDa) bacteriocins (Rebuffat 2016). The first bac-
teriocin identified from a Gram-negative bacterium 
was colicin, produced by Escherichia coli (Riley 2009). 
Bacteriocins of Gram-negative bacteria are classified 
into two main groups, colicins, and microcins (Fig. 2). 
Genes encoding colicins are found on plasmids whose 
products vary between 20 and 80 kDa. Colicins from 
E. coli inhibits closely related strains of the genus Sal­
monella and other E. coli strains. Colicins are organized 
in three different domains: the translocation domain 
(T) N-terminally located, the receptor binding (R) 
located in the central region, and the cytotoxic domain 
(C) located at C-terminus (Helbig and Braun 2011). 
Microcins are pH and heat-stable antimicrobial pep-
tides ribosomally synthesized, hydrophobic, and low 

Fig. 1. Structure-based classification
of Gram-positive bacteriocins.
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molecular weight. In some cases, microcins require 
post-translational modifications to be active, and they 
do not require a lysis process to be secreted (Baquero 
et al. 2019). Microcin production has been reported 
in several Enterobacteriaceae and some cyanobacteria 
(Rebuffat 2016; Parnasa et al. 2019).

Microcin mJ25 produced by E. coli was initially 
described as a circular peptide; now it is known that 
there is no union between the terminal residues, but 
a union through the lactamic link between the amino 
group (Gly1) and the carboxyl group (Glu8). These 
structures are known as “lasso-peptides” and are also 
described in organisms of the genus Streptomyces (Hege-
mann et al. 2015). Other types of high molecular weight 
bacteriocins of Gram-negative bacteria are pyocins 
(type R, F, and S), tailocins, and lectin-like bacteriocins. 
Genes encoding for pyocins are located on the bacterial 
chromosome, and their expression is induced by agents 
that damage DNA by activating the SOS response. 
R-type and F-type pyocins are non-flexible and flexible 
phage tail-like bacteriocins, respectively. The S-type 
pyocin is like the colicins and is formed by two pro-
teins (a big one and a small one) that remain associated 
even during its purification process. The large protein is 
responsible for the antimicrobial activity, and the small 
one has an immune function for the producing bac
teria (Michel-Briand and Baysse 2002; Atanaskovic and 
Kleanthous 2019; Oluyombo et al. 2019).

Tailocins are bacteriocins like phage tails and dis-
play a rigid or flexible structure, similar to R-type and 

F-type pyocins. Tailocins with contractile and flexible 
tail morphologies are designated as myotailocins and 
siphotailocins, respectively (Yao et al. 2017). These 
bacteriocins have been described in plant-associated 
Pseudomonas and Burkholderia strains, although 
similar bacteriocins are also produced by Clostridium 
difficile, Serratia plymithicum, and Serratia proteamacu­
lans (Gebhart et al. 2015; Ghequire and De Mot 2015; 
Hurst et al. 2018).

Lectin-like bacteriocins (LlpAs) represent another 
type of antimicrobial protein secreted by members of 
the genus Pseudomonas. LlpAs are ~30 kDa proteins 
that resemble monocot mannose-binding lectins 
(MMBL) consisting of two B-lectin domains fol-
lowed by a short carboxy-terminal extension and do 
not contain an immunity protein. They also include 
a  preserved consensus sequence QxDxNxVx neces-
sary for the activity of the bacteriocin. The best exam-
ples of LlpAs include LlpABW11M1 of Pseudomonas 
mosselii, LlpA1Pf-5 of Pseudomonas protegens Pf-5, 
and pyocin L1 of P. aeruginosa (Ghequire et al. 2018a). 
The production of LlpAs has also been reported in 
Burkholderia cepacia strains.

Bacteriocins exert several mechanisms of action 
towards Gram-positive and Gram-negative bacte-
ria (Fig. 3). Class I bacteriocins produced by Gram-
positive bacteria permeabilize bacterial membranes 
through pore-formation, leading to ion leakage and cell 
death. These include bacteriocins produced by Bacil­
lus, Lactococcus, and Pediococcus genera. They cause 

Fig. 2. Structural-based classification of Gram-negative bacteriocins.
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pore-formation by recognizing lipid II or the mannose 
phosphotransferase system (Paiva et al. 2011). Class I 
bacteriocins of Gram-positive bacteria also inhibit cell 
wall synthesis (Abriouel et al. 2011; Sun et al. 2018) 
(Fig. 3a). Class II bacteriocins make pores as described 
by the barrel stave or carpet model. Some class  III 
bacteriocins produced by Bacillus inhibit the activity 
of the phospholipase A2, responsible for membrane 
repair (Abriouel et al. 2011). Class  III bacteriocins, 
like lysostaphin, act directly on the cell wall inhibit-
ing peptidoglycan synthesis without permeabilizing 
the membrane (Mitkowski et al. 2019). The mannose 
phosphotransferase system is involved in recognition 
of some Gram-positive bacteriocins, such as lactococ-
cin  A and pediocin, leading to pore-formation and 
membrane permeabilization (Zhou et al. 2016).

The mechanism of action of Gram-negative bac-
teriocins, such as colicins, is through recognizing cell 
surface receptors of a target cell, through the Tol or 
TonB machinery, as shown in Fig. 3b. Colicins  C 
domain (cytotoxicity domain) is responsible for elimi-
nating other microorganisms through various mecha-
nisms such as membrane permeabilization, nuclease 
activity, and inhibition of peptidoglycan or lipopoly-
saccharide O-antigen synthesis (Budič et al. 2011). 
Salmonella colicins (salmocins) display three mecha-
nisms of action: SalE1a and SalE1b cause pore-forma-
tion in the membrane, SalE2 and SalE7 have DNase 
activity, and SalE3 have RNase activity (Schneider et al. 

2018). Microcins are also membrane-pore formers, 
have DNase or RNase activity, and may inhibit protein 
synthesis (Yang et al. 2014).

The genus Pseudomonas produces high molecular 
weight bacteriocins such as R, F, and S  type pyocins 
(Oluyombo et al. 2018). Besides the type B microcins 
(Ghequire et al. 2018a), tailocins (Ghequire and De Mot 
2015), and LlpAs (Ghequire et al. 2018b). Pyocins and 
tailocins are characterized by having a complex struc-
ture that resembles phage tails (Ghequire and De Mot 
2015; Patz et al. 2019), and the mechanism of action 
is based on the recognition of specific receptors on 
the cell surface causing pore formation, nonspecific 
degradation of nucleic acids or lipid II-degradation 
(Ghequire and De Mot 2018; Patz et al. 2019) (Fig. 3b).

Pyocins have a limited antimicrobial spectrum, 
mainly inhibiting competitors highly related to the 
producer strain (Redero et al. 2018). However, some 
R-type pyocins can inhibit other species such as Campy­
lobacter sp., Neisseria gonorrhea, Neisseria meningiti- 
des, and Haemophilus ducreyi (Naz et al. 2015). Since 
the mechanism of action of pyocins depends on a cel-
lular receptor, its use has been proposed to replace 
broad-spectrum antibiotics, to reduce the damage that 
antibiotics usually cause to the human microbiome 
(McCaughey et al. 2014).

LlpAs have a selective mechanism of action, differ-
ent from other bacteriocins produced by Pseudomonas 
species. Probably because their structure does not 

Fig. 3. Bacteriocin mechanism of action on a) Gram-positive and b) Gram-negative bacteria.
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consist of the classic three-domain model present in 
bacteriocins of similar size (T, R, and C). Instead, they 
contain two monocotyledonous mannose-binding lec-
tin (MMBL) domains associate with the recognition 
of BamA (Ghequire et al. 2018a). This protein of the 
outer membrane of Gram-negative bacteria facilitates 
the insertion of other proteins into the cell membrane 
(Noinaj et al. 2014). Although the mechanism of action 
of LlpAs remains unknown, a “killing upon contact” 
mechanism has been suggested (Ghequire et al. 2018a).

Bacteriocins and natural DNA transformation

Bacteria can take up exogenous DNA and incorpo-
rate it into their genome through a process termed com-
petence. Competent bacteria can use absorbed DNA as 
a source of nutrients, DNA reparation, or recombina-
tion with the genome. Natural DNA transformation 
happens when absorbed DNA is integrated into the 
genome (Veening and Blokesh 2017). This process is 
considered the primary mode of horizontal gene trans-
fer (HGT) in bacteria, along with conjugation (direct 
cell to cell transfer of DNA via a specialized conjugal 
pilus) and phage transduction (DNA transfer media
ted by viruses). Naturally competent bacteria couple 
the DNA-uptake process with other physiological 
responses, such as growth arrest and synthesis of anti-
microbial polypeptides (bacteriocins) (Mignolet et al. 
2018). Bacteria secrete bacteriocins upon entry into the 
competence state to kill surrounding competitors.

The competence pathway in Streptococcus pneu­
moniae is regulated by a secreted peptide pheromone, 
the competence-stimulating peptide (CSP). The pre-
cursor peptide of CSP, ComC, is processed by an ABC 
transporter/protease, ComAB, immediately after the 
double-glycine motif to yield the active CSP (Shanker 
and Federle 2017). Extracellular CSP activates the 
ComCDE two-component signal-transduction path-
way, which turns on the sigma factor gene sigX/comX, 
to activate the expression of over 100  genes upon 
entering the competent state (reviewed by Shanker 
and Federle 2017). At least six CSP-responsive genes 
are involved in fratricide (killing/lytic factors direc- 
ted against non-competent siblings). Among them, 
cibABC encodes a  two-peptide bacteriocin responsi-
ble for lysis of cells lacking the corresponding immu-
nity factor, CibC. The cbpD gene encodes a murein 
hydrolase containing a cytosine, histidine-dependent 
amidohydrolase peptidase. lytA encodes an effector of 
autolysis in S. pneumoniae. Interestingly, this preda-
tion mechanism appears to be restricted to isogenic or 
closely related strains, suggesting that competent cells 
target corresponding cells to acquire homologous DNA 
sequences to maintain genome integrity or acquire new 

gene alleles from siblings. This ability to tackle closely 
related strains would be discussed in the section “Bac-
teriocins as modulators of gastrointestinal microbiota 
and population diversity”. Streptococcus salivarius, on 
the other hand, modules competence and bacteriocin 
production through the ComRS complex, which serves 
as the connector that directly regulates both comX and 
bacteriocin genes (Mignolet et al. 2018). S. salivarius 
bacteriocins have a broad spectrum of bacterial prey 
including the closely related Streptococcus vestibularis, 
more distant streptococci (Streptococcus mutans and 
Streptococcus pyogenes), and opportunistic pathogens 
such as Enterococcus faecalis, L. monocytogenes, and 
S. aureus (Mignolet et al. 2018). 

Bacteriocins as food antimicrobial
and anticancer agents

Bacteriocin applications have been focused primar-
ily on food preservation, either alone or in combination 
with other compounds. The long shelf life of food prod-
ucts relies on adding chemicals, sugars, salts, and other 
preservatives allowed by the regulation. The addition of 
these substances reduces water activity, inhibiting the 
growth of undesirable pathogenic microorganisms that 
can spoil food. However, the addition of these chemi-
cals benefits the industry but not the consumer since 
the continuous consumption of chemical preservatives 
through packaged foods can affect consumers’ health. 
There is an association of these additives with chronic 
degenerative diseases, and the intake of these additives 
can prompt the development of some types of cancer 
(Monteiro et al. 2010; Moubarac et al. 2013). A more 
friendly strategy to preserve food products is the use 
of bacteriocins beneficial for both the food industry 
and consumers, helping to reduce the use of chemical 
preservatives in food (Sarika et al. 2019). The growth 
of pathogens in food can be controlled by the inocula-
tion of bacteriocin-producing lactic acid bacteria or by 
the addition of purified bacteriocins (Silva et al. 2018). 
Bacteriocins have also been added to the coating of 
food packaging to reduce food spoilage (Salgado et al. 
2015; Castellano et al. 2017).

The use of bacteriocins as food preservatives does 
not affect the organoleptic properties of foods. There 
are safe bacteriocins for human consumption, such 
as Enterocin AS-48 (Sánchez-Hidalgo et al. 2011), lac-
ticin 3147 (Mills et al. 2017), and salmocins (Schnei-
der et al. 2018) but only nisin (NisaplinTM, BiosafeTM), 
pediocin PA-1 (MicrogardTM, Alta 2431), sakacin 
(BactofermTM B-2, BactofermTM B-FM) and leucocin A 
(BactofermTM B-SF-43) are commercially used to 
improve shelf-life of food (Vijay Simha et al. 2012; Daba 
and Elkhateeb 2020).



Cesa-Luna C. et al. 2148

The Food and Agriculture Organization (FAO) 
support the use of probiotics in food systems, since 
probiotics offer health benefits, especially for the gas-
trointestinal tract. Probiotics play an important role 
in modifying some metabolic pathways that, in turn, 
regulate cell proliferation, apoptosis, differentiation, 
angiogenesis, inflammation, and metastasis, which are 
relevant aspects to prevent the development of cancer 
(Bermudez-Brito et al. 2012).

Bacteriocins have shown cytotoxic activity against 
cancer cells, and therefore they could be considered 
tools to develop new anticancer drugs (Baindara et al. 
2018). The charge of normal cell membranes is neu-
tral, while cancer cells have a negative charge due to 
the high content of anionic phosphatidylserine, o-gly-
cosylated mucins, sialylated gangliosides, and hepa-
rin sulfates. Bacteriocins, being cationic peptides, can 
preferentially bind to the negatively charged membrane 
of cancer cells compared to normal cells. Some bac-
teriocins with anticancer activities are colicins, which 
have shown cytotoxic activity against various human 
tumor cell lines such as breast cancer, colon cancer, 
and bone cancer (Kaur and Kaur 2015). Some exam-
ples of the potential applications of bacteriocins are 
shown in Table I.

The potential therapeutic uses of bacteriocins 
produced by lactic acid bacteria have increased over 
time. López-Cuellar et al. (2016) found that 37% of the 
investigations on bacteriocins were focused on medi-
cal applications including cancer, systemic infections, 
stomatology, skincare, and contraceptives. 29% of stud-
ies focused on food preservation, 25% on bio-nanoma-
terials, and 9% within veterinary. The number of pat-
ents on bacteriocins has also increased. From 2004 to 
2015, 245 bacteriocin patents were issued, 31% related 
to the biomedical field, 29% to food preservation, 5% 
to veterinary medicine, 13% to production and puri-
fication process, and 16% to molecular modifications 
in producer strains. The smallest proportion concerns 
bio-nanomaterials and industrial applications.

Bacteriocins in agriculture

The indiscriminate use of agrochemicals has caused 
severe damage to human health and the environment. 
This problem aims to find alternatives to fight pests 
and diseases in a more environmentally friendly way. 
Bacteria that produce inhibitory substances have been 
used as inoculants to indirectly stimulate the growth of 
crops, fighting the phytopathogens. Plant growth-pro-
moting rhizobacteria (PGPR) are generally marketed 
in the form of mono or multi-inoculants that include 
bacteria such as Streptomyces venezuelae, Gluconace­
tobacter diazotrophicus, Burkholderia sp., Azospirillum 

brasilense, P. protegens, Pseudomonas putida, among 
others. Most of these formulations have been traded 
to promote plant growth and not fight plant pathogens 
(Cesa-Luna et al. 2020). Therefore, little efforts have 
been focused on applying of bacteriocins for plant dis-
ease biocontrol, and hence their production by PGPR 
is poorly understood.

Some examples of bacteriocins applied to agricul-
ture are agrocin 84 and thuricin 17. Agrocin 84 is pro-
duced by Agrobacterium radiobacter K84 and is useful 
to kill Agrobacterium tumefaciens, the causal agent of 
crown gall disease in plants (Kim et al. 2006). Thu-
ricin  17 is produced by B. thuringiensis NEB17, this 
bacteriocin is a plant biostimulant with no harmful 
effects on nodulating rhizobia or other PGPR (Nazari 
and Smith 2020). Pseudomonas syringae pv. ciccaronei 
strain NCPPB2355 produces an inhibitory bacteriocin 
against P. syringae subsp. savastanoi, the causal agent 
of olive knot disease. Other important bacteriocins 
are those produced by the genus of Pseudomonas and 
Bacillus (Table  II). These bacteriocins inhibit one of 
the primary phytopathogenic fungi, Fusarium, which 
can infect different types of plants, including celery, 
onion, cabbage, banana, cucumber, tomato, eggplant, 
cantaloupe, watermelon, spinach, among others. Direct 
application of bacteriocin induces a resistance mecha-
nism in plants against pathogens and abiotic stresses. 
Application of thuricin 17 on plants enhanced produc-
tion of phenolics, phenylalanine ammonia-lyase activ-
ity, and antioxidant defense (Nazari and Smith 2020).

Bacteriocins as modulators of gastrointestinal
microbiota and population diversity

The autochthonous bacteria that colonize the entire 
human gastrointestinal tract, from the mouth to the 
colon, confer various physiologic benefits to the host. 
The prokaryotic symbiont population in humans 
ranges from 103–105 CFU/ml in the jejunal lumen) of 
healthy individuals to 1011–1012 CFU/ml in the colon, 
gut microbiota, prevents pathogen growth in the gas-
trointestinal tract (Sundin et al. 2017). This regulation 
is given through various microbial mechanisms, one 
of them is the release of bacteriocins, which prevent 
dysbiosis and consolidate the homeostasis of the gastro-
intestinal microbiota. The homeostatic balance in the 
human gut microbiota has become a significant public 
health problem due to changes in eating habits, type 
of diet, and administration of broad-spectrum anti
biotics (Cotter et al. 2013). Ultra-processed food intake 
has increased saturated fats, omega-6 fatty acids, trans-
fatty acids, and simple carbohydrates in the human diet 
while it has decreased the intake of omega-3 fatty acids, 
fiber, and complex carbohydrates. This diet high in fat 
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1. Food preservation
AMA-K, Leucocin K7	 L. plantarum AMA-K	 Enterococcus spp., E. coli, 	 Amasi, fermented	 (Todorov 2008)
		  K. pneumoniae, Listeria spp.	 milk product
Aureocin A70	 S. aureus A70	 L. monocytogenes	 Dairy product	 (Carlin Fagundes et al. 2016)
Bacteriocin 32Y	 L. curvatus	 L. monocytogenes	 Pork and beef	 (Gálvez et al. 2007)
Bacteriocin GP1	 L. rhamnosus GP1	 Staphylococcus sp., 	 Fish	 (Sarika et al. 2019)
		  Aeromonas sp., Lactobacillus sp.,
		  Pseudomonas sp., Vibrio sp.
Bovicin HC5 + Nisin	 Streptococcus bovis HC5	 L. monocytogenes, S. aureus	 Fresh cheese	 (Pimentel-Filho et al. 2014)
Divergicin M35	 Carnobacterium	 L. monocytogenes	 Smoked fish	 (Benabbou et al. 2020)
	 divergens M35
Enterocin	 E. faecium FAIR-E 198	 Listeria spp.	 Feta cheese	 (Sarantinopoulos et al. 2002)
Enterocin 416K1	 E. casseliflavus IM 416K1	 L. monocytogenes NCTC 10888	 Cottage cheese	 (Iseppi et al. 2008)
Enterocin AS-48	 Enterococcus sp.	 L. monocytogenes, B. cereus	 Cheese, vegetable,	 (Gálvez et al. 2007)
			   purees, and soups
H1, H2, H3, H4	 Bacillus sp.	 V. alginolyticus, Aeromonas	 Antimicrobial	 (Feliatra et al. 2018)
		   hydrophilla, P. stutzeri	 used in fish
Lacticin 3147	 L. lactis	 L. monocytogenes 	 Matured and 	 (Mills et al. 2017)
			   cottage cheese
Lacticin NK24	 L. lactis	 Leuconostoc mesenteroides	 Seafood	 (Lee and Paik 2001)
		  KCCM 11324
Leucocin K7	 L. mesenteroides K7	 L. monocytogenes	 Dairy product	 (Shi et al. 2016)
Mecedocin	 S. macedonicus	 C. tyrobutyricum LMG 1285T	 Kasseri cheese	 (Anastasiou et al. 2009)
	 ACA-DC 198
NE	 L. gasseri K7 (Rifr),	 C. tyrobutyricum	 Semi-mature cheese	 (Bogovič Matijašić 
	 L. gasseri LF221(Rifr)			   et al. 2007) 
Nisin	 Lactococcus spp.,	 L. monocytogenes, Clostridium	 Dairy products,	 (Juturu and Wu 2018)
	 Streptococcus spp.	 botulinum, S. mutans,	 meat, seafood
		  L. innocua, S. aureus, 
		  S. pneumoniae, B. cereus	
Pediocin PA1	 P. acidilactici	 L. monocytogenes	 Dairy products, meat	 (Liu et al. 2008)
Plant-made salmocins	 Salmonella spp.	 S. enterica	 Red meat	 (Schneider et al. 2018)
Plant-made colicins	 E. coli	 E. coli, P. aeruginosa,	 Meat, fruits, 	 (Hahn-Löbmann et al. 2019)
(GRN 676, GRN 593)	 	 Salmonella spp.	 or vegetables
Psicolin 126,	 C. maltoaromaticum	 L. monocytogenes	 Ready-to-eat meat	 (Liu et al. 2014)
carnocyclin A			   products
Reuterin	 L. reuteri	 E. coli, S. aureus,	 Food preservation	 (Helal et al. 2016)
		  Candida albicans
Sakacin P	 L. sakei	 L. monocytogenes	 Beef and Salmon	 (Teneva-Angelova et al. 2018)
Thuricin BtCspB	 B. thuringiensis	 B. cereus	 Food preservation	 (Huang et al. 2016)
			   and disease asso-
			   ciate to B. cereus

2. Bacterial infections
ABP118	 L. salivarius subsp.	 Bacteroides	 Antimicrobial agent	 (Riboulet-Bisson et al. 2012)
	 salivarius UCC118
Colicins Js and Z 	 E. coli	 Enteroinvasive, E. coli (EIEC)	 Gastrointestinal	 Bosák et al. 2021
		  and Shigella	 infections	
Divercin V41	 C. divergens	 L. monocytogenes	 Antimicrobial agent	 (Rihakova et al. 2010)
Duramycin	 Streptomyces	 B. subtilis	 Antimicrobial, anti-	 (Huo et al. 2017)
	 cinnamoneus		  viral, immunomodu-
			   lation, ion channel
			   modulation,  treat-
			   ment of atheroscle-
			   rosis and cystic
			   fibrosis

Table I
Bacteriocins with potential application as therapeutic and food preservatives.

Bacteriocin Producer bacteria Target microorganism Use Reference
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Enterocin CRL35	 E. mundtii	 L. monocytogenes	 Gastrointestinal	 (Salvucci et al. 2012)
			   infections
Epidermin and mers-	 S. epidermidis	 P. acnes	 Acne, folliculitis.	 (Gillor et al. 2008)
acidin-like peptides
Gallidermin/	 S. gallinarum	 S. epidermidis, S. aureus	 Skin infections or 	 (Bengtsson et al. 2018;
epidermin			   associated with	 Bonelli et al. 2006)
			   implants and
			   prostheses
Gassericin E	 L. gasseri EV1461	 Pathogens associated	 Vaginal infections	 (Maldonado-Barragán
		  with vaginosis		  et al. 2016)
Haemocin type B	 Haemophilus	 H. influenza	 Respiratory infections	 (Latham et al. 2017)
	 haemolyticus
Lactocin 160	 L. rhamnosus	 G. vaginalis	 Urogenital tract	 (Turovskiy et al. 2009)
		  	 infections,
			   bacterial vaginosis
Laterosporulin10	 Brevibacillus sp.	 S. aureus, Mycobacterium	 Human microbial	 (Baindara et al. 2016)
	 strain SKDU10	 tuberculosis (Mtb H37Rv),	 pathogens
		  M. smegmatis MC2 155
Mersacidin	 B. amyloliquefaciens	 Methicillin-resistant	 Skin infection	 (Kruszewska et al. 2004)
		  S. aureus (MRSA)
Microcin J25	 E. coli	 S. enterica, E. coli, S. flexnerii	 Gastrointestinal	 (Dobson et al. 2012)
(lasso-peptide)			   infections
Nisin A, Nisin Z,	 L. lactis	 S. mutans, S. aureus, E. faecalis,	 Gastrointestinal,	 (Shin et al. 2016)
Nisaplin		  S. mastitis, C. albicans	 respiratory, and skin
			   infections, oral health
Oralpeace TM	 L. lactis	 S. mutans, P. gingivalis	 Dental caries,  gingivitis	 (Perez et al. 2014)
(encapsulated nisin)
Piscicolin 126	 Carnobacterium spp.	 Listeria spp.	 Antimicrobial agent	 (Miller and 
				    McMullen 2014)
Plantaricin 423	 L. plantarum	 Listeria spp.	 Antimicrobial agent	 (Guralp et al. 2013)
PLNC8 αβ	 L. plantarum	 Staphylococcus sp.,	 Antimicrobial agent	 (Bengtsson et al. 2020)
		  Porphyromonas gingivalis
R-pyocins	 P. aeruginosa	 P. aeruginosa	 Antimicrobial agent	 (Redero et al. 2018)
TOMM Streptolysin S	 S. pyogenes	 Clostridium sp., Listeria sp.	 Hemolytic and cytotoxic	 (Molloy et al. 2015)
(SLS)	 	 	 activity against macro-
			   phages and neutrophils

3. Anticancer drugs
Cancer cell lines

Azurin	 P. aeruginosa	 MCF-7, UISO-Mel-2, osteosarcoma (U2OS)	 (Nguyen and Nguyen
			   2016)
Bovicin HC5	 S. bovis HC5	 MCF-7, HepG2	 (Rodrigues et al. 2019)
Colicin E3	 E. coli	 P388, HeLa, HS913T	 (Kohoutova et al. 2014
Duramycin	 S. cinnamoneus	 AsPC-1, Caco-2, Colo320, CT116, JJN3, Lovo, MCF-7,	 (Rodrigues et al. 2019)
		  MDA-B-231, MIA PaCa-2 
Enterocin LNS18	 E. thailandicus	 HepG2	 (Al-Madboly et al. 2020)
Laterosporulin LS10	 Brevibacillus latero-	 HeLa, MCF-7, H1299, HEK293T, HT1080	 (Baindara et al. 2016)
	 sporus SKDU10
M2163, M2386	 L. casei ATCC 334	 SW480	 (Rodrigues et al. 2019)
Microcin E492	 K. pneumoniae	 HeLa, Burkitt lymphoma variant (RJ2.25)	 (Kaur and Kaur 2015)
Nisin A	 L. lactis	 Head and neck squamous cell carcinoma (HNSCC)	 (Shin et al. 2016)
Pediocin K2a2-3	 P. acidilactici K2a2-3	 HT2a, HeLa	 (Villarante et al. 2011)
Pediocin CP2	 P. acidilactici	 HeLa, MCF-7, HepG2, murine myeloma (Sp2/0-Ag 14)	 (Kumar et al. 2012)
	 CP2 MTCC501

Table I. Continued

Bacteriocin Producer bacteria Target microorganism Use Reference
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NE – non specified

Pep27anal2	 S. pneumoniae	 Jurkat, HL-60, AML-2, MCF-7, SNU-601	 (Rodrigues et al. 2019)
Plantaricin A	 L. plantarum C11	 GH4, Reh, Jurkat, PC12, N2A	 (Sand et al. 2013)
Plantaricin P1053	 L. plantarum PBS067	 E705	 (De Giani et al. 2019)
Pyocin S2	 P. aeruginosa 42A	 HepG2, Im9, murine tumor (mKS-A TU-7), 	 (Abdi-Ali et al. 2004)
		  human fetal foreskin fibroblast (HFFF)
Sungsanpin	 Streptomyces spp.	 A549	 (Um et al. 2013)
Smegmatocin	 M. smegmatis 14468	 HeLa, AS-II, HGC-27, mKS-A TU-7	 (Kaur and Kaur 2015)

Table I. Continued

Bacteriocin Producer bacteria Cancer cell lines Reference

and carbohydrates and low in micronutrients can dis-
turb the human microbiota with concomitant meta-
bolic disorders (Miclotte and Van de Wiele 2020).

Probiotics can colonize, at least temporally, the 
human gastrointestinal tract due to the efficient com-
petition mediate by bacteriocin production. Thus, the 
intake of Lactobacillus species in probiotherapy has 
shown health-promoting effects on treating inflam-

matory gastrointestinal diseases like constipation, 
diarrhea, irritable bowel syndrome, gastritis, gastroe-
sophageal reflux, ulcerative colitis syndrome, Crohn’s 
disease, among others (Kumar et al. 2016). Bacteriocins 
can play an essential role in the homeostasis of different 
subpopulations of microbial communities. For example, 
in the relationship of certain bacteriocin-producing, 
sensitive, and resistant bacterial populations bacteria 

Amylocyclin	 B. amyloliquefaciens	 Ralstonia solanacearum and X. campestris	 (Scholz et al. 2014)
Bacteriocin 32Y	 P. aeruginosa RsB29	 Fusarium sp.	 (Sindhu et al. 2016)
Carocin D	 P. carotovorum subsp.	 P. carotovorum subsp. Carotovorum	 (Grinter et al. 2012;
	 carotovorum		  Roh et al. 2010)
Enterocin UNAD 046	 E. faecalis	 B. theobromae, A. niger, P. expansum,	 (David and Onifade, 2018)
		  P. ultimum.
Fluoricin BC8	 P. fluorescens BC8	 P. solanacearum	 (Sindhu et al. 2016)
Gluconacin	 G. diazotrophicus PAL5	 X. albilineans and X. vasicola pv. vasculorum.	 (Oliveira et al. 2018)
LlpA	 P. putida BW11M1	 P. syringae	 (Parret et al. 2005)
Morricin 269,	 B. thurigiensis	 Trichoderma spp., A. nodulans, F. graminis,	 (De La Fuente-Salcido et al. 2008;
Kurstacin 287, 		  F. oxysporum, Rhizopus sp., Mucor rouxii 	 Salazar-Marroquín et al. 2016)
Kenyacin 404,
Entomocin 420,
Tolworthcin 524 
NE	 P. syringae pv. ciccaronei 	 P. syringae subsp. savastanoi	 (Lavermicocca et al. 2002)
BLIS RC-2	 B. amyloliquefaciens RC-2	 R. necatrix, P. oryzae, A. tumefaciens,	 (Abriouel et al. 2011)
		  Xanthomonas campestris pv. campestris,
		  C. dematium
NE	 B. gladioli	 Tatumella ptyseos	 (Marín-Cevada et al. 2012)
BL8	 B. thuringiensis subsp.	 A. niger, A. fumigatus, A. flavus,	 (Subramanian and Smith 2015)
	 tochigiensis HD868	 Cryphonectria parasitica, F. oxysporum,
		  Penicillium digitatum.
Plantazolicin	 B. velezensis FZB42	 B. anthracis and nematodes.	 (Chowdhury et al. 2015)
	 (B. amyloliquefaciens subsp. 
	 plantarum)
Putidacin L1	 P. protegens, P. putida	 P. syringae	 (Rooney et al. 2020)
Rhizobiocin	 Rhizobium spp.	 P. savastanoi	 (Kaur Maan and Garcha 2018)
SF4c tailocins	 P. fluorescens SF4c	 X. vesicatoria	 (Príncipe et al. 2018)
Syringacin M	 P. syringae pv. tomato DC3000	 P. syringae	 (Li et al. 2020)

Table II
Biocontrol potential of bacteriocin-producing microorganisms in agriculture.

NE – non specified

Bacteriocin Producer bacterium Phytopathogen Reference
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can interact with each other in a set of incessant battles 
without a clear winner (Kerr et al. 2002). 

In some cases, the growth rate of a resistant popula-
tion can be higher than that of the bacteriocin-produc-
ing population (P), which generally possess a plasmid 
with genes encoding the bacteriocin and bacteriocin-
specific immunity protein that make the bacteriocin-
producing population immune to its bacteriocin. Still, 
at the same time, the resistant population (R) has 
a slower growth rate than that of the sensitive popula-
tion (S). The susceptible population has an advantage 
over the resistant population because sensitive bacteria 
have a higher growth rate. The resistant population has 
an advantage over the bacteriocin-producing popula-
tion because of its higher growth rate. And the bacte-
riocin-producing population can displace susceptible 
populations because bacteriocin-producing bacteria 
can kill sensitive bacteria making the three types of 
bacterial populations coexist in a balance of subpo
pulations preserving the diversity of the community 
(Kerr et al. 2002).

The bioinformatic analysis of bacteriocins encoded 
within 317 microbial genomes found in the human 
intestine revealed 175 bacteriocins in Firmicutes 
(which includes LAB), 79 in Proteobacteria, 34 in Bac-
teroidetes, and 25 in Actinobacteria (Drissi et al. 2015). 
The analysis showed that bacteriocins produced by 
the intestinal bacteria display wide differences, in the 
size and amino acid composition, compared to other 
bacteriocins. These bacteriocins contain less aspartic 
acid, leucine, arginine, and glutamic acid but more 
lysine and methionine. Depending on their α-helical 
structure, charge, and hydrophobicity, they may have 
a broader spectrum of activity (Zelezetsky and Tossi 
2006) but, in turn, lower antimicrobial activity and, 
therefore, they can better modulate microbial popu-
lations (Drissi et al. 2015). The microbial community 
that inhabits the human gut appears to impart specific 
functions to human metabolism and health by inter-
connecting signals from the brain, the immune system, 
the endocrine system, and the gut microbiota itself 
(Vivarelli et al. 2019). So, depending on the type of bac-
teria colonizing the gastrointestinal tract will determine 
the type of signaling molecules released and, therefore, 
the impact on host health and disease. That is why the 
microbial diversity of microbiota is tightly regulated. 
An example of this type of regulation exerted by bac-
teriocins is the effect of plantaricin P1053 produced by 
Lactobacillus plantarum strain PBS067; which exhib-
ited a broad-spectrum of antimicrobial activity against 
Gram-positive and Gram-negative bacteria. Further-
more, plantaricin P1053 showed an improvement in the 
viability of healthy cells and a proliferation reduction 
of cancerogenic human intestinal cells. The mechanism 
involved in this case was through the epidermal growth 

factor receptor (EGFR) pathways (De Giani et al. 2019). 
Bifidobacterium longum subsp. longum NCC2705 pro-
duces the bacteriocin serpin, which is a protease inhibi-
tor that interacts directly with the host factors. Serpin 
inhibits pancreatic and neutrophil elastases by medi-
ating some gastrointestinal anti-inflammatory effects 
(Ivanov et al. 2006). The production of bacteriocins by 
the microbiota that inhabits the human gut affects the 
individual’s metabolic processes, whether it improves 
health or causes dysbiosis and disease Therefore, bac-
teriocins production by the microbiota is tightly regu-
lated. One way of exploiting the bacteriocin potential of 
prevailing bacterial commensals to cure multiresistant 
infections is to stimulate the endogenous bacteriocin 
producers at specific times and locations. S. salivarius 
population, for example, produces bacteriocins of high 
potency against infectious pathogens and is dominant 
and genetically diverse in the human digestive tract 
(Hols et al. 2019). Bacteriocin-related genes of S. sali­
varius can be activated upon addition of short ComS 
pheromone into the culture medium (Mignolet et al. 
2018). Thus pheromone-based mobilization of bacteri-
ocins in the commensal microbiota could be achieved 
in vivo by the addition of ComS pheromone which 
complexes with the ComR sensor activating the master 
regulator of competence (ComX), and coupling compe-
tence and predation response in S. salivarius (Hols et al. 
2019). Nevertheless, oral administration of signaling 
pheromones remains elusive. To minimize environ-
mental influences (i.e. resist most digestive proteases, 
the stomach barrier, and low solubility of signaling 
pheromones) and ensure the activating pheromone 
efficiency in vivo, more advanced enabling formula-
tions to improve oral bioavailability is required.

A multidrug-resistant E. faecalis strain was actively 
killed by commensal enterococci. A heptapeptide phe
romone, cOB1, produced by native E. faecalis; was 
involved in the killing of multidrug-resistant E. faecalis 
strain V583, the killing of V583, resulted from lethal 
cross-talk between accumulated mobile elements 
(Gilmore et al. 2015). Since multidrug-resistant Entero­
coccus possessed the limited ability to grow in the pres-
ence of commensal Enterococcus strains due to the pro-
duction of peptide pheromones. We could hypothesize 
that infections caused by MDR strains can be fought 
by the same genera commensal strains using the suit-
able pheromone to activate the killing response. MDR 
enterococci colonize the patient after perturbating the 
native flora by antibiotic treatment when commensal 
enterococci strains are excluded. Therefore, a potential 
therapy could be the formulation of enterococci native 
strain along with the signaling pheromone. Currently, 
there is controversy over the adequate use of probio- 
therapy, more research must be done about whether 
probiotics are helpful and safe for various health condi-
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tions. We still do not know the concentrations neces
sary to benefit healthy and sick individuals and the time 
of probiotics intake to improve individual health. 

Bacteriocins commercially available:
a patent perspective

According to the World Intellectual Property 
Organization (WIPO), over the last 30  years, more 
than 800 patent applications with the term “bacterio
cin” in title or abstract were published, while Espacenet 
website reports more than 8900. Fig. 4 shows the pat-
ents published between January 1, 2000, and August 7, 
2020, using the Patent Inspiration search engine with 
the term “bacteriocin”. Over the last 20 years, China has 
published 234  patents, followed by the United States 
with 132, while Mexico only published 17 patents 
(Fig. 4). Among these patents, 312 (36.4%) are associa- 
ted with nisin and lactic acid bacteria.

Bacteriocins have fascinating properties concerning 
their size, structure, mechanism of action, inhibitory 
spectrum, and immunity mechanisms that endorse 
them with market potential. However, just four bacte-
riocin formulations are commercially available: nisin 
(NisaplinTM, BiosafeTM, OralpeaceTM), pediocin PA-1 
(MicrogardTM, Alta 2341), sakacin (BactofermTM B-2, 
BactofermTM B-FM) and leucocin A (BactofermTM B-SF-
43) are mainly used as food preservatives in the United 
States and Canada (Daba and Elkhateeb 2020; Radaic 

et al. 2020). Other FDA-approved bacteriocins, with the 
intended use as an antibacterial for food, are colicins, 
salmocins, and Clostridium phage lysins, but they are 
not in the market yet (Hahn-Löbmann et al. 2019). 
One limitation of using purified bacteriocins in the 
food industry could be the high cost of production and 
purification compared to the price of food additives. It 
is more feasible to produce formulations of whole bac-
teria with their metabolites and use them as “protective 
cultures” on foods. Thus, several bacteria that produce 
bacteriocin have obtained the GRAS status and are used 
commercially as a preservative in a wide range of food 
products or as probiotics. In the list is Carnobacterium 
divergens M35, Bacillus coagulans GBI-30, Bacillus 
subtilis strain SG 188, Lactobacillus plantarum Lp-115, 
Lactobacillus fermentum CECT5716, Lactobacillus par­
acasei strain F19, Lactobacillus plantarum strain 299v, 
Bacillus coagulans SNZ1969, Lactobacillus acidophilus 
DDS-1, Bifidobacterium animalis subsp. lactic UABla-
12, Bifidobacterium longum BB536, Bifidobacterium 
bifidum Rosell®-71, Bifidobacterium longum ssp. infan-
tis Rosell®-33, Lactobacillus helveticus Rosell®-52, Lacto­
bacillus rhamnosus LGG®, Lactobacillus curvatus DSM 
18775, and Streptococcus salivarius K12. An alternative 
to the costly fermentation production and purification 
of bacteriocins from a natural producer strain is chemi-
cal synthesis. Advances in solid-phase peptide che- 
mical synthesis, lower price for reagents and building 
blocks, has made the chemical synthesis of bacteriocins 
more attractive and competitive. Furthermore, through 

Fig. 4. Timeline of bacteriocin patents reported worldwide from January 1, 2000 to August 7, 2020. Countries with the highest number 
of reported patents per year are shown. The figure was generated with the Patent Inspiration search engine

(https://www.patentinspiration.com).
CN – China, US – United States, KR – Korea, RU – Russian Federation, UA – Ukraine, CA – Canada, JP – Japan, AU – Australia, NZ – New Zealand, 
GE – Germany, FR – France, TW – Taiwan, AT – Austria, PL – Poland, ES – Spain, AR – Argentina, MX – Mexico, BR – Brazil, DK – Denmark, 

CZ – Czech Republic, HU – Hungary, ZA – South Africa, SE – Sweden, IL – Israel, GB – United Kingdom.
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chemical approaches, it is possible to perform amino 
acid substitution, use non-natural or modified residues, 
and make backbone and side-chain modifications to 
improve potency or stability of bacteriocins (Bédard 
and Biron 2018). Those advanced chemical methods 
will surely enable the screening and identification of 
more potent or stable bacteriocins.

Bacteriocin formulations can be used as nutritional 
supplementation. Few in vivo experiments on bacte-
riocin dietary formulations have described the effects 
of bacteriocins on the gastrointestinal microbiota of 
mice, rats, rabbits, ruminants, fish, and poultry. A mul-
tispecies probiotic combination (Lactobacillus reuteri, 
Enterococcus faecium, B. animalis, Pediococcus acidi­
lactici, and Lactobacillus salivarius) increased nutri-
ent digestibility, digestive enzyme activities, and anti-
inflammatory effect in broilers (Palamidi et al. 2016). 
The efficacy of L. acidophilus, B. subtilis, and Clostri­
dium butyricum supplementation in broilers improved 
growth performance, ileal amino acids digestibility, and 
humoral immunity (Zhang and Kim 2014). The addi-
tion of nisin (alone or in combination with salinomycin 
or monensin) to broilers’ diet was associated with an 
apparent nutrient digestibility (Kierończyk et al. 2017). 
Dietary supplementation with Paenibacillus ehimensis 
NPUST1 (bacteriocin-like activities against Aeromonas 
hydrophila) improved the growth performance, immu-
nity, and disease resistance in Nile tilapia (Chen et al. 
2019). Altogether, these reports indicate the potential 
of bacteriocins as nutritional supplementation. 

Compared to the food industry, the medical field 
could represent a higher profit for the use of bacte
riocins. However, to exploit the full potential of bac-
teriocins in the medical industry, they must overcome 
some drawbacks such as sensitivity to proteases, immu-
nogenicity issues, and the development of bacteri-
ocin resistance by pathogenic bacteria. In this regard, 
advanced chemical approaches can be used to make 
disulfide bridges, head-to-tail macrocyclization, N-ter-
minus formylation, amino acid substitutions, and other 
modifications; to make bacteriocins more potent and 
stable, enabling them to surpass their current draw-
backs (Bédard and Biron 2018). Another factor that 
prevents the commercial use of bacteriocins in medical 
applications might be attributed to the low approval of 
the regulatory process. Over the last decade, the num-
ber of in vivo trials has increased, but clinical appli-
cation of bacteriocins requires more investigation to 
determine their efficacy, stability, and kinetic properties 
in/on the human body. For example, nisin ZP and nisin 
AP, significantly reduced the tumor volume in mouse-
induced oral cancer. Lacticin 3147 reduced S. aureus 
Xen 29 growth and prevented dissemination of the 
pathogen in the spleen, liver, and kidney of a murine 
model. Salivaricin prevented Candida albicans coloni-

zation in the oral cavity of a mouse model. ESL5 has 
been applied as a lotion in a patient with inflammatory 
acne lesions caused by Propionibacterium acnes (López-
Cuellar et al. 2016; Soltani et al. 2021). Lantibiotics 
such as nisin, clausin, and amyloliquecidin (AmyA) 
are effective in treating S. aureus-induced skin infec-
tion in mice (van Staden et al. 2016). AS-48 prevents 
and treats skin diseases, even with multi-drug resistant 
microorganisms, and has the potential as a leishmani-
cidal agent (Cebrian et al. 2019). Despite their thera-
peutic possibilities, bacteriocins have not yet entered 
into clinical use, and only a limited number have been 
selected for tests in clinical trials. NAI-107 (Microbis­
pora corallina) and mutacin 1140 (S. mutans JH1000) 
are at the late preclinical phase; NVB302 and Moli1901 
(Actinoplanes liguriae NCIMB41362) have completed 
phase I and phase II clinical trials (for clinical studies, 
see Ongey et al. 2017; Soltani et al. 2021). Finally, apart 
from those technical limitations mentioned, several fac-
tors not covered in this review preclude most patented 
products make it to market.

Conclusions

Bacteriocins have become an attractive tool to pre-
serve food and improve human health. Bacteriocins 
can eliminate specific pathogen microorganisms while 
favoring the preservation of other populations. Since the 
impact of bacteriocins on each microbial community is 
not well understood yet, there are limitations to exploit 
all their potential. It is necessary to continue performing 
rigorous research focused on developing antimicrobials, 
anticancer agents, and microbiota modulators before 
bacteriocins can be available to consumers.
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Introduction

Since the industrial revolution, new ecological 
niches have emerged following the release of toxic 
industrial wastes, which often consist of a mixture 
of heavy metals, organic compounds, and hydrocar-
bons, into the environment. Environmental pollution 
is a significant problem, affecting many environments 
in a negative and almost irreversible way (Filali et al. 
2000). In particular, heavy metal contamination of 
surface waters directly impacts both the environment 
and public health (Chihomvu et al. 2015). Environmen-
tal bacteria that are resistant to heavy metals, as well 
as multiple antibiotics, are of great concern in many 
areas of the world. 

Bacteria-heavy metal interactions have been stud-
ied in many and extreme environments. Some met-
als are essential cofactors of specific proteins; others 
cause oxidative stress because of their redox poten- 
tial. Heavy metals are naturally occurring, but with 
excessive anthropogenic activities, they are shown in 
large quantities, then become toxic at high concentra-
tion. Soil, water, and air are the major environmental 
compartments, which are affected by heavy metals pol-
lution leading to many adverse impacts (Tchounwou 
et al. 2012).

In this study, we focused on copper, silver, and 
mercury. These heavy metals are more and more used 
in many applications and are also found in different 
areas worldwide (Kerfoot et al. 2002; 2004). 
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A b s t r a c t

Environmental bacteria belonging to various families were isolated from polluted water collected from ten different sites in Tunisia. Sites 
were chosen near industrial and urban areas known for their high degree of pollution. The aim of this study was to investigate cross-
resistance between heavy metals (HM), i.e., silver, mercury and copper (Ag, Hg, and Cu), and antibiotics. In an initial screening, 80 isolates 
were selected on ampicillin, and 39 isolates, retained for further analysis, could grow on a Tris-buffered mineral medium with gluconate 
as carbon source. Isolates were identified based on their 16S rRNA gene sequence. Results showed the prevalence of antibiotic resistance 
genes, especially all isolates harbored the blaTEM gene. Some of them (15.38%) harbored blaSHV. Moreover, several were even ESBLs and 
MBLs-producers, which can threaten the human health. On the other hand, 92.30%, 56.41%, and 51.28% of the isolates harbored the heavy 
metals resistance genes silE, cusA, and merA, respectively. These genes confer resistance to silver, copper, and mercury. A cross-resistance 
between antibiotics and heavy metals was detected in 97.43% of our isolates.

K e y w o r d s:  contaminated water, environmental bacteria, heavy metals (HM), antibiotics (AB), cross-resistance
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Copper is an essential element that is toxic at high 
concentrations (Chihomvu et al. 2015). High cytoplas-
mic copper concentrations can lead to dysfunctional 
proteins (Kershaw et al. 2005), or damage lipids, DNA, 
and other molecules (Harrison et al. 2000). Micro-
organisms have developed several copper resistance 
mechanisms to survive in contaminated environments. 

Silver is used as an antimicrobial agent in various 
medical products, such as catheters, and for burns 
wound treatments (Silver and Phung 1996; Klasen 
2000; Jung et al. 2008). Bacteria can develop resistance 
to silver via efflux mechanisms encoded by the sil- or 
pco/cop-genes (Gupta et al. 1999). 

The mercury ion has been known to be effective 
against a broad range of microorganisms. It has no 
beneficial functions in living organisms, and this toxic 
compound can accumulate in the food chain (Jan et al. 
2009). The mercury resistance system is encoded by the 
mer operon, which reduces Hg2+ into elemental mer-
cury via the mercuric reductase enzyme (MerA) (Boyd 
and Barkay 2012; Fatimawali et al. 2014). 

Furthermore, many reports suggested that heavy 
metal contamination could directly or indirectly impact 
the maintenance and proliferation of antibiotic resist-
ance (Summers 2002). Several studies reported the co-
occurrence of heavy metal and antibiotic resistance. 
It has been proven that heavy metals in environmen-
tal reservoirs, water, wastewater, and soil, may con-
tribute to the selection of antibiotic-resistant strains 
through co-resistance and cross-resistance mechanisms 
(Nguyen et al. 2019). It is important to underline that 
co-resistance occurs when genes coding for the resist-
ance phenotypes are present on the same mobile genetic 
elements (i.e., plasmids, transposons, and integrons) 
(Mandal et al. 2016). Mercury, copper, and silver resist-
ance genes are located on mobile genetic elements, e.g., 
on class II transposons with various antibiotic resist-
ance genes. For instance, Salmonella plasmid pMG101 
carries silver, mercury, and tellurite resistance genes 
and genes conferring resistance against chloram-
phenicol, ampicillin, tetracycline, streptomycin, and 
sulphonamide. Plasmid-encoded mercury resistance 
operons are frequently associated with class II trans-
posons. In addition, P-type ATPases are indispensable 
for the transport of ions, such as copper and silver from 
cells, acting as a resistance mechanism to actively efflux 
heavy metal cations. These PIB-type ATPase genes 
have been found to occur on plasmids and transpo-
sons in both Gram-positive and Gram-negative bac-
teria and be prone to horizontal gene transfer (HGT) 
(Aminov 2011).

In this report, we were interested in studying the 
contamination of ten sites in Tunisia by silver, copper, 
and mercury and detecting a cross-resistance between 
them and antibiotics in water environmental isolates. 

It was done to understand better whether heavy metal 
contamination could contribute to the proliferation and 
the spread of antibiotic resistance.

Experimental

Materials and Methods

Sampling sites. Samples were collected from ten 
different geographic areas from the north to the south 
of Tunisia (Table I). Sampling sites were chosen because 
of their geographic situation near urban, industrial, 
and agricultural areas. Sample locations were based on 
a previous study that determined the degree of pollu-
tion (Ben Miloud et al. 2020).

Sample collection and HM resistant bacteria 
screening. A plankton net was used to recover water 
samples, which were transferred into sterile bottles and 
transported at 4°C to the laboratory. After a first filtra-
tion step to remove insoluble solids, a nitrocellulose 
filter (0.45 µm) was used to collect microorganisms. 
Filters were directly placed on Lysogeny Broth (LB) 
agar plates with ampicillin (AMP) 64 µg/ml and incu-
bated for 24–48 hrs. at 37°C. Ampicillin was used to 
counter select sensitive isolates. In the next step, growth 
on Tris-buffered mineral agar supplemented with 0.2% 
(w/v) sodium gluconate (MM284) (Mergeay et al. 985) 
was scored. Finally, 39 isolates were stored on 15% 
glycerol at –80°C.

Total DNA extraction. According to the manu-
facturer’s protocol, the total DNA of each isolate was 
extracted from bacterial cultures using the QIAamp 
DNA Maxi kit. DNA concentration (ng/µl) was meas-
ured with the Nano Drop Microvolume Quantitation 
of Nucleic Acids. (Thermo Scientific, NanoDrop 1000).

Amplification of the 16S rRNA gene. The 16S rRNA 
gene was amplified using 50–100 ng of total DNA, 25 µl 
of DreamTaq Green PCR Master Mix (2X), 0.1–1 µM 
of the universal primers 8F (5’-AGAGTTTGATCCTG-
GCTCAG-3’) and 1492R (5’-TACGGTTACCTTGT-
TACGACTT-3’) (Galkiewicz and Kellogg 2008), and 
adjusted to 50 µl with nuclease-free water. Amplification 
was performed in an Eppendorf Master cycler thermo-
cycler (Hamburg, Germany) using the following condi-
tions: initial denaturation at 95°C for 10 min, 30 cycles 
of 95°C for 30s, 56°C for 30s, 72°C for 2 min, and a final 
extension at 72°C for 10 min. The 16S rRNA gene ampli-
cons were purified (Promega SV Gel and PCR clean-up 
system kit) and sequenced (Eurofins Genomics, Ger-
many). Isolates were identified using16S rRNA sequence 
according to Greengenes Database.

Phylogenetic analysis. The 16S rRNA gene 
sequences were aligned to silva, trimmed to the same 
region removed those shorter than 900 bp (6 sequences), 
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reported the phylogeny based on both filtered and com-
plete set of sequences. The phylogenetic tree was built 
by the MEGA clustal algorithm, and distances calcu-
lated using “Maximum Likelihood” in MEGA X. The 
evolutionary history was inferred by using Maximum 
Likelihood and Tamura-Nei model (Tamura and Nei 
1993; Kumar et al. 2016). Evolutionary analyses were 
conducted in MEGAX.

Antibiotic susceptibility testing. The disk diffusion 
agar technique determined susceptibility to antimicro-
bial agents. The following antibiotic disks (supplied by 
BioMerieux) were used: amoxicillin (10 µg), amoxicil-
lin/clavulanic acid (20 µg/10 µg), piperacillin (100 µg), 
piperacillin/tazobactam (100 µg/10 µg), cephalothin 
(30 µg), cefotaxime (30 µg), ceftazidime (30 µg), 
aztreonam (30 µg), imipenem (10 µg), nalidixic acid 
(30 µg), ciprofloxacin (5 µg), chloramphenicol (30 µg), 
gentamicin (10 µg), kanamycin (30 µg), streptomycin 
(10 µg), sulfamethoxazole/trimethoprim (25 µg), and 
tetracycline (30 µg) (Vicente et al. 1990).

Determination of heavy metal minimal inhibi-
tory concentration. To determine the MIC of heavy 
metals, a stationary phase culture (OD600 of ca. 1.0 rep-
resenting 109 CFU/ml) of each isolate grown in Tris-
buffered mineral medium (MM284) supplemented 
with gluconate was diluted 50 times in 2 × concentrated 
MM284 medium. 100 µl of each culture was added to 

a 96-well plate containing 100 µl of a heavy metal ion 
solution (Cu2+, Hg2+, and Ag+

.) at increasing concentra-
tion. Plates were incubated at 30°C for 48 h in the dark 
on a rotary shaker. At different time points, bacterial 
growth was measured by determining the optical den-
sity at 595 nm. The minimal inhibitory concentration 
(MIC) was determined for Cu2+, Hg2+, and Ag+. Cupria­
vidus metallidurans CH34 and Escherichia coli K38 were 
used as references (Monsieurs et al. 2011). Isolates 
showing higher MICs than both reference strains were 
considered as resistant. 

PCR amplification of antibiotic resistance genes. 
β-lactamases encoding-genes were screened as pre-
viously described (Dallenne et al. 2010) using multi-
plex PCR 1 for the detection of the blaTEM, blaSHV, and 
blaOXA-1-like genes; multiplex PCR 2 for the detection of 
the blaCTX-M subgroups (blaCTX-M-1, blaCTX-M-2, blaCTX-M-9, 
blaCTX-M-8, blaCTX-M-25), and a separate simplex PCR for 
the detection of the blaOXA-48 gene. Primers, amplifi-
cation conditions and expected fragment sizes are 
shown in Table  II. Fluoroquinolone resistance genes 
were screened using multiplex PCR 3 (qnrA, qnrB, 
qnrC,qnrD, qnrS, and oqxAB), as previously described 
(CLSI 2013). Primers, amplification conditions, and 
expected fragment sizes are shown in Tables II and III.

PCR amplification and sequencing of the silE, 
merA, and cusA genes. The silE gene, coding for 

Menzel Jemil,	 37°14′19″N,	 Industrial area	 Waste and contamination from the textile industry
Bizerte: Site I	 9°54′59″E		  and wiring throwing inside the Bizerte lagoon
Menzel Bourguiba,	 37°09′N, 9°47′E	 Unit manufacturing printed circuits.	 Contamination by HM from the iron factory
Bizerte: Site II		  In the Iron factory	 in the Bizerte lagoon. Urban and agricultural pollution
Tinjah wedi,	 37°10′N, 9°45′E	 Near the lagoon of Bizerte	 Agricultural pollution and compost contamination.
Bizerte: Site III
Beja: Site IV	 36°43′30″N, 	 Southwest of the city of Tunis	 Urban and industrial area, the most known
	 9°10′55″E	 Near the CWTP*	 are wastewater and yeast factory
Essijoumi Lagoon:	 36°45′52″N,	 Contribution in the Gulf of Tunis	 Lagoon receiving contamination from wastewater
Site V	 10°08′49″E		  contamination and wastes from the capital Tunis.
Rades Milian River:	 36°46′N, 	 Industrial zone of Rades	 High load alluvial estimated at 25 grams per liter. 
Site VI	 10°17′E		  Receiving wastewater from two towns Rades and Ezzahra.
Majerda River:	 37°7′0″N,	 A peninsula in far north-eastern	 Used for irrigation of the region’s agriculture
Site VII	 10°13′0″E	 Tunisia
Lebna River:	 36°45′N,	 Inlet manifold sewage treatment	 Agricultural coastal Plans can be found in the area
Site VIII	 10°54′E	 plant	 of Cap Bon
Om Larayes, Gafsa:	 34°28′59″N,	 The industrial platforms	 One of the known mining towns in Gafsa
Site IX	 8°16′01″E	 of phosphgyps activity
Gulf of Gabes:	 34°05′37″N,	 The junction between the Eastern	 Known by industry for the transformation
Site X	 10°26′13″E	 and Central Basin	 of merchantable phosphate into Phosphoric
			   Acid (H3PO4) and Chemical Fertilizers

Table I
Sampling sites characteristics, locations, and their corresponding geographic coordinates.

* – CWTP: Collector between wastewater treatment plant.

Sites/numeration Geographic
coordinates Location Characteristics
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a  periplasmic heavy metal binding protein involved 
in silver resistance, the cusA gene, part of the RND-
driven system effluxing copper, and the merA gene, 
coding for a mercury reductase detoxifying mercury 
stress, were amplified by PCR. The following reaction 
mixture (50 µl) was used: 25 µl of DreamTaq Green PCR 
Master Mix (2X), 0.1–1 µM of reverse and forward 
primer (50–100 ng) genomic DNA as previously 
described (Silver and Phung 1996; Besaury et al. 2013). 

PCR products were purified by PCR Clean-up and 
sequenced (Eurofins Genomics, Germany).

Protein prediction and analyses. The silE, cusA, 
and merA genes sequences were translated to their 
corresponding protein using Expasy website, then 
aligned using BioEdit with SilE from pMG101 (SilE 
AAD1171743), Escherichia coli (CusA P30854), and 
Enterobacter cloacae (MerA EU081910), respectively.

	
TEM

	 MultiTSO-T_F CATTTCCGTGTCGCCCTTATTC	
800

	 0.4	 0.4
		  MultiTSO-T_R CGTTCATCCATAGTTGCCTGAC		  0.4	 0.4

  1
	

SHV
	 MultiTSO-S_F AGCCGCTTGAGCAAATTAAAC	

713
	 0.4	 0.4

		  MultiTSO-S_R ATCCCGCAGATAAATCACCAC		  0.4	 0.4
	

OXA-1-like
	 MultiTSO-O_F GGCACCAGATTCAACTTTCAAG	

564
	 0.4	 0.4

		  MultiTSO-O_R GACCCCAAGTTTCCTGTAAGTG		  0.4	 0.4
	

CTX-M group 1
	 MultiCTXMGp1_F TTAGGAARTGTGCCGCTGTA	

688
	 0.4	 0.4

		  MultiCTXMGp1_R CGATATCGTTGGTGGTCCCAT		  0.2	 0.2
	

CTX-M group 2
	 MultiCTXMGp2_F CGTTAACGGCACGATGAC	

404
	 0.2	 0.2

  2		  MultiCTXMGp1_R CGATATCGTTGGTGGTTCCAT		  0.2	 0.2
	

CTX-M group 9
	 MultiCTXMGp9_F TCAAGCCTGCCGATCTGGT	

561
	 0.4	 0.4

		  MultiCTXMGp9_R TGATTCTCGCCGCTGAAG		  0.4	 0.4
	

CTX-M group 8
	 CTX-Mg8/25_F AACTCCCAGACGCTCTAC	

326
	 0.4	 0.4

		  CTX-Mg8/25_R TCGAGCCGGAASGTGTAAT		  0.4	 0.4

Table II
Primers, expected fragment size and conditions of PCR experiments used for β-lactams resistance encoding genes.

Mul-
tiplex Target Primers sequences (5′–3′) Size

(pb)

Concen-
tration

(pmol/µl)

Volume
(µl)

Amplification
conditions

94°C 10 min
94°C 40 sec

60°C 40 sec 30 cycles
72°C 1 min
72°C 7 min

94°C 10 min
94°C 40 sec

57°C 40 sec 30 cycles
72°C 1 min
72°C 7 min

	

OXA-48

	 MultiOXA-48_F GCTTGATCGCCCTCGATT	

281

	 0.4	 0.4
 

1

		  MultiOXA-48_R GATTTGCTCCGTGGCCGAAA		  0.4	 0.4

Sim-
plex Target Primers sequences (5′– 3′) Size

(pb)

Concen-
tration

(pmol/µl)

Volume
(µl)

Amplification
conditions

	
qnrA

	 qnrA_FCAGCAAGAGGATTTCTCACG	
630

	 	 qnrA_RAATCCGGCAGCACTATTACTC
	

qnrB
	 qnrB_FGGCTGTCAGTTCTATGATCG	

488
	 	 qnrB_RGAGCAACGATGCCTGGTAG

3
	

qnrC
	 qnrC_FGCAGAATTCAGGGGTGTGAT	

118
	 	 qnrC_RAACTGCTCCAAAAGCTGCTC
	

qnrD
	 qnrD_FCGAGATCAATTTACGGGGAATA	

581
	 	 qnrD_RAACAAGCTGAAGCGCCTG
	

qnrS
	 qnrS_FGCAAGTTCATTGAACAGGGT	

428
	 	 qnrS_RTCTAAACCGTCGAGTTCGGCG

Table III
Primers, expected fragment size, and conditions of PCR experiments used

for quinolones resistance encoding genes.

95°C 15 min
94°C 30 sec

63°C 40 sec 30 cycles
72°C 90 sec
72°C 10 min

Multiplex Target Sequence of primer (5′–3′) Size (bp) Amplification conditions
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Results

Sample collection and identification of bacterial 
isolates. Ten filters placed on LB plates, each belonging 
to a sample collected from the ten sites, showed multiple 
colonies. The choice of colonies was based on shape and 
color. Therefore, 80 colonies were chosen from the ten 
plates to determine the prevalence of heavy metal- and 
antibiotic-resistant bacteria. In the next step, only the 
39 isolates that grew on Tris-buffered mineral agar sup-
plemented with 0.2% (w/v) sodium gluconate (MM284) 
(Mergeay et al. 1985) were retained. MM284 contained 
HM trace was used to test heavy metal resistance. Sub-
sequently, the selected isolates were identified using the 
16S rRNA gene amplification followed by sequencing, 
and the corresponding phylogenetic tree was dressed 
and presented in Fig. 1. Despite the sampling locations, 
the phylogenetic tree showed a similarity between spe-
cies. Therefore, six clusters were shown.

Antibiotic resistance profiles and genes. Disk dif-
fusion tests showed that the isolates’ antibiotic resistance 
profiles were diverse (tested according to EUCAST 2018 

guidelines). Resistance was detected against different 
families, including β-lactams, fluoroquinolones, amino-
glycosides, tetracycline, and macrolides. We noted that 
isolate Aeromonas salmonicida 32 was only resistant to 
ampicillin by the production of TEM-1β-lactamase. The 
other isolates were resistant to less than two antibiotics 
by the production of different resistance enzymes, like 
CTX-M-1, OXA-48, SHV-1, CTX-M-9, or OXA-1. Only 
two isolates, E. coli 3 and Klebsiella pneumoniae 39 were 
resistant to quinolones by the expression of qnrB.

Heavy metal resistance profiles. Growth of all 
strains was inhibited at silver nitrate, copper, and mer-
cury at concentrations starting from 0.032 to 0.064 mM, 
1.5 to 6 mM, and from 0.02 to 0.08 mM, respectively. 
A high MIC value for silver was observed for 92.30% 
of the isolates collected from the ten sites. Only three 
isolates were sensitive to silver, two from Beja and 
Essijoumi Lagoon, and one from Melian Rades Wedi.

The growth of strains was inhibited at the cop-
per concentrations starting from 3 to 6 mM. Copper 
resistance in relation with sites was as follows: 100% 
of sensible isolates were detected in Majerda River 

Fig. 1. Phylogenetic tree based on the partial 
16S rRNA gene sequences of the 39 isolates. 
Ten colors used to distinguish ten differ-
ent sampling sites classified from north to 
south of Tunisia: Dark blue: Menzel Jemil; 
Orange: Iron factory; Red: Tinjahwedi 
Bizerte; Cyan: Collector between wastewa-
ter treatment plant (CWTP) of Beja; Green: 
Marsh Sejoumi; Yellow: Milian Rades Wedi; 
Light purple: Majerda River; Pink: Lebna
wedi Cap Bon; Dark purple: Om Larayes 

Gafsa; Grey: Golf of Gabes.
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showing MIC values from 0.75 to 1.5 mM; < 80% of 
sensible isolates were detected in Gafsa (about four 
from a total of five isolates), which demonstrated the 
lowest MIC values from 0.625 to 1.5 mM; < 50% of sen-
sible isolates were detected in Essijoumi Lagoon with 
MIC values similar to that of the isolates from Gafsa; 
< 25% of isolates were detected in each site with MIC 
values ranged from 0.625 to 1.5 mM. As a result, 75% 
of isolates resistant to copper were detected in the fol-
lowing Sites: I, II, III, IV, VI, IX, and X followed by 50% 
of the resistant isolates detected in Site V, and 20% of 
the isolates were detected in Gafsa (Site VIII). However, 
none of the isolates resistant to copper were detected in 
Majerda River (Site VII). Resistant and sensible isolates 
were detected with different percentages from one site 
to another as follows: 100% of isolates were detected 
in Lebna wedi Cab Bon with a low MIC: equal to 
0.005 mM; < 75% of isolates detected in Gulf of Gabes 
were sensible to mercury with the MIC values ranged 
from 0.0025 to 0.008 mM; < 50% of sensible isolates 
were isolates from Bizerte (Site I, II, and III) with the 
MIC values ranged from 0.0025 to 0.005 mM; < 40% of 
isolates were sensible to mercury with the MIC values 
equal to 0.005 mM belonged to Site VIII; < 33% sensible 
isolates collected from Collector between wastewater 
treatment plant (CWTP) of Beja, Melian Rades Wedi, 
and Majerda River. All isolates collected from Essoujimi 
River were resistant to mercury with the MIC values 
equal to 0.08 mM. 

A high percentage of resistance to silver was shown 
for 92.30% of the total isolates. Furthermore, 22 isolates 
(56.41%) showed high resistance to copper, and about 
half of the isolates (51.28%) showed high resistance 
to mercury.

Identification of the heavy metal resistance encod-
ing genes. PCR amplification using the specific primers 
provided three different amplicons with a size of 400 bp 
for the silE gene, 410 bp for the cusA gene, and 280 bp 
for the merA gene (Fig. 2). Sequencing confirmed 
amplification of the correct fragment and showed that 
silE was the most common. The silver binding protein 
gene silE was detected in all isolates collected from the 
ten sites except for one isolate from each Site (IV, V, and 
VI), which was deprived of it. Reported MICs of silver 
for resistant isolates did not inhibit colony growth at 
0.032 mM to 0.064 mM (Table IV). The copper resist-
ance gene cusA was detected in 100% isolates from 
Site III, 80% of isolates from Site II, 75% isolates from 
Site (I, VIII and X), 66% of isolates from Site IV, 50% 
of isolates from the Site V, 33% of isolates isolated from 
Site VI, and absent in isolates collected from Sites VII 
and XI. Reported MICs of copper for resistant isolates 
did not inhibit colony growth at 3 mM to 6 mM.

The mercuric reductase gene merA were detected 
in 100%, 75%, 66%, 50%, 40%, 33%, and 25% isolates 

collected from Site V, IX, (IV, VI), (I, III), II, VII, X, 
respectively. No gene was detected in the isolates col-
lected from Site VIII. Reported MIC of mercury for 
resistant isolates did not inhibit colony growth at 0.02 
to 0.08 mM. Ten isolates harbored silE, cusA, and 
merA. For only one isolate, identified as Pseudomonas 
putida 23, no amplification was observed. Therefore, we 
observed a significant correlation between the detec-
tion of resistance genes and MIC determinations. 

Structural and functional analyses of protein 
binding site. The complete sequence of the extracel-
lular heavy metal-binding protein SilE of pMG101 
from Salmonella (AAD1171743) is composed of 143 
amino acids (Asiani et al. 2016). Sequence alignment 
of the partial SilE sequence obtained from the 39 iso-
lates (this study) and the SilE of pMG101 showed that 
84.6% of the SilE sequences were 100% identical to 
each other and the SilE of pMG101. The rest (15.4%) 
showed some sequence variation from the SilE of 
pMG101 (Fig. 3). Nevertheless, all isolates showed the 
conserved histidine and methionine residues in their 
sequences and the Ag+ binding motif characteristic to 
SilE (Asiani et al. 2016).

The complete sequence of CusA efflux pump of 
the E. coli (CusA P30854) is composed of 1,047 amino 
acids. Sequence alignment of the partial CusA protein 
from ten isolates with CusA from E. coli (CusA P30854) 
showed various mutations. A minor difference detected 
between partial CusA sequence from E. coli 3 and the 
consensus E149G and V267I.

Fig. 2. Detection by PCR of heavy metal resistance genes.
a – Amplicon of silE of Enterobacter cloacae 27 (400 bp); 

b – Amplicon of cusA of Klebsiella pneumoniae 13 (410 bp); 
c – Amplicon of merA of Pseudomonas putida 26 (285 bp); 

M – Size Marker 1 kb Plus.



Antibiotic and heavy metal resistant bacteria in Tunisia2 167

Fi
g.

 3
. 

Se
qu

en
ce

 a
lig

nm
en

t o
f t

he
 p

ar
tia

l S
ilE

 p
ro

te
in

 fr
om

 3
9 

iso
la

te
s w

ith
 S

ilE
 fr

om
 p

M
G

10
1 

(S
ilE

 A
A

D
11

74
3)

. L
et

te
rs

 sh
ow

s r
es

id
ue

s d
iff

er
en

t f
ro

m
 th

e 
co

ns
en

su
s. 

C
on

se
rv

ed
 h

ist
id

in
e

an
d 

m
et

hi
on

in
e 

re
sid

ue
s a

re
 m

ar
ke

d 
ab

ov
e 

w
ith

 e
ith

er
 a

 ci
rc

le
 o

r a
 sq

ua
re

, r
es

pe
ct

iv
el

y.



Ben Miloud S. et al. 2168

Ps
eu

do
m

on
as

 a
ng

ui
lli

se
pt

ica
 1

	
M

J. 
Bi

ze
rt

e	
0.

06
4 

(R
) 0

.6
25

(S
) 0

.0
8 

(R
)	

sil
E,

 m
er

A
	

A
M

P,
 A

TM
, F

O
S	

bl
a TE

M

Al
ca

lig
en

es
 eu

tro
ph

us
 2

	
M

J. 
Bi

ze
rt

e	
0.

06
4 

(R
) 3

 (R
) 0

.0
05

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 C
A

Z	
bl

a TE
M

Es
ch

er
ich

ia
 co

li.
 3

	
M

J. 
Bi

ze
rt

e	
0.

06
4 

(R
) 6

 (R
) 0

.0
02

5 
(S

)	
sil

E,
 cu

sA
	

A
M

P,
 T

IC
, P

IP
,C

X
M

, C
FM

, C
A

Z,
 A

TM
, G

M
N

, N
ET

, T
O

B,
 C

TX
	

bl
a TE

M
, b

la
C

TX
-M

-1
, q

nr
B

St
ap

hy
lo

co
cc

us
 a

ur
eu

s 4
	

M
J. 

Bi
ze

rt
e	

0.
06

4 
(R

) 3
(R

) 0
.0

8 
(R

)	
sil

E,
 cu

sA
, m

er
A

	
A

M
P,

 A
TM

, F
O

S,
 C

IP
, L

EV
	

bl
a TE

M

Ps
eu

do
m

on
as

 m
en

do
cin

a 
5	

IF
 o

f B
iz

er
te

 M
B	

0.
03

2 
(R

) 3
(R

) 0
.0

8 
(R

)	
sil

E,
 cu

sA
, m

er
A

	
A

M
P,

 A
TM

, F
O

S	
bl

a TE
M

Al
ca

lig
en

es
 eu

tro
ph

us
 6

	
IF

 o
f B

iz
er

te
 M

B	
0.

06
4 

(R
) 6

(R
) 0

.0
05

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 C
A

Z,
 S

XT
, C

H
L	

bl
a TE

M

Kl
eb

sie
lla

 p
ne

um
on

ia
e 7

	
IF

 o
f B

iz
er

te
 M

B	
0.

06
4 

(R
) 3

(R
) 0

.0
8 

(R
)	

sil
E,

 cu
sA

, m
er

A
	

A
M

P,
 T

IC
, F

O
X

, F
EP

, E
TP

, A
M

C
, C

A
Z,

 IM
P,

 S
XT

, C
TX

, F
O

S,
	

bl
a TE

M
, b

la
SH

V, b
la

C
TX

-M
-1

,
				





 C

LS
, N

O
R,

 C
IP

, G
M

N
, A

K
N

, N
ET

, T
O

B,
 N

FE
, M

N
O

, T
ET

	
bl

a O
X

48
, q

nr
B

Ps
eu

do
m

on
as

 p
ut

id
a 

8	
IF

 o
f B

iz
er

te
 M

B	
0.

06
4 

(R
) 1

.5
 (S

) 0
.0

05
 (S

)	
sil

E	
A

M
P,

 T
IC

, T
C

C
, P

IP
, F

EP
, C

A
Z,

 A
TM

, F
O

S	
bl

a TE
M

Al
ca

lig
en

es
 fa

ec
al

is 
9	

IF
 o

f B
iz

er
te

 M
B	

0.
06

4 
(R

) 3
 (R

) 0
.0

05
 (S

)	
sil

E,
 cu

sA
	

A
M

P,
 C

A
Z	

bl
a TE

M

Ps
eu

do
m

on
as

 m
en

do
cin

a 
10

	
Ti

nj
ah

 w
ed

i, 
Bi

ze
rt

e	
0.

06
4 

(R
) 1

.5
 (S

) 0
.0

8 
(R

)	
sil

E,
 cu

sA
, m

er
A

	
A

M
P,

 A
TM

, F
O

S	
bl

a TE
M

Ps
eu

do
m

on
as

 m
en

do
cin

a 
11

	
Ti

nj
ah

 w
ed

i, 
Bi

ze
rt

e	
0.

03
2 

(R
) 3

 (R
) 0

.0
05

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 T
C

C
, F

O
S	

bl
a TE

M

Al
ca

lig
en

es
 fa

ec
al

is 
12

	
Ti

nj
ah

 w
ed

i, 
Bi

ze
rt

e	
0.

06
4 

(R
) 3

 (R
) 0

.0
05

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 C
A

Z,
 C

H
L	

bl
a TE

M

Kl
eb

sie
lla

 p
ne

um
on

ia
e 1

3	
Ti

nj
ah

 w
ed

i, 
Bi

ze
rt

e	
0.

03
2 

(R
) 3

 (R
) 0

.0
4 

(R
)	

sil
E,

 cu
sA

, m
er

A
	

A
M

P,
 T

IC
, A

M
C

, N
A

L,
 N

O
R,

 C
H

L 
,T

G
C

, M
N

O
, T

ET
	

bl
a TE

M
, b

la
SH

V

Ps
eu

do
m

on
as

 fl
uo

re
sc

en
s 1

4	
C

W
TP

 o
f B

ej
a	

0.
06

4 
(R

) 3
 (R

) 0
.0

05
 (S

)	
sil

E,
 cu

sA
	

A
M

P,
 T

IC
, A

TM
, F

O
S,

 IM
P,

 M
EM

,	
bl

a TE
M

Ps
eu

do
m

on
as

 p
ut

id
a 

15
	

C
W

TP
 o

f B
ej

a	
0.

06
4 

(R
) 1

.5
 (S

) 0
.0

8 
(R

)	
sil

E,
 m

er
A

	
A

M
P,

 T
IC

, T
C

C
	

bl
a TE

M

Ps
eu

do
m

on
as

 p
ut

id
a 

16
	

C
W

TP
 o

f B
ej

a	
0.

00
8 

(S
) 3

 (R
) 0

.0
4 

(R
)	

cu
sA

, m
er

A
	

A
M

P,
 T

IC
, T

C
C

, P
IP

, F
EP

, C
A

Z,
 A

TM
, F

O
S	

bl
a TE

M

Ae
ro

m
on

as
 sa

lm
on

ici
da

 1
7	

M
ar

sh
 S

ej
ou

m
i	

0.
03

2 
(R

) 1
.5

 (S
) 0

.0
8 

(R
)	

sil
E,

 m
er

A
	

A
M

P,
 T

IC
	

bl
a TE

M

Al
ca

lig
en

es
 eu

tro
ph

us
 1

8	
M

ar
sh

 S
ej

ou
m

i	
0.

00
8 

(S
) 0

.6
25

 (S
) 0

.0
8 

(R
)	

m
er

A
	

A
M

P,
 C

A
Z	

bl
a TE

M

Ps
eu

do
m

on
as

 a
lca

lig
en

es
 1

9	
M

ar
sh

 S
ej

ou
m

i	
0.

00
64

(R
) 3

 (R
) 0

.0
8 

(R
)	

sil
E,

 cu
sA

, m
er

A
	

A
M

P,
 T

IC
, P

IP
, T

C
C

, F
O

S	
bl

a TE
M

En
te

ro
ba

ct
er

 cl
oa

ca
e 2

0	
M

ar
sh

 S
ej

ou
m

i	
0.

06
4 

(R
) 6

 (R
) 0

.0
8 

(R
)	

sil
E,

 cu
sA

, m
er

A
	

A
M

P,
 T

IC
, F

O
X

, A
M

C
, C

TX
	

bl
a TE

M
, b

la
O

X
A-

1, b
la

SH
V
,

		


 			



bl

a C
TX

-M
-9

Ta
bl

e 
IV

Ph
en

ot
yp

ic
 a

nd
 m

ol
ec

ul
ar

 ch
ar

ac
te

ris
tic

s o
f a

nt
ib

io
tic

 a
nd

 h
ea

vy
 m

et
al

 re
sis

ta
nt

 is
ol

at
es

 co
lle

ct
ed

 fr
om

 p
ol

lu
te

d 
w

at
er

 in
 T

un
isi

a.

St
ra

in
s

Si
te

s
H

M
 re

sis
ta

nc
e

ge
ne

s
A

B 
re

sis
ta

nc
e 

pr
of

ile
M

IC
s o

f H
M

 (µ
g/

m
l)

A
g2+

 C
u2+

 H
g2+

A
B 

re
sis

ta
nc

e 
ge

ne
s



Antibiotic and heavy metal resistant bacteria in Tunisia2 169

A
K

N
 –

 A
m

ik
ac

in
; A

M
C

 –
 A

m
ox

ic
ill

in
-C

la
vu

la
ni

c 
ac

id
; A

TM
 –

 A
zt

re
on

am
; C

A
Z 

– 
C

eft
az

id
im

; C
FM

 –
 C

ef
ix

im
; C

FN
 –

 C
ef

al
ex

in
; C

H
L 

– 
C

hl
or

am
pe

ni
co

l; 
C

IP
 –

 C
ip

ro
flo

xa
ci

n;
 C

LS
 –

 C
ol

ist
in

; C
TX

 –
 C

ef
ot

ax
im

; 
C

X
M

 –
 C

ef
ur

ox
im

; E
TP

 –
 E

rt
ap

en
em

; F
EP

 –
 C

ef
ep

im
; F

O
S 

– 
Fo

sf
om

ic
in

; F
O

X
 –

 C
ef

ox
iti

n;
 G

M
N

 –
 G

en
ta

m
ic

in
; I

M
P 

– 
Im

ip
en

em
; L

EV
 –

 L
ev

ofl
ox

ac
in

; M
EP

 –
 M

er
op

en
em

; M
N

O
 –

 M
in

oc
yc

lin
; N

A
L 

– 
N

al
id

ix
ic

 a
ci

d;
 

N
ET

 –
 N

et
ilm

ec
in

; N
M

N
 –

 N
eo

m
yc

in
; P

IP
 –

 P
ip

er
ac

ill
in

; S
XT

 –
 T

rim
et

ho
pr

im
-S

ul
fa

m
et

ho
xa

zo
le

; T
C

C
 –

 T
ic

ar
ci

lli
n-

C
la

vu
la

ni
c 

ac
id

; T
ET

 –
 T

et
ra

cy
cl

in
e;

 T
G

C
 –

 T
ig

ec
yc

lin
; T

IC
 –

 T
ic

ar
ci

lli
n;

 T
O

B 
– 

To
br

am
yc

in
; 

TZ
P 

– 
Pi

pe
ra

ci
lli

n-
Ta

zo
ba

ct
am

; s
ilE

 –
 si

lv
er

-b
in

di
ng

 p
ro

te
in

; m
er

A
 –

 m
er

cu
ry

 II
 re

du
ct

as
e;

 cu
sA

 –
 c

at
io

n 
effl

ux
 sy

st
em

 p
ro

te
in

 C
us

A

Ba
cil

lu
s c

oa
gu

la
ns

 2
1	

M
ili

an
 R

ad
es

 W
ed

i	
0.

06
4 

(R
) 3

 (R
) 0

.0
2 

(R
)	

sil
E,

 cu
sA

, m
er

A
	

A
M

P,
 T

IC
, T

C
C

, P
IP

, F
EP

, C
A

Z,
 A

TM
, F

O
S	

bl
a TE

M

Al
ca

lig
en

es
 eu

tro
ph

us
 2

2	
M

ili
an

 R
ad

es
 W

ed
i	

0.
06

4 
(R

) 0
.6

25
 (S

) 0
.0

8 
(R

)	
sil

E,
 m

er
A

	
A

M
P,

 C
A

Z,
 S

XT
, C

H
L	

bl
a TE

M

Ps
eu

do
m

on
as

 p
ut

id
a 

23
	

M
ili

an
 R

ad
es

 W
ed

i	
0.

00
4 

(S
) 0

.6
25

 (S
) 0

.0
05

 (S
)	

–	
A

M
P,

 A
TM

, F
O

S	
bl

a TE
M

, b
la

SH
V

Al
ca

lig
en

es
 eu

tro
ph

us
 2

4	
M

aj
er

da
 R

iv
er

	
0.

06
4 

(R
) 1

.5
 (S

) 0
.0

05
 (S

)	
sil

E	
A

M
P,

 C
A

Z	
bl

a TE
M

Se
rr

at
ia

 m
ar

ce
sc

en
s 2

5	
M

aj
er

da
 R

iv
er

	
0.

06
4 

(R
) 1

.5
 (S

) 0
.0

2 
(R

)	
sil

E,
 m

er
A

	
A

M
P,

 T
IC

, F
O

X
, A

M
C

	
bl

a TE
M

, b
la

O
X

A-
1, b

la
SH

V

Ps
eu

do
m

on
as

 p
ut

id
a 

26
	

M
aj

er
da

 R
iv

er
	

0.
03

2 
(R

) 0
.7

5 
(S

) 0
.0

2 
(R

)	
sil

E,
 m

er
A

	
A

M
P,

 F
O

S,
 A

TM
, L

EV
	

bl
a TE

M

En
te

ro
ba

ct
er

 cl
oa

ca
e 2

7	
Le

bn
a 

w
ed

i C
.B

	
0.

06
4 

(R
) 3

 (R
) 0

.0
05

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 T
IC

, F
O

X
, A

M
C

, T
G

C
, M

N
O

, T
ET

	
bl

a TE
M

, b
la

O
X

A-
1

Se
rr

at
ia

 fo
nt

ico
la

 2
8	

Le
bn

a 
w

ed
i C

.B
	

0.
06

4 
(R

) 1
.5

 (S
) 0

.0
05

 (S
)	

sil
E	

A
M

P,
 T

IC
, A

M
C

, C
TX

, C
LS

	
bl

a TE
M

, b
la

C
TX

-M
-9

Al
ca

lig
en

es
 fa

ec
al

is 
29

	
Le

bn
a 

w
ed

i C
.B

	
0.

03
2 

(R
) 3

 (R
) 0

.0
05

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 C
A

Z	
bl

a TE
M

Kl
eb

sie
lla

 p
ne

um
on

ia
e 3

0	
Le

bn
a 

w
ed

i C
.B

	
0.

06
4 

(R
) 6

 (R
) 0

.0
05

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 T
IC

, A
M

C
	

bl
a TE

M
, b

la
SH

V

Ps
eu

do
m

on
as

 fl
uo

re
sc

en
s 3

1	
O

m
 L

ar
ay

es
, G

af
sa

	
0.

06
4 

(R
) 3

 (R
) 0

.0
8 

(R
)	

sil
E,

 cu
sA

, m
er

A
	

A
M

P,
 T

IC
, T

C
C

, P
IP

, F
EP

, A
TM

, I
M

P,
 M

EM
, F

O
S	

bl
a TE

M

Ae
ro

m
on

as
 sa

lm
on

ici
da

 3
2	

O
m

 L
ar

ay
es

, G
af

sa
	

0.
06

4 
(R

) 0
.6

25
(S

) 0
.0

05
 (S

)	
sil

E	
A

M
P	

bl
a TE

M

Ae
ro

m
on

as
 sa

lm
on

ici
da

 3
3	

O
m

 L
ar

ay
es

, G
af

sa
	

0.
06

4 
(R

) 1
.5

 (S
) 0

.0
8 

(R
)	

sil
E,

 m
er

A
	

A
M

P,
 T

IC
, F

EP
, C

A
Z,

 A
TM

	
bl

a TE
M

Ps
eu

do
m

on
as

 p
ut

id
a 

34
	

O
m

 L
ar

ay
es

, G
af

sa
	

0.
03

2 
(R

) 1
.5

 (S
) 0

.0
8 

(R
)	

sil
E,

 m
er

A
	

A
M

P,
 T

IC
, T

C
C

, P
IP

, T
ZP

, C
A

Z,
 A

TM
	

bl
a TE

M

Ps
eu

do
m

on
as

 fl
uo

re
sc

en
s 3

5	
O

m
 L

ar
ay

es
, G

af
sa

	
0.

00
64

 (R
) 0

.7
5 

(S
) 0

.0
05

 (S
)	

sil
E	

A
M

P,
 T

IC
, T

C
C

, A
TM

, M
EM

	
bl

a TE
M

Ps
eu

do
m

on
as

 p
ut

id
a 

36
	

G
ul

f o
f G

ab
es

	
0.

06
4 

(R
) 3

 (R
) 0

.0
08

 (S
)	

sil
E,

 cu
sA

	
A

M
P,

 T
IC

, T
C

C
, P

IP
, T

ZP
, A

TM
, M

EM
	

bl
a TE

M

Se
rr

at
ia

 m
ar

ce
sc

en
s 3

7	
G

ul
f o

f G
ab

es
	

0.
06

4 
(R

) 1
.5

 (S
) 0

.0
05

 (S
)	

sil
E	

A
M

P,
 F

O
X

, A
M

C
, T

G
C

, M
N

O
, T

ET
	

bl
a TE

M

Ps
eu

do
m

on
as

 fl
uo

re
sc

en
s 3

8	
G

ul
f o

f G
ab

es
	

0.
00

64
 (R

) 6
 (R

) 0
.0

8 
(R

)	
sil

E,
 cu

sA
, m

er
A

	
A

M
P,

 T
IC

, T
C

C
, P

IP
, T

ZP
, F

EP
, C

A
Z,

 A
TM

, M
EM

, L
EV

, F
O

S	
bl

a TE
M

Kl
eb

sie
lla

 p
ne

um
on

ia
e 3

9	
G

ul
f o

f G
ab

es
	

0.
03

2 
(R

) 3
 (R

) 0
.0

02
5 

(S
)	

sil
E,

 cu
sA

	
A

M
P,

 T
IC

, T
C

C
, P

IP
, C

FN
, C

X
M

, C
FM

, C
A

Z,
 F

EP
, A

TM
,	

bl
a SH

V, b
la

C
TX

-M
-1

, q
nr

B
				





G

M
N

, N
ET

, T
O

B

Ta
bl

e 
IV

C
on

tin
ue

d

St
ra

in
s

Si
te

s
H

M
 re

sis
ta

nc
e

ge
ne

s
A

B 
re

sis
ta

nc
e 

pr
of

ile
M

IC
s o

f H
M

 (µ
g/

m
l)

A
g2+

 C
u2+

 H
g2+

A
B 

re
sis

ta
nc

e 
ge

ne
s



Ben Miloud S. et al. 2170

A  similar partial CusA sequences from E. cloacae 
27, Alcaligenes feacalis 9, Bacillus coagulans 21, and 
K. pneumoniae (7, 13, 30 and 39) were different by 26% 
residues with the consensus.

Similar partial CusA sequence was showed for 
Pseudomonas alcaligenes 19 and P. putida 36. Never-
theless, both of them detected a low sequence homo
logy with 42% of different residues comparing with the 
consensus (Fig. 4).

Five hundred sixty-one amino acids compose the 
complete sequence of the mercuric reductase MerA 
protein of E. cloacae (MerA EU081910). Similar par-
tial MerA sequences of P. alcaligenes 19 and P. putida 
34 were different by seven residues comparing with the 
consensus (E. cloacae (MerA EU081910). Moreover, 
K. pneumoniae (7 and 13) showed the seven different 
residues mentioned previously for P. alcaligenes 19 and 
P.  putida 34, and showed another different extra residue 
R55V N37K, respectively (Fig. 5).

Same different residues like in P. alcaligenes 19 and 
P. putida 34 except for one residue S1A was detected in 
Alcaligenes eutrophus 22.

Discussion

In order to investigate the spread and emergence of 
environmental bacteria resistant to heavy metals in con-
taminated waters, we studied the heavy metal-resistant 
phenotype and selected marker genes for resistance to 
silver, mercury, and copper. In addition, we scored anti-
biotic resistance to evaluate the impact of heavy metal 

contamination as a selective agent in the spreading of 
antibiotic resistance. The heavy metals in the collected 
contaminated waters from ten sites over Tunisia mainly 
originated from anthropogenic activities. Sites I, II, and 
III, located near and surround the Lagoon of Bizerte, 
were subjected to urban and agricultural pollutions. 
As described by Dellali et al. (2001), agricultural ori-
gin wastes reach the lagoon due to leaching of inland 
cultivated and devoted to cereal activities (Banni et al. 
2009). With the thirteen isolates collected from Sites I, 
II, and III, the highest resistance was recorded for silver; 
100% of isolates showed the high MIC values for Ag+ 

ranging from 0.032 to 0.064 mM, and harbored the silE 
gene in the same time.

Prevalence of multidrug-resistant bacteria in the 
North of Tunisia. Ten resistant isolates from Sites  I, 
II, and III harbored the CusA efflux pump. The cusA 
gene was found in 84.6% of the isolates in I, II, and III 
Sites. All of these isolates showed high MICs of copper 
ranging from 3 to 6 mM, except for only one isolate, 
which was able to grow in a concentration of 1.5 mM, 
and harbored the gene simultaneously. The contents of 
copper of the superficial sediments of the Lagoon of 
Bizerte suggested by Dellali et al. (2001), Ouakad et al. 
(2007), and Ben Garali et al. (2010) showed a remark-
able increase of the concentrations 45 parts-per-million 
(ppm), 58 ppm, and 67 ppM respectively. These values 
are beyond the admissible limit of the National Net-
work of Observation (RNO 2007) with 30 ppm, and 
therefore, they are considered contaminated. Those 
results can explain the high level of resistance against 
copper, shown by isolates from this work.

Fig. 4. Sequence alignment of the partial Cation efflux system protein CusA from 10 isolates with E. coli P30854.
Different residues from the consensus are showed by one letter. Conserved residues are represented by points.

Fig. 5. Sequence alignment of the partial mercuric reductase protein MerA from 8 isolates with E. cloacae (MerA EU081910).
Different residues from the consensus are showed by one letter. Conserved residues are represented by points.
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On the other hand, we found the merA gene in 
only 46.15% of the isolates that could grow in con-
centrations higher than 0.04 mM. This low resistance 
against mercury can be explained by the low concen-
tration of mercury in the lagoon and surrounding 
areas, such as Bizerte, Menzel Bourguiba (0.41 ppm) 
(Mzoughi et al. 2002).

Data recorded in Essijoumi Lagoon showed that 
50% of isolates collected in this site harbored the cusA 
gene and were able to grow until a concentration of 
Cu ranged from 3 to 6 mM. The copper concentration 
recorded in this site corresponds to a high concentra-
tion (359 ppm) (Marzougui and Ben Mammou 2006); 
it is much higher than the critical values given by the 
European norm (30 ppm) (Rademacher 2001). Moreo-
ver, 75% of the isolates for which the MIC values of Ag+ 
were above 0.032 mM, harbored the silE gene. Zhang 
et al. (2019) reported that copper ions (Cu2+) could 
stimulate the conjugative transfer of silver via resistance 
nodulation-cell division (RND-type) Ag+/Cu+ efflux 
transporter that exports Ag+/Cu+ from the periplasm 
via an antiport (Randall et al. 2015).

No data in the literature evokes the contamination 
of this site by mercury. Nevertheless, 100% of isolates 
in this site harbored the merA gene with the high MIC 
value between 0.04 and 0.08 mM. Those high values are 
considered as the first values reported in the literature. 

Site VI and VII are located on the west coast of 
Tunis’s gulf and exposed to heavy metals, mainly 
transported to the marine environment (Ben Amor 
et al. 2019). The geoaccumulation index value for cop-
per (10 ppm) recorded by Ben Amor et al. (2019) has 
indicated that all samples were uncontaminated. Those 
results explained in the present work, the lowest pro-
portion (20%) of isolates that harbored the cusA gene, 
while 83% and 60% of them showed resistance to silver 
and mercury, respectively. 

Trace heavy metal, like mercury, is among the most 
severe pollutants in nature due to its toxicity. Luckily, 
it was reported by Ennouri et al. (2008) at a very low 
concentration (0.33 ppm) in the Lebna River (Site VIII). 
Regarding Hg, the concentrations are relatively low. It 
may be why isolates did not develop any resistance, 
especially that we did not detect the merA gene among 
our isolates. The metal at a concentration of only 
0.005 mM could have inhibited their growth.

Prevalence of multidrug-resistant bacteria in 
South of Tunisia. The lowest (20%) and the highest 
(100%) percentages of the resistant isolates against cop-
per and silver, respectively, were collected from Gafsa 
(Site IX). Copper inhibited the growth of 20% of iso-
lates at a concentration of 3 mM. Site IX was exposed 
to a high degree of phosphoric and heavy metals con-
tamination due to the anthropogenic activities i.e., min-
ing, manufacturing, and the use of synthetic products 

(Mekki and Sayedi 2017). It can explain why growth 
was inhibited for all isolates at a high silver nitrate con-
centration starting from 0.032 up to 0.064 mM, and that 
60% of isolates harbored merA to resist the mercury 
presence. They were able to grow in the presence of Hg+ 
at a concentration of 0.08 mM.

The leading cause of contamination of waters in 
Gabes (Site X) is the acidic industrial effluent that origi-
nated from the phosphate treatment factory. Effluents 
contain phosphogypsum particles and cause ecological 
risk to marine organisms and human health (Naifar et al. 
2018). 75% of isolates from Gabes harbored the cusA 
gene with the MIC value for copper of 3 mM. When we 
compare our results with Naifar et al. (2018) results, 
we could say that the copper concentration of 0.5 ppm 
is lower than Tunisian standards (1.5 ppm). It can stim-
ulate the resistance against copper with high MICs. 
The co-stimulation may explain those results by other 
heavy metals present with high concentrations, i.e., iron 
(16 ppm) and Zn (18 ppm). Both values exceeded the 
Tunisian standards (1 ppm) and (10 ppm), respectively.

The present study provided new information about 
silver contamination, notably the highest resistance in 
the ten sites was recorded to silver. The silE gene was 
harbored by 36 isolates (92.30%) of the total 39 isolates. 
Moreover, the silver resistance prevalence was higher 
than those observed by Edwards-Jones (2009), who 
recorded only 3.5% isolates possessing the silver resist-
ance genes silE of 172 bacterial isolates from wounds. 
The considerable difference between these studies may 
be explained by the fact that the environment always 
brings the most significant risk of being exposed to HM 
contamination.

Molecular analysis of multi-drug resistance. The 
latter encodes the extracellular heavy metal-binding 
protein (periplasmic space) SilE. Observed amino acid 
sequence variations did not concern conserved histi-
dine and methionine residues nor the Ag+ binding motif 
characteristic to SilE, described by Asiani et al. (2016). It 
allowed the corresponding isolate to maintain its ability 
to resist silver presence by producing an active SilE, and 
conserved the protein functionality in absorbing heavy 
metal ions. These results confirmed again that mutations 
observed here had no impact on the MIC value of silver.

Long et al. (2010) suggest a crystal structure of the 
CusA efflux pump methionine mediated CuI but also 
AgI heavy metal transport. The cusA gene was harbored 
by 43.4% of our isolates.

The heavy metal binding-sites are formed by three 
methionines (M573, M623, and M672) and found above 
this horizontal helix (Long et al. 2010). The partial 
sequence aligned with consensus started from AA149 to 
AA280 with conserved M230 and M271. The latter is one of 
the four channel pairs, which includes the four methio-
nine pairs (M410 and M501, M403 and M486, M391 
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and M1009, and M271 and M755) as well as the heavy 
metal binding-sites formed by the three methionines, 
facilitating heavy metal transport. The mutations that 
affected the other residues, which did not touch the 
heavy metal binding-sites or the channel, conserved 
their functionality in absorbing AgI and CuI ions. 

The mercury reductase MerA is known as an 
enzyme, reducing the ionic mercury Hg (II) to ele-
mental mercury. In bacteria, the mercury resistance is 
specified by operon (mer) that can transport Hg (II) 
and organo-mercury to the cytosol for degradation and 
reduction to Hg (0). MerA catalase, a flavin oxidore-
ductase, reduces Hg (II) to NAD(P)H dependent reac-
tion. MerA or mercury reductase can play an important 
role in the biogeochemical cycling of mercury in con-
taminated environments by partitioning mercury to the 
atmosphere (Ní Chadhain et al. 2006).

The MerA amino acid sequences’ multiple align-
ments in the present study revealed a minor difference 
in sequence patterns between our MerA protein iso-
lates and the consensus (Fig. 5). Thus, the partial MerA 
sequence did not contain both motifs. Despite the few 
mutations, mercuric reductase from our resistant iso-
lates retained the ability to reduce mercury. We suppose 
that FAD/NADP and mercury binding sites were well 
conserved in our eight resistant isolates. Among 51.2% 
of mercury-resistant isolates,, which detected the merA 
gene, only 20% of them expressed the MerA protein; 
however, the remaining isolates expressed ABC Trans-
porter, TeTR family, ATP-ase super-family, and ATP 
binding family.

Molecular aspects of cross-resistance. To better 
understand the bacterial cross-resistance and its eco-
logical risk, it was essential to elucidate the bacterial 
resistance against heavy metals and antibiotics.

The overuse of antibiotics in clinics and hospitals 
raises the emergence of resistant bacteria. Environmen-
tal bacteria, especially, showed resistance to antibiot-
ics, which were detected in different environmental 
compartments such as soils, surface water, sediments 
ground water, and waste-water (Kümmerer 2004).

In the present study, the environmental strains iso-
lated from the ten sites showed high resistance to a large 
number of antibiotics, and some were even ESBLs and 
MBLs-producers, which is a global health concern. 
This ubiquitous detection of antibiotic resistance and 
resistant genes in isolates indicates the emergence of 
antibiotic-resistant strains in the golf of Tunis and Gulf 
of Gabes, which threatens the health of animals and 
people throughout Tunisia.

Substantial reports suggest that heavy metal con-
tamination represents an indirect selection agent that 
contributes to the maintenance and spread of antibiotic 
resistance factors (Baker-Austin et al. 2006). The silE 
gene can be harbored on plasmids (Ben Miloud et al. 

2020) carrying antibiotic resistance genes, and silver 
can thereby have an indirect selective pressure. Even 
more directly, silver can select for porin deficiency and 
consequently mediate a cross-resistance to β-lactams 
(Sütterlin et al. 2014). In addition, contamination by 
heavy metals such as cadmium, zinc, copper, and mer-
cury affected soil or water environment, besides they 
are toxic to bacteria. They also initiate the co-selection 
of antibiotic resistance using different mechanisms, i.e., 
agricultural soils amended with copper co-select resist-
ance to ampicillin, chloramphenicol, and tetracycline 
(Oves and Hussain 2016).

Conclusion

It is the first work describing contaminations by 
copper, silver, and mercury in ten sites in Tunisia. Such 
data were almost absent in the literature. Moreover, a 
high degree of heavy metal and antibiotic resistance 
were found in our isolates. They develop some new 
mechanisms to eliminate or reduce heavy metals or 
antibiotics’ impact.

The resistant environmental bacteria in Tunisia are 
more prevalent than we expected for both antibiotic and 
heavy metal resistance. The cross-resistance between 
them made the bacteria better fitted to the environ-
ment. It also enhances the danger and the risk of public 
health. Even though the detailed mechanisms of cross-
resistance are unclear, it will be recommended to study 
the impact of heavy metals on antibiotic resistance in 
environmental microorganisms. With the extent of pol-
lution, it is valid to study the co-existence of antibiotics 
and heavy metal resistance and their particular influ-
ence on bacteria.
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Introduction

Many environmental factors such as nutrition, 
habitat, and host genetics impact the components and 
functions within the gut microbiome (Ussar et al. 2016). 
The rumen of sheep envelops a complicated microbiota 
and acts as the primary location for fermentation of 
consumed feed (McCann et al. 2017), which directly 
impacts sheep’s health and physiological functions.

The rumen is the largest compartment of ruminants 
where plant cell walls and other herbage materials are 
degraded by intricate microbial communities predomi-
nated by bacteria (Sirohi et al. 2012). The bacteria sys-
tematically decompose plant cell materials (Flint and 
Bayer 2008) and break down plant biomass, serving as 
a  link between the sheep and the nutrients absorbed 
by the sheep. The succeeding rumen fermentation 
manufactures ammonia and short-chain fatty acids 
(SCFAs), including acetate, butyrate, and propionate. 
In a previous study, we found that diet directly impacts 

the microbiota structure of the rumen and affects the 
metabolic process in sheep muscle (Wu et al. 2020). 
However, the nutritional components that entered the 
small intestines were not analyzed.

The duodenum, the first part of the small intes-
tines, is where absorption of nutrients begins due to 
its ability to receive partially degraded food from the 
stomach. The duodenum is the most proximal phase 
of degradation, and it represents the most oversized 
diameter, the densest villi, and the deepest part within 
the small intestines. The duodenum takes fluid and bile 
produced by the pancreas and the liver, thereby assist-
ing the intestines in breaking fat, protein, and starch 
(Faichney 1969; DeGregorio et al. 1982; Lewis and 
Dehority 1985). Few studies have been done regarding 
the microbiota of the duodenum, and there is a need 
to analyze the metabolome of the duodenum, compare 
it with the microbiota of the rumen, to determine the 
structure of the bacterial community in the lambs based 
on two different feeds.
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A b s t r a c t

In our previous study, diet directly impacted the microbiota of the rumen in twin lambs. The duodenum is the first part of the small intes-
tine, so we seek to determine whether there is a difference in the digesta between the two feed groups HFLP (high fiber, low protein) and 
LFHP (low fiber, high protein), and its impact on the biodiversity and metabolism of the duodenum. Results showed that the number of 
Operational Taxonomic Units (OTUs) in the duodenum (2,373 OTUs) was more than those in the rumen (1,230 OTUs), and 143 OTUs 
were significantly different in the duodenum between the two groups. The two most predominant phyla were Bacteriodetes and Firmicutes, 
but this ratio was reversed between the rumen and duodenum of lambs fed different feedstuffs. The difference in the digesta that greatly 
changed the biodiversity of the rumen and duodenum could affect the microbial community in the gastrointestinal tract (GIT). Sixteen 
metabolites were significantly different in the duodenum between the two groups based on the metabolome analysis. The relationships were 
built between the microbiome and the metabolome based on the correlation analysis. Some metabolites have a potential role in influenc-
ing meat quality, which indicated that the diet could affect the microbiota community and finally change meat quality. This study could 
explain how the diet affects the rumen and duodenum’s microbiota, lay a theoretical basis for controlling feed intake, and determine the 
relationship between the duodenum’s microbiota and metabolism.

K e y w o r d s:  correlation analysis, digesta, metabolome, 16S rRNA sequencing, sheep
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Experimental

Materials and Methods

Preparation of feed pellets. In our previous study 
(Wu et al. 2020), two categories of feed pellets were 
prepared. One category was alfalfa (Medicago sativa) 
which belongs to the LFHP group. The other category 
was ceratoides (Ceratoides arborescens) belonging to 
the HFLP group.

Experimental animals. To avoid the influence of 
genetic background, four pairs of 3 months old twins 
Sunit lambs with an average weight of 24 ± 2.3 kg were 
used in the experiment. The details of how the twin 
lambs were grouped, monitored, fed, slaughtered, 
and their genomic DNA extracted can be seen in Wu 
et al. (2020). For microbiome analysis, the liquid phases 
of duodenum content were separated by squeezing 
them through four gauze layers (1 mm mesh). The 
fluid was divided into two parts, centrifuged at 500 g 
for 30 min at 4°C to isolate residual particles and pre-
served at –80°C.

16S rRNA sequencing of duodenum and rumen. 
To determine the structure of the bacterial commu-
nity in the lambs fed based on two different dietary 
requirements, the 16S rRNA microbiome in the duode-
num was sequenced. Microbiome DNA was extracted 
using the E.Z.N.A.® Stool DNA Kit according to the 
manufacturer’s instructions. Bacterial 16S genes were 
enlarged from microbiome DNA using V3-V4 region 
primers and arranged in sequence using the Illumina 
MiSeq PE300. A total of 181,562 tags were obtained 
from 8  specimens, with an average of 22,695.25 tags 
per specimen after being filtered and merged. The 
UCLUST (Edgar 2010) algorithm of QIIME (version 
1.8.0) (Caporaso et al. 2010) was used to group the vari-
ous tags with 97% of similarity and to obtain the Opera-
tional Taxonomic Units (OTUs). The OTUs were care-
fully annotated and carried out by the Silva database 
(Quast et al. 2013). The Mothur software version 1.30 
(Schloss et al. 2009) and UniFrac techniques (Lozupone 
and Knight 2005) were used in calculating the alpha 
and beta diversity. The 16S rRNA microbiome in the 
rumen was obtained from the NCBI SRA data under 
BioProject PRJNA659928. The same analysis pipeline 
was used for rumen microbiome.

Duodenum metabolome analysis. In this research, 
metabolites were separated from the sheep’s duodenum 
and analyzed with liquid chromatography combined 
with mass spectrometry (LC/MS). An untargeted 
metabolic analysis was done on the duodenum of the 
four pairs of the twin lambs. The variation between the 
two groups (HFLP and LFHP) was identified by using 
principal components analysis (PCA) and orthogo-
nal partial least squares discriminant analysis (PLS-
DA) (Bylesjö et al. 2006): p-value ≤ 0.05 + VIP ≥ 1. The 
p-value was tested by Mann-Whitney-Wilcoxon Test/
Student’s t-test, and the VIP (Variable Important in the 
Projection) is the PLS-DA first principal component. 
To increase the sample size for metabolic analysis, two 
new samples in each group were created and averagely 
mixed to produce more sample size. Sample A and B 
were mixed to produce E (1:1, v/v), and samples C and 
D were mixed to form F (1:1, v/v). Ions were assigned 
to metabolites based on online databases, includ-
ing Human Metabolome Database (HMDB; https://
www.hmdb.ca), Biofluid Metabolites Database (http:// 
metlin.scripps.edu), mzCloud (https://www.mzcloud.
org), Lipid Maps (https://www.lipidmaps.org), and 
MassBank (https://www.massbank.jp).

Joint analysis of microbiota and metabolome. 
Spearman’s correlation analysis between the micro
biota and metabolites was carried out, coefficients were 
produced (Looney and Hagan 2007), and was signifi-
cant (p ≤ 0.05). The screening condition was |rho| > 0.8. 
Based on the corresponding relationship between the 
final metabolite and OTUs, the information was input-
ted into Cytoscape software (https://cytoscape.org) to 
draw a network diagram.

Results

The microbial diversity of the rumen and duode-
num. Based on Simpsons and Shannon indices, there 
was a significant difference in the rumen’s microbial 
diversity between the HFLP and the LFHP groups 
(p < 0.05). This could be the effect of the high fiber con-
tent in the HFLP diet (Table II). However, there was 
no significant difference in the duodenum’s microbial 
diversity between the two groups (Table III). The diver-
sity of the microbiota in the HFLP group was higher 

LFHP	 89.4	 16.3	 16.1	 2.4	 25.2	 46.2
HFLP	 90.5	 15.8	 11.8	 2.2	 29.6	 57.5

Table I
Nutritional components of two feed stuffs.

LFHP – low fiber high protein level, HFLP – high fiber low protein level, ADF – acid detergent fiber, CF – crude fat,
CP – crude protein, DM – dry matter, GE – gross energy, NDF – neutral detergent fiber

DM (%) GE (MJ/kg DM) CP (% DM) CF (% DM) ADF (% DM) NDF (% DM)
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than the LFHP group in the rumen. However, that pat-
tern could not be entirely detected in the duodenum. 
The diversity of the microbiota in the duodenum was 
higher than those in the two groups’ rumen.

Phylum community distribution of the rumen 
and duodenum. On the phylum level, the abundance 
of 11 phyla of the rumen and duodenum was calculated 
and used to draw histograms for comparisons. A greater 
number of sequences obtained from the phylum class 
pertained to the phyla Bacteroidetes, and Firmicutes but 
at the duodenum’s phylum level, a larger proportion of 
the sequences obtained related to Firmicutes, and Bacte­
roidetes. The major bacteria in the rumen’s phylum level 
were Bacteriodetes, but were replaced with Firmicutes in 
the duodenum. The major bacteria were higher in the 
LFHP group than the HFLP group for the rumen and 
duodenum (Fig. 1 and 2).

Genus community distribution of the rumen 
and duodenum. A detailed examination of the rela-
tive abundance of bacterial OTUs showed that the 
two different feeds have a varied influence on both 
the rumen and duodenum’s microbiota. According to 
the 16s rRNA gene of the rumen and duodenum bac-
teria sequences, 1,230 OTUs and 2,373 OTUs among 
eight rumen and duodenum samples were identified. In 
the duodenum, 143 OTUs were significantly different 
between the two groups.

Ninety-two non-identical genera were designated 
from the sequences at the genus level. The genera were 
among almost all specimens. Prevotella was abundant 
in the rumen of the LFHP group compared to the HFLP 
group (Fig. 3a). Unclassified Lachnospiraceae were pre
valent in the LFHP group’s duodenum compared to the 
HFLP group (Fig. 3b). The high protein in the LFHP 
feed increases the genera Prevotella and unclassified 
Lachnospiraceae of the rumen and duodenum.

Comparison between the microbiota of ceratoides 
(HFLP) and alfalfa (LFHP) feeds, and their Firmi-
cutes/Bacteriodetes (F:B) ratio in the rumen and duo-
denum. The F:B ratio in the rumen microbiota of the 
twin lambs fed on the LFHP pellets was 0.104, and that 
of the HFLP pellets was 0.275 (Fig. 4a and 4b). The F:B 
ratio in the duodenum microbiota of the twin lambs fed 
on the LFHP pellets was 6.419, and that of the HFLP 
pellets was 5.356 (Fig. 4c and 4d). There was a change in 
the F:B ratios in the rumen and duodenum even under 
the different feeds.

Differential expression metabolites between two 
groups. After the data was filtered, 3,696 stable metabolic 
features were detected. A partial least squares discri-
minant analysis (PLS-DA) was performed between the 
two groups to identify metabolic differences in duode-
num of twin sheep fed different diets (Fig. 5). The results 
showed that 407 significantly different metabolites 

Shannon	 5.055 ± 0.1589	 4.235 ± 0.181	 0.014
Simpsons	 0.019 ± 0.004	 0.066 ± 0.041	 0.116
Observed species (Obs)	 992.000 ± 68.474	 930.000 ± 18.037	 0.154
Ace	 1051.658 ± 64.182	 992.341 ± 26.875	 0.102
Chao 1	 1059.470 ± 67.920	 1017.360 ± 29.399	 0.165

Table II
The diversity analysis of the rumen microbiota of twin lambs.

The HFLP group was fed with ceratioids and the LFHP group of twin lambs was fed with alfalfa in 
the phylum of the rumen. Presented parameters are sample estimators of total species with sample 
identifications (Sample ID). While Obs, Ace, and richness (Chao 1) are used to describe the species 
number, Simpson and Shannon’s indices are used to indicate how diverse the rumen microbiota is.

Items HFLP LFHP p-value

Shannon	 7.855 ± 0.880	 7.828 ± 0.838	 0.964
Simpsons	 0.985 ± 0.006	 0.986 ± 0.005	 0.391
Observed species (Obs)	 966.750 ± 293.842	 905.000 ± 247.818	 0.781
Chao 1	 1278.063 ± 241.678	 1223.815 ± 327.198	 0.843

Table III
The diversity analysis of duodenum microbiota of twin lambs.

The HFLP group was fed with ceratoides, the LFHP group of twin lambs was fed with alfalfa in the 
phylum of the duodenum. Presented parameters are sample estimators of total species with sample 
identifications (Sample ID). While Obs and richness (Chao 1) are used to describe the species num-
ber, Simpsons and Shannon’s indices are used to indicate how diverse the duodenum microbiota is.

Items HFLP LFHP p-value
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(p-value ≤ 0.05) were screened between the two groups. 
In the HFLP group, 273 of the metabolites showed 
a lower expression, and 134 of the metabolites showed 
a  higher expression. Tandem mass spectrometry 
(MS/MS) was used to detect 16 significantly differ-
ent metabolites indicated in the heat map (Fig. 6). The 
HFLP group increased 7 of the metabolites while that of 

the LFHP group influenced 9 of the metabolites. Some 
of the metabolites discussed are adenosine, taurine, 
L-alanine, and nicotinic acid (Fig. 7). It was detected 
that there was a significant difference between the 
HFLP diet and the LFHP diet (p-value ≤ 0.05).

The correlation analysis indicated that the abun-
dance of 5,6-dihydrouracil correlated positively with 

Fig. 1.  This figure shows a comparison between the phylum composition of the bacteria in the rumen
and duodenum of twin lambs. The letters A1-D1 represent HFLP group, and A2-D2 represent LFHP group.

Fig. 2. The phylum composition of rumen and duodenum of twin lambs. The letters A1-D1 represent the HFLP group,
and the A2-D2 represent the LFHP group of phylum and duodenum, respectively.
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Fig. 3. The genus community distribution of rumen and duodenum.
a) The genus community distribution of rumen. The letters A1-D1 represent the first group fed with HFLP and A2-D2 represents the second group 
of twin lambs fed with LFHP in the genus. b) The genus community distribution of duodenum. The letters A1-D1 represent the first group fed with 

HFLP and A2-D2 represents the second group of twin lambs fed with LFHP in the genus.

Fig. 4.  Comparison between HFLP and LFHP’s microbiota and their F:B ratio in the rumen and duodenum.
The letters a) and b) represent HFLP pellets and LFHP pellets, respectively, of the rumen. Enterotypes were strongly associated with feeds a) and 
b) which show LFHP pellets (Bacteroidetes) against HFLP pellets (Firmicutes). LFHP pellets displayed a substantial increase in Bacteroidetes and 
a reduction in Firmicutes. The letters c) and d) represent HFLP and LFHP pellets, respectively, of the duodenum. Enterotypes were strongly associated 
with feeds c) and d) which show LFHP pellets (Bacteroidetes) against HFLP pellets (Firmicutes). HFLP pellets displayed an increase in Firmicutes and 

a reduction in Bacteroidetes.
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adenosine, and negatively correlated with 9(R)-HODE 
and acrylic acid. Adenosine was observed to be posi-
tively correlated with 5,6-dihydrouracil, and correlated 

Fig. 5.  PLS-DA score plot came from liquid chromatography combined with mass spectrometry (LC/MS) spectra
for the HFLP group (blue dots) and the LFHP group (red dots).

Fig. 6.  Heat map built by the 407 significantly different metabolites (p-value ≤ 0.05) in the HFLP and LFHP groups.
The red color represents the LFHP group, and the blue represents the HFLP group.

negatively with 9(R)-HODE and acrylic acid. 9(R)-
HODE had a positive correlation with acrylic acid, 
and correlated negatively with 5,6-dihydrouracil and 
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The bacterium Candidatus saccharibacteria (OTU31, 
OTU970) is positively correlated with the metabolites 
9(R)-HODE and acrylic acid and correlated negatively 
with 5,6-dihydrouracil, adenosine, and L-alanine. 
The bacterium Cyanobacteria sreptophyta (OUT217) 
was found to be correlated positively with 9(R)-
HODE and acrylic acid but correlated negatively with 
5,6-dihydrouracil, adenosine, and L-alanine. The bac-
teria Firmicutes blautia, Firmicutes Firmicutes unclas-
sified, and Firmicutes Eubacterium sp. C2 (OTU224, 
OTU769, OTU798) which all belong to phylum Firmi­
cutes were positively correlated with 9(R)-HODE and 
acrylic acid but negatively correlated with 5,6-dihy-
drouracil, adenosine, and L-alanine. The bacterium 
Planctomycees planctomycetaceae (OTU1882) correlated 

adenosine. Also, acrylic acid was seen to be correlated 
positively with 9(R)-HODE but negatively correlated 
with 5,6-dihydrouracil, and adenosine (Fig. 8).

Relationship between duodenal microbiota and 
metabolites. Correlation analysis between the micro-
biota and metabolites was carried out to find the pos-
sible coexistence. 79 correlations were related positively 
(|rho| > 0.8, p-value ≤ 0.05) while 194 correlations were 
related negatively (|rho| > 0.8, p-value ≤ 0.05) between 
the OTUs and the metabolites. Prevotella and 1-amino
cyclohexanecarboxylic acid had the greatest positive cor-
relations (r = 0.84, p-value ≤ 0.05). Methanobrevibacter 
and 3-deshydroxysappanol trimethyl ether were detec
ted to have the greatest negative correlations (r = –0.79, 
p-value ≤ 0.05) between the bacteria and metabolites.

Fig. 7.  The relationship between the two feed (LFHP and HFLP) groups and the metabolites.
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positively with 5,6-dihydrouracil, adenosine, and L-ala-
nine but correlated negatively with 9(R)-HODE and 
acrylic acid (Fig. 9).

Discussion

Many former researchers on ruminants only con-
centrate on the rumen microbiomes. However, we 
decided to compare the rumen and duodenum micro-

biomes using two feed types and the duodenal metabo-
lism to investigate the relationship between microbiota 
and metabolome because metabolites can influence 
the meat quality and health of the host (Xu et al. 2013; 
Muroya et al. 2019).

The biodiversity of the rumen and duodenum 
microbiota. The biodiversity of the rumen was higher 
when fed with ceratoides (HFLP) than when fed with 
alfalfa pellets (LFHP) (Table II). The outcome of this 
work is compatible with our previous research, which 

Fig. 8. Metabolites correlation heat map. The rows and columns in the figure represent different metabolites, and different colors
represent different correlations. The red color represents a positive correlation, and the blue represents a negative correlation among

the metabolites. The deeper the color in the heat map, the better the metabolism.
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reveals that the microbiota in the lambs’ rumen fed 
a high fiber diet (HFLP) were more diverse than those 
fed a low fiber diet (LFHP) (Wu et al. 2020). A study 
shows that Firmicutes and Bacteroidetes are the major 
predominant phyla of microorganisms in the gut com-
munity of terrestrial animals (Qin et al. 2010). In this 
research, the most predominant phyla in the rumen’s 
microbiota of the twin lambs were Bacteroidetes and 
Firmicutes (Fig. 1 and 2), which are more associated 
with the breakdown of carbohydrates and proteins. 
Results of this kind have been revealed in earlier reports 
(Hook et al. 2011). Bacteroidetes aids in the degradation 
of starch in the rumen (Stevenson and Weimer 2007).

The LFHP diet influenced the genus Prevotella and 
the phylum Bacteroides of the rumen (Fig. 3). Results 
of this kind have been detected in earlier research 
(Zhang et al. 2014). The genus Prevotella plays a signifi-

cant role in breaking down dietary protein to ammo-
nia, which can reduce the utilization of dietary amino 
acids. The degradation of peptides in the rumen is asso
ciated with the breakdown approach in which dietary 
protein is disintegrated into ammonia, thereby leading 
to an inexpedient utilization of dietary amino acids 
(Walker et al. 2005).

There was no significant difference between the two 
diets in the duodenum in this study (Table III). Regard-
less of diet, amino acid profiles of the duodenal digesta 
were similar due to the presence of forage (Merchen 
et al. 1986). In this study, Firmicutes was relatively abun-
dant in the duodenum’s phylum level, which confirms 
a  research study where Firmicutes were the predomi-
nant phylum among all the bacterial groups across 
the GIT besides those within the omasum and aboma-
sum, in which Bacteroidetes were more prevalent (Wang 

Fig. 9 This figure shows the relationship between OTUs, metabolites, and the microbiota. The nodes represent different OTUs related to 
bacteria, which belong to Firmicutes, Bacteriodetes, and other phyla. The orange diamonds indicate 16 metabolites detected. The lines 
indicate the correlations between the OTUs, bacteria, and metabolites. The solid red connecting lines show a positive correlation, and 
the blue connecting dot line indicates a negative correlation between the OTUs, bacteria, and metabolites. The line thickness shows how 

strong the correlation was.
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et al. 2017). The Lachnospiraceae was found to be the 
most abundant genus in the duodenum (Fig. 3). This 
finding agrees with a research study that revealed that 
other Firmicutes members showing a great abundance in 
lamb’s gut were Lachnospiraceae (Palomba et al. 2017).

The Firmicutes/Bacteroidetes ratio (F:B) in the 
rumen and duodenum’s microbiota. The microbiota’s 
F:B ratio was reversed between the rumen and the duo-
denum due to differences in the organs and functions. 
The most potent organ, which degrades and converts 
plant materials to SCFAs in the ruminants, is the rumen 
(Wang et al. 2020). It possesses the complex micro
biota that plays a vital role in the fermentation of feed 
and energy metabolism, and the SCFAs provide more 
than 70% of the energy to guarantee host growth and 
reproduction performance (Flint et al. 2007). Several 
researchers suggested that bacteria detected in intesti-
nal contents as they go through the abomasum could 
come from lysed cells (Waghorn et al. 1990; Koenig 
et al. 1997; Hristov 2007), and the role of the duodenal 
microbiota in terms of its function in feed degrada- 
tion is likely to be different from that of the ruminal 
bacterial community.

A study revealed that including dried distillers’ 
grains with solubles (DDGS) at the detriment of corn 
bran decreased the flow of bacteria from the rumen 
(Castillo-Lopez et al. 2014). The DDGS consists of 
about 31% crude protein, 34% neutral detergent fiber, 
12% fat, and 5% starch (Paz et al. 2013). Also, the 
rumen’s microbiota clustered differently compared 
to that of the duodenum showing different bacterial 
diversity between ruminal bacteria and the duodenal 
digesta. Therefore, including the DDGS in the feeds 
would increase the flow of saturated fatty acids to the 
duodenum and cause a shift in the rumen and duode-
num’s bacterial diversity (Castillo-Lopez et al. 2014).

The small intestine, which comprises the duodenum, 
is a long and coiled tube where the remaining degra-
dable activities occur. Villi that line the small intestine 
are the main site where nutrients are absorbed and are 
distributed to the whole body. Amino acids, fatty acids, 
and sugars which are the end products of digestion, are 
absorbed from the small intestines, enters the lymph, 
and distributed (National Research Council 2007). 
Another study revealed that when fat was injected into 
the duodenum of lambs, it was absorbed quickly, but 
when introduced to the rumen, absorption was slow 
and took several days (Heath and Morris 1962).

The feed delivered plays a crucial function in the 
F:B ratio (Ramirez Ramirez et al. 2012). The F:B ratio 
of the microbiota appreciably changed in the rumen 
when the twin lambs consumed either LFHP or HFLP 
feeds (5.356 and 6.419), respectively (Fig. 4a and 4b). 
There was also a change in the F:B ratio of microbiota in 
the duodenum when the twin lambs consumed either 

LFHP or HFLP feeds (0.275 and 0.104), respectively 
(Fig. 4c and 4d).

The more significant F:B ratio in fecal specimens 
is related to an increase in human weight (Ley et al. 
2006), and a study found that the frequency of par-
ticular microbial phylotypes could be affected within 
the offspring of farm animals such as cattle due to the 
sire breed when utilizing disparate feeds (Hernandez-
Sanabria et al. 2013). Also, the changes of the F:B 
ratios in this current research agrees with a previous 
study that analyzed the F:B ratio in mice and humans, 
where changes in the GIT were demonstrated to affect 
obesity and the capability of the host to harvest energy 
(Krajmalnik-Brown et al. 2012). It implies that the shift 
in the F:B ratio in this study could result from the dif-
ferent kinds of feed.

The relationship between the two feed (LFHP 
and HFLP) groups and the metabolites. Adenosine 
can influence meat quality. Apart from influencing the 
components of the gut microbiota, the type of diet can 
also regulate metabolic homeostasis in twin lambs. In 
the presence of low protein, meat quality improves 
in the HFLP group (Fig. 7a). A study summarized that 
Tibetan sheep meat was preferred to Small-tailed Han 
sheep meat even though variations between the breeds 
were not much; however, meat quality was enhanced 
in the two breeds with the growth of the nutritional 
energy level when a low-protein feed was given (Jiao 
et al. 2020). The presence of adenosine in this study 
could influence the health and regulate the sheep’s 
immune system. It reduces the production of tumor 
necrosis factor (TNF), induces the manufacture of 
Nitric Oxide (NO), and plays a vital role in maintain-
ing tissue perfusion (Adanin et al. 2002).

Taurine was influenced by the HFLP feed (Fig. 7b). 
Taurine present in this study is vital when inspect-
ing the relationship between taurine and palatability. 
A study mentioned that ribose 5-phosphate, and pyr-
rolidone carboxylic acid or taurine were natural ante-
cedents of 4-hydroxy-5-methyl-3(2H)-furanone, which 
is a taste part removed from beef broth and has a cara-
mel-like and burnt chicory smell (Tonsbeek et al. 1968; 
Weenen et al. 2005). The abundance of taurine in lambs 
and much more in beef could also enhance the beef ’s 
nutritional value apart from contributing to flavor (Pur-
chas et al. 2004). Taurine is important for meat quality, 
and increasing the concentration of taurine in mutton 
could be a future breeding objective for Sunit sheep.

The metabolite L-alanine, which was influenced by 
HFLP diet (Fig. 7c) could benefit the host by reducing 
tuberculosis. Tuberculosis is caused by Mycobacterium 
tuberculosis, and it is a major health issue globally. 
A study discovered that exogenous L-alanine can lead to 
the manufacturing of reactive oxygen species in Myco­
bacterium smegmatis by accelerating the tricarboxylic  
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cid cycle and/or primary metabolism synergizing with 
fluoroquinolones, which, in the long run, results in the 
destruction of M. smegmatis (Zhen et al. 2020).

The LFHP diet could increase nicotinic acid in the 
twin lambs (Fig. 7d). A study showed that replacing 
dietary protein with non-protein nitrogen depresses 
nicotinic acid (Buziassy and Tribe 1960). Another 
study revealed that both nicotinamide and insulin-
induced hypoglycemia reductions in free fatty acid 
enhanced growth hormones released in dairy cows, 
and each of these cases provided a possible function 
for glucose and free fatty acid in modulating the growth 
hormone-releasing factor, which stimulates the release 
of growth hormones in ruminants (Reynaert et al. 1975; 
Sartin et al. 1988).

The joint analysis of metabolites and microbiota 
in the duodenum. The bacteria, which all belong to 
phylum Firmicutes (OTU224, OTU769, and OTU798) 
correlated negatively with adenosine (Fig. 9). The bacte-
ria Planctomycetes planctomycetaceae (OTU1882) cor-
related positively with adenosine and L-alanine. Early 
research states that Planctomycetes contain a strong 
proline- and cysteine-rich proteins envelope and not 
a  peptidoglycan cell wall (Liesack et al. 1986). Also, 
Candidatus saccharibacteria (OTU31, OTU970), and 
Cyanobacteria sreptophyta (OUT217) correlated nega-
tively with adenosine and L-alanine. Recently, whole 
genomes of Saccharibacteria, acquired via metagen-
omics, reported that a few members ferment metabo-
lites, glucose, and various sugars and produce lactate 
(Albertsen et al. 2013). Cyanobacteria has various 
unique roles that include the ability to restore nitrogen, 
synthesize vitamin B and K21, syntrophically manu-
facture hydrogen, and obligate anaerobic fermentation 
(Di Rienzi et al 2013).

Based on the relationship between the bacteria and 
metabolites, Methanobrevibacter can produce meth-
ane in the gut. Methanogenic archaea represented by 
Methanobrevibacter ruminantium produce ruminant’s 
methane and is found in ruminants fed on varied kinds 
of feeds worldwide (Leahy et al. 2010).

Conclusions

This study shows how 16S rRNA sequencing com-
bined with metabolome analysis may be used in discov-
ering new and significant influences on the functions 
of a microbe inside the host. The results showed that 
the diet could directly affect the diversity of rumens’ 
microbiota but not the microbiota in duodenum. There 
was a shift in the F:B ratio in the rumen and duodenum 
of the twin lambs even under the different feeds. We 
found that some bacteria had a relationship with the 
metabolites. In summary, these findings could provide 

knowledge of how the diet affects the microbiota of 
the rumen and duodenum, lay a theoretical basis for 
controlling feed intake, and determine the relationship 
between the duodenum’s microbiota and metabolism.
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Introduction

Pestalotiopsis sp. is a mitosporic fungus with spore-
forming conidia. This fungus has a wide distribution 
and a  variety of life habits, including pathogenicity 
(Wang et al. 2019), saprophytic (Zi 2015), and endo-
phytic characteristics (Tanapichatsakul et al. 2019; Liao 
et al. 2020). It is an important plant pathogen and an 
asexual fungus with specific economic value (Taylor 
et al. 2001). The types of compounds isolated from 
Pestalotiopsis in recent years include alkaloids, polyols, 
cyclic peptides, terpenes, isocoumarins, coumarins, 
quinones, semiquinones, chromones, simple phenols, 
phenolic acids, esters, and other novel compounds 
(Yang et al. 2012; Xie et al. 2015). Many of these com-
pounds have important application prospects. Among 
the reported Pestalotiopsis species, most are pathogens, 
saprophytes, or endophytes, but there has been little 
research on the mycoparasitism of these species.

Mycoparasitism is the most critical form of antago-
nism involving direct physical contact with the host 
mycelium (Pal et al. 2006). It involves typical growth of 
biocontrol fungal mycelia toward the target pathogen 
followed by extensive coiling and secretion of various 
hydrolytic enzymes, leading to the dissolution of the 
pathogen’s cell wall or membrane. This mycoparasitism 

is common among Trichoderma. However, the myco-
parasitism of Pestalotiopsis species is utterly different 
from that of Trichoderma based on microscopic obser-
vation. The aeciospores’ outer walls appear deformed 
and completely broken after treatment with Tricho­
derma (Li et al. 2014). Pestalotiopsis concentrates the 
contents of rust spores by producing toxins, and the 
cell walls sag inward. The contents of the affected rust 
spores are concentrated, and most of the spores are 
empty shells (Li et al. 2017).

Mycoparasitic Pestalotiopsis species produce sec-
ondary metabolites different from those of endophytic 
or pathogenic Pestalotiopsis species (Xie et al. 2015), 
and these species have yet to be developed and used 
as important fungal resources. Both the lifestyle and 
secondary metabolite richness of mycoparasitic fungi 
are not comprehensively understood. In this study, the 
genome of the mycoparasite Pestalotiopsis sp. PG52 iso-
lated from Aecidium wenshanense was sequenced and 
annotated. A large set of genes involved in secondary 
metabolism was identified. The purpose of this research 
was to investigate the possible mechanisms of myco-
parasitism, potential active secondary substances (anti-
fungal or antibacterial substances), and gene resources 
for resistance breeding against fungal diseases using 
genomic sequencing.
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A b s t r a c t

Pestalotiopsis sp. is a mycoparasite of the plant pathogen Aecidium wenshanense. To further understand the mycoparasitism mechanism 
of Pestalotiopsis sp., we assembled and analyzed its genome. The genome of Pestalotiopsis sp. strain PG52 was assembled into 335 scaffolds 
and had a size of 58.01 Mb. A total of 20,023 predicted genes and proteins were annotated. This study compared PG52 with the mycopara-
sites Trichoderma harzianum, Trichoderma atroviride, and Trichoderma virens. This study reveals the entirely different mycoparasitism 
mechanism of Pestalotiopsis compared to Trichoderma and reveals this mycoparasite’s strong ability to produce secondary metabolites.

K e y w o r d s:  genome, DNA sequencing, Pestalotiopsis sp., mycoparasite
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Experimental

Materials and Methods

Microbial material. The aeciospores of A. wensha­
nense were collected in Kunming, Yunnan Province, 
People’s Republic of China, in September 2012. The 
species was mistakenly identified as Aecidium pourthi­
aea Syd. (Cai and Wu 2008) and has been corrected 
to A. wenshanense (Zhuang and Wei 2016; Zhu et al. 
2020). The aeciospores were incubated on distilled 
filter paper at 25°C and cultured until mycelium or 
colony formation was observed. After being cultured 
for approximately one week, strain PG52 was isolated 
from the aeciospores, identified as Pestalotiopsis ken­
yana (Sui et al. 2020), and preserved at Southwest Forest 
University, Kunming, China.

Mycelial sample preparation. The conidia of 
Pestalotiopsis sp. PG52 were cultured on modified Fries 
culture agar. After incubation at room temperature for 
three days, the mycelium was carefully scraped off and 
stored in liquid nitrogen for later use.

DNA extraction and WGS library construction. 
Pestalotiopsis sp. PG52 DNA was extracted using 
a  TIANGEN (Tiangen, Beijing, China) Bacterial 
Genomic DNA Extraction Kit and sheared into frag-
ments between 100 and 800 bp in size by a Covaris E220 
ultrasonicator (Covaris, Brighton, UK). High-quality 
DNA was selected using AMPure XP beads (Agencourt, 
Beverly, MA, USA). After repair using T4 DNA poly-
merase (Enzymatics, Beverly, MA, USA), the selected 
fragments were ligated at both ends to T-tailed adap
ters and amplified using KAPA HiFi HotStart ReadyMix 
(Kapa Biosystems, Wilmington, NC, USA). Then, ampli-
fication products were subjected to a single-strand cir-
cularization process using T4 DNA ligase (Enzymatics) 
to generate a single-stranded circular DNA library.

Genome sequencing and assembly. The NGS 
library was loaded and sequenced on the BGISEQ-500 
platform. Raw data are available in the GenBank. The 
raw reads with a high proportion of Ns (ambiguous 
bases) and low-quality bases were filtered out using 
SOAPnuke (v1.5.6) (Chen et al. 2018) with the param-
eters “-l 15 -q 0.2 -n 0.05 -Q 2 -c 0”. Then, the clean 
NGS (“Next-generation” sequencing technology) data 
were assembled using Canu (Koren et al. 2017) with 
the parameters “-useGrid = false maxThreads = 30 
maxMemory = 60 g -nanopore-raw *.fastq -p -d”. 
BUSCO (v3.0.1) was used to assess the confidence of 
the assembly with Pestalotiopsis sp. PG52.

Identification of Repetitive Elements and Non-
Coding RNA Genes. Repetitive sequences were identi-
fied using multiple tools. TEs were identified by align-
ing against the Repbase (Bao et al. 2015) database using 
RepeatMasker (v4.0.5) (Tarailo-Graovac and Chen 

2009) with parameters “-nolow -no_is -norna -engine 
wublast” and RepeatProteinMasker (v4.0.5) with param-
eters “-noLowSimple -pvalue 0.0001” at DNA and pro-
tein levels respectively. Meanwhile, the de novo repeat 
library was detected using RepeatModeler (v1.0.8) and 
LTR-FINDER (v1.0.6) (Xu and Wang 2007) with default 
parameters. Based on the de novo identified repeats, 
repeat elements were classified using RepeatMasker 
(v4.0.5) (Tarailo-Graovac and Chen 2009) with the 
same parameters. Furthermore, the tandem repeats were 
identified using Tandem Repeat Finder (v4.07) (Benson 
1999) with parameters “-Match 2 -Mismatch 7 -Delta 7 
-PM 80 -PI 10 -Minscore 50 -MaxPeriod 2000”.

For non-coding RNA (ncRNA), the tRNA genes 
were predicted using tRNAscan-SE (v1.3.1) (Lowe 
and Eddy 1997) with default parameters. The rRNA 
fragments were identified using RNAmmer (v1.2). 
The snRNA and miRNA genes were predicted using 
CMsearch (v1.1.1) (Cui et al. 2016) with default param-
eters after aligning against the Rfam database (Kalvari 
et al. 2018) with a blast (v2.2.30).

Gene prediction and genome annotation. The 
predicted genes were aligned to the KEGG (Kanehisa 
1997; Kanehisa et al. 2004; Kanehisa et al. 2006), Swiss-
Prot (Magrane and UniProt Consortium 2011), COG 
(Tatusov et al. 1997; 2003), CAZy (Cantarel et al. 2009), 
NR and GO (Ashburner et al. 2000) databases using 
blastall (v2.2.26) (Altschul et al. 1990) with the param-
eters “-p blastp -e 1e-5 -F F -a 4 -m 8”. The Pestalotiopsis 
sp. PG52 assembly was uploaded to the antiSMASH 
(v5.0) (Medema et al. 2011) website to identify the sec-
ondary metabolite gene cluster.

Transcriptome analysis. In order to define sec-
ondary metabolite clusters using transcriptional data, 
Pestalotiopsis sp. PG52 was inoculated on modified Fries 
medium for experiment. Abundant secondary metabo-
lites were detected in the study. Total RNA was extracted 
from tissue samples. The mRNA was purified and then 
reverse transcribed into cDNA, and the library was con-
structed according to the large-scale parallel signature 
scheme. They were then sequenced using Illumina’s 
technology. The genomic annotation results were com-
pared with transcriptome data, and if mRNA of a gene 
was detected, the gene was considered to be expressed.

Results

Pestalotiopsis sp. PG52 genome extraction and 
quality inspection. The quality and concentration of 
the extracted Pestalotiopsis sp. PG52 genomic DNA were 
measured using a Qubit fluorometer, and then the DNA 
was subjected to 1% agarose gel electrophoresis. The 
sample volume was 1 µl. The test results are shown in 
Fig. 1 and indicate that the extracted genomic DNA had 
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good integrity. BD Image Lab software was used to cal-
culate the amounts of DNA in the electrophoresis image. 
The total amount of DNA in the samples was 3.78 µg, 
which meets the requirements for library construction 
and sequencing; this amount could meet the require-
ments for two or more samples for library construction.

Genomic sequencing quality analysis. Fqcheck 
software was used to evaluate the quality of the data. 
Fig. 2 and 3 show the base composition and quality 
of PG52.

The slight fluctuation at the beginning of the curve 
is typical of the BGI-seq 500 sequencing platform and 
does not affect the data. Normally, the distribution 
curves of the A and T and the C and G bases should 

coincide with each other. If an abnormality occurs in 
the sequencing process, it may cause abnormal fluctua-
tions in the middle of the curve. If a particular library 
construction method or library is used, the base distri-
bution may also be changed (Fig. 2).

The base quality distribution reflects the accuracy 
of the sequencing reads. The sequencer, sequencing 
reagents, and sample quality can all affect base quality. 
Overall, the low-quality (< 20) base proportion was low, 
indicating that the sequencing quality of the lane was 
relatively good (Fig. 3).

Genome assembly and gene prediction. The long 
fragment of Pestalotiopsis sp. PG52 was sequenced on 
the Nanopore platform, and a total of 12.18 Gb of data 
was generated. Before assembly, k-mer was selected as 
15, and k-mer analysis was performed based on the 
second-generation data to estimate the genome’s size 
(assembly results indicate the true genome size), degree 
of heterozygosity, and repeatability. Using Jellyfish soft-
ware to process the filtered data, the results showed 
that the genome size of the PG52 strain was 50.7 Mb. 
We used Canu to assemble the Nanopore data and then 
with Pilon used the second-generation data for base 
error correction to obtain the final assembly result. 
BUSCO integrity assessment was conducted using the 
genome database (SordariomycetA_ODB9). More than 
97.0% of core genes could be annotated in the genome, 
reflecting the high integrity of assembly results. A total 
of 335 scaffolds were assembled by genome stitching. 
The genome size was 58.01 Mbp, and the values of N50 
and N90 were 6,598,051 bp and 55,791 bp, respec-
tively. The entire genome’s size was larger than those 
of the Pestalotiopsis fici (51.91 Mbp), Pestalotiopsis sp. 
JCM 9685 (48.23 Mbp) and Pestalotiopsis sp. NC0098 
(46.41 Mbp) genomes, which have been sequenced.

Fig. 1. Electrophoresis pattern of Pestalotiopsis kenyana PG52 
genome. Agarose concentration (%): 1; voltage: 180 V; time: 
35 min.; molecular weight standard name: M1: λ‑Hind Ш digest 
(Takara), M2: D2000 (Tiangen); sample volume: M1: 3 μl, M2: 6 μl.

Fig. 2.  Pestalotiopsis kenyana PG52 base composition distribution map. The X axis represents the position on reads,
and the Y axis represents the percentage of bases.
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A total of 20,023 genes were predicted in the Pestalo­
tiopsis sp. PG52 genome, with an average length of 
1,714.03 bp, an average CDS length of 1,478.29 bp, an 
average of 3.13 exons per gene, an average exon length 
of 472.00 bp, and an average intron length of 110.57 bp. 
The reported average length of the predicted genes of 
P. fici (Wang et al. 2015) is 1,683.88 bp, and the average 
number of exons contained in each gene is 3. Another 
reported average length of the predicted genes of 
Pestalotiopsis sp. NC0098 is 1864 bp, and the average 
number of exons contained in each gene is 2.83. The 
above comparison results indicate the reliability of the 
sequencing data for the Pestalotiopsis sp. PG52 genome 
and the similarity to the other two Pestalotiopsis strain 
genomes (Table I).

Gene prediction and functional annotation. The 
NCBI NR database was used to annotate the predicted 
genes, with a total of 17,500 genes annotated (account-
ing for 87.40% of the total predicted genes), and the 
KEGG database was used to annotate the predicted 
genes, with a total of 11,847 genes annotated (account-

Assembly size (Mb) 	   55	   52	   46.61
Scaffold N50 (Mb)	     6.6	     4.0	     5
Coverage (fold) 	 335.0	   24.5	   24
GC content (%)	   53.30	   48.73	   51.28
Protein-coding genes	   20,023	   15,413	   15,180
Gene density (genes per Mb)	 345.22	 296.90	 327.08
Exons per gene	     3.13	     2.76	     2.83

Table I
The comparison of Pestalotiopsis genome sequences.

PG52 FICI NC0098

Fig. 3. Pestalotiopsis kenyana PG52 base mass distribution map. The X axis is the position
of the base in reads, and the Y axis is the base quality value. Each point in the figure represents

the total number  of bases at this position that reach a certain.

ing for 59.17% of the total predicted genes). Using the 
GO database to annotate the predicted genes, a total of 
10,454 genes were annotated (accounting for 52.21% 
of the total predicted genes).

KEGG (Kyoto Encyclopedia of Genes and 
Genomes). KEGG enrichment analysis showed that 
11,847  genes that corresponded to KEGG pathways 
were enriched in 129 metabolic pathways, and most 
of these genes were involved in metabolic pathways 
(ko01100) (4,306  genes), biosynthesis of secondary 
metabolites (ko01110) (1,677  genes), biosynthesis of 
antibiotics (ko01130) (1,267 genes) and biosynthesis 
of amino acids (ko01230) (495 genes) (Fig. 4).

GO (Gene Ontology). A total of 10,454 genes can 
be used to extract GO annotation information with 
Blast2GO. Based on function, the genes can be divided 
into three subcategories, namely, biological process 
(25 branches), cellular component (14 branches) and 
molecular function (13 branches), with a total of 
52 branches (Fig. 5: 1 – metabolic process, 2 – cellu-
lar process, 3 – localization, 4 – biological regulation, 
5  –  cellular component organization or biogenesis, 
6  –  regulation of biological process, 7  –  response to 
stimulus, 8 – signaling, 9 – negative regulation of bio-
logical process, 10 – positive regulation of biological 
process, 11  –  reproduction, 12  –  reproductive pro-
cess, 13  –  developmental process, 14  –  multi-organ-
ism process, 15  –  growth, 16  –  biological adhesion, 
17 – detoxification, 18 – nitrogen utilization, 19 – cell 
aggregation, 20  –  carbon utilization, 21  –  biological 
phase, 22  –  cell proliferation, 23  –  immune system 
process, 24  –  pigmentation, 25  –  rhythmic process, 
26 – membrane, 27 – membrane part, 28 – cell, 29 – cell 
part, 30  –  organelle, 31  –  macromolecular complex, 
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32 – organelle part, 33 – membrane-enclosed lumen, 
34 – extracellular region, 35 – supramolecular complex, 
36 – virion, 37 – virion part, 38 – nucleoid, 39 – extra-
cellular region part, 40 – catalytic activity, 41 – binding, 
42 – transporter activity, 43 – transcription regulator 
activity, 44 – structural molecule activity, 45 – molecu-
lar function regulator, 46 – signal transducer activity, 
47  –  antioxidant activity, 48  –  molecular transducer 
activity, 49 – molecular carrier activity, 50 – nutrient 
reservoir activity, 51  –  protein tag, 52  –  translation 
regulator activity). Most of the genes in the biologi-
cal process category are involved in the metabolic pro-
cesses and cellular processes, most of the genes in the 
cellular component category are involved in membrane 
and membrane part, and highest number of the genes 
in the molecular function category are involved in cata-
lytic activity and binding.

COG (Cluster of Orthologous Groups of pro-
teins). In the COG classification prediction of Pestalo­
tiopsis sp. PG52 obtained by sequencing, a  total of 

8,975 genes were divided into 24 categories. In addi-
tion to the general function prediction category, the 
five categories with the greatest number of genes were 
amino acid transport and metabolism (905 genes, 
accounting for 10.08%), energy production and conver-
sion (737 genes, accounting for 8.21%), carbohydrate 
transport and metabolism (709 genes, accounting for 
7.90%), lipid transport and metabolism (657  genes, 
accounting for 7.32%), and secondary metabolite bio-
synthesis, transport and catabolism (516 genes, 5.75%) 
(Fig. 6: A – Cell cycle control, cell division, chromo-
some partitioning, B – Cell motility, C – Cell wall/mem-
brane/envelope biogenesis, D – Defense mechanisms, 
E – Extracellular structures, F – Intracellular traffick-
ing, secretion, and vesicular transport, G – Posttrans-
lational modification, protein turnover, chaperones, 
H – Signal transduction mechanisms, I – Chromatin 
structure and dynamics, J  –  Replication, recombina-
tion and repair, K – RNA processing and modification, 
L – Transcription, M – Translation, ribosomal structure 

Fig. 4. KEGG function analysis.
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and biogenesis, N – Amino acid transport and metab-
olism, O  –  Carbohydrate transport and metabolism, 
P – Coenzyme transport and metabolism, Q – Energy 

production and conversion, R – Inorganic ion transport 
and metabolism, S – Lipid transport and metabolism, 
T – Mobilome – rophages, transposons, U – Nucleotide 

Fig. 5. GO functional classification map of all unigenes with GO annotation.
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transport and metabolism, V – Secondary metabolites 
biosynthesis, transport and catabolism, W – Function 
unknown, X – General function prediction only).

CAZy (Carbohydrate-Active enZYmes) database. 
Carbohydrate-active enzymes participate in many 
important biological processes, including cell wall 
synthesis and signal and energy production, which 
are related to the fungal nutritional mode and infec-
tion mechanism (Zhao et al. 2014). The Pestalotiopsis 
sp. PG52 genome contains 345 hydrolase family genes 
(GHs), 150 glycosyltransferase family-like genes (GTs), 
17 polysaccharide lyase family genes (PLs), 61 carbohy-

drate esterase family genes (CEs) and 196 carbohydrate-
binding domain family genes (CBMs).

Further analysis of the GHs of mycoparasites is 
shown in Table II. Pestalotiopsis sp. PG52 has three 
GH18 and seven GH19 families (mainly chitinase) 
genes, significantly fewer than the number in the other 
three mycoparasites. This species contains 31 β-1,3-glu
canase genes (GH17, GH55, GH64, and GH81 fami-
lies), of which the GH55 gene is significantly redundant 
with those of Trichoderma harzianum (Antal et al. 2002; 
Steindorff et al. 2014; Baroncelli et al. 2015), Tricho­
derma atroviride (Kubicek et al. 2011; Shi-Kunne et al. 

Fig. 6.  COG function analysis.
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2015) and Trichoderma virens (Kubicek et al. 2011); GH75 
family chitosanase has been reported to degrade the 
host cell wall, and this process was also greatly enhanced 
(Cuomo et al. 2007). There are six GH75 genes in Pestalo­
tiopsis sp. PG52, which is more than the number in the 
other three mycoparasites. The above results showed 
that the number of carbohydrate enzymes in Pestaloti­
opsis sp. PG52 is comparable to that of other mycopara-
sites, but the number of hydrolytic enzymes associated 
with mycoparasitism is similar to that in T. harzianum 
and lower than in T. atroviride and T. virens.

Others. The numbers of polyketide synthases 
(PKSs) and nonribosomal peptide synthetases (NRPSs) 
in Pestalotiopsis sp. PG52, Pestalotiopsis sp. NC0098, 
P. fici and Trichoderma were compared. The results 
showed that the total numbers of PKSs and NRPSs from 
Pestalotiopsis sp. NC0098, P. fici, T. virens, T. harzianum 
and T. atroviride were similar but significantly lower 
than those from Pestalotiopsis sp. PG52 (Table III). We 
compared the number of NRPSs and PKSs in PG52 
with that in Pestalotiopsis sp. NC0098, P. fici and 3 other 
mycoparasites. The results showed that the total num-
ber of the above enzymes in PG52 was much larger 
than that in Pestalotiopsis sp. NC0098, P. fici and Tri­
choderma, indicating that there may be more secondary 
metabolites in mycoparasitic Pestalotiopsis species. In 

our previous study, four novel PKs were isolated from 
PG52. Their configurations were identified, and their 
toxic activities against human tumor cells were tested 
(Xie et al. 2015). Cytochrome P450 is a kind of multi-
functional oxidase that is closely related to secondary 
metabolism (Črešnar and Petrič 2011). There are 317 
cytochrome P450-coding genes in the Pestalotiopsis 
sp. PG52 genome, which is higher than the number 
reported in T. harzianum, T. atroviride and T. virens. 
A total of 175 proteases were found in the genome of 
Pestalotiopsis sp. PG52, which is significantly higher 
than the numbers in the genomes of T. harzianum, 
T. atroviride and T. virens (Table  IV). There are more 
cytochromes and proteases in PG52 than in the other 
three Trichoderma mycoparasites. In addition, tran-
scription factors (TFs) play a vital role in the fungal 
regulatory network. A total of 202 transcription factors 
were found in the genome sequencing results, includ-
ing 19  genes encoding C2H2-type transcription fac-
tors and Zn2/Cys6-type transcription factors. There 
are 4 Zn2/Cys6-type transcription factor genes, which 
is significantly less than the number of such genes in 
T. atroviride and T. virens (Table IV).

Transcriptome analysis. The whole genome results  
of the Pestalotiopsis sp. PG52 were compared with 
the transcription group data (Table V), and 82 of the 

Cytochrome P450 	 317	 50	 15	 40
Zn2/Cys6 transcription factor 	 4	 7	 69	 95
Protease	 175	 53	 23	 28

Table IV
Numbers of P450, protease and Zn2/Cys6 transcription factor genes

of mycoparasites.

Pestalotiopsis sp.
PG52

T. harzia-
num

T. atro-
viride T. virens

NRPS	 13	 12	 12	 17	 16	 28
PKS	 102	 27	 21	 27	 18	 18
Total	 115	 39	 33	 44	 34	 46

Table III
The number of polyketide synthases and nonribosomal peptide synthetases

of P. fici, Pestalotiopsis sp. NC0098 and mycoparasites.

Secondary
metabolites

Pestalotiopsis sp.
PG52 P. fici Pestalotiopsis sp.

NC0098 T. harzianum T. atroviride T. virens

Pestalotiopsis sp. PG52	 3	 6	 7	 19	 3	 2
Trichoderma harzianum	 20	 4	 4	 5	 3	 2
Trichoderma atroviride	 29	 5	 5	 8	 3	 2
Trichoderma virens	 36	 5	 4	 10	 3	 1

Table II
Glycosyl hydrolase families related to mycoparasitic in mycoparasites.

Species GH18 GH75 GH17 GH55 GH64 GH81
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102  PKs genes found in the genome were detected 
in the transcription group with an expression rate of 
80.39%. Ten NRPS genes were detected in the trans
cription group with an expression rate of 76.92%. Pro-
tease, Cytochrome P450 and Zn2Cys6 transcription 
factor have expression rates of 78.29 percent, 77.29 and 
25.00 percent, respectively.

Discussion

Long fragments of Pestalotiopsis sp. PG52 were 
sequenced and assembled to obtain the complete 
genome sequence using BGISEQ-500 and Oxford 
Nanopore NGS technology, and this sequence was 
compared with relevant genome-wide information for 
P. fici and Pestalotiopsis sp. NC0098. The results showed 
that the genomes of similar Pestalotiopsis species are 
similar. Genes related to mycoparasitism and secondary 
metabolism were analyzed and compared with T. har­
zianum, T. atroviride, and T. virens. The results showed 
differences in the characteristics of mycoparasites in 
terms of parasitic ability and secondary metabolism.

In Pestalotiopsis sp. PG52, the number of mycopara-
sitism-related hydrolases, including chitinase (GH18), 
is less than that in Trichoderma, but the total number 
of β-1,3-glucanases (GH17, GH55, GH64, GH81) is 
greater than that in Trichoderma. All the chitinase 
genes in Trichoderma belong to the GH18 family (Seidl-
Seiboth et al. 2014); however, a new chitinase family, 
GH19, was found in Pestalotiopsis; this family is always 
found in bacteria and higher plants (Suginta et al. 2016). 
The expression of this gene was also detected in tran-
scriptome data analysis. The number of chitinase genes 
in Pestalotiopsis is far less than that in Trichoderma in 
general, which is consistent with the mycoparasit-
ism characteristics of Pestalotiopsis and Trichoderma. 
Pestalotiopsis may produce toxins to concentrate the 
pathogenic bacterial content and generate dents in the 
cell wall, while Trichoderma produces enzymes (mainly 
chitinase) to destroy the cell wall of the pathogenic bac-
teria and cause pathogen lysis (Gruber et al. 2011).

A large number of protease genes were detected in 
the gene annotation results of Pestalotiopsis sp. PG52. 

There are many proteins containing polysaccharides 
in the outermost layer of the cell wall of host fungi, 
and the expression of a large number of proteases in 
PG52 may enhance its parasitic ability to the host fungi. 
It has been reported that aspartic acid proteases may 
be involved in mycoparasitism, and some subtilisin-
like serine proteases are homology of Metarhizium 
anisopliae PR1c and are involved in corneous degrada-
tion (Hu and Leger 2004, Herrera-Estrella 2014). These 
findings may be important in the involvement of pro-
teases in the initial stages of mycoparasitism.

Mycoparasites produce secondary metabolites, pro-
teases, and gene transcription regulation factors that are 
all closely related to mycoparasitism. Polyketide syn-
thases (PKSs) and nonribosomal peptide synthetases 
(NRPSs) are large multimodular enzymes involved in 
polyketide and peptide biosynthesis toxins produced 
by fungi. PKS is a key enzyme that regulates the syn-
thesis of polyketides, mainly catalyzing the synthesis of 
secondary metabolites and pigments; NRPS can cata-
lyze the synthesis of antimicrobial peptides (Gallo et al. 
2013). Cytochrome P450 can catalyze some endogenous 
substances’ biosynthesis with important physiological 
functions, such as hormones, fatty acids, and terpe-
noids, and play an important role in the modification of 
secondary metabolites (Črešnar and Petrič 2011). The 
higher amount of cytochrome P450 indicates that there 
may be more types of secondary metabolites in PG52. 
Some proteins secreted by fungi can play an important 
role in the process of infecting plant pathogenic fungi, 
reduce the defense capacity of plant pathogenic fungi 
and destroy pathogenic fungal cells, but their role in 
the process of mycoparasitism is still unclear (Mueller 
et al. 2008; Doehlemann et al. 2009). There are a high 
number of secreted proteins in the PG52 genome, and 
these proteins may play an important role in the process 
of mycoparasitism. Transcription factors can regulate 
gene expression and participate in fungi’s secondary 
metabolic process (Schoberle et al. 2014). A Zn2/Cys6-
type transcription factor found in PG52 can upregulate 
the β-glucosidase gene expression (Nitta et al. 2012). 
The number of Zn2/Cys6-type transcription factors 
in different mycoparasites varies greatly, and further 
research on this aspect is needed.

PKS	 82	 102	 80.39%
NRPS	 10	 13	 76.92%
Protease	 137	 175	 78.29%
Cytochrome P450 	 245	 317	 77.29%
Zn2Cys6 transcription factor 	 1	 4	 25.00%

Table V
The genome is compared with the transcription group.

Genes Transcription
groups Genome Expression

rate
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In this article, we report for the first time the com-
plete genome information for the mycoparasite Pestalo­
tiopsis sp. PG52, identifying a large number of genes 
related to mycoparasitism. We also show a preliminary 
comparison and analysis of four mycoparasite genomes, 
laying the foundation for studying the systematic evo-
lution and revealing the mechanism of mycoparasit-
ism of Pestalotiopsis. Additionally, this study provides 
reference information for genomic research on other 
filamentous fungi.
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Introduction

Tuberculosis (TB) and Human Immunodeficiency 
Virus/Acquired Immunodeficiency Syndrome (HIV/
AIDS) are the major public health issue in many parts 
of the world particularly in resource-limited countries, 
TB remains an important cause of ill health, and the 
major cause of mortality from a single infectious agent, 
rated above (HIV/AIDS) in the top 10 diseases that 
cause high mortality rates (WHO 2019a).

HIV is one of the most significant threat to the global 
control of TB (Mukadi et al. 2001). By severely com-
promising the immune system, HIV facilitates TB dis-
semination and raises the mortality of co-infected indi-
viduals as opposed to TB patients who are HIV negative 
(Mukadi et al. 2001; Zumla et al. 2015). Both diseases 
are directly connected, and the number of co-infected 
patients continues to increase rapidly (Karim 2006).

HIV is a potential risk accountable for latent TB pro-
gressing to active TB (Davy-Mendez et al. 2019). People 

living with HIV are 19 (15–22) times more probable 
than people without HIV to develop active TB disease, 
which demonstrates the seriousness of this deadly com-
bination. Worldwide about 251,000 people have died of 
HIV-associated TB in 2018, and an estimated 862,000 
new cases of TB have been identified among HIV-
positive individuals, 72% among whom live in Africa. 
With 95% of global TB deaths and more than 70% of 
the global HIV burden, sub-Saharan Africa bears the 
greatest burden of both diseases (Gwitira et al. 2018). 
Sudan one of the resources limited countries with major 
issues in health, in 2018 the total incidence of TB in 
Sudan was 30,000 (21,000–41,000), with 71  (49–98) 
rates per 100,000. The HIV-positive TB incidence was 
estimated to be 970 (300–2,000), with 2.3  (0.72–4.8) 
rate per 100,000 (WHO 2019b), and Eastern Sudan 
remain as an endemic area of TB (Abdallah et al. 2012).

While the HIV epidemic continues to fuel the global 
TB epidemic, the significance of HIV surveillance in TB 
patients is widely recognized (Manjareeka and Nanda 
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2013). The main components of both HIV and TB 
programmers’ are early diagnosis and treatment (Geta-
hun et al. 2011). The 2012 updates issued by the World 
Health Organization on the Guidelines for TB/HIV Col-
laborative Activities in 2004 recommend HIV testing 
not only for diagnosed TB patient, but among patients 
with suspected TB also (WHO 2012). The optimal time 
to begin antiretroviral therapy (ART) has been carefully 
evaluated in patients with both TB and HIV infection 
(Han et al. 2014). Immune reconstitution inflamma-
tory syndrome (IRIS), pharmacological interactions, 
and high pill burden have repeatedly claimed against 
concurrent therapy for both HIV and TB (Piscitelli 
and Gallicano 2001; Shelburne et al. 2002; Blanc et al. 
2007; Kaplan et al. 2009). On the other hand, a delay in 
launching ART is correlated with disease progression 
and increased mortality, notably in severely immuno-
suppressed patients (Kwara et al. 2004; Breen et al. 2005).

This study aimed to estimate the seroprevalence 
of HIV infection among active pulmonary and extra- 
pulmonary tuberculosis patients, and the level of 
knowledge in Kassala state, which is located in eastern 
Sudan near the Eritrean border, 600 kilometers from 
the Khartoum capital of Sudan with a great variety in 
culture, beliefs, language, and ethnicity.

Experimental

Materials and Methods

This was descriptive cross-sectional hospital-based 
study undertaken in Kassala State, Eastern of Sudan to 
investigate the prevalence of HIV among active pulmo-
nary and extrapulmonary TB patients. A total of 251 TB 
patients attending Kassala Teaching Hospital during the 
period of the study were recruited by simple random 
sampling after consent was obtained. Information, such 
as age, gender, socioeconomic background, education 
level, and residence area, was collected by a structured 
questionnaire. All patients were tested for TB according 
to the recommendations of the national TB program by 
using direct ZN stain and Xpert MTB/RIF (Cepheid, 
Sunnyvale, CA, USA).

TB diagnosis. AFB smear microscopy. Specimens 
were processed using the N-acetyl-L-cysteine-NaOH 
(NALC-NaOH) method for digestion and decontami-
nation. Specimens were concentrated by centrifugation 
at 3,200 × g for 20 min, and sediments were reconsti-
tuted with approximately 2 ml of 0.067 M sterile phos-
phate buffer (pH 6.8). Smear microscopy was per-
formed on processed sediments using Ziehl-Neelsen 
(ZN) staining. Smear-positive specimens were graded 
from 1+ to 4+ according to CDC guidelines (American 
Thoracic Society/CDC 2000)

Xpert MTB/RIF assay. The Xpert MTB/RIF assay 
was run on the GeneXpert Dx instrument system 
according to the manufacturer’s recommendations 
(Cepheid, Sunnyvale, CA, USA). Briefly, after diges-
tion, decontamination and concentration, 0.5 ml of 
re-suspended sediment was transferred to a conical 
screw-capped tube, 1.5 ml of Xpert MTB/RIF sample 
reagent was added by sterile pipette, and the tube was 
recapped and shaken vigorously 10–20 times. The sam-
ple was incubated for a total of 15 minutes at 20–30°C, 
with manual agitation 10–20  times at one point 
between 5 and 10 minutes into the incubation period. 
The reagent-treated sample was then transferred by 
sterile pipette into the sample chamber of the Xpert 
MTB/RIF cartridge and loaded into the GeneXpert Dx 
instrument system for sample processing. In the event 
of “no result”, “invalid” or “error” results, the test was 
repeated according to the manufacturer’s recommenda-
tions using a new Xpert MTB/RIF cartridge.

Blood samples were collected from each patient, 
then serum samples were separated (Tognon et al. 2020) 
and investigated for HIV antibodies by using fourth-
generation enzyme-linked immunosorbent assay 
(ELISA) according to the manufacturer’s instructions.

Data was analyzed by IBM SPSS Statistics for 
Windows, Version 20 (Armonk, NY: IBM Corp) and 
iNZight (The University of Auckland New Zealand). 
Chi-square test was used to test the p-value, and it 
was deemed significant if it was less than 0.05. Ethical 
approval for this study was received from the Health 
Research Ethics Committee of the Ministry of Health 
in Kassala state. The patients consent was acquired from 
each participant prior to the sample collection.

Results

A number of 251 TB patients have consented to 
take part in this study. Of those patients, 188 (74.9%) 
were newly diagnosed with pulmonary TB, and the 
remaining 63 (25.1%) were complaining of extrapul-
monary TB.

Gender, age, and residence. Out of 251 patients, 
154 (61.35%) were male and 97 (38.65%) were female. 
Their age was ranged from 4 years to 80 years, and the 
mean was 41.7 ± 17.9 years. On the basis of the residence 
of the studied population, 145 (57.77%) were residing in 
urban areas in the city, whereas 106 (42.23%) resided 
in rural areas around the city.

Social, behavioral, and HIV/TB knowledge data. 
In terms of social data (marital status, educational level, 
and occupation) and knowledge about TB and HIV, 
the study population was separated into two groups: 
children with less than 18 years old, and adults above 
18 years old. Their distribution was 21 (8.37%) and 
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230 (91.63%) in the children and adult groups, respec-
tively. These variables were analyzed separately.

As shown in Table I, the marital status of the adult 
group was divided into the following categories: mar-
ried (167; 72.1%), single (61; 26.52%), and widowed 
(2; 0.87%). Their smoking behavior was as follows: 
217 (94.35%) were nonsmokers, while 13 (5.65%) were 
smokers.

good knowledge, while the remaining 225 (97.83%) 
showed poor knowledge.

In terms of HIV knowledge, 24 (10.43%) out of 
230 adults showed good knowledge, while 206 (89.57%) 
showed poor knowledge.

The frequencies of the extracted children’s data were 
as follows. Their mean age was 13.38 ± 2.94 years, 14 of 
them were male (66.67%), and 7 were female (33.33%). 
Thirteen of them were uneducated (61.90%), while 
8 had an elementary education (38.10%). All of them 
had poor knowledge about TB, and only one had good 
knowledge about HIV (4.76%).

Overall, out of 251 patients tested for HIV, 35 
showed positive results with a prevalence of 13.9%, 
while 216 (86.1%) showed negative results (Table II).

Marital Status	 married	 167	 72.61%
	 single	 61	 26.52%
	 widow	 2	 0.87%
Educational level	 illiterate	 159	 69.13%
	 elementary	 59	 25.65%
	 secondary	 11	 4.78%
	 university	 1	 0.43%
Occupation	 non	 1	 0.43%
	 farmer	 1	 0.43%
	 housewife	 82	 35.65%
	 officer	 2	 0.87%
	 worker	 140	 60.87%
	 student	 4	 1.74%
Smoking	 smoker	 13	 5.65%
	 non smoker	 217	 94.35%
Alcohol	 alcoholic	 1	 99.57%
	 non alcoholic	 229	 0.43%
Knowledge about TB	 good	 5	 2.17%
	 poor	 225	 97.83%
Knowledge about HIV	 good	 24	 10.43%
	 poor	 206	 89.57%

Table I
Frequency of social behavior, and knowledge about TB/HIV,

of adults (n = 230).

Adults patients (Total 230)

Gender	 male	 14	   66.67%
	 female	 7	   33.33%
Education	 elementary	 8	   38.10%
	 uneducated	 13	   61.90%
Knowledge about TB	 good	 0	     0.0%
	 poor	 21	 100%
Knowledge about HIV	 good	 1	     4.76%
	 poor	 20	   95.24%

Table II
Frequency of gender, education, Knowledge about TB, knowledge 

about HIV, and occupation of children (n = 21).

Children patients (Total 21)

When the types of TB was compared with HIV 
infection, the infection rate among pulmonary TB was 
17%, whereas that in extrapulmonary TB was 4.8%; this 
was statistically significant (p = 0.03; Table III).

Pulmonary TB	 32 (17%)	 156 (83%)	 188
Extra pulmonary	   3 (04.8%)	   60 (95.2%)	 63	 0.026
Total	 35 (13.9%)	 216 (86.1%)	 251

Table III
Frequency of HIV in comparison to type of TB (n = 251).

HIV
positive

HIV
negative Total p-value

The mean age of HIV-positive patients with TB was 
31.66 ± 12.80 years, while 43.35 ± 18.16 years in HIV-
negative patients.

Regarding gender, the infection of HIV among males 
was 18.2%, while that among females was 7.2%; the dif-
ference was statistically significant (p = 0.02; Table IV).

No statistical significance was detected when com-
paring the residence of patients with HIV infection fre-
quency (p = 0.9). The frequency was 14.5% in patients 
residing in the urban area, while that was 13.2% in 
patients residing in a rural area (Table IV).

The education level of 230 adults was as follows: 
illiterate (159; 69.13%), elementary education (59; 
25.65%), secondary education (11; 04.78%), and uni-
versity education (1; 0.43%).

Occupation of the adults’ population was spread into 
unemployment, farmer, housewife, officer, free worker, 
and students, with the following frequencies: 1 (0.43%), 
1 (0.43%), 82 (35.65%), 2 (0.87%), 140 (60.87%), and 
4 (1.74%), respectively.

Alcohol drinking was one of the behavioral data col-
lected, only one patient was alcoholic.

Knowledge about TB and HIV, transmission, and 
treatment were measured by asking different questions. 
Specifically, a patient who knew two-thirds or more 
was considered someone who had good knowledge, 
whereas a patient who knew one-third or less was con-
sidered someone with poor knowledge. Regarding TB 
knowledge, only 5 (2.17%) out of 230 adults showed 
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Regarding the patients’ knowledge about TB in 
comparison with HIV infection, out of all 251 patients, 
20% of patients with good knowledge were found to 
be HIV positive, while 13.8% of patients with poor 
knowledge were HIV positive. The p-value was 0.69, it 
was not statistically significant (Table IV). Considering 
patients’ knowledge about HIV and the frequency of 
infection, 24% of patients with good knowledge were 
positive for HIV, while 12.8% HIV-positive patients 
had poor knowledge, with no statistical significance 
between the two groups (p = 0.13; Table IV). Table V 
demonstrates the social and behavioral characteristics 
of adult patients (above 18 years old) with TB compared 
with HIV infection. First, regarding the education of 
HIV-positive patients, 14.5% were illiterate, 11.9% had 
an elementary education, 9.1% had secondary educa-

tion, and 0.0% were university studied patients; this was 
not statistically significant (p = 0.89).

Second, marital status and HIV results were com-
pared. The frequency of HIV-positive patients was 6.6% 
married, 32.8% single, and 0.0% widowed; the differ-
ence was not statistical significant (p = 1.6).

Third, the occupation of patients with TB was com-
pared with the HIV results. No positive HIV results 
were found among the unemployed and officers, and 
6.1% were found to be HIV positive in housewives. 
Approximately 17.1% of HIV-positive samples were free 
workers, only one farmer was HIV positive (100%), and 
25% of students were found to be HIV positive.

Fourth, smoking behavior in adult patients was 
compared with HIV results. The frequency of HIV-
positive results was 61.5% among smokers, and 10.6% 

Gender	 male	 28 (18.2%)	 126 (81.8%)	 154	
0.02

	 female	   7 (7.2%)	   90 (92.8%)	 97
Residence	 urban	 21 (14.5%)	 124 (85.5%)	 145	

0.92
	 rural	 14 (13.2%)	   92 (86.8%)	 106
Knowledge about TB	 good	   1 (20%)	     4 (80%)	 5	

0.69
	 poor	 34 (13.8%)	 212 (86.2%)	 246
Knowledge about HIV	 good	   6 (24%)	   19 (76%)	 25	

0.13
	 poor	 29 (12.8%)	 197 (87.2%)	 226
Total		    4 (19.05%)	   17 (80.95%	 21

Table IV
Frequency of HIV in comparison to gender, education, Knowledge about TB,

knowledge about HIV, and occupation of children (n = 251).

Positive Negative Total p-value

Education	 illiterate	 23 (14.5%)	 136 (85.5%)	 159
	 elementary	   7 (11.9%)	   52 (88.1%)	 59	

0.89
	 secondary	   1 (9.1%)	   10 (90.9%)	 11
	 university	   0 (0.0%)	     1 (100%)	 1
Marital status	 married	 11 (6.6%)	 156 (93.4%)	 167
	 single	 20 (32.8%)	   41 (67.2%)	 61	 0.6
	 widow	   0 (0.0%)	     2 (100%)	 2
Occupation	 unemployed	   0 (0.0%)	     1 (100%)	 1
	 housewife	   5 (6.1%)	   77 (93.9%)	 82
	 freeworker	 24 (17.1%)	 116 (82.9%)	 140	

0.03
	 officer	   0 (0.0%)	     2 (100%)	 2
	 farmer	   1 (100%)	     0 (0.0%)	 1
	 student	   1 (25%)	     3 (75%)	 4
Smoking	 smoker	   8 (61.5%)	     5 (38.5%)	 13	

0.7
	 non smoker	 23 (10.6%)	 194 (89.4%)	 217
Alcohol	 yes	   0 (0.0%)	     1 (100%)	 1	

0.69
	 no	 31 (13.5%)	 198 (86.5%)	 229
Total		  31 (13.5%)	 199 (86.5%)	 230

Table V
Frequency of HIV in comparison to gender, education, and occupation of adults (n = 230).

Positive Negative Total p-value
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among nonsmokers; the difference was not statistically 
significant (p = 1.7).

Lastly, regarding adult data, alcohol drinking was 
compared with HIV results. Approximately 13.5% non-
alcoholics were positive for HIV, while only one patient 
who drank alcohol was HIV negative.

Discussion

The prevalence of HIV in patients with TB is a res
ponsive predictor of the spread of HIV to the general 
population in many regions. In order to respond to 
a  growing commitment to providing comprehensive 
HIV/AIDS treatment and support, including anti-retro
viral therapy (ART), for HIV-positive patients with TB, 
information on HIV prevalence in patients with TB is 
important. Currently, while TB cases are increasingly 
being found in most countries, most cases of HIV are not.

The current study revealed that the prevalence of 
HIV in TB patients was 13.9%. These findings were 
lower than a similar study conducted in Kassala in 
2012, where the frequency was reported as 18.3% 
(Abdallah et al. 2012).

This frequency was also lower than those reported 
by studies carried out in Nigeria, Ghana, Ethiopia and 
Zambia (Yassin et al. 2004; Erhabor et al. 2010; Pennap 
et al. 2010; Chanda-Kapata et al. 2017; Osei et al. 
2017) but higher than those in studies in India, China, 
Pakistan, and Vietnam (Thanh et al. 2010; Wang et al. 
2010; Hasnain et al. 2012; Manjareeka and Nanda 
2013). The large variation in TB/HIV co-infection rates 
worldwide is partly due to the following reasons: under-
reporting, diagnostic procedures used, disparity in TB 
diagnosis, TB epidemiology in different countries, and 
methods used in the study.

The present study showed a high prevalence of 
HIV in males than in females, which was in line with 
a study in southern Ethiopia, wherein the HIV preva-
lence was 18% for females and 21% for males (Yassin 
et al. 2004), in Eastern India including 42 (10.3%) males 
and 8 (02%) females (Manjareeka and Nanda 2013), 
and in Pakistan (Hasnain et al. 2012). However, the 
present work was contradicted by studies in Nigeria 
in which the prevalence of co-infection was found to 
be higher among females (44.82%) than among males 
(38.30%) (Pennap et al. 2010), and in a study conducted 
in Ghana, wherein the percentage was 15.1% in males 
and 24.1% in females (Osei et al. 2017).

The current study also showed slightly higher fre-
quency in patients residing in an urban area (14.5%), 
while only 13.2% was noted in patients residing in 
a  rural area. This outcome was in line with a related 
study carried out in the southern region of Ethiopia 
(Yassin et al. 2004).

Statistical significance was detected when compar-
ing HIV co-infection in pulmonary TB and extrapul-
monary TB; the frequencies of pulmonary TB and 
extrapulmonary TB were 17% and 4.8%, respectively. 
Similar findings have been found in studies carried out 
in southern Ethiopia, which reported 19% of pulmo-
nary TB, and 11% of the patients with extrapulmonary 
TB were HIV positive (Yassin et al. 2004). Nevertheless, 
these findings were not in agreement with studies in 
India and Pakistan (Hasnain et  al. 2012; Manjareeka 
and Nanda 2013), because of a limited number of 
HIV cases detected in their reports. The seroprevalence 
of HIV infection among TB-infected patients was iden-
tified in this study in Kassala State, Eastern Sudan, 
and showed a high burden of HIV infection among 
active TB patients.

In strict compliance with the WHO, the CDC 
recommends that all patients with newly diagnosed TB 
be screened for HIV after consultation. TB reactivation 
can be minimized by TB preventive therapy and univer-
sal access to ART for people living with HIV.
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Introduction

Urinary tract infections (UTIs) are one of the 
most common infections (Klein and Hultgren 2020). 
Although mild UTIs do not cause severe organ damage, 
pathogenic bacteria can lead to adverse consequences 
such as pyelonephritis, kidney abscess formation, and 
acute kidney injury through the urethra, bladder, ureter, 
and other ways, causing septicemia and even death 
(Korbel et al. 2017; Hsu and Melzer 2018). Fast and 
reliable microbial identification is essential for the 
diagnosis and treatment of UTIs. The current diagnosis 
of UTIs relies on routine urine culture identification, 
a process that requires 48 hours or longer (de Cueto 
et al. 2017). Although 16S rRNA gene sequencing, mul-
tiplex PCR, and fluorescence in situ hybridization can 
quickly detect pathogens in urine cultures, only 20% 

to 30% of clinical urine samples show significant bac-
terial growth (Manickam et al. 2013). These expensive 
and cumbersome methods are not suitable for clinical 
practice (Akoachere et al. 2012).

Matrix-assisted laser desorption ionization time-of-
flight mass spectrometry (MALDI-TOF MS) is a new 
method for rapid microbial identification without the 
need for target amplification (Nomura 2015). It can replace  
methods such as 16S rRNA gene sequencing (Vincent 
et al. 2013). It has a great potential in identifying bacteria 
directly from urine samples and culture-positive blood 
samples (Sauget et al. 2017; Nomura et al. 2020). Never-
theless, this novel method has not been widely used in 
clinical practice. Therefore, in this study, we compared 
a centrifugation-based MALDI-TOF MS, a short-term 
culture with MALDI-TOF MS, and the conventional 
diagnostics of UTI in a clinical practice setting.
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in Clinical Urine Specimens after Two Pretreatments
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A b s t r a c t

Rapid identification of microorganisms in urine is essential for patients with urinary tract infections (UTIs). Matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a method for the direct identification of urinary 
pathogens. Our purpose was to compare centrifugation-based MALDI-TOF MS and short-term culture combined with MALDI-TOF MS 
for the direct identification of pathogens in urine specimens. We collected 965 urine specimens from patients with suspected UTIs, 211/965 
isolates were identified as positive by conventional urine culture. Compared with the conventional method, the results of centrifugation-
based MALDI-TOF MS were consistent in 159/211 cases (75.4%), of which 135/159 (84.9%) had scores ≥ 2.00; 182/211 cases (86.3%) were 
detected using short-term culture combined with MALDI-TOF MS, of which 153/182 (84.1%) had scores ≥ 2.00. There were no apparent 
differences among the three methods (p = 0.135). MALDI-TOF MS appears to accelerate the microbial identification speed in urine and 
saves at least 24 to 48 hours compared with the routine urine culture. Centrifugation-based MALDI-TOF MS is characterized by faster 
identification speed; however, it is substantially affected by the number of bacterial colonies. In contrast, short-term culture combined with 
MALDI-TOF MS has a higher detection rate but a relatively slow identification speed. Combining these characteristics, the two methods 
may be effective and reliable alternatives to traditional urine culture.

K e y w o r d s:	 Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), rapid identification, 
	 urinary tract infection
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Experimental

Materials and Methods

Sample collection. From May to August 2020, we 
collected 965 urine specimens from patients with sus-
pected UTIs from the Second Affiliated Hospital of 
Wenzhou Medical University (a teaching hospital with 
2,667 beds in Wenzhou, Zhejiang, China) and excluded 
duplicate specimens from the same patient. Samples 
were collected in 30-ml sterile containers, processed 
immediately, or stored at 4°C for no more than 8 hours. 
Each sample was divided into three aliquots: the first 
aliquot was identified using conventional methods; 
the second was centrifuged and identified directly 
using MALDI-TOF MS, and the third was cultured for 
5 hours and then identified by MALDI-TOF MS.

Routine microbiological processing. After mixing, 
10 µl of urine samples were inoculated on a Columbia 
blood plate (Bio T.K., Zhejiang, China) and incubated 
at 35°C for 18–48 h in aerobic conditions (Sumsung 
Laboratory Instrument Co. Ltd., Shanghai, China). 
We observed bacterial growth and counted colonies. 
If no bacteria were found after 48 hours, the sample 
was considered negative. VITEK 2 Compact Automatic 
bacterial identification and the drug sensitivity analysis 
system (Bio Mérieux, Lyon, France) were used for strain 
identification.

The centrifugation-based MALDI-TOF MS

Sample preparation for MALDI-TOF MS. Proce-
dures were as follows: (i) 3 ml of urine was placed in 
a sterile centrifuge tube (Gongdong Medical Techno
logy Co. Ltd. Zhejiang, China) and centrifuged at 715 × g 
for 10 minutes to remove the cells (USTC ZONKIA Sci-
entific Instruments Co. Ltd., Anhui, China); (ii) super-
natants were placed in another 1.5 ml tube; (iii) this was 
followed by centrifugation at 15,000 × g for 5 minutes to 
collect the bacteria (Beckman Coulter, Inc, Brea, Cali-
fornia, USA); (iv) the supernatants were discarded, and 
the pellets were mixed with 1.5 ml sterile water; (v) we 
repeated steps iii and iv; (vi) this was followed by cen-
trifugation at 15,000 × g for 5 minutes; (vi) supernatants 
were discarded, and the pellets were retained for the 
subsequent step (Zboromyrska et al. 2016 ).

MALDI-TOF MS. One microliter of the pellet was 
applied to a clean MALDI target plate (Bruker Dal-
tonik GmBH, Bremen, Germany) and air-dried. Next, 
it was covered with 1 µl of 70% of formic acid (AIKEDA 
Chemical Reagent Co. Ltd., Chengdu, China) and left to 
dry, then covered with 1 µl of matrix solution (a-cyano-
4-hydroxy-cinnamic acid solution in 50% acetonitrile 
and 2.5% trifluoroacetic acid) (Bruker Daltonics) and 
air-dried. Spectrum acquisitions were obtained using 

the default setting through the MALDI Biotyper system 
(Bruker Daltonics). The final data analysis and bacterial 
identification scores were achieved using the MALDI 
Biotyper software (Bruker Daltonics). Each sample was 
analyzed in duplicate, and the higher score obtained 
from the two points was recorded as the final score. 
Escherichia coli ATCC 8739 was used as a quality con-
trol strain. Based on the manufacturer’s instructions, 
an identification score < 1.70 indicated no identifica-
tion, an identification score between 1.70 and 2.00 indi-
cated genus identification, and an identification score 
≥ 2.00 indicated species identification.

Short-term culture combined
with MALDI-TOF MS

Urine specimen processing. After mixing, 10 µl 
urine samples were inoculated on a Columbia blood 
plate and incubated at 35°C for 5 h in aerobic conditions.

MALDI-TOF MS. The pathogen was identified 
using MALDI-TOF MS after short-term culture. The 
bacteria were uniformly coated on the target plate 
and covered with 1 µl of 70% formic acid. After dry-
ing, covered with 1 µl of matrix solution and air-dried. 
The acquisition and interpretation of the identification 
results were the same as in the centrifugation-based 
MALDI-TOF MS.

Statistical analyses. The χ2 test was used to com-
pare the differences in the pathogen identification 
among the three methods, and the Student’s t-test was 
used to compare the score between the two MALDI-
TOF MS methods. Differences were considered statisti-
cally significant when p < 0.05.

Results

Among the 965 patients with suspected UTIs, 
425 were male (44.0%), and 540 were female (56.0%). 
Because our institution is a teaching hospital and 
a children’s hospital, 374 patients (38.8%) were under 
13 years of age, and 202 (20.9%) were under 1 year of 
age. The mean age was 38.5 (patients under 1 year were 
counted as 1 year old), the median age was 45 years 
(IQR 3–68  years). The sources of the samples were 
as follows: 814 inpatients (84.4%); 149 outpatients 
(15.5%); one unknown (0.1%).

Conventional urine culture and two MALDI-TOF 
MS methods. Among 965 urine specimens, 211 positive 
specimens were identified by conventional urine culture, 
including Gram-negative bacteria 170/211 (80.6%) and 
Gram-positive bacteria 41/211 (19.4%). The most com-
mon microorganisms were E. coli in 100 cases (44.2%), 
followed by Klebsiella pneumoniae in 28 cases (12.4%) 
and Enterococcus faecalis in 15 cases (6.6%) (Table I).
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159/211 (75.4%) positive specimens were detected 
by the centrifugation-based MALDI-TOF MS. The 
corresponding rates with routine culture were Gram-
negative bacteria: 140/170 (82.4%), Gram-positive bac-
teria: 19/41 (46.3%) (p = 0.053). The top three detected 
bacteria were E. coli (n = 84, detection rate: 84.0%), 
K. pneumoniae (n = 23, 82.1%), and Proteus mirabi­
lis (n = 10, 100%). Short-term culture combined with 
MALDI-TOF MS detected 182/211 (86.3%) positive 
specimens. The corresponding rates with routine cul-
ture were Gram-negative bacteria: 155/170 (91.2%), 
and Gram-positive bacteria: 27/41 (65.9%) (p = 0.230). 
The top three detected bacteria were E. coli (n = 95, 

detection rate: 95.0%), K. pneumoniae (n = 26, 92.9%), 
Enterococcus faecium (n = 12, 85.7%) (Table I). There 
was no significant difference between the three meth-
ods (p = 0.135) (Table II).

Comparison between the two MALDI-TOF MS 
methods. The centrifugation-based MALDI-TOF MS 
identified 159 cases with a score ≥ 1.70, and 135/159 
cases (84.9%) were identified with scores ≥ 2.00, 
including Gram-negative bacteria 121/140 (86.4%) 
and Gram-positive bacteria 14/19 (73.7%). The mean 
score was 2.17 ± 0.24. Short-term culture combined 
with MALDI-TOF MS identified 182 cases with scores 
≥ 1.70, and 153/182 cases (84.1%) were identified by 

Escherichia coli (100)	 84	 75	 2.22 ± 0.16	 95	 87	 2.17 ± 0.08
Klebsiella pneumoniae (28)	 23	 18	 2.16 ± 0.21	 26	 22	 2.18 ± 0.18
Proteus mirabilis (10)	 10	 8	 2.18 ± 0.19	 9	 6	 2.04 ± 0.15
Enterobacter cloacae (9)	 8	 7	 2.14 ± 0.19	 8	 6	 2.09 ± 0.18
Pseudomonas aeruginosa (7)	 3	 2	 1.95 ± 0.13	 5	 5	 2.24 ± 0.09
Enterobacter aerogenes (4)	 3	 3	 2.27 ± 0.10	 4	 4	 2.26 ± 0.10
Citrobacter freundii (4)	 4	 4	 2.22 ± 0.12	 4	 4	 2.23 ± 0.11
Acinetobacter baumannii (3)	 2	 1	 2.14 ± 0.19	 2	 1	 2.03 ± 0.18
Stenotrophomonas maltophilia (3)	 1	 1	 2.09	 0	 0	 N/A
Morganella morganii (2)	 2	 2	 2.18 ± 0.16	 2	 1	 2.22 ± 0.28
Enterococcus faecalis (15)	 7	 5	 2.15 ± 0.19	 10	 6	 2.03 ± 0.20
Enterococcus faecium (14)	 8	 6	 2.08 ± 0.17	 12	 7	 2.04 ± 0.24
Staphylococcus aureus (2)	 1	 0	 2.20	 2	 1	 1.96 ± 0.23
Staphylococcus haemolyticus (2)	 0	 0	 N/A	 1	 1	 2.22
Staphylococcus epidermidis (2)	 0	 0	 N/A	 1	 0	 1.76
Streptococcus agalactiae (1)	 1	 1	 2.09	 1	 1	 2.15
Streptococcus gallicans (1)	 1	 1	 2.20	 0	 N/A	 N/A
Streptococcus anginae (1)	 1	 0	 1.75	 0	 N/A	 N/A
Staphylococcus saprophyticus (1)	 0	 0	 N/A	 0	 0	 N/A
Enterococcus avium (1)	 0	 0	 N/A	 0	 0	 N/A
Lactobacillus crispatus (1)	 0	 0	 N/A	 0	 0	 N/A
Total (211)	 159	 135		  182	 153	

Table I
Identification results by conventional culture and two MALDI-TOF MS methods.

Conventional urine culture
(No. of cases)

Centrifugation-based MALDI-TOF MS Short-term culture combined
with MALDI-TOF MS

Score > 1.7
(No. of cases)

Score > 2.0
(No. of cases)

Mean
Score ± SD

Score > 1.7
(No. of cases)

Score > 2.0
(No. of cases)

Mean
Score ± SD

Conventional urine culture	 170	 41	 211
Centrifugation-based MALDI-TOF MS	 140	 19	 159	 p = 0.135
Short-term culture combined with MALDI-TOF MS	 155	 27	 182

Table II
Comparison of three methods for identification of Gram-negative bacteria and Gram-positive bacteria.

Method
Identification results

Total p-valueGram-negative
bacteria

Gram-positive
bacteria
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scores ≥ 2.00, with Gram-negative bacteria 137/155 
(88.4%) and Gram-positive bacteria 16/27 (59.3%). The 
mean score was 2.09 ± 0.20, slightly lower than centrif-
ugation-based MALDI-TOF MS. Statistical analysis 
showed that, although the mean MALDI score of the 
centrifugation-based MALDI-TOF MS was higher than 
that of short-term culture combined with MALDI-TOF 
MS in the identification of Gram-negative and Gram-
positive bacteria, the difference was insignificant. Nev-
ertheless, in terms of overall identification, the differ-
ence in identification score was statistically significant 
(p = 0.003, Table III).

To determine correlations between colony counts 
and the detection rates of MALDI-TOF MS, we 
compared the identification results in various colony 
ranges using two MALDI-TOF MS methods. The sta-
tistical results showed that there was no difference 
between the two MALDI-TOF MS methods for the 
identification of Gram-positive bacteria (p = 0.075). 
In contrast, when identifying Gram-negative bacte-
ria, the difference was significant (p = 0.016). Further 
analysis showed that, when the colony count was 
more than 1 × 105 CFU/ml, the centrifugation-based 
MALDI-TOF MS and short-term culture combined 
with MALDI-TOF MS detected 133/147 (90.5%) and 
137/147 (93.2%) of Gram-negative bacteria, respec-
tively; there were no significant differences (p = 0.394). 
When counts were between 1 × 104 and 1 × 105 CFU/
ml, however, the detection rate of Gram-negative bac-
teria in the centrifugation-based MALDI-TOF MS 
was significantly lower than that in short-term culture 
combined with MALDI-TOF MS, which were 5/15 
(33.3%) and 12/15 (80.0%), respectively; the difference 
was significant (p = 0.025). Moreover, when the count 
was less than 1 × 104 CFU/ml, Gram-negative bac- 
teria were detected in 2/8 (25.0%) and 6/8 (75.0%) 
by the two methods, respectively. The detection rate 
decreased significantly with decreased colony count, 
especially for the centrifugation-based MALDI-TOF MS 
(Table IV).

We found that, although the identification score of 
short-term culture combined with MALDI-TOF MS 
was slightly lower than that of the centrifugation-based 
MALDI-TOF MS, the detection ability of the short-

term culture combined with MALDI-TOF MS was 
significantly higher than that of the centrifugation-
based MALDI-TOF MS, especially when the colony 
count was low.

Discussion

Rapid identification of urinary microorganisms 
and timely application of antibiotics can significantly 
reduce the length of hospital stay and costs (Sood 
et al. 2015). MALDI-TOF MS is a clinical bacterial 
identification method that can provide microbial 
identification results within 15 minutes; it is simple to 
operate and moderately priced (< 1 USD/sample). It is 
suitable for the microbiological identification of urine 
specimens from patients with UTIs (Dierig et al. 2015; 
Sauget et al. 2017).

The primary pathogens of UTIs are Gram-negative 
bacteria, followed by Gram-positive bacteria, and fungi 
are in the minority (Flores-Mireles et al. 2015). The 
detection rates of Gram-negative and Gram-positive 
bacteria by the centrifugation-based MALDI-TOF 
MS were 82.3% and 46.3%, respectively. In contrast, 
the detection rates of Gram-negative and Gram- 
positive bacteria by short-term culture combined with 
MALDI-TOF MS were higher, reaching 91.2% and 
65.9%. Although there was no statistically significant 
difference in the overall identification rate between 
the two MALDI-TOF MS methods (p = 0.437), there 
was a significant difference in the detection results of 
Gram-negative bacteria when the colony count was 
between 1 × 104 and 1 × 105 CFU/ml (p = 0.027). The 
reason may be that the decrease in urine colony counts 
had a  significantly more significant impact on the 
centrifugation-based MALDI-TOF MS than on short-
term culture combined with MALDI-TOF MS. When 
the colony count was higher than 1 × 105 CFU/ml, 
the bacterial density could meet the requirements for 
direct identification by MALDI-TOF MS after cen-
trifugation and washing. However, when the bacterial 
colony number decreased to 1 × 104 and 1 × 105 CFU/ml, 
the detection rate of Gram-negative bacteria by the 
centrifugation-based MALDI-TOF MS dropped signi

Gram-negative bacteria	 2.18 ± 0.25	 11.4%	 2.14 ± 0.18	   8.3%	 p = 0.113
Gram-positive bacteria	 2.10 ± 0.19	   9.1%	 2.03 ± 0.23	 11.2%	 p = 0.282
Total	 2.17 ± 0.24	 11.2%	 2.09 ± 0.20	   9.5%	 p = 0.003

Table III
Comparison of MALDI scores between the two methods.

Germ

Centrifugation-based
MALDI-TOF MS

Short-term culture combined
with MALDI-TOF MS p-value

score ± SD RSD score ± SD RSD
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ficantly from 90.5% to 33.3%, compared with that by 
short-term culture combined with MALDI-TOF MS, 
which only decreased from 93.2% to 80.0%, the dif-
ference was statistically significant (p = 0.027). When 
the colony number was lower than 1 × 104 CFU/ml, 
the number of positive samples was too low, and the 
statistical results were not reliable. Among all Gram-
negative bacteria, E. coli was the most common: 
81/87 cases (93.1%) were detected by the centrifuga- 
tion-based MALDI-TOF MS when the colony count 
was ≥ 1 × 105 CFU/ml, but when the colony count was 
between 1 × 104 and 1 × 105 CFU/ml, the detection rate 
decreased sharply to 2/11 (18.2%). Although the detec-
tion rate of E. coli by short-term culture combined with 
MALDI-TOF MS was also affected by the decrease in 
the bacterial count, it was much less affected than the 
centrifugation-based MALDI-TOF MS, with the detec-
tion rate reduced from 96.6% to 81.8%. Therefore, it is 
necessary to pay attention to the possible false-negative 
specimens in clinical practice.

Although the detection rate of bacteria by short-
term culture combined with MALDI-TOF MS was 
higher than that by centrifugation-based MALDI-TOF 
MS, its MALDI score was slightly lower. The reason 

may be that even after 5 hours of short-term culture, the 
colony number was still low, and it was easy to scrape 
the medium agar when applied to the target plate, which 
leads to too few bacteria scraped or failure to scrape 
bacteria, ultimately affecting the identification results. 
In the experiment, we could find that the MALDI spec-
trogram of the centrifugation-based MALDI-TOF MS 
was cleaner than that of short-term culture combined 
with MALDI-TOF MS. Nevertheless, in the experi-
ment, we found another interesting phenomenon: when 
too many colonies were collected, the MALDI score 
could not be improved, and it is directly affected the 
identification results. It is probably because the bac-
teria were so clustered that it was not easy to spread 
evenly on a coated target board. There was a specimen 
with apparent bacterial growth, but MALDI-TOF MS 
did not detect it. Under the microscope, we found the 
bacteria gathered together. After a second test, Proteus 
mirabilis was identified. A  similar phenomenon had 
been observed in other Gram-negative bacteria, such 
as K. pneumoniae. Therefore, in the clinical work, the 
appropriate bacterial density and the uniform coating 
on the target plate could guarantee their effective iden-
tification by MALDI-TOF MS.

Gram-negative bacteria
≥ 105 CFU/ml	 133/147 (90.5%)	 14/147 (9.5%)	 137/147 (93.2%)	 10/147 (6.8%)	 p = 0.394
104 ~ 105 CFU/ml	 5/15 (33.3%)	 10/15 (66.7%)	 12/15 (80.0%)	 3/15 (20.0%)	 p = 0.027
≤ 104 CFU/ml	 2/8 (25.0%)	 6/8 (75.0%)	 6/8 (75.0%)	 2/8 (25.0%)	 p = 0.132
Total	 140/170 (82.4%)	 30/170 (17.6%)	 155/170 (91.2%)	 15/170 (8.8%)	 p = 0.016

Gram-positive bacteria
≥ 105 CFU/ml	 15/25 (60.0%)	 10/25 (40.0%)	 18/25 (72.0%)	 7/25 (28.0%)
104 ~ 105 CFU/ml	 3/12 (25.0%)	 9/12 (75.0%)	 8/12 (66.7%)	 4/12 (33.3%)
≤ 104 CFU/ml	 1/4 (25.0%)	 3/4 (75.0%)	 1/4 (25.0%)	 3/4 (75.0%)
Total	 19/41 (46.3%)	 22/41 (53.7%)	 27/41 (65.9%)	 14/41 (34.1%)	 p = 0.075

Escherichia coli
 ≥ 105 CFU/ml	 81/87 (93.1%)	 6/87 (6.9%)	 84/87 (96.6%)	 3/87 (3.4%)	 p = 0.494
104 ~ 105 CFU/ml	 2/11 (18.2%)	 9/11 (81.8%)	 9/11 (81.8%)	 2/11 (18.2%)	 p = 0.009
≤ 104 CFU/ml	 1/2 (50.0%)	 1/2 (50.0%)	 2/2 (100.0%)	 0/2 (0.0%)	 p = 1.000
Total	 84/100 (84.0%)	 16/100 (16.0%)	 95/100 (95.0%)	  5/100 (5.0%)	 p = 0.011

Enterococcus faecalis
≥ 105 CFU/ml	 5/8 (62.5%)	 3/8 (37.5%)	 6/8 (75.0%)	 2/8 (25.0%)	
104 ~ 105 CFU/ml	 2/5 (40.0%)	 3/5 (60.0%)	 3/5 (60.0%)	 2/5 (40.0%)	
≤ 104 CFU/ml	 0/2 (0.0%)	 2/2 (100.0%)	 1/2 (50.0%)	 1/2 (50.0%)	
Total	 7/15 (46.7%)	 8/15 (53.3%)	 10/15 (66.7%)	 5/15 (33.3%)	 p = 0.462

Table IV
Correlation between colony count and the MALDI-TOF MS identification.

Germ

Centrifugation-based
MALDI-TOF MS
No. of cases (%)

Short-term culture combined
with MALDI-TOF MS

No. of cases (%) p-value
Detected

Yes

Detected

No Yes No
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Short-term culture combined with MALDI-TOF 
MS can eliminate the interference of proteins in 
MALDI-TOF MS. After short-term culture, it had 
higher detection ability for specimens with fewer colo-
nies. The centrifugation-based MALDI-TOF MS could 
directly identify pathogens in clinical urine specimens 
within 1 hour and showed good identification ability 
on urine samples when colony counts was more than 
1 × 105 CFU/ml. However, it was affected by colony 
counts. To reduce the influence of small bacterial num-
bers on the detection results and improve the identifica-
tion efficiency, we will introduce urine flow cytometry 
in subsequent experiments. As a new urine tangible 
component analysis technology, it can accurately pro-
vide the bacterial counts in urine samples (Wang et al. 
2013; Sun et al. 2020). We plan first to count the number 
of urine bacteria using the urine flow cytometer. Urine 
samples with colony count higher than 1 × 105 CFU/ml 
will be identified using the centrifugation-based 
MALDI-TOF MS, and if less than 1 × 105 CFU/ml by 
short-term culture combined with MALDI-TOF MS.

Although the two MALDI-TOF MS methods have 
many advantages in clinical urine bacteria identifi-
cation, there are some limitations. First, during the 
identification of Gram-positive bacteria by short-term 
culture combined with MALDI-TOF MS, the bacterial 
growth was not significant even after 5 hours of cul-
ture. Second, due to their thick and highly anionic cell 
walls, even the formic acid was added in the process, 
the detection of Gram-positive bacteria by MALDI-
TOF MS was not optimal. It is necessary to improve 
the identification of Gram-positive bacteria. We tried to 
mix the specimens with formic acid and centrifuged at 
high speed; however, this did not work. Third, the study 
did not include antibiotic sensitivity tests and could not 
distinguish among antibiotic-resistant strains. Oviaño 
successfully used MALDI-TOF MS to rapidly identify 
the carbapenemase-producing Enterobacteriaceae in 
urine samples and detect their drug resistance (Oviaño 
et al. 2017). We will try to co-culture urine sediments 
and drugs on MALDI steel plates for short periods and 
rapidly detect the antimicrobial resistance of bacteria 
based on the mass spectrum peak change.

Conclusions

MALDI-TOF MS can accelerate the bacteriological 
identification of organisms causing UTIs. The centrif-
ugation-based MALDI-TOF MS warrants fast identifi-
cation. However, it is greatly affected by the number of 
bacterial colonies, while short-term culture combined 
with MALDI-TOF MS has a higher detection rate but 
a  relatively slow identification speed. The screening 
the urine colony count first, then assigning to the two 

MALDI-TOF MS methods for identification, may be 
an effective and reliable alternative to the traditional 
urine culture, and it has great potential in measuring 
antibiotic susceptibility (Bizzini et al. 2011; Croxatto 
et al. 2012; Oviaño et al. 2017).
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Introduction

Mount Jiri (hereafter referred to as Jiri) is located 
at the southern tip of the Sobaek Mountain ranges in 
the southern part of the Korean peninsula. It covers 
a vast area, spanning five cities, and it is the second-
highest mountain (1915 m) in South Korea, with slopes 
of 28°–30° (Kim and Jung 2018). Jiri presents annual 
average temperature of 13°C and an average annual 
precipitation of 1,350–1,510 mm, with 69% of the rain-
fall concentrated between June and September (Kim 
and Jung 2018). Mountain streams and high marshes 
have developed depending on groundwater and rain-

fall. Such freshwater ecosystems may be geographically 
isolated due to weathering and erosion (Wieringa 1964; 
Kim and Jung 2018). Jiri has well-developed moun-
tain marshes that can be separated and isolated by the 
mountain ranges or originated from separate water 
sources (Wieringa 1964; Kim and Jung 2018). Here, 
we studied three mountain marshes – Jeonglyeongchi, 
Waegok, and Wangdeungjae – and their different 
environmental factors associated with their respective 
microbial and microalgal communities.

Jiri’s high marshes characteristics have been influ-
enced by topography and soil properties (Yang 2008; 
Kim et al. 2010). In particular, the soil of Jiri’s high 

Environmental Factors Associated with the Eukaryotic Microbial Community
and Microalgal Groups in the Mountain Marshes of South Korea

YOUNG-SAENG KIM1*†, HYUN-SIK YUN2†, JEA HACK LEE2, HAN-SOON KIM2*
and HO-SUNG YOON2, 3*

1 Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, South Korea
2 Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea

3 School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group,
Kyungpook National University, Daegu, South Korea

Submitted 12 November 2020, revised 25 March 2021, accepted 11 April 2021

A b s t r a c t

The diversity indices of eukaryotic microalgal groups in the Jeonglyeongchi, Waegok, and Wangdeungjae marshes of Mount Jiri, Korea, were 
measured using Illumina MiSeq and culture-based analyses. Waegok marsh had the highest species richness, with a Chao1 value of 828.00, 
and the highest levels of species diversity, with Shannon and Simpson index values of 6.36 and 0.94, respectively, while Wangdeungjae marsh 
had the lowest values at 2.97 and 0.75, respectively. The predominant species in all communities were Phagocata sibirica (Jeonglyeongchi, 
68.64%), Aedes albopictus (Waegok, 34.77%), Chaetonotus cf. (Waegok, 24.43%), Eimeria sp. (Wangdeungjae, 26.17%), and Eumonhystera 
cf. (Wangdeungjae, 22.27%). Relative abundances of the microalgal groups Bacillariophyta (diatoms) and Chlorophyta (green algae) in each 
marsh were respectively: Jeonglyeongchi 1.38% and 0.49%, Waegok 7.0% and 0.3%, and Wangdeungjae 10.41% and 4.72%. Illumina MiSeq 
analyses revealed 34 types of diatoms and 13 types of green algae. Only one diatom (Nitzschia dissipata) and five green algae (Neochloris sp., 
Chlamydomonas sp., Chlorococcum sp., Chlorella vulgaris, Scenedesmus sp.) were identified by a culture-based analysis. Thus, Illumina MiSeq 
analysis can be considered an efficient tool for analyzing microbial communities. Overall, our results described the environmental factors 
associated with geographically isolated mountain marshes and their respective microbial and microalgal communities.
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marshes presents high water retention and poor per-
meability, allowing fresh water to flow into the wet-
lands (Yang 2008; Kim et al. 2010). Because of the low 
soil permeability, sediments around Mount Jiri tend 
to build up, influencing the development of soil layers 
(Yang 2008; Kim et al. 2010). Thus, soil in Mount Jiri is 
characterized by organic layers and deep O and A soil 
horizons (Anderson 1988; Bormann et al. 1995; Hug-
gett 1998; Hartemink et al. 2020). The soil supports 
a thriving vegetation, along with peat deposits (Ander-
son 1988; Bormann et al. 1995; Huggett 1998). Some 
microorganisms can use the peat as an energy source, 
leading to the formation of a unique type of microbial 
community (Williams and Yavitt 2003; Dobrovol’skaya 
et al. 2012). This microbial community contains decom-
posers that can degrade cellulose and/or lignin as well 
as consumers that utilize the resulting degradation 
products (Berg and McClaugherty 2003; Berg and 
Laskowski 2005; Stone et al. 2020), including organic 
carbon sources, nitrogen, phosphorus, and trace ele-
ments (Jewell 1971; Garber 1984; Canfield et al. 2020; 
Zhang et al. 2020). In addition, microalgal groups con-
sume nitrogen and phosphorus (Di Termini et al. 2011) 
and are involved in cycling these elements through pho-
tosynthesis (McGlathery et al. 2004). Microalgal groups 
can act as producers (of oxygen), consumers (of organic 
carbon sources), and decomposers (of cellulose and 
lignin, using them as energy sources) (Schoenberg et al. 
1984; Perez-Garcia et al. 2011; Blifernez-Klassen et al. 
2012). Therefore, microalgal groups can play a variety 
of ecological roles and potentially affect the diversity 
of the microbial community (Schoenberg et al. 1984; 
Perez-Garcia et al. 2011; Blifernez-Klassen et al. 2012).

Each of the Jiri marshes possesses unique charac-
teristics, making them attractive sites for the compara-
tive analyses of physicochemical factors and microbial 
communities (Yang 2008; Kim and Jung 2018). In this 
study, we investigated three mountain marsh sites by 
analyzing the microbial community DNA of eukaryotic 
microalgal groups and other microorganisms based on 
the amplification of the 18S rRNA gene. In addition, 
the geographic isolation between the mountain marshes 
was tested to identify the environmental factors affecting 
microbial and microalgal communities in the marshes.

Experimental

Materials and Methods

Collection of samples. Samples were collected from 
Jeonglyeongchi marsh (35°21’52.5”N 127°31’25.5”E, 
Deokdong-ri, Sannae-myeon, Namwon-si, Jeollabuk-
do, South Korea), Waegok marsh (35°22’57.0”N 
127°46’49.7”E, Yupyeong-ri, Samjang-myeon, San

cheong-gun, Gyeongsangnam-do, South Korea), and 
Wangdeungjae marsh (35°23’21.8”N 127°47’19.0”E, 
Yupyeong-ri, Samjang-myeon, Sancheong-gun, Gyeong
sangnam-do, South Korea) (Fig. 1) in July 2019, at ten 
different locations within each marsh. Each sample 
consisted of 500 ml of freshwater. Samples were trans-
ported to the laboratory, then shipped to Macrogen 
Co., Ltd. using the same-day express courier service. 
All analyses were performed at room temperature. All 
living materials were immediately examined and then 
fixed in 5% formalin for permanent preservation and 
detailed identification (Kim and Jung 2018).

Physicochemical analysis. Temperature, pH, elec-
trical conductivity (EC), salinity, dissolved oxygen 
(DO), and nephelometric turbidity of the samples were 
measured on-site using a multiparameter instrument 
(U-50 Multiparameter Water Quality Meter, HORIBA, 
Kyoto, Japan). A water test kit (HUMAS, Daejeon, 
South Korea) was used to measure total nitrogen (TN) 
and total phosphorus (TP) in each sample.

Microbial community analysis. Illumina MiSeq 
analyses of the microbial communities were per-
formed by the Macrogen (Macrogen, Seoul, South 
Korea, https://dna.macrogen.com/kor/), as described 
previously (Yun et al. 2019). DNA for Illumina MiSeq 
sequencing was extracted from the samples accord-
ing to the manufacturer’s protocol of the PowerSoil® 
DNA Isolation Kit (Cat. No. 12888, MO BIO) (Claas-
sen et al. 2013). PicoGreen and Nanodrop were used 
for quantification and quality measurements of the 
extracted DNA. Extracted DNA samples were amplified 
by PCR according to the Illumina 18S Metagenomic 
Sequencing Library protocols (Vo and Jedlicka 2014). 
The 18S V4 primer set was used to amplify the 18S 
rRNA regions (Stoeck et al. 2010). TAReuk454FWD1 
(forward primer, 5’-CCAGCA(G/C)C(C/T)GCGG- 
TAATTCC-3’) and TAReukREV3 (reverse primer, 
5’-ACTTTCGTTCTTGAT(C/T)(A/G)A-3’) were used 
as the 18S V4 primer set (Stoeck et al. 2010). A sub
sequent limited-cycle amplification was conducted 
for the addition of multiplexing indices and Illumina 
sequencing adapters (Meyer and Kircher 2010). The 
target DNA fragment size of PCR amplification is 
approximately 420 bp; the final DNA fragments were 
pooled and normalized using PicoGreen. TapeStation 
DNA and D1000 ScreenTape system (Agilent) was used 
to verify the library size. The sequencing data results 
were analyzed using the MiSeq™ platform (Illumina, 
San Diego, USA) (Kozich et al. 2013).

Taxonomic identification and phylogenetic analy-
sis. The raw sequencing data were demultiplexed using 
the index sequence, and a FASTQ file was generated for 
each sample (Yun et al. 2019). The adapter sequence was 
removed using SeqPurge, and the sequencing error cor-
rection was performed on the overlapping areas of the 
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correct reads (Sturm et al. 2016). Low-quality sequences 
of barcode sequences were trimmed and filtered (stan
dard: 400 bp < read length or 25 < average quality value). 
The trimmed and filtered sequencing data were identi-
fied using a BLASTN search from the NCBI database, 
based on their barcode sequences (Zhang et al. 2000). 
For the unclassified results, “–” was marked to the end of 
the name for each sublevel. Each operational taxonomic 
unit (OTU) was analyzed based on the CD-HIT at a 97% 
sequence similarity level (Li et al. 2012). The rarefaction 
curves and the diversity indicators (Shannon, Simpson, 
and Chao1) were calculated using the Mothur platform 
(Heck Jr et al. 1975; Schloss et al. 2009). Based on the 
weighted UniFrac distance, Beta diversity (sample diver-
sity information of the comparison group) was calcu-
lated and used to visualize the relationship between the 

samples using the UPGMA tree (FigTree, http://tree.bio.
ed.ac.uk/software/figtree/). Phylogenetic analysis was 
performed using the software package MEGA version 
7.0 (Kumar et al. 2008; Kumar et al. 2016). The identified 
sequencing data groups were aligned using ClustalW 
and incorporated in MEGA  7.0 (Kumar et al. 2008; 
Kumar et al. 2016). The best-fit nucleotide substitution 
model was selected based on the Bayesian information 
criterion (Schwarz 1978). The maximum likelihood 
(ML) phylogenetic tree was built according to the best-
fit nucleotide substitution model (Felsenstein 1985).

Culture-based analysis of microalgal groups. To 
culture microalgae, 1 ml of each sample was inocu-
lated into 100 ml of culture medium in a 250 ml flask 
(Rippka et al. 1979; Bolch and Blackburn 1996). Four 
types of culture media were used: Blue Green-11 (BG11) 

Fig. 1. Location of sampling sites at three mountain marshes. Red box: location of Mountain Jiri, covering five cities in the southern part 
of the Korean peninsula. Blue box: location of Mountain Jiri and sampling sites marked with small boxes.

a) Purple box, Wangdeungjae marsh, 35°23’21.8”N 127°47’19.0”E. b) Green box, Waegok marsh, 35°22’57.0”N 127°46’49.7”E. c) Orange box, Jeong-
lyeongchi marsh, 35°21’52.5”N 127°31’25.5”E.



Kim Y.-S. et al. 2218

medium, Optimum Haematococcus Medium (OHM), 
Bold Basal medium (BB), and Diatom Medium (DM) 
(Agrawal and Sarma 1982; Bolch and Blackburn 1996; 
Fábregas et al. 2000; Safonova et al. 2007). The cultures 
were grown under constant shaking (VS-202D orbital 
shaker, Vision Scientific, Bucheon, South Korea) and 
exposed to light in an illuminated incubation room 
(light: dark cycle of 16:8 h, fluorescent lamp, approxi-
mately 55 µmol photons) set at 25°C. Microalgae were 
cultivated for two weeks, and the resulting cultures 
were spread on agar plates and incubated until algal 
colonies formed. Then, the latter would be transferred 
aseptically to fresh medium (Stanier et al. 1971). The 
number of colonies that formed on the first set of plats 
was counted, and data were analyzed as described in 
the next section. An optical microscope (Nikon Eclipse 
E100 Biological Microscope, Tokyo, Japan) was used 
for morphological identification and the 18S V4 region 
of selected cultures was amplified and sequenced for 
molecular identification (Stoeck et al. 2010).

Statistical analysis. We compared individual data 
points using the Student’s t-test. A p-value of < 0.05 was 
considered statistically significant. All data were sub-
jected to one-way analysis of variance (ANOVA). All 
statistical analyses were performed using the Statistical 
Package for the Social Sciences software (SPSS). All the 

experiments were performed at least in triplicate, and 
all the traditional microbiological data are expressed as 
mean ± standard deviation (SD) (n = 3).

Results

Environmental factors and species diversity esti-
mates. The physicochemical characteristics of Jeongly-
eongchi, Waegok, and Wangdeungjae marshes are sum-
marized in Table I. The registered average temperatures 
in Jeonglyeongchi, Waegok, and Wangdeungjae were 
12.75°C, 16.55°C, and 22.93°C, respectively. The pH val-
ues of all marshes were between pH 6 and 7 – pH 6.95 
at Jeonglyeongchi, pH 6.84 at Waegok, and pH 6.48 at 
Wangdeungjae. The EC values at Jeonglyeongchi and 
Waegok were 32 and 36 µS/cm, respectively, and signifi-
cantly lower than 96 µS/cm registered at Wangdeungjae. 
The marshes differed by approximately 3 mg/l in DO, 
as its values at Jeonglyeongchi, Waegok, and Wangde-
ungjae were 10.51, 7.98, and 4.71 mg/l, respectively. The 
turbidity at Waegok averaged 42.30 nephelometric tur-
bidity units (NTU), which was considerably higher than 
those at Jeonglyeongchi (2.51 NTU) and Wangdeung-
jae (6.26 NTU). The TP levels at Jeonglyeongchi and 
Waegok were 1.57 ± 0.16 and 0.94 ± 0.01 mg/l, respec-

Physico-chemical factors	 Temperature (°C)	 12.75	 16.55	 22.93
	 pH	 6.95	 6.84	 6.48
	 EC (µS/cm)	 32	 36	 96
	 Salinity (ppt)	 0.0	 0.0	 0.0
	 DO (mg/l)	 10.51	 7.98	 4.71
	 Turbidity (NTU)	 2.51	 42.30	 6.26
	 TN (mg/l)	 0.00 ± 0.00	 0.00 ± 0.00	 0.00 ± 0.00
	 TP (mg/l)	 1.57 ± 0.16	 0.94 ± 0.01	 0.00 ± 0.00
Sequencing results	 Total reads	 122,953	 113,853	 121,392
	 Validated reads	 98,159	 80,099	 22,249
	 Mean read length (bp)	 406.28	 402.63	 401.70
	 Maximum read length (bp)	 419	 407	 407
	 Number of OTUsa	 243	 828	 64
Diversity indicators	 Chao1b	 243.00	 828.00	 64.00
	 Shannonc	 4.84	 6.36	 2.97
	 Simpsond	 0.91	 0.94	 0.75
	 Goods Coveragee	 1.00	 1.00	 1.00

a – OTUs: Operational Taxonomic Units
b – Chao1: species richness estimation, a count of the species present
c – Shannon: Shannon diversity index (> 0, higher is more diverse)
d – Simpson: Simpson diversity index (0 – 1, 1 = most diverse)
e – Goods Coverage: number of singleton OTUs/number of sequences (1 = 100% coverage)

Table I
Physicochemical measurements, sequencing results, and ecological diversity analysis

of Mount Jiri marsh samples.

Jeonglyeongchi Waegok Wangdeungjaex
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tively, and undetectable in Wangdeungjae. The salinity 
and TN levels in all the marshes were below the detec-
tion limits. Overall, Jeonglyeongchi and Waegok have 
shown to have similar physicochemical characteristics. 

The analysis of Illumina MiSeq results and taxo-
nomic identifications based on the NCBI database are 
summarized in supplementary Table SI. The GenBank 
accession numbers (PRJNA694792) for the micro-
bial community in South Korean Mount Jiri marshes 
were accepted. In terms of the number of validated 
reads and their ratio to phylogenetics, Jeonglyeongchi 
(ratio = 79.83 %) had the highest number and ratio of 
validated reads, followed by Waegok (ratio = 70.35 %), 
and Wangdeungjae (ratio = 18.33 %). The mean and 
maximum read lengths for each marsh were as follows: 
Jeonglyeongchi, 406.28 and 419 bp; Waegok, 402.63 and 
407 bp; and Wangdeungjae, 401.70 and 407 bp. Using 
a 3% sequence cutoff value, OTUs totaled 243 for Jeong-
lyeongchi, 828 for Waegok, and 64 for Wangdeungjae. 
The high numbers of OTUs at Jeonglyeongchi and 

Waegok have indirectly confirmed the high diversity of 
the habitats, especially at Waegok.

We measured the species’ richness using the Chao1 
estimator, which counts the number of species within 
a community without considering their abundance lev-
els. Shannon and Simpson’s diversity indices measured 
the species’ diversity, both of which account for the 
evenness of species distribution and their abundance 
(the number of individuals per species). The Chao1, 
Shannon, and Simpson index values for Waegok were 
828.00, 6.36, and 0.94, respectively, which were remark-
ably higher than the corresponding Wangdeungjae val-
ues of 64.00, 2.97, and 0.75, respectively (Fig. 2). The 
whole tree was obtained by adding up all the branch 
lengths of a phylogenetic tree to measure diversity 
based on Waegok, Jeonglyeongchi, and Wangdeungjae 
(Fig. 2c). The relationships between sites based on the 
weighted UniFrac distances were generated from our 
sequence data. Fig. 2d shows that Waegok and Wang-
deungjae were the marshes with the most similarity in 

Fig. 2. Rarefaction curves for OTUs representing the eukaryotic microbial communities associated with the marsh samples. The OTUs 
were analyzed using the cluster database that was set at high identity, with the tolerance (CD-HIT) program set at a 97% sequence simi-

larity. The Mothur platform was used to calculate the rarefaction curves and diversity indices.
a) OTUs. b) Chao1 estimator. c) Whole tree (Waegok, red curve; Jeonglyeongchi, blue curve; Wangdeungjae, orange curve). d) UPGMA tree illustrat-
ing the relationships based on weighted UniFrac distances between the eukaryotic microbial communities associated with Jeonglyeongchi, Waegok, 

and Wangdeungjae marshes.
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eukaryotic communities. Waegok is characterized by 
moderate environmental conditions and had the high-
est species richness and diversity among the three sites.

Structure of microbial community and micro
algal composition. The taxonomic composition of the 
eukaryotic microbial communities was analyzed at the 
phylum level (Fig. 3). Seventeen phyla were detected 
in the three marshes (Fig. 3), 11 of which were present 
in Jeonglyeongchi (Table II). Only Chytridiomycota 
(13.95%) and Platyhelminthes (68.71%) were present at 
abundance levels greater than 10%. The highest number 
of phyla was detected in Waegok (15 phyla) (Table II). 
Of these, Arthropoda (35.01%), Gastrotricha (24.43%), 
and Streptophyta (18.30%) were present at levels greater 
than 10%. Nine phyla were detected at Wangdeungjae 
(Table  II), of which Apicomplexa (27.10%), Bacilla
riophyta (10.41%), Chytridiomycota (13.47%), and 
Nematoda (22.27%) were present at abundance levels 
greater than 10%. Phylum distribution was not biased 
toward a  specific phylum. However, Jeonglyeongchi 
was dominated by phylum Platyhelminthes (among 
11 phyla), whereas three-four phyla dominate Waegok 

and Wangdeungjae. Among the three marshes, Waegok 
presented the most diverse eukaryotic community.

We found 123 species of unclassified taxonomic 
names in the three marshes. Table II and supplemen-
tary Table SI summarize the relative abundance levels of 
species in Jeonglyeongchi (33 species), Waegok (96 spe-
cies), and Wangdeungjae (21 species). The following 
species were present at abundance levels greater than 
5%: Jeonglyeongchi, four species (Eimeriidae environ­
mental, Hygrobates norvegicus, Rhizoclosmatium glo­
bosum, and Phagocata sibirica); Waegok, three species 
(Aedes albopictus, Chaetonotus cf., and Stipa narynica); 
Wangdeungjae, six species (Dero sp. Eimeria sp., Aula­
coseira  sp., Chytriomyces  sp., Eumonhystera cf., and 
Stenostomum  sp.). The phylogenetic relationships 
between all species comprising the marsh communi-
ties were visualized using the ML tree analysis (Fig. 4a) 
(Schwarz 1978; Felsenstein 1985; Kumar et al. 2008; 
Kumar et al. 2016). Samples from Waegok had the 
highest species richness and diversity, with 96 species 
representing 78.04% of the total species present in all 
communities.

Fig. 3. Taxonomic composition of microalgal and other microbial phyla found in Jeonglyeongchi, Waegok,
and Wangdeungjae marsh samples.
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Fig. 4. Molecular phylogenetic analysis by the maximum likelihood (ML) tree.
Numbers at the nodes indicate bootstrap probabilities (> 50 v%)

of the ML analyses (1,000 replicates).
a) Phylogenetic relationship between all species identified using a BLASTN search within the 
NCBI database. Seventeen phyla corresponded to the species names listed in the phylogenetic tree. 
b) Phylogenetic distances between the identified microalgal species (pink branch, Bacillariophyta; 

green branch, Chlorophyta).
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Microalgal groups represented 6.29% in Jeong
lyeongchi (1.38% Bacillariophyta, 0.49% Chlorophyta, 
0.00% Eustigmatophyceae, 2.55% Streptophyta, and 
0.00% Xanthophyceae); 25.69% in Waegok (7.00% 
Bacillariophyta, 0.30% Chlorophyta, 0.04% Eustigmato-
phyceae, 18.30% Streptophyta, and 0.05% Xanthophy-
ceae); and 18.11% in Wangdeungjae (10.41% Bacillario
phyta, 4.72% Chlorophyta, 0.00% Eustigmatophyceae, 
2.98% Streptophyta, and 0.00% Xanthophyceae) (Fig. 3). 
The mountain marsh microalgae were composed of 
34  Bacillariophyta species, 13  Chlorophyta species, 
one Eustigmatophyceae species, 10 Streptophyta spe-
cies, and one Xanthophyceae species (Table II): Jeong-
lyeongchi contained seven species (four Bacillariophyta 
and three Chlorophyta), Waegok contained 41 spe-
cies (32  Bacillariophyta and nine Chlorophyta), and 
Wangdeungjae contained eight species (three Bacil-
lariophyta and five Chlorophyta). The microalgae in 
Wangdeungjae were eight times more abundant than 
those at Jeonglyeongchi, although both marshes shared 
similar numbers of species (eight and seven, respec-
tively). The phylogenetic distances between the iden-
tified microalgal species are represented in Fig. 4b. 
Waegok, which comprised the highest eukaryotic spe-
cies richness and diversity, also presented the highest 
number and abundance of microalgal species. There-
fore, the diversity of microalgal groups can be related 
to the diversity and composition of other groups and 
species in the eukaryotic microbial communities.

Screening of culturable microalgal species. Micro-
algae were screened and isolated in four media (BG11, 
OHM, BB, DM) (Table III, Fig. 5 and supplementary 
Fig. S1). Although sequencing data identified 34 species 
of diatom (Bacillariophyta) and 13 species of green algae 
(Chlorophyta) (Table II), only one species of diatom and 
five species of green algae were isolated from the four 
media (Table III). Only Neochloris sp. was isolated in 
all four media inoculated with samples from Jeong
lyeongchi. Four species (Nitzschia dissipata, Chlamydo- 
monas sp., Chlorococcum sp., and Chlorella vulgaris) 
were isolated on BG11, BB, and DM from the samples 
from Waegok, whereas two species were isolated on 
OHM (Nitzschia dissipata and Chlorococcum sp.), and 
Chlamydomonas sp. and Scenedesmus sp. were isolated 
from all media inoculated with samples from Wang- 
deungjae (Fig. 5). Overall, while 47 microalgal species 
were detected via Illumina MiSeq analysis, only six spe-
cies (12.77 %) were able to be isolated from cultures.

Discussion

Physicochemical characteristics of Jiri marsh 
sites. Each marsh presents distinctive environmental 
characteristics. Jeonglyeongchi marsh had the lowest 

temperatures registered and the highest DO and TP 
concentrations (Table I), whereas the temperature at 
Wangdeungjae marsh (above 20°C) was suitable for 
the cultivation of microorganisms. The latter marsh 
also recorded the lowest DO and TP concentrations 
(Tanner 2007). These mesophilic conditions can pro-
mote higher levels of microbial activity compared to 
low temperatures (Tanner 2007). This increased level 
of metaolic activity can then change the consumption 
and overall concentrations of DO and TP (Amon and 
Benner 1996; Levantesi et al. 2002). In addition, pH and 
EC, which depend on ion concentrations, vary due to 
metabolites produced during degradation (Kwabiah 
et al. 2001; Berg and Laskowski 2005; Rousk et al. 2010). 
These results support the idea that temperature plays 
a major role as an environmental factor in all the stud-
ied marshes (Witkamp and Frank 1970; Tanner 2007; 
Kukharenko et al. 2010). 

Moreover, Illumina MiSeq analyses were used to 
characterize the diversity of the microbial communi-
ties in the three sites. The sequence analysis revealed 
a Goods Coverage value of 1.00, which means that our 
sequencing efforts were 100% effective. Waegok marsh 
had the highest number of OTUs and diversity index 
values (Chao1, Shannon, Simpson). By associating 
the physicochemical characteristics of each site with 
the corresponding diversity results, we can conclude 
that the moderate environmental conditions in Waegok 
marsh, in contrast to the relatively extreme conditions 
in Jeonglyeongchi and Wangdeungjae, provided a more 
suitable ecosystem for the microbial community (Zhou 
et al. 2002; Curtis and Sloan 2004; Roesch et al. 2007). 
Our research suggests that environmental conditions 
can determine the degree of diversity of the microbial 
community, resulting from various adaptation pro-
cesses. The environmental conditions at each site were 
influenced by the geographic isolation between the 
mountain marshes.

Ecological differences and relationships among 
mountain marsh sites in Jiri mountain. According 
to the UPGMA tree, which analyzed the relationship 
between the microbial communities of the investigated 
mountain marsh sites, it can be concluded that the micro- 
bial communities of Weagok and Wangdeungjae, 
which are geographically close (Fig. 1), presented 
a higher similarity than the microbial communities of 
Jeonglyeongchi (Fig. 2). In addition, the physicochemi-
cal factors of Jeonglyeongchi were different from those 
of Weagok and Wangdeungjae (Table I). In Jeonglye
ongchi, the measured values for temperature (12.75°C), 
EC (32 µS/cm), and turbidity (2.51 NTU) were the low-
est recorded, whereas higher values were observed for 
pH (6.95), DO (10.51 mg/l), and TP (1.57 ± 0.16 mg/l). 
Given these facts, it was possible to explain that the 
microbial community of Jeonglyeongchi was distinctive 
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Achnanthidium daonense	 KJ658413	 –	 –	 +	 –	 –	 –
Achnanthidium digitatum	 KX946582	 –	 –	 +	 –	 –	 –
Achnanthidium minutissimum	 MH358459	 –	 –	 +	 –	 –	 –
Achnanthidium straubianum	 KY863467	 –	 –	 +	 –	 –	 –
Nitzschia acidoclinata	 KT072971	 –	 –	 +	 –	 –	 –
Nitzschia dissipata	 AJ867018	 –	 –	 +	 +	 –	 –
Cymbella aspera	 KJ011615	 –	 –	 +	 –	 –	 –
Cymbopleura naviculiformis	 AM501997	 –	 –	 +	 –	 –	 –
Placoneis elginensis	 AM501953	 –	 –	 +	 –	 –	 –
Gomphonema affine	 MN197879	 +	 –	 +	 –	 –	 –
Gomphonema cf.	 AM502005	 –	 –	 +	 –	 –	 –
Eunotia sp.	 KJ961696	 +	 –	 +	 –	 +	 –
Humidophila australis	 KM116120	 –	 –	 +	 –	 –	 –
Uncultured Halamphora	 MK656307	 –	 –	 +	 –	 –	 –
Halamphora sp.	 MG027261	 –	 –	 +	 –	 –	 –
Pinnunavis sp.	 KJ961669	 –	 –	 +	 –	 –	 –
Navicula sp.	 MK177604	 –	 –	 +	 –	 –	 –
Neidium hitchcockii	 KU674393	 –	 –	 +	 –	 –	 –
Neidium sp.	 KU674445	 –	 –	 +	 –	 –	 –
Pinnularia cf.	 JN418569	 –	 –	 +	 –	 –	 –
Pinnularia microstauron	 AM501981	 –	 –	 +	 –	 –	 –
Pinnularia subgibba	 KT072984	 +	 –	 –	 –	 –	 –
Pinnularia viridiformis	 AM501985	 –	 –	 +	 –	 –	 –
Sellaphora cf.	 EF151967	 –	 –	 +	 –	 –	 –
Sellaphora pupula	 AJ544653	 –	 –	 +	 –	 –	 –
Surirella brebissonii	 KX120739	 –	 –	 +	 –	 –	 –
Surirella cf.	 KX120782	 –	 –	 +	 –	 –	 –
Surirella sp.	 KX120781	 –	 –	 +	 –	 –	 –
Amphora copulata	 MG027291	 –	 –	 +	 –	 –	 –
Aulacoseira alpigena	 AY569578	 –	 –	 +	 –	 +	 –
Aulacoseira sp.	 AY569587	 –	 –	 –	 –	 +	 –
Uncultured Chaetoceros	 MH023058	 –	 –	 +	 –	 –	 –
Fragilaria vaucheriae	 AM497736	 –	 –	 +	 –	 –	 –
Tabellaria flocculosa	 MH356258	 +	 –	 +	 –	 –	 –
Chlorophyta sp.	 MK929233	 –	 –	 +	 –	 –	 –
Microspora sp.	 AF387160	 –	 –	 –	 –	 +	 –
Chlamydomonas sp.	 MH683856	 –	 –	 +	 +	 +	 +
Chlorococcum sp.	 MK954470	 –	 –	 +	 +	 –	 –
Dictyococcus sp.	 HM852440	 –	 –	 +	 –	 –	 –
Bracteacoccus deserticola	 JQ259938	 –	 –	 –	 –	 +	 –
Neochloris sp.	 AB917132	 +	 +	 –	 –	 –	 –
Scenedesmus sp. 	 MH010849	 –	 –	 –	 –	 +	 +
Asterarcys quadricellulare	 MN179327	 –	 –	 +	 –	 –	 –
Coccomyxa simplex	 MH196858	 +	 –	 +	 –	 –	 –
Chlorella vulgaris	 MK652782	 –	 –	 +	 +	 +	 –
Tupiella speciosa	 MF000567	 +	 –	 +	 –	 –	 –
Monomastix opisthostigma	 FN562445	 –	 –	 +	 –	 –	 –

Table III
Illumina MiSeq (M) and culture-based analyses of microalgae from Jeonglyeongchi, Waegok, and Wangdeungjae marsh samples.

Species Accession
number

Jeonglyeongchi Waegok Wangdeungjae

M CB

+ − detected; – − undetected

M CB M CB
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from other sites, and this was due to the variable inter-
marsh physicochemical factors. However, when com-
paring the differences between microbial communities 
through the number of OTUs and diversity indicators 

(Chao1, Shannon, Simpson), these values showed high 
similarity between Jeonglyeongchi and Waegok and 
less to Wangdeungjae (Table I). This fact contradicted 
the relationship between mountain marshes based 

Fig. 5.  Composition of microalgal species grown in each culture medium and identified using the Illumina MiSeq analysis (M).
Four culture media were used: Blue Green-11 (BG11) medium, Optimum Haematococus Medium (OHM), Bold Basal medium (BB), 

and Diatom Medium (DM).
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on physicochemical factors. This disparity could be 
resolved through the composition of the microbial 
community (supplementary Table SII). While 68.71% of 
the microbial community in Jeonglyeongchi was domi-
nated by one species belonging to Platyhelminthes, the 
microbial community of Weagok and Wangdeungjae 
was composed of several species belonging to 3–4 phyla 
(Table II). Thus, it is believed that the similarity between 
microbial communities does not depend on diversity 
indicators (Miller et al. 2020; Wen et al. 2020). Nonethe-
less, we support that the comparison between microbial 
communities should be accompanied by a composition 
comparison factor (Shi et al. 2020). The composition 
of microbial communities is thought to be influenced 
by physicochemical factors, and this way, both stu- 
dies are complementary (Sun et al. 2020). Thus, the 
microbial community of mountain marshes, separated 
due to the topographic features of Mount Jiri, needs 
diverse research approaches study of physicochemi-
cal factors and diversity indicators to understand their 
microbial community fully.

Taxonomic composition of phyla at mountain 
marsh sites. The phyla comprising the microbial com-
munities of the three marsh sites is shown in Fig. 3. 
In addition, the taxonomic compositions from phyla 
to respective species levels are summarized in Table II. 
The most abundant phyla (present in more than 10% 
of the microbiome’s taxonomic) included Apicomplexa, 
Arthropoda, Bacillariophyta, Chytridiomycota, Gastro-
tricha, Nematoda, Platyhelminthes, and Streptophyta 
(Fig. 3). Each phylum plays a particular ecological 
role, either as a producer, decomposer, or consumer. 
For example, many species of Apicomplexa are para-
sitic to aquatic animals (Bolland et al. 2020; Laghzaoui 
et al. 2020). Arthropoda includes animal species such as 
insects that consume a variety of materials, from living 
biomass (e.g., algae) to organic carbon sources (e.g., 
plant byproducts) (Shayanmehr et al. 2020; Sperfeld 
et al. 2020). Bacillariophyta is composed of autotrophic, 
photosynthetic organisms such as microalgae that are 
easily observed in aquatic ecosystems (Al-Handal et al. 
2020; Stancheva et al. 2020). Chytridiomycota is a phy-
lum of fungi that includes zoosporic fungal species, 
which function as heterotrophs in aquatic environ-
ments (Jeronimo and Amorim Pires-Zottarelli 2020; 
McKindles et al. 2020). Gastrotricha comprises various 
zooplankton species, including predators that feed on 
phytoplankton (Bosco et al. 2020), whereas Nematoda 
combines parasitic species and species that consume 
and decompose organic matter (Jeong et al. 2020; 
Netherlands et al. 2020). The phylum Platyhelminthes 
includes species that consume organic matter attached 
to the bottom and surface, and feed on algae and other 
microorganisms and plant byproducts (Geraerts et al. 
2020; Schadt et al. 2021). Species belonging to Strep-

tophyta include autotrophs capable of photosynthe-
sis (Stamenković et al. 2020; Williamson and Carter 
2020). Based on these characteristics, Bacillariophyta 
and Streptophyta are considered producers (Pushkareva 
et al. 2016; Shnyukova and Zolotareva 2017); multicel-
lular Arthropoda, Nematoda, and Platyhelminthes and 
unicellular Chytridiomycota are considered decom
posers that decompose and consume organic materi-
als (Berg and McClaugherty 2003; Berg and Laskowski 
2005; Gessner et al. 2007; Gulis et al. 2019); and preda-
tors (Gastrotricha) and parasites (Apicomplexa) are 
considered consumers (Norén et al. 1999; Todaro et al. 
2006). Most of the major taxa constituting the micro-
bial community of the marshes are decomposers, and 
their composition differed by region. Jeonglyeongchi 
comprises more Chytridiomycota and Platyhelminthes, 
whereas Arthropoda is mostly seen in Waegok, and 
Chytridiomycota and Nematoda in Wangdeungjae. 
Among these phyla, only Chytridiomycota exceeded 
5% abundance in all investigated regions (Fig. 3). 
Chytridiomycota is considered a decomposer that can 
parasitize microalgae (Ibelings et al. 2004; Gessner et al. 
2007; Scholz et al. 2014; Gulis et al. 2019). Several spe-
cies of Chytridiomycota are also parasitic on microal-
gal populations, thus affecting their growth (Ibelings 
et al. 2004; Scholz et al. 2014). This parasitic capacity 
of Chytridiomycota suggested that it may influence the 
community composition of Bacillariophyta and Chlo-
rophyta in Jiri marshes. Finally, the predatory activity 
of Gastrotricha (a consumer) suggests that this group 
may be involved in the predominance of Streptophyta 
(a  producer) by inhibiting the population growth of 
other microalgae (Todaro et al. 2006).

Our analysis reveals that each major phylum is rep-
resented by specific species. The major phyla at Jeongly-
eongchi marsh, Chytridiomycota and Platyhelminthes, 
were represented by Rhizoclosmatium globosum and 
Phagocata sibirica, respectively. The major phyla at 
Waegok marsh, Arthropoda, Gastrotricha, and Strep-
tophyta, were represented by Aedes albopictus, Chaeto­
notus cf., and Stipa narynica, respectively. The major 
phyla of Wangdeungjae marsh, Apicomplexa, Bacillario- 
phyta, Chytridiomycota, and Nematoda, were repre-
sented by Eimeria sp., Aulacoseira sp., Chytriomyces sp., 
and Eumonhystera cf., respectively. The relative abun-
dances of the predominant species ranged from 65.02% 
to 100.00%. Bacillariophyta and Chytridiomycota were 
least likely to be dominated by specific species. Further-
more, Bacillariophyta (34 species) and Chytridiomycota 
(26 species) were the largest phyla, representing 27.64% 
and 21.14%, respectively, of a total of 123 detected spe-
cies. These results suggested that Bacillariophyta and 
Chytridiomycota were strongly associated with the spe-
cies richness and diversity of microbial communities in 
mountain marshes.
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Of all the microorganisms recorded in the three 
studied marshes, producers (Bacillariophyta and Strep
tophyta) accounted for less than 30% of the total abun-
dance. Because producers were not a significant fraction 
of the community, consumers were probably depend-
ent on externally derived organic materials (Lu and Wu 
1998). For example, Platyhelminthes, a dominant con-
sumer in Jeonglyeongchi, is likely dependent on exter-
nally derived organic materials (Roca et al. 1992; Lu 
and Wu 1998). Although producers were not abundant, 
their diversity may have had a significant impact on the 
diversity of the microbial community (Worm et al. 2002; 
Hillebrand et al. 2007; Cardinale et al. 2011). Bacilla
riophyta (with the most significant number of species, 
34) and Streptophyta (with the fourth-largest number 
of species, 10) accounted for 35.77% of the total species. 
The producer group accounted for 17.65–39.58% of the 
species in the region (17.65% in Jeonglyeongchi, 39.58% 
in Waegok, and 28.57% in Wangdeungjae). These results 
discriminated the distribution of species relative to the 
abundance of the producer group (Hillebrand et al. 
2007; Cardinale et al. 2011). Thus, the diversity of pro-
ducers is highly important in determining the diversity 
of the local microbial community.

Comparison of marsh sites using culture-based 
and Illumina MiSeq analyses. We have cultured 
and identified one-four microalgal species from each 
marsh site using several types of media (Fig. 5 and sup-
plementary Fig. S1). The following species were iso-
lated and identified: Neochloris sp. at Jeonglyeongchi; 
Nitzschia dissipata, Chlamydomonas sp., Chlorococ­
cum sp., and Chlorella vulgaris at Waegok; and Chla­
mydomonas sp. and Scenedesmus sp. at Wangdeungjae. 
Although the species were distributed disproportion-
ately in each medium, only one species tended to be 
dominant among the few that grew (supplementary 
Fig. S1). A single species dominated in the BG11 and 
DM medium but not in the OHM and BB medium 
(supplementary Fig. S1). We were able to isolate rep-
resentatives of Bacillariophyta and Chlorophyta, but 
not Streptophyta, in the culture media (Table III, Fig. 5 
and supplementary Fig. 1). Isolated species included 
Neochloris sp., Nitzschia dissipata, Chlamydomonas sp., 
Chlorococcum sp., Chlorella vulgaris, and Scenedesmus 
sp. Only one species, Nitzschia dissipata, belonged to 
Bacillariophyta. The relative abundances of isolated 
species varied depending on the medium used (Fig. 5 
and supplementary Fig. S1) (DiGiulio et al. 2008). It 
is known that only certain species can be cultivated 
and their growth depends on the composition of the 
medium chosen (Harrison and Davis 1979). It suggests 
that culture-based methods are not suitable for detect-
ing multiple microalgal species, a severe limitation 
in determining community compositions (Alain and 
Querellou 2009). Furthermore, the inability to purely 

isolate 100% of all microbial species present using exist-
ing culture techniques and media means that the identi-
fication of unculturable microbes is limited. Therefore, 
microalgal community research based solely on culture 
analysis is limited because of the difficulty in identify-
ing unculturable microorganisms (Handelsman 2004; 
Shokralla et al. 2012; Bodor et al. 2020). In contrast to 
culture-based methods, Illumina MiSeq can effectively 
analyze the microbial community structure of environ-
mental samples, including the identification and ana
lysis of unculturable microorganisms. Illumina MiSeq 
analysis overcomes the limitations of the culture-based 
analysis, providing a more accurate representation of 
the diversity of the microbial community.

Characteristics of microalgae in the marshes of 
Jiri. Most microalgae in aquatic environments with 
water flow are attached to surfaces (Benito 2020; Plante 
et al. 2021). Typically, attached algae are dominated by 
diatoms, including Bacillariophyta and some green 
algae, including Chlorophyta (Yun et al. 2019; Benito 
2020; Plante et al. 2021). Therefore, in an environ-
ment with water flow, the floating algae are relatively 
less abundant (Yun et al. 2019; Prazukin et al. 2020). 
In an aquatic environment where water flow is weak, 
floating algae dominate, with its species’ composition 
often determined by environmental factors (Mashwani 
2020). The microalgae present in the Jiri marshes were 
mainly composed of Bacillariophyta and Streptophyta 
(Ali et al. 2019; Garduño-Solórzano et al. 2020). While 
it is known that Chlorophyta tends to dominate in other 
aquatic environments (Amorim and Moura 2021), our 
results suggest that environmental differences deter-
mined the dominant microalgal groups. 

Furthermore, to better understand the differences 
between these regional microalgal groups, a more 
comprehensive set of environmental factors should 
be investigated using a multidisciplinary rather than 
a fragmentary approach (Paquette et al. 2020; Suther-
land et al. 2020). Our study provides information on the 
microbial communities and microalgal groups present 
in the Jiri marshes. Furthermore, our results suggest 
that it is important to analyze the taxonomic composi-
tion of the microalgae present in mountain marshes.

Conclusion

The highest levels of species richness and diversity 
among the three Jiri high marshes were found in the 
Waegok marsh, which may be due to the environment’s 
physicochemical characteristics. Analysis of commu-
nity composition revealed that species’ abundance was 
concentrated in the decomposer group, whereas species’ 
diversity was based in the producer group. Moreover, 
the consumer group was related to the producer group. 
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Based on these results, we suggest that producers do not 
support the entire microbial community, but they deter-
mine phylogenetic diversity. Illumina MiSeq analysis 
overcame the inherent limitations of the culture-based 
analysis, i.e., incomplete or biased results. Our analyses 
provide a clear association between the environmental 
conditions of three mountain marshes and the proper-
ties of their respective microbial and microalgal com-
munities. Further research on the roles and interactions 
between microbial and microalgal communities should 
be investigated along with their environmental impacts. 
The data generated in this study can be used to identify 
mountain areas based on their microalgal communities 
and help understand the role of environmental factors 
in their geography.
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Introduction

Gut microbiota, a large and complex microbial 
community in the gastrointestinal tract, is essential to 
the host’s health and well-being (Koh et al. 2016; Liu 
et al. 2020). Gut microbiota can not only break down 
the indigestible carbohydrates in food (Schwalm and 
Groisman 2017), but also produce short-chain fatty 
acids (SFAs), which can provide nutrition for gut micro-
biota (Jia et al. 2020). The disturbance of gut microbiota 
induces inflammation, insulin resistance, diabetes, and 
osteoporosis (Ma et al. 2019; Bi et al. 2020). Even the 

novel coronavirus pneumonia was found associated 
with gut microbiota disturbance (He et al. 2020a). 

Probiotics can modulate gut microbiota and cause 
favorable changes in the gut microbiota structure and 
functions (Hasan et al. 2019). When given enough dose, 
probiotics will reach the intestinal tract in an active 
state, thus improving intestinal microorganisms’ bal-
ance and producing beneficial effects on the host (Deng 
et al. 2020). Lactobacillus casei ZX633 may ameliorate 
the infant diarrhea microbiota, thus reducing the rate 
of infant bacterial diarrhea (Wang et al. 2020b). After 
treated with mixed lactic acid bacteria, Staphylococcus 
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A b s t r a c t

Lactobacillus plantarum BW2013 was isolated from the fermented Chinese cabbage. This study aimed to test the effect of this strain on 
the gut microbiota in BALB/c mice by 16S rRNA amplicon sequencing. The mice were randomly allocated to the control group and three 
treatment groups of L. plantarum BW2013 (a low-dose group of 108 CFU/ml, a medium-dose group of 109 CFU/ml, and a high-dose group 
of 1010 CFU/ml). The weight of mice was recorded once a week, and the fecal samples were collected for 16S rRNA amplicon sequencing 
after 28 days of continuous treatment. Compared with the control group, the body weight gain in the treatment groups was not signifi-
cant. The 16S rRNA amplicon sequencing analysis showed that both the Chao1 and ACE indexes increased slightly in the medium-dose 
group compared to the control group, but the difference was not significant. Based on PCoA results, there was no significant difference 
in β diversity between the treatment groups. Compared to the control group, the abundance of Bacteroidetes increased in the low-dose 
group. The abundance of Firmicutes increased in the medium-dose group. At the genus level, the abundance of Alloprevotella increased 
in the low-dose group compared to the control group. The increased abundance of Ruminococcaceae and decreased abundance of Candi­
datus_Saccharimonas was observed in the medium-dose group. Additionally, the abundance of Bacteroides increased, and Alistipes and 
Candidatus_Saccharimonas decreased in the high-dose group. These results indicated that L. plantarum BW2013 could ameliorate gut 
microbiota composition, but its effects vary with the dose.

K e y w o r d s:  Lactobacillus plantarum, composition, gut microbiota, 16S rRNA amplicon sequencing, BALB/c mice
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aureus infection could be prevented in mice, and the 
structure of intestinal microbiota could be improved 
(Ren et al. 2018).

Lactic acid bacteria and Bifidobacteria are the most 
commonly used probiotics (He et al. 2020b). Lactobacillus 
plantarum, a rod-shaped, facultative anaerobic, Gram-
positive lactic acid bacterium, can effectively improve 
the health of the host by decreasing the level of blood-
stream cholesterol, managing gastrointestinal disor-
ders, and preventing diarrhea (Liu et al. 2015; Seddik 
et al. 2017a). Wang et al. (2018) found that L. plan­
tarum ZDY2013 remits ulcerative colitis by modify-
ing of intestinal microbiota to regulate both oxidative 
stress and inflammatory mediators. Some functional 
activities are strain-specific (Biagioli et al. 2019). Qiu 
et al. (2018) injected mice with potential probiotic 
strains, including L. plantarum ZDY04 (PLA04) and 
L. plantarum ZDY01 (PLA01). As a result, both serum 
trimethylamine N-oxide and cecal trimethylamine 
levels was reduced significantly only by L. plantarum 
ZDY04. Li et al. (2019) demonstrated the loss of gut 
microbiota diversity induced by glycerol monolaurate 
could be remedied by L. plantarum T17, but the same 
effects were not found in the group of L. plantarum T34. 
L. plantarum BW2013 was isolated from fermented 
Chinese cabbage, and the influence of this strain on 
the gut microbiota is unknown. 

Many methods were used to study the gut micro-
biota, such as the culture of gut microbiota, polymerase 
chain reaction denaturing gradient gel electrophoresis 
(PCR-DGGE), quantitative real-time polymerase chain 
reaction (qRT-PCR), 16S rRNA amplicon sequencing 
(Margiotta et al. 2020; Ling et al. 2020). As a relatively 
new technology, 16S rRNA amplicon sequencing opens 
out new potential avenues of research and facilitates in-
depth studies exploring microbial populations and their 
dynamics in the animal gut (Peng and Zhang 2009; Kim 
and Isaacson 2015). The 16S rRNA technology has been 
widely used in biomedical research, linking the estab-
lishment between microbiota disorders and human dis-
ease (Evariste et al. 2019). For example, Zhu et al. (2020) 
used 16S rRNA amplicon sequencing to study the gut 
microbiota of ulcerative colitis with different glucocor-
ticoid response types and found that they had different 
bacterial composition and function, which linked the 
microbiota disorders and ulcerative colitis. Analysis of 
16S rRNA amplicon sequencing of intestinal micro-
biota found that high-calorie diet and lipopolysaccha-
ride atomization synergistically promoted pneumonia 
process in rat pups, which is related to changes in the 
structure of intestinal flora (Bai et al. 2020).

Based on 16S rRNA amplicon sequencing, this 
study investigated the effects of different doses of 
L. plantarum BW2013 on gut microbiota composition 
in mice.

Experimental

Materials and Methods

Bacterial strains and cultural conditions. L. plan­
tarum BW2013 was isolated from fermented Chinese 
cabbage and preserved by the China General Micro-
biological Culture Collection Center (CGMCC NO. 
9462). L. plantarum BW2013 was grown anaerobically 
in the Man-Rogosa-Sharpe medium broth for 20 h at 
37°C, and then centrifuged at 3,000 g for 15 min. The 
bacteria were washed twice and resuspended in sterile 
phosphate-buffered saline (PBS, pH 7.4).

Simulate gastrointestinal digestion. The simulated 
gastrointestinal juice was produced with following 
Shinde et al. (2019), and amylase, pepsin, bovine bile, 
and trypsin were purchased from Sigma. First, bacteria 
(1 ml, 1 × 109 CFU/ml) were suspended in 5 ml simu-
lated salivary juice for 5 min. Then, the samples were 
resuspended to 10 ml gastric juice and incubated for 2 h. 
Subsequently, the samples were resuspended to 10 ml 
intestinal juice and incubated for 2 h. The entire diges-
tion procedure was performed at 37°C, with stirring 
to simulate peristaltic contraction. After the simulated 
digestion process, the bacteria cell suspensions were 
diluted and plated onto MRS agar plates. The number 
of colonies was counted after 24 h of incubation at 37°C 
according to the formula: 

survival rate(%) = N1 / N0 × 100%

where N1 was the total viable count of strains after treat-
ment and N0 was the total viable count of strains before 
treatment.

Adhesion to Caco-2 cell. Caco-2 cell cultures were 
determined by the method of Fonseca et al. (2021). 
After cultured in MRS broth for 24 h at 37°C and 
washed twice with phosphate-buffered solution, the 
bacteria were resuspended in DMEM approximately 
109 CFU/ml. Then, 1 ml bacterial suspension was added 
to cells and incubated for 60 min at 37°C in a 5% CO2 
atmosphere. Subsequently, the cells were washed three 
times with 1 ml of PBS to remove non-adherent bacte-
rial cells and lysed with 1 ml of Triton-X solution at 
37°C for 5 min. After the above procedures, the solution 
was serial diluted and plated on MRS agar to determine 
the bacterial counts.

Animal, rearing and grouping. The mice (8-week-
old male) used in the experiment were purchased from 
Vital River Laboratories Inc. (Beijing, China). Mice 
were singly caged under specific pathogen-free con-
ditions at 20–22°C, and relative humidity of 40–60%. 
Before intragastric administration, the mice were 
weighed, and the feces were collected for 16S rRNA 
gene amplicon sequencing analysis. Then the mice were 
randomly allocated to four groups (each group n = 10): 



Lactobacillus plantarum’ effect on gut microbiota2 237

control group (NC) and three treatment groups of 
L. plantarum BW2013: a low-dose (108 CFU/ml) group 
(LDG), a medium-dose (109 CFU/ml) group (MDG), 
and a  high-dose group (1010 CFU/ml) (HDG). From 
9 a.m. to 10 a.m. every day, the NC group was given 
sterile PBS (pH 7.4), and treatment groups were admin-
istered the corresponding of L. plantarum BW2013 sus-
pension at 400 µl/d once daily over 28 days. All mice 
were weighed once a week. During the experiment, the 
mice were fed a normal diet.

16S rRNA gene amplicon sequencing. The fecal 
genomic DNA was extracted according to the manu-
facturer’s guidelines of DP712-Magnetic Bead Soil 
and Fecal Genomic DNA Extraction Kit (Tiangen, 
China). For 16S rRNA gene amplicon sequencing, 
the DNA samples were amplified with primers 27F 
(5’-AGAGTTTGATCMTGGCTCAG-3’) and 519R 
(5’-GWATTACCGCGGCKGCTG-3’), which targeted 
V3-V4 hypervariable regions of the bacterial 16S rRNA 
gene (Ranasinghe et al. 2012). PCR program was 
applied, as follows: the initial denaturation at 95°C for 
15 min, the amplification of 34 cycles under various 
conditions (at 95°C for 30 s, 58°C for 30 s and 68°C for 
1 min), and the final extension at 68°C for 5 min. Then 
the purified amplicons were sequenced with an Illu-
mina Miseq sequencing platform at Novogene Bioin-
formatics Technology Co., Ltd. (Tianjin, China).

The same volume of 1 × loading buffer (contained 
SYB green) was mixed with PCR products, and electro-
phoresis was operated on 2% agarose gel for detection. 
PCR products were mixed in equal density ratios. Then, 
the mixture of PCR products was purified with Gene 
JETTM Gel Extraction Kit (Thermo Scientific).

Sequencing libraries were generated using Ion Plus 
Fragment Library Kit 48 rxns (Thermo Scientific) follow-
ing the manufacturer’s recommendations. The library 

quality was assessed on the Qubit@ 2.0 Fluorometer 
(Thermo Scientific). At last, the library was sequenced 
on an Ion S5TM XL platform and 400 bp/600 bp single-
end reads were generated.

Statistical analysis. The analysis of variance for 
multiple comparisons was performed in Prisma soft-
ware (version 5). Statistical differences were evalu-
ated by analysis of variance (ANOVA) and Dunnett-t 
pairwise comparisons. Cutadapt (V1.9.1) was used for 
quality control (Martin 2011). Uparse software (Uparse 
v7.0.1001, http://www.drive5.com/uparse/) was applied 
to cluster the clean reads to OTUs (Edgar 2013). Species 
annotation analysis was carried out using the Mothur 
method and SSSUrRNA database of SILVA132 (http://
www.arb-silva.de/) to obtain taxonomic information at 
each taxonomic level (Quast et al. 2013). 

Results

Tolerance to simulated digestion test and adhe-
sion to Caco-2 cell. The survival rate of L. plantarum 
BW2013 after the simulated gastrointestinal digestion 
process was 2.90%, and the adhesion rates of L. plan­
tarum BW2013 was 2.4%.

Effect of L. plantarum BW2013 on the body weight 
gain of mice. Before intragastric administration, the 
mice were weighed. Then body weight was recorded 
once a week. The weight changes of mice were shown 
in Fig. 1. There was no significant difference in body 
weight gain among the four groups. 

Overall sequences and OTUs. An average of 85,386 
reads was measured per sample by 16SrRNA ampli-
con sequencing, and an average of 80,298 clean reads 
was obtained after quality control. The clean reads of 
all samples were clustered by OTUs (operational taxo-
nomic units) with 97% identity. A total of 1,120 OTUs 
were obtained, and 74 OTUs were annotated to the 
genus level.

Diversity indexes among the NC and treatment 
groups. Compared with NC group, the Chao 1 and 
ACE indexs (Table I) were slightly higher than those 
in the MDG group. But there were no significant dif-
ferences for all the α-diversity indexes among the NC 
and treatment groups. Compared with the initial state, 
the Chao1 index of the NC and MDG groups increased 
significantly, respectively (p = 0.0379, p = 0.0267). 

The changes in gut microbiota among groups 
were examined by using principal coordinate analysis 
(PCoA). Based on weighted unifrac distance, PCoA 
analysis was conducted to compare the microbial 
community composition of different samples (Fig. 2). 
On the weighted unifrac PCoA score plot, the NC 
group’s symbols were separated from those of the treat- 
ment groups, which revealed that the microbiome 

Fig. 1.  Body weight variations of the mice after L. plantarum 
BW2013 gavage. The data are represented as mean ± SD.

NC –  control group, LDG – low-dose group, MDG – medium-dose 
group, HDG – high-dose group.
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Fig. 2.  Principal co-ordinates analysis (PCoA) of the microbial communities of different groups. 
Initial state (IS) stands for mice before intragastric administration.

NC – control group, LDG – low-dose group, MDG – medium-dose group, HDG – high-dose group.

Fig. 3.  Microbial community bar plot at the phylum level. Initial state (IS) stands for mice before intragastric administration.
NC – control group, LDG – low-dose group, MDG – medium-dose group, HDG – high-dose group.

composition of treatment groups was different from 
those of the NC group, but there was no significant 
difference. Additionally, there was no significant dif-
ference between initial state and NC group.

Relative abundance of gut microbiota at phy- 
lum and genus levels. The relative abundance of gut 
microbiota was measured at the phylum (Fig. 3) and 
genus (Fig. 4) levels.
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Examining the changes in the gut microbiota, the 
top ten bacterial phyla of the NC and treatment groups 
were evaluated. The results showed that Bacteroidetes 
was the most abundant phylum, followed by Firmi-
cutes, Deferribacteres, and Proteobacteria in the NC 
and treatment groups. L. plantarum BW2013 mainly 
affected the abundance of Bacteroidetes and Firmi-
cutes, which accounted for 97% of the total bacteria 
(Fig. 3). Compared with the NC group, the abundance 
of Bacteroidetes increased significantly in the LDG 
group (p = 0.04). Additionally, the relative abundance 
of Firmicutes increased significantly in the MDG group 
compared to the NC group (p = 0.01).

The four most prevalent bacterial genera in the 
guts of the NC and treatment groups were Alistipes, 
Alloprevotella, unidentified_Ruminococcaceae, and Bac­
teroides (Fig. 4). Compared to the NC group, Alistipes 
exhibited significantly decreased proportions in the 
HDG group (p = 0.038). In addition, the abundance of 
Candidatus_Saccharimonas decreased significantly in 
the MDG and HDG groups (p = 0.01, p = 0.007). By con-
trast, Alloprevotella, unidentified_Ruminococcaceae, and 

Bacteroides showed an upward trend. The abundance 
of Alloprevotella in the LDG group was significantly 
higher than that in the NC group (p = 0.001). Moreover, 
compared with the NC group, the abundance of uniden­
tified_Ruminococcaceae in the MDG group increased 
significantly (p = 0.014), while the abundance of Lacto­
bacillus increased slightly, but there was no significant 
difference. In addition, the proportion of Bacteroides 
increased significantly in the HDG group compared to 
the NC group (p = 0.038).

Clustering analysis of species abundance. The heat 
map showed the relative abundance of the main iden-
tified bacteria at the genus level. As shown in Fig. 5, 
the clustering of gut microbiota was different in the 
groups. In the initial state, gut microbiota was mainly 
clustered in Firmicutes. In the NC group, Bacteroidetes 
were concentrated in the genus of Desulfovibrio. Both 
Parabacteroides and Alloprevotella from Bacteroidetes 
dominated the LDG group. In the MDG group, there 
were large quantities of Ruminococcaceae and Lachno­
spira in Firmicutes. In the HDG group, Bacteroidetes 
were concentrated in the genus of Bacteroides. 

Fig. 4.  Microbial community bar plot at the genus level. Initial state (IS) stands for mice before intragastric administration.
NC – control group, LDG – low-dose group, MDG – medium-dose group, HDG – high-dose group.

IS	 532	 6.566	 0.971	 534.371	 540.911	 0.999
NC	 535.6	 6.433	 0.968	 538.985	 545.437	 0.999
LDG	 559	 6.622	 0.976	 563.100	 570.366	 0.999
MDG	 580	 6.728	 0.978	 582.440	 588.671	 0.999
HDG	 584.8	 6.640	 0.971	 616.129	 619.041	 0.999

Table I
The α diversity index of gut microbiota in each group.

Group Observed
species Shannon Simpson Chao1 ACE Goods

coverage
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Discussion

The consumption of probiotics has been reported 
to modulate the composition and structure of the gut 
microbiome and treat multiple diseases, but some 
functional activities are strain-specific (Biagioli et al. 
2019; Hsu et al. 2019). There are also various methods 
for detecting gut microbiota, among which 16S rRNA 
amplicon sequencing is a faster and cheaper way to 

study the gut microbiome (Goldfeder et al. 2017). 
In this study, the effect of L. plantarum BW2013 on gut 
microbiota composition in BALB/c mice was investi-
gated by 16S rRNA amplicon sequencing. 

16S rRNA amplicon sequencing could be used to 
determine all microorganisms’ genetic composition 
and community function in environmental samples (Qi 
et al. 2019). In our study, the results of 16S rRNA ampli-
con sequencing showed that the ACE index and Chao1 

Fig. 5.  Heat map analysis of the gut microbiota at the phylum and genus levels.
Initial state (IS) stands for mice before intragastric administration.

NC – control group, LDG – low-dose group, MDG – medium-dose group,
HDG – high-dose group.
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index slightly increased in the MGD group compared 
to the NC group, but there was no significant differ-
ence. A previous study also showed that the microbial 
richness (Chao1 and Shannon) was not significantly 
improved after the L. plantarum LIP-1 treatment (Song 
et al. 2017), which is consistent with our results. Based 
on PCoA, there was no significant difference in β diver-
sity in the treatment groups compared to the NC group. 
There was also no significant difference between the 
initial state and NC group.

At the phylum level, the abundance of Bacteroidetes 
and Firmicutes accounted for 97% of the total bacteria. 
Bacteroidetes can regulate the chaotic state of intestinal 
microorganisms to a balanced state (Wang et al. 2020a). 
Firmicutes may play important roles in gastrointestinal 
health, and affect the metabolism and function of gut 
microbes (Zhao et al. 2018). In this study, the relative 
abundance of Bacteroidetes in the LDG group was sig-
nificantly higher than that in the NC group. Li et al. 
(2017) found that L. casei CCFM419 increased the 
abundance of Bacteroidetes, which is similar to our 
result. Our study showed that the abundance of Firmi-
cutes increased significantly in the MDG group com-
pared with the NC group. L. plantarum 12 increased 
the relative abundance of Firmicutes (Sun et al. 2020), 
which is similar to our result. Contrary to our results, 
a  strain of L. plantarum decreased the abundance of 
Firmicutes (Zhang et al. 2019).

At the genus level, L. plantarum BW2013 signifi-
cantly increased the abundance of Alloprevotella and 
Ruminococcaceae, and significantly decreased the abun- 
dance of both Alistipes and Candidatus_Saccharimonas. 
Alistipes is pathogenic in colorectal cancer and is associ-
ated with mental signs of depression (Parker et al. 2020). 
Candidatu_Saccharimonas has been associated with 
inflammatory diseases, such as gingivitis and other peri-
odontal dysfunctions (Cruz et al. 2020). Alloprevotella 
can produce vitamin B1 and folic acid, and an increase 
in the abundance of Alloprevotella was associated with 
the improvement of intestinal disorders Seddik et al. 
2017; Qi et al. 2019). Based on our results, the abundance 
of Alloprevotella in the LDG group was significantly 
higher than in the NC group. Kong et al. (2018) found 
that the abundance of Alloprevotella increased signifi-
cantly after probiotics treatment. This finding is simi- 
lar to our result. Ruminococcaceae can produce butyrate, 
which can provide energy for intestinal epithelial cells 
(LeBlanc et al. 2017). In our study, compared with the 
NC group, the abundance of Ruminococcaceae in the 
MDG group increased significantly. Wang et al. (2018) 
found that the abundance of Ruminococcaceae showed 
a decreasing trend in L. plantarum ZDY2013 group, 
which is different from our result. It may be due to the 
different strains used in the experiment. Biagioli et al. 
(2019) mentioned that some functional activities are 

strain-specific. Our study showed that compared with 
the NC group, the abundance of Bacteroides in the HDG 
group increased significantly. Li et al. (2017) found that 
L. casei CCFM419 increased the abundance of Bacte­
roides, which is consistent with our result. Bacteroides 
are producers of short-chain fatty acids (SCFAs) (Du 
et al. 2020). SCFAs are produced by the fermentation of 
microorganisms in the gut and help regulate host energy 
homeostasis and physiological processes (Horiuchi 
et al. 2020). This correlation means that the presence of 
L. plantarum BW2013 can provide a positive impact on 
host health. In our study, Desulfovibrio was enriched in 
the NC group in the heat map, while Parabacteroides, 
Alloprevotella, Ruminococcaceae, Lachnospira, and Bac­
teroides were concentrated in the treatment groups. Our 
results collectively suggested that L. plantarum BW2013 
the effect of ameliorating gut microbiota composition, 
but its effects vary with the dose.

Conclusion

In this study, our results showed that treatment 
with L. plantarum BW2013 exerted an effect on the 
gut microbiota composition in mice. At the phylum 
level, the abundance of Bacteroidetes increased in the 
LDG group compared with the NC group, while the 
abundance of Firmicutes increased in the MDG group. 
At the genus level, the abundance of Alloprevotella 
was higher in the LDG group compared with the NC 
group. By contrast, the abundance of Ruminococcaceae 
increased in the MDG group, but Candidatus_Sac­
charimonas decreased. In addition, Bacteroides abun-
dance increased in the HDG group, but Alistipes and 
Candidatus_Saccharimonas decreased. These results 
indicated that L. plantarum BW2013 had the effect of 
ameliorating the composition of gut mice, but its effect 
varies with dosing.
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Introduction

In the search for new and active natural resources 
and to find friendly environmental solutions for yield 
increase and crop protection, Actinobacteria (especially 
Streptomyces) are gaining great interest in agriculture 
concerning plant growth-promoting and/or biological 
control (Kunova et al. 2016; Vurukonda et al. 2018).

From all known antibiotics that are produced by 
microorganisms, Actinobacteria produces two-thirds 

of them. Streptomyces produce 80% of the secondary 
metabolites with biological activities from the total 
production of Actinobacteria (Waksman et al. 2010; 
Barka et al. 2016; Takahashi and Nakashima 2018). At 
least in 5,000 publications, the scientists listed Acti- 
nobacteria’s bioactive compounds produced by the 
Streptomyces genus. Actinobacteria that have been iso-
lated from the soil are able to inhibit phytopathogen 
growth, among the others Ralstonia solanacearum, 
Pantoae dispersa, and Fusarium palmivora (Anderson 
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A b s t r a c t

Streptomyces is a genus with known biocontrol activity, producing a broad range of biologically active substances. Our goal was to isolate 
local Streptomyces species, evaluate their capacity to biocontrol the selected phytopathogens, and promote the plant growth via siderophore 
and indole acetic acid (IAA) production and phosphate solubilization. Eleven isolates were obtained from local soil samples in Saudi Arabia 
via the standard serial dilution method and identified morphologically by scanning electron microscope (SEM) and 16S rRNA amplicon 
sequencing. The biocontrol of phytopathogens was screened against known soil-borne fungi and bacteria. Plant growth promotion capacity 
was evaluated based on siderophore and IAA production and phosphate solubilization capacity. From eleven isolates obtained, one showed 
99.77% homology with the type strain Streptomyces tricolor AS 4.1867, and was designated S. tricolor strain HM10. It showed aerial hyphae 
in SEM, growth inhibition of ten known phytopathogens in in vitro experiments, and the production of plant growth promoting compounds 
such as siderophores, IAA, and phosphate solubilization capacity. S. tricolor strain HM10 exhibited high antagonism against the fungi tested 
(i.e., Colletotrichum gloeosporides with an inhibition zone exceeding 18 mm), whereas the lowest antagonistic effect was against Alternaria 
solani (an inhibition zone equal to 8 mm). Furthermore, the most efficient siderophore production was recorded to strain HM8, followed 
by strain HM10 with 64 and 22.56 h/c (halo zone area/colony area), respectively. Concerning IAA production, Streptomyces strain HM10 
was the most effective producer with a value of 273.02 µg/ml. An autochthonous strain S. tricolor HM10 should be an important biological 
agent to control phytopathogens and promote plant growth.

K e y w o r d s:  Streptomyces tricolor HM10, plant growth-promoting, biocontrol, soil-borne disease
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and Wellington 2001; Bérdy 2005; El-Naggar et al. 2006; 
Kaur et al. 2019).

The Streptomyces genus is ubiquitous and can live 
in symbiosis with eukaryotic organisms, ranging from 
marine animals, insects, and plants to fungi, or be free-
living in soil (Seipke et al. 2012).

Streptomyces species can promote plant growth and 
suppress plant pathogens. By inhibiting fungal patho-
gens, Streptomyces can protect the roots of plant via 
antifungal compounds and lytic enzyme production 
(Doumbou et al. 2001; Palaniyandi et al. 2013; Bonaldi 
et al. 2014). Moreover, through the siderophore or 
auxin production, plant growth promotion has been 
observed. The combination of a wide variety of sub-
stances and the bacteria abundance in soil suggest that 
Streptomyces can play a significant role in microbe-
microbe and plant-microbe interactions. It makes this 
microorganism a promising agent as biofertilizers and 
plant protection products (Sadeghi et al. 2012; Law et al. 
2017; Jung et al. 2018; Vurukonda et al. 2018).

The selection of biological control agents usually 
starts with an in vitro screening using a dual culture 
assay within a selected group of strains against a group 
of pathogens. Actinobacteria secretes a wide variety of 
extracellular antibiotics and enzymes (Doumbou et al. 
2001; Yekkour et al. 2012; Singh et al. 2018), which can 
be quantified as the clear zone of growth inhibition 
of the pathogen’s mycelium.

Upon the beginning of sporulation and develop-
ment of aerial hyphae, the production of Streptomy­
ces secondary metabolites is induced. Furthermore, 
the Streptomyces inoculation time of the strains varied 
from the co-inoculation on the same day to seven days 
before the pathogen. As a biological agent, Streptomy­
ces ma.FS-4 is an important agent to control the plant 
pathogenic fungi in banana (Trejo-Estrada et al. 1998; 
Boukaew et al. 2011; Pliego et al. 2011; Schrey et al. 
2012; Ji et al. 2014; Duan et al. 2020).

On the other hand, some fungal pathogens require 
iron (Fe) for their pathogenicity. The beneficial rhizo-
bacteria that produce siderophores are chelating ferric 
iron from the surrounding environment and subse-
quently could inhibit the growth of pathogen via iron 
competition (Expert et al. 2012). At the same time, these 
bacteria provide the iron available for plant growth and 
work as plant inducers.

Otherwise, the environment is highly contamina- 
ted due to agrochemical usage like pesticides and/or 
fertilizers. Some opponents expressed concern about 
the heavy use of pesticides, which has led to a signifi-
cant shift in people’s attitudes to pesticide use in both 
the surrounding environment and agriculture (Yoon 
et al. 2013; Nicolopoulou-Stamati et al. 2016; Brauer 
et al. 2019).

Experimental

Materials and Methods

Streptomyces isolation and media composition. 
A total of five soil samples from around healthy plants 
were collected from 10–20 cm depth of agricultural 
soil, Qassim University Campus, Buraydah, Qassim, 
KSA. By the standard serial dilution method, these soil 
samples were prepared for bacterial strains  isolation 
(Valan Arasu et al. 2009). Soil samples (3–4 g) of each 
sample were suspended in distilled water (9 ml) and 
vortexed. Furthermore, a serial dilution up to 10−3 dilu-
tion of each sample was performed. Streptomyces were 
subsequently isolated by spread plate technique on 
PDA (Potato Dextrose Agar) medium and incubated 
for a week at 28°C. Selected Streptomyces colonies were 
isolated and characterized by their colony morphology 
and pigments. These colonies were further purified 
and sub-cultured on tryptone soyagar (15 g/l pancre-
atic digest of casein, 5 g/l enzymatic digest of Soybean, 
5 g/l sodium chloride, 15 g/l agar, final pH 7.3). For sec-
ondary metabolites production, glucose soybean meal 
broth (GSB) consisted of 10 g/l glucose, 10 g/l soybean 
meal, 10 g/l NaCl, 1 g/l CaCO3, and pH adjusted to 
7.0 was used as the production medium.

Isolated strains classification and identification. 
Morphological characteristics. The morphological 
properties of isolated Streptomyces strains were char-
acterized with colony characteristics, pigment color, 
areal hyphae, the opacity of colony, colony consistency, 
fragmentation pattern, and growth under the surface 
of liquid media. Otherwise, for visualization of aerial 
hyphae, hypha, and spore characteristics under the 
scanning electron microscope (SEM), S. tricolor strain 
HM10 was grown for 48 h in a growth medium. The 
bacteria were harvested at 6,000 rpm by centrifugation 
for 10 min and subjected to the method of a critical dry-
ing point (Dhanjal and Cameotra 2010). The cells were 
washed with phosphate-buffered saline (PBS, pH 7.4) 
three times and fixed by incubation in a modified 
Karnovsky’s fixative solution (2.5 ml of 50% glutaralde-
hyde, 2 g paraformaldehyde) for four hours. Cells were 
washed with PBS and distilled water and dehydrated by 
the increasing ethanol concentrations (30%, 50%, 70%, 
90% and 100%) for critical point drying. t-Butyl alcohol 
was used to layer the dehydrated samples for freeze-
drying, subsequently, and the samples were coated with 
titanium and viewed at 1,000 to 5,000-fold magnifica-
tion with SEM (AMRAY 3300FE).

Morphological characteristics. The isolated Strepto­
myces were grown at 28°C for 7 days in Tryptone Soy 
Agar medium. The soluble pigments color, the hyphae 
color and airborne hyphae were detected.
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PCR amplification of 16S rRNA and phylogenetic 
characteristics. DNA was extracted according to the 
simple method of DNA extraction with little modifica-
tions (Cook and Meyers 2003). Briefly, isolated Strep­
tomyces strains were cultured in TSB (tryptone Soy-
broth) at 30°C for 24–48 h. Cells were centrifugated 
for 3 min at 12,000 rpm, washed once with TE buffer 
(pH 7.7). Cells were resuspended again in TE buffer 
(500 µl), heated at 95°C for 10 min in boiling water bath, 
and kept on ice to cool, followed by centrifugation at 
12,000 rpm for 5 min. The extracted DNA was trans-
ferred to a clean tube and stored at 4°C for PCR amplifi-
cation. PCR amplification was conducted using GoTaq® 
Green Master Mix (Promega, USA) for 16S rDNA in 
50 µl volumes by universal primers 27 F 5’-AGAGTTT-
GATCATGGCTCAG-3’ and 1492 R 5’-TACGGTTAC-
CTTGTTACGACTT-3’. PCR products were electro-
phoresed in 1% agarose gel to ensure the amplification 
of the fragment of correct size. Products were purified 
and sequenced (Capillary Electrophoresis Sequenc-
ing (CES), ABI 3730xl System, Macrogen company, 
South Korea). A phylogenetic tree was inferred with 
a maximum likelihood method using with the follow-
ing parameters: Tamura-Nei model, Neighbor-Joining 
method to a matrix of pairwise distances estimated 
using the Maximum Composite Likelihood (MCL) 
approach, Uniform Rates. Evolutionary analyses were 
conducted in MEGA X (Kumar et al. 2018).

Antimicrobial activity assays. The isolated Strepto­
myces strains were grown for three days in GSB liquid 
media. Their antifungal activity against ten fungal plant 
pathogens was measured according to Kanini et al. 
(2013). The fungal strains were grown on Potato Dex-
trose Agar (PDA) plates for 3 days at 30°C, then a 6-mm 
mycelium disk from each selected fungus was then 
placed in the center of a new PDA plate. The bacterial 
suspensions (50 µl from a 5-day culture of each Strepto­
myces strain tested) were put into the opposite sides of 
each PDA plate. The inoculated plates with fungi and 
Streptomyces were kept in the incubator for five days at 
28°C. The antagonistic activity of the strains tested was 
observed via measuring the inhibition zone distance. 
The antibacterial assay was also measured with five-day 
cultures filtrate from Streptomyces tested strains against 
the bacterial strains selected using the agar well diffu-
sion method with modifications (CLSI 2011). Briefly, 
each tested strain was grown in LB media overnight, 
and an inoculum of each tested strain (about 2 ml) was 
added to 25 ml of new LB media before solidification 
(at nearly 50°C). In the agar medium, wells of six mm 
in diameter were perforated, and 50 µl of each five-day 
Streptomyces cultures were placed into the wells, fol-
lowed by incubation at 30 or 37°C (depended on the 
bacteria favorite temperature). After 24 h of incubation, 
the inhibition zones were recorded.

Plant growth promotion (PGP) assessment in 
vitro. Three parameters related to plant growth pro-
motion were evaluated in Streptomyces strains.

Siderophores production. The CAS (Chrome Azu- 
rol S) assay to detect siderophore production, according 
to (Schwyn and Neilands 1987) was applied. Briefly, 
iron (III) solution was prepared by mixing 1 mM 
FeCl3 in 10 ml of 10 mM HCl. In another conical flask, 
60.5 mg of CAS was dissolved in distilled water (50 ml). 
The orange color mixture was then added to the pre-
viously prepared solution of the iron (10 ml), which 
turned the solution color to purple. Whereas stirring, 
the previous purple solution was slowly poured into 
HDTMA (hexadecyltrimethylammonium) (72.9 mg), 
dissolved in 40 ml of distilled water, which turned into 
dark blue color after mixing. Streptomyces strains on 
PDB of approximately the same OD600 were put into 
a succinate medium mixed with CAS dye and incubated 
for 72–96 h. A clear to orange halo around the grow-
ing bacterial cells were detected. The molecules’ color 
intensity and diffusion potential were directly related 
to the chelating strength and the concentration of pro-
duced siderophore.

Production of extracellular indole-3-acetic acid 
(IAA). Streptomyces strains were grown in nutrient 
broth medium for one day at 28°C. Cells were diluted 
up to (108 CFU/ml) in NB medium supplemented with 
L-tryptophane (500 µg/ml), and grown with shaking 
for five days at 28°C. Cells were pelleted for 10 min at 
12,000 rpm, while the supernatant was collected. Using 
Salkowski reagent, which consisted of 0.5 M FeCl3 
(1 ml) in 35% HCLO4 (50 ml), IAA concentration was 
measured with a colorimetric assay (Bano and Musarrat 
2003) after 25–30 min using a spectrophotometer at the 
wavelength 530 nm. The standard curve was made to 
evaluate the IAA concentration.

Phosphate solubilization. Pikovskaya agar (PKV) 
medium was prepared, and Ca3(PO4)2 was added 
separately after autoclaving to agar plates. A 50 µl of 
each strain containing approximately (108 CFU/ml) 
was added to agar plates and incubated for five days at 
28°C. Bacterial colonies with clarification halos around 
were considered phosphate solubilizers (Donate-Correa 
et al. 2005).

Fermentation, extraction, and cancer cell culture. 
S. tricolor HM10 and Streptomyces thinghirensis strain 
HM3 were grown in GSB medium for six days. The 
fermented broth was extracted with equal volume from 
ethyl acetate, and vacuum evaporated. The resulted 
extract was dissolved in phosphate buffer saline (PBS, 
pH 7) and used to assay of cytotoxic activity. The A549 
lung cancer cell-lines were purchased from ATCC (VA, 
USA) and were grown in DMEM according to manu-
facturer’s instruction. Briefly, A549 cells were grown in 
DMEM medium with 10% heat-inactivated fetal bovine 
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serum (FBS) at 37°C in 5% CO2 as described previously 
(Al Abdulmonem et al. 2020).

Treatment of lung cancer cells with the two Strep-
tomyces extracts and cytotoxicity assay. The cultured 
cancer cells were serum-starved overnight and were 
treated with S. tricolor HM10 and S. thinghirensis HM3 
extracts (10–200 µg/ml) for 12 hours, and the cytotoxic-
ity was determined by the CytoTox-Glo™, Cytotoxicity 
Assay Kit (Promega, Madison, WI, USA).

DNA sequencing and NCBI Accession Numbers. 
The 16S rRNA nucleotide sequences for eight Strepto­
myces strains were deposited in GenBank under the 
accession numbers MN527229–MN527236.

Results

Streptomyces isolation and cultural characteris-
tics. Cultural characteristics for isolated strains (i.e., 
pigmentation, the opacity of colony, colony consist-
ency, and growth under the liquid media surface) were 
recorded. The various pigments for the strains ranging 
from cream, yellow to brown with sediment of balls in 
liquid culture were observed (Table I). Aerial hyphae 
and spores (SEM) were detected in S. tricolor strain 
HM10 (Fig. 1). Based on the pigment production, 
morphological, physiological, and 16S rRNA amplicon 
sequences, the isolated strains were identified. Out of 
eleven isolated strains, eight strains were identified with 
a  sequence of the 16S rRNA gene. These strains and 
their similarity to the already published Streptomyces 
strains at the NCBI website (https://www.ncbi.nlm.nih.
gov/) were listed in Table II.

Screening Streptomyces isolates for their biocon-
trol activity. Fungal pathogens. The eleven isolated 

Streptomyces strains were tested against ten soil-borne 
fungal phytopathogens with a dual plate assay. S. tri- 
color strain HM10 and S. thinghirensis strain HM3 
exerted inhibitory effects on all tested pathogenic fungal 
species, i.e., Fusarium oxysporum, Fusarium gramine­
arum, Fusarium solani, Fusarium moniliforme, Colle­
totrichum gloeosporides, Alternaria solani, Thielaviopsis 
basicola, Botrytis cinerea, Myrothecium roridum, and 
Rhizoctonia solani (Table III). The highest antagonis-
tic effect was shown from S. tricolor strain HM10. The 
inhibition zone for C. gloeosporides exceeded 18 mm, 
whereas much smaller was against A. solani (8 mm) 
(Fig. 2). The second superior strain was S. thinghiren­
sis strain HM3, which showed antagonistic activity 
for all tested fungal species with the inhibition zone 
ranged from 3 to 15 mm. On the other hand, four iden-
tified strains, including Streptomyces sp. strain HM2, 
Streptomyces sp. strain HM6, Streptomyces panayensis 

Streptomyces griseorubens strain HM1 (Actino1)	 Brown	 Opaque	 Rough	 Sediment of balls
Streptomyces sp. strain HM2 (Actino2)	 White	 Opaque	 Rough	 Sediment of balls
Streptomyces thinghirensis strain HM3 (Actino4)	 Yellow*	 Opaque	 Rough	 Sediment of balls
Streptomyces sp. strain HM4 (Actino5)	 Yellow	 Opaque	 Rough	 Sediment of balls
Actino7	 Red	 Opaque	 Rough	 Sediment of balls
Streptomyces sp. strain HM6 (Actino8)	 Cream	 Opaque	 Rough	 Sediment of balls
Streptomyces panayensis strain HM7 (Actino9)	 Cream	 Opaque	 Rough	 Sediment of balls
Streptomyces sp. strain HM8 (Actino MS9)	 Dark brown	 Opaque	 Rough	 Sediment of balls
Actino10	 Cream light pink	 Opaque	 Rough	 Sediment of balls
Actino11	 Cream	 Opaque	 Rough	 Sediment of balls
Streptomyces tricolor strain HM10 (Actino12)	 Yellow**	 Opaque	 Rough	 Sediment of balls

Table I
Characteristics of eleven Actinomycetes strains.

  * – Yellow pigment colored the surrounding media
** – Dark green pigment colored the surrounding media

Symbol of isolate Pigmentation Opacity
of colony

Colony
consistency

Growth under the surface
of liquid media

Fig. 1. Scanning electron microscopy of Streptomyces tricolor
strain HM10 hyphae grown on GSA medium.
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strain HM7, and Streptomyces sp. strain HM8 produ- 
ced no secondary metabolites or the antagonistic effect 
against the fungi tested.

Bacterial strains. The inhibitory effect of the spent 
medium after the growth of identified Streptomyces 
strains against three species of bacteria was presen- 
ted in Table IV. The spent medium of S. thinghirensis 
strain HM3 displayed a more significant inhibitory 
effect on Escherichia coli (Gram-negative) than Bacil­
lus subtilis (Gram-positive), but no inhibitory effect 
was observed on Pseudomonas putida (Fig. 3). The 
spent medium of Streptomyces griseorubens strain HM1 

medium exhibited an inhibitory effect on P. putida. Six 
other Streptomyces strains showed no inhibitory effect 
on these bacteria.

Screening of Streptomyces strains with plant 
growth promoting. Siderophore production. All iden- 
tified Streptomyces strains can produce siderophores 
and chelate the iron ions from the CAS medium 
(Table V, Fig. 4). The largest clear zone was recorded 
for Streptomyces sp. strain HM8 followed by S. tricolor 
strain HM10 with 64 and 22.56 h/c (halo zone area/
colony area). Otherwise, S. thinghirensis strain HM3 
showed the lowest value with 1.67 h/c.

1	 Streptomyces griseorubens strain HM1 (Actino1)	 Streptomyces griseorubens strain SELJFHG3	 99.46
2	 Streptomyces sp. strain HM2 (Actino2)	 Streptomyces sp. SYP-A7193	 99.85
3	 Streptomyces thinghirensis strain HM3 (Actino4)	 Streptomyces thinghirensis strain TG26	 99.62
4	 Streptomyces sp. strain HM4 (Actino5)	 Streptomyces sp. E4N275g	 99.46
5	 Streptomyces sp. strain HM6 (Actino8)	 Streptomyces sp. SYP-A7193 	 99.23
6	 Streptomyces panayensis strain HM7 (Actino9)	 Streptomyces panayensis	 99.54
7	 Streptomyces sp. strain HM8 (ActinoMS9)	 Streptomyces sp. strain 16K303	 99.46
8	 Streptomyces tricolor strain HM10 (Actino12)	 Streptomyces tricolor strain AS 4.1867	 99.77

Table II
Identified Streptomyces strains via 16S rRNA amplicon sequencing and their similarity

with identified strains at the NCBI website.

No. The isolated strain Streptomyces similar strain Similarity (%)

Streptomyces griseorubens	 –	 –	 +++	 –	 –	 –	 –	 –	 –	 –	 1
strain HM1			   3 mm
Streptomyces sp. strain HM2	 –	 –	 –	 –	 –	 –	 –	 –	 –	 –	 0
Streptomyces thinghirensis  	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 10
strain HM3	 5 mm	 9 mm	 8 mm	 8 mm	 8 mm	 15 mm	 12 mm	 11 mm	 3 mm	 7.5 mm

Streptomyces sp. strain HM4	 –	 –	 –	 –	 +++	 +++	 +++	 +++	 –	 –	 4
					     7 mm	 5 mm	 4 mm	 2 mm

Actino7	 +	 +++	 +	 +++	 –	 +++	 +++	 +++	 +++	 +++	 5
		  3 mm		  5 mm		  9 mm	 1 mm	 2 mm	 10 mm	 3 mm
Streptomyces sp. strain HM6	 –	 –	 –	 –	 –	 –	 –	 –	 –	 –	 0
Streptomyces panayensis	 –	 –	 –	 –	 –	 –	 –	 –	 –	 –	 0
strain HM7
Streptomyces sp. strain HM8	 –	 –	 –	 –	 –	 –	 –	 –	 –	 –	 0

Actino10	 –	 –	 –	 +++	 +++	 –	 +++	 –	 –	 –	 3
				    11 mm	 1 mm		  3 mm
Actino11	 –	 –	 –	 –	 –	 –	 –	 –	 –	 –	 0
Streptomyces tricolor	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 +++	 10
strain HM10	 11 mm	 12 mm	 13 mm	 11 mm	 18 mm	 16 mm	 8 mm	 1 mm	 13 mm	 16 m	
Total	 3	 3	 4	 3	 4	 3	 5	 3	 2	 3	

Table III
Antagonism of eight identified Streptomyces strains against ten different plant pathogenic fungi.

Isolates
Tested Fungi*

F. mon F. so MyroAlt ThielRhizBotColletF. graF. ox Total

+ – The Actinomyces could suppress fungal mycelium growth for a distinct period at first only
F. ox – Fusarium oxysporum, F. gra – Fusarium graminearum, F. so – Fusarium solani, F. mon – Fusarium moniliforme, Collet – Colletotrichum gloeo­
sporides, Alt – Alternaria solani, Thiel – Thielaviopsis basicola, Bot – Botrytis cinerea, Myro – Myrothecium roridum, and Rhiz – Rhizoctonia solani
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Fig. 2. Antagonistic activity of Streptomyces tricolor HM10 against nine fungi including: 1 – Fusarium graminearum, 2 – Thielaviopsis 
basicola, 3 – Colletotrichum gloeosporides, 4 – Fusarium oxysporum, 5 – Fusarium moniliforme, 6 – Botrytis cinerea, 7 – Fusarium solani, 

8 – Rhizoctonia solani, 9 – Alternaria solani.

Fig. 4.  Iron cheating of isolated eleven Streptomyces strains
in the CAS general assay to detect siderophore production

according to (Schwyn and Neilands 1987).

Fig. 3.  Antibacterial activity of some selected isolated
Streptomyces against two Gram-negative bacteria, Escherichia coli

and Pseudomonas putida.
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Phosphate solubilization. Four of eight (50%) Strep­
tomyces strains have clear ability to solubilize phosphate 
with nearly the same capability (Table  V). For other 
two strains (25%) the traces of soluble phosphate were 
visible, whereas two more strains had no ability to 
solubilize phosphate (Streptomyces sp. strain HM4 and 
Streptomyces sp. strain HM6).

IAA production. S. tricolor strain HM10 was the 
most efficient indole acetic acid (IAA) producer with 
a  2.75-fold higher production (273.02 µg/ml) than 
S. panayensis strain HM7 (99.3 µg/ml). The lowest acti
vity was observed for Streptomyces sp. strain HM6 with 
value 43.65 µg/ml (Table V).

Cytotoxic activity. Treatment of cancer cells with 
crude extracts of S. tricolor HM10 and S. thinghiren­
sis strain HM3 with varying concentrations up to 
200 µg/ml for 12 hours showed no effects on the cell’s 

viability (p > 0.05). The complete data on cell viability 
have been summarized in Table VI.

Phylogenetic analysis. For the phylogenetic clas-
sification of bacteria, sequencing of gene encoding 
16S  rRNA is the most promising technique. In this 
work, the sequences of 16S rRNA amplicons of identi-
fied Streptomyces strains were aligned using ClustalW 
in MEGA  X software. The phylogenetic analysis 
of identified eight strains was conducted based on 
the sequences of related species and their accession 
numbers, as Kaur et al. (2019) (Fig. 5). This analysis 
involved 38 nucleotide sequences and confirmed that 
these eight isolates belonged to genus Streptomyces. 
Two groups were constructed in the tree; group 1 con-
tained seven identified Streptomyces strains while the 
strain Streptomyces sp. strain HM8 belongs to group 
2. Moreover, the closest relatives to the superior strain 

Streptomyces griseorubens strain HM1	 + 3 mm	 –	 –	 1
Streptomyces sp. strain HM2	 –	 –	 –	 1
Streptomyces thinghirensis strain HM3	 –	 + 12 mm	 Trace 3 mm	 2
Streptomyces sp. strain HM4	 –	 –	 –	 0
Streptomyces sp. strain HM6	 –	 –	 –	 0
Streptomyces panayensis strain HM7	 –	 –	 –	 0
Streptomyces sp. strain HM8	 –	 –	 –	 0
Streptomyces tricolor strain HM10	 –	 –	 –	 0

Table IV
The antagonism effect of eight identified Streptomyces strains against three bacterial strains.

Isolates Pseudomonas
putida

Escherichia
coli

Bacillus
subtilis Total

Streptomyces griseorubens strain HM1	 ++	 2 mm	 9.5/5.5	 1.98	 +	 77.19
Streptomyces sp. strain HM2	 ++	 1.5 mm	 10.1/7.5	 2.15	 +	 89.36
Streptomyces thinghirensis strain HM3	 +	 1 mm	 11/8	 1.67	 Trace	 86.66
Streptomyces sp. strain HM4	 ++	 2.5 mm	 11/5.5	 3.36	 –	 72.26
Actino7	 +++	 5 mm	 16.5/8	 4.25	 –	 112.96
Streptomyces sp. strain HM6	 ++	 2 mm	 11.5/7.5	 2.35	 –	 43.65
Streptomyces panayensis strain HM7	 +++	 5 mm	 14/4	 12.25	 +	 99.3
Streptomyces sp. strain HM8	 +++	 11 mm	 24/3	 64	 Trace	 75.6
Actino10	 +++	 10 mm	 25.5/4.5	 32.1	 +	 172.13
Actino11	 +++	 9 mm	 20/3.5	 32.65	 –	 270.33
Streptomyces tricolor strain HM10	 +++	 11.5 mm	 28.5/6	 22.56	 +	 273.02

Table V
The production of siderophores, extracellular indole-3-acetic acid (IAA) and phosphor fixing

of eleven isolated Streptomyces strains.

1 –	 + A thin yellow area surrounding the colony (about 1 mm width), ++ less than 5 mm width of the yellow area surrounding the 
colony, +++ more than 5 mm width of the yellow area surrounding the colony, D = diameter, h/c = halo zone area/colony area

2 –	 + A thin transparent area surrounding the colony (about 1 mm width), ++ less than 5 mm width of the transparent area surround-
ing the colony, +++ more than 5 mm width of the transparent area surrounding the colony

3 –	 Quantitative estimation of IAA as microgram per ml according the equation: y = 185.8x + 41.05

Isolate
Iron1

Phosphor2 IAA3 µg/ml
Reaction Width D/D colony h/c
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S. tricolor HM10 (MN527236) were S. tricolor AS 
4.1867 (AY999880), Streptomyces reticuli (MN551632), 
and Streptomyces sp. SC028 (LC435677), respectively. 
Meanwhile, the second superior strain S. thinghirensis 
HM3 (MN527231) showed high similarity to S. thing­
hirensis TG26 (MG597589).

Discussion

Streptomyces are familiar with biocontrol activity 
against plant and animal pathogens. For a wide variety 
of plant pathogens, Actinomycete-fungus antagonism 

has been demonstrated. S. tricolor HM10 (MN527236) 
and S. thinghirensis strain HM3 (MN527231) exerted 
a  significant effect against ten soil-borne fungi with 
a  broad spectrum of antifungal activity. Moreover, 
Streptomyces sp. 9p displayed a broad-spectrum anti-
fungal activity against four phytopathogens includ-
ing C. gleosporioides OGC1, Alternaria brassiceae 
OCA3, Phytophthora capsici, and R. solani MTCC 4633 
(Shivakumar et al. 2012). Streptomyces hygroscopicus 
strain SRA14 exhibited in vitro antagonism and inhi-
bition growth of Sclerotium rolfsii and C. gloeosporioi- 
des due to extracellular antifungal metabolites, whereas 
Streptomyces sp. VV/R4 strains reduced the fungal 

Fig. 5. Phylogenetic tree based on 16S rRNA sequences. The evolutionary history was inferred by using the Maximum Likelihood 
method and Tamura-Nei model. The tree with the highest log likelihood (–4351.16) is shown. Initial tree for the heuristic search were 
obtained automatically by applying the Maximum Parsimony method. This analysis involved 38 nucleotide sequences. Evolutionary 

analyses were conducted in MEGA X.
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pathogens infection rate. Moreover, Streptomyces albi­
reticuli MDJK11 and MDJK44 showed robust inhi- 
bition on the F. solani growth and Streptomyces albo-
flavus MDJK44 showed higher biocontrol activity 
than S. albireticuli MDJK11 (Prapagdee et al. 2008; 
Evangelista-Martínez 2014; Vurukonda et al. 2018; 
Wang et al. 2018; González-García, et al. 2019). Several 
mechanisms of antagonistic phenomena against fungi, 
including antibiosis and parasitism, have been pro-
posed. In some cases, chitinases as hydrolytic enzymes 
and other enzymes such as glucanases or proteases 
play an important role in the biocontrol of Fusarium 
diseases and may act against the fungal cell wall 
(Shivakumar et al. 2012; Bubici 2018; Vurukonda et al. 
2018; Newitt et al. 2019).

S.  thinghirensis strain HM3 showed activity against 
B. subtilis and P. putida in this study. Liu et al. (1996) 
isolated 93 Streptomyces strains from potato tubers 
lenticels. Antagonistic activity against the virulent 
Streptomyces scabies RB3II were shown for twenty-two 
strains. The in vitro studies of either Streptomyces pul­
cher or Streptomyces canescens demonstrated that cul-
ture filtrates from 80% of strains significantly inhibited 
Pseudomonas solanacearum and Clavibacter michiga­
nensis subsp. michiganensis in tomato (El-Abyad et al. 
1993). Meanwhile, Streptomyces sp. WD5 isolate from 
Fayoum in Egypt, had a broad-spectrum antagonistic 
activity against Gram-positive bacterium, Staphylococ­
cus aureus MTCC 96 (23 mm), and Gram-negative bac-
terium Pseudomonas aeruginosa MTCC 2453 (11 mm), 
whereas Streptomyces rubrogriseus HDZ-9-47 with bio-
fumigation improved its efficacy against Meloidogyne 
incognita, and reduced root galls by 41% (Jin et al. 2019; 
Salah El-Din Mohamed and Zaki 2019).

Plant growth-promoting activities like siderophore 
and auxin production or phosphate dissolving, helps 
plants to grow up. Streptomyces has positive effects on 
root and shoot growth and seed germination. About 
98 rhizospheric Actinobacteria isolates were positive in 
the production of siderophore, hydrogen cyanide, and 
ammonia (Anwar et al. 2016). Streptomyces djakar­
tensis TB-4 and Streptomyces sp. WA-1 solubilized phos-
phate conconcentrations reached 72.13 mg/100 ml and 
70.36 mg/100 ml, respectively (Anwar et al. 2016). About 
18 isolates from Actinobacteria were able to solubilize 
phosphate, which was demonstrated as a  clear zone 
formation in a medium containing tricalcium-phos-
phate, and this concentration ranged from 2.05 ± 0.06 
to 2.72 ± 0.08 (Wahyudi et al. 2019). Streptomyces enis­
socaesilis TA-3, Streptomyces nobilis WA-3, and Strepto­
myces kunmingenesis WC-3 produced 79.5, 79.23, and 
69.26 µg/ml of IAA, respectively. (Anwar et al. 2016). 
Furthermore, Streptomyces fradiae NKZ-259 produced 
IAA at the highest concentration (82.363 µg/ml) using 
2 g/l tryptophan after six days (Myo et al. 2019). Bioin-
formatic analysis of Streptomyces avermitilis strain SA51 
presented metabolic pathways promoting plant growth 
in addition to the genes involved in the pathway of iron 
transport and metabolism and indole alkaloid biosyn-
thesis (Vurukonda et al. 2020).

In this work, based on the 16S rRNA amplicon 
sequences, eight Streptomyces strains were identified 
and phylogenetically analyzed. Streptomyces sp. strain 
HM8 was located in group  II, while the remaining 
seven strains consisted group I. In Pakistan, Anwar 
et al. (2016) isolated 98 rhizospheric actinomycetes. 
About 30% of the isolates exhibited maximum genetic 
similarity with Streptomyces (98–99%) via sequencing 

Untreated cells	 98.3 ± 8.2	 Untreated cells	 99.1 ± 6.1
  20	 98.2 ± 9.2	 20	 99.2 ± 5.5
  40	 97.4 ± 6.8	 40	 98.3 ± 6.6
  60	 98.5 ± 7.3	 60	 97.1 ± 4.6
  80	 97.3 ± 9.6	 80	 98.2 ± 7.3
100	 96.2 ± 9.1	 100	 98.3 ± 8.8
120	 98.4 ± 7.2	 120	 97.7 ± 9.5
140	 98.8 ± 9.5	 140	 99.1 ± 6.4
160	 96.2 ± 9.1	 160	 98.2 ± 7.2
180	 98.2 ± 8.2	 180	 97.1 ± 7.3
200	 97.1 ± 8.5	 200	 98.3 ± 9.5

Table VI
Effects of Streptomyces tricolor HM10 and Streptomyces thinghirensis strain HM3 
crude extracts on the viability of A549 cancer cells. Treated versus untreated cells 

(p > 0.05).

Streptomyces
thinghirensis HM3

(μg/ml)

% Cells Viability
(Mean + SD)

Streptomyces tricolor
strain HM10

(μg/ml)

Cells Viability
(%)

(Mean ± SD)
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of the 16S rRNA gene. Streptomyces strain 5.1 had 98.9% 
similarity to Streptomyces kashimirensis and Streptomy­
ces salmonis (Suárez-Moreno et al. 2019). Streptomyces 
sp. NEAU-S7GS2 formed a subclade with the nearest 
neighbor Streptomyces angustmyceticus NRRL B-2347T, 
Streptomyces tubercidicus DSM40261T, Streptomy­
ces nigrescens NBRC 12894T, and Streptomyces libani 
subsp. libani NBRC 13452T with 99.72, 99.79, 99.86 
and 99.86% similarities in the 16S rRNA amplicon 
sequences (Liu et al. 2019).

Conclusions

S. tricolor strain HM10 (MN527236) and S. thing­
hirensis strain HM3 (MN527231) exerted a significant 
effect against ten soil-borne fungi with a broad-spec-
trum antifungal activity. Strain HM10 showed highly 
efficient siderophore and IAA production and the 
ability to solubilize phosphate. These activities can help 
to promote plant growth. These new isolates should be 
a valuable tool for reducing the heavy usage of chemical 
fertilizers and fungicides.
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Introduction

Bradyrhizobium is used as a soybean inoculant, 
because it reduces atmospheric nitrogen gas (N2) into 
a nitrogenous compound that can be utilized directly by 
the plant. Application of a Bradyrhizobium inoculant, 
an environment-friendly biofertilizer, is, therefore, an 
essential factor that can increase the soybean yield and 
reduce the utilization of chemical N fertilizer (Suyal 
et al. 2016; Ntambo et al. 2017; Jalloh 2020). Although 
the effective nitrogen-fixing Bradyrhizobium is used as 
an inoculant, several abiotic factors have been reported 
to interfere with successful nodulation. Abiotic factors, 
as defined here, such as salinity, unfavorable soil pH, 

nutrient deficiency, mineral toxicity, extreme tempera-
ture, and soil moisture, are environmental stress factors 
that can affect the efficiency of symbiosis. For example, 
in severe drought stress, the total dry weight of soy-
bean inoculated with a commercial liquid inoculant of 
Bradyrhizobium (Simbiose Nod Soja®) was decreased; 
even co-inoculation with Azospirillum brasilens had 
this effect when compared to the normal condition 
(Silva et al. 2019). Wang et al. (2016) also showed that 
salt stress negatively affects alfalfa (Medicago sativa L.) 
production and biological nitrogen fixation. However, 
inoculation with an effective rhizobial inoculant had 
a positive effect on alfalfa’s salt tolerance by improving 
antioxidant enzymes and osmotic adjustment capacity. 
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A b s t r a c t

The development of rhizobial inoculants with increased resistance to abiotic stress is critical to mitigating the challenges related to climate 
change. This study aims at developing a soybean stress-tolerant Bradyrhizobium inoculant to be used under the mixed stress conditions 
of acidity, high temperature, and drought. Six isolates of Bradyrhizobium with high symbiotic performance on soybean were tested to 
determine their growth or survival abilities under in vitro conditions. The representative stress-tolerant Bradyrhizobium isolates 184, 
188, and 194 were selected to test their ability to promote soybean growth under stress conditions compared to the type strain Bradyrhi­
zobium diazoefficiens USDA110. The plant experiment indicated that isolate 194 performed better in symbiosis with soybean than other 
Bradyrhizobium strains under stress conditions. Based on the stress tolerance index, soybeans inoculated with isolate 194 showed a high 
growth performance and significantly better nodulation competition ability than USDA110 under several stress conditions. Interestingly, 
supplementation of sucrose in the culture medium significantly enhances the survival of the isolate and leads to improved plant biomass 
under various stress conditions. Analysis of the intra-cellular sugars of isolate 194 supplemented with sucrose showed the accumulation of 
compatible solutes, such as trehalose and glycerol, that may act as osmoprotectants. This study indicates that inoculation of stress-tolerant 
Bradyrhizobium together with sucrose supplementation in a medium could enhance bacterial survival and symbiosis efficiency under stress 
conditions. Although it can be applied for inoculant production, this strategy requires validation of its performance in field conditions 
before adopting this technology.

K e y w o r d s:  Bradyrhizobium, nodulation competition, stress conditions, compatible solutes, osmoprotectant
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Thus, it is necessary to develop an inoculant that can 
support plant growth under abiotic conditions.

In the field, stress conditions cause rapid death of 
the Bradyrhizobium inoculum and reduce its capabil-
ity to compete for nodulation and fix nitrogen (Sindhu 
et al. 2010; Gopalakrishnan et al. 2015). The most criti-
cal factors, potentially limiting the rhizobium-legume 
symbiosis, are pH, drought, and high temperature 
(Dimkpa et al. 2009; Zhang et al. 2020), and several 
times these stress factors were found in combination 
as a multi-environmental stress condition. However, the 
ability of the legume hosts to grow and survive in stress 
conditions is improved when they are inoculated with 
stress-tolerant strains of rhizobia (Wei et al. 2008; Kajić 
et al. 2019). Therefore, inoculation with multi-stress-
tolerant Bradyrhizobium strains may enhance the field 
performance of soybean production.

Moreover, efforts to develop a rhizobial inoculant 
could be made by increasing nodule occupancy under 
stress conditions. Iturralde et al. (2019) suggested that 
improving nodule occupation should also focus on 
optimizing the inoculant formulation and inoculation 
technology. Amendment of some sugars in the inocu-
lant formulation is one strategy to improve bacterial 
survival under stress conditions (Singh et al. 2014). The 
ability of rhizobia to tolerate stress could be increased 
by maintaining the osmotic equilibrium across mem-
branes by accumulating compatible solutes, mainly 
organic osmolytes (Saxena et al. 2013; Maryani et al. 
2018). Many of the best-characterized osmoregulatory 
mechanisms are designed to adjust compatible solute 
levels by modulating their biosynthesis, catabolism, 
uptake, and efflux (Kajić et al. 2019). However, the com-
position of endogenous compatible solutes accumulated 
by rhizobia varies at the species level. Therefore, the 
accumulation of compatible solutes would be another 
mechanism to improve the stress tolerance and sur-
vival of rhizobia, finally supporting the nodulation and 
nitrogen fixation ability of inoculated Bradyrhizobium 
under stress conditions.

Thus, the objectives of the present work were to 
select stress-tolerant strains of Bradyrhizobium and 
search for an appropriate sugar that contributes to 
the accumulation of compatible solutes in their cells 
to improve stress tolerance of Bradyrhizobium inocu-
lant under several environmental stress conditions. 
The plant growth experiments were performed in both 
single and mixed stress conditions. The effect of sup-
plemented sugar on the accumulation of compatible 
solutes in Bradyrhizobium cells and its effect on cell 
survival and soybean growth under stress conditions 
were also investigated. Then, the symbiosis efficiency 
of the developed Bradyrhizobium inoculant on soybean 
was determined by testing in the soil collected from 
different locations in Thailand.

Experimental

Materials and Methods

Bradyrhizobium strains and culture conditions. 
The six isolates of soybean Bradyrhizobium, including 
isolates 184, 188, 193, 194, 197, and 199, were obtained 
from the Department of Agriculture (DOA), Min-
istry of Agriculture and Cooperatives, Thailand, and 
used in this study based on their symbiotic perfor-
mance in soybean under normal conditions. Box-PCR 
(Schneider and De Bruijn 1996) and dendrogram 
analysis (Quantity One® Version 4.6.3 for Windows and 
Macintosh) were performed to investigate the bacterial 
DNA fingerprint profiles in order to avoid repetitive 
isolates. Bradyrhizobium strains were grown at 28°C on 
yeast extract-mannitol (YM) broth or agar containing 
congo red (pH 6.8) (Somasegaran and Hoben 1994) 
as basal growth condition. The soybean Bradyrhizo­
bium strain used in this experiment was B. diazoeffi­
ciens USDA110 as type strain, while Bradyrhizobium 
sp. strain CB1809 was used as the stress-tolerant strain 
under in vitro conditions (Botha et al. 2004).

Determination of growth and survival of Bra
dyrhizobium strains under in vitro stress conditions. 
To observe the stress tolerance of Bradyrhizobium 
strains under in vitro conditions, the cell cultures were 
washed with normal saline twice before adjusting to 
108 CFU/ml. Then, 10 µl of bacterial cells were dropped 
on a YM agar medium prepared to determine their 
ability to grow in different stress conditions. For acid 
stress, YM agar media were prepared at pH 4, 5, 6, and 
6.8 using acetic acid (CH3COOH; as a representative 
organic acid found in the natural soil), and 0.5 ml/l of 
8 mM bromothymol blue was added as a pH-indicating 
colorant. Then, plates were incubated at 28°C. For high-
temperature stress, YM agar media were prepared at 
pH 6.8 and incubated in the adjusted incubator at 28, 
35, 40, and 45°C. Seven days after incubation, the ability 
of Bradyrhizobium strains to grow on acid-formulated 
medium and at high-temperature conditions was deter-
mined using the growth score as indicated in Table SI. 
For drought stress, 1 ml of the same bacterial cell con-
centration was overlaid on 0.2 µm filter membrane and 
incubated in the adjusted desiccator chamber contain-
ing silica gel, saturated CH3COOK · 1.5 H2O, and KI 
solutions to give relative humidity (RH) values of 3, 22, 
and 67.8%, respectively (Boumahdi et al. 1999). After 
seven days of incubation, the percentage of cell survival 
in the drought condition in comparison with the initial 
cell number was determined using the dilution plate 
count technique.

Soybean growth and planting conditions. Seeds of 
surface-sterilized soybean (Glycine max (L.) Merr.) vari-
ety “Chiang mai 60” were germinated and transferred 
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to Leonard jars containing 0.35 kg of the sterilized sand 
(autoclaved at 121°C for 90 min). The Bradyrhizobium 
cells washed with normal saline were inoculated at 
108 cells per soybean seedling grown under normal and 
stress conditions. Plants were watered with N-free plant 
nutrient solution (Somasegaran and Hoben 1994) and 
grown at 25°C at a 12/12 day/night cycle with a light 
intensity of 639 µE/m2/s as a normal condition, while 
other stress conditions were adjusted as follows: (i) acid 
condition – N-free solution was adjusted to pH 4.5; 
(ii) high-temperature condition – plants were incubated 
in growth chambers (Contherm’s Biosyn Series of Tis-
sue and Plant Growth Chambers-620RHS P6 Models, 
Wellington, New Zealand) at 40°C; and (iii) drought 
condition – the sand was desiccated at −3.20 bars using 
polyethylene glycol (PEG) 8000 solution (Michel 1983). 
For the mixed stress conditions, two stress factors as 
indicated were combined (the stress condition of three 
factors was not performed here due to the drastic effect 
on plant growth). Data on nitrogen fixation, number 
of nodules, plant biomass, and nodule dry weight were 
collected at 30 DAI (days after inoculation) as an appro-
priate time for determining the symbiotic efficiency.

Determination of stress tolerance index (STI). The 
stress tolerance index (STI) was determined according 
to Shetty et al. (1995) following equations (1) and (2):

STI = DWS/DWC                        (1)
STI = DWH/DWC                         (2)

where, DWS – dry weight of plants grown under stress, 
DWH – dry weight of plants grown under stress with 
inoculation of bacteria, and DWC – dry weight of 
plants grown in the control condition (without stress 
and inoculation of bacteria).

Nodulation competition test. The plasmid 
pCAM120 containing Tn5 fusion with the β-glucuro
nidase (GUS) gene (Wilson et al. 1995) was trans-
formed into USDA110 as a reporter gene for monitor-
ing the nodule occupancy compared with the selected 
stress-tolerant strain under stress conditions. This 
GUS-tagged USDA110 was obtained from the Applied 
Soil Microbiology Laboratory, School of Biotechnology, 
the Suranaree University of Technology, Thailand, and 
cultured in a YM medium with an appropriate anti-
biotic. In Leonard’s jar experiment, surface-sterilized 
soybean seeds were co-inoculated with stress-tolerant 
Bradyrhizobium and GUS-tagged USDA110 in normal 
saline using a ratio of 1 : 1 at 108 cells/seed. Plant growth 
conditions were adjusted in single stress and mixed 
stress conditions as described above. After one month, 
soybean nodules were collected, cut in half, and stained 
with 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc) 
as a substrate according to the method of Krause et al. 
(2002). The blue and white-colored nodules were 
observed, and the percentage of nodule occupancy was 

determined using a method described by Payakapong 
et al. (2004) and Talbi et al. (2013).

Characterization of plant growth-promoting 
(PGP) properties of Bradyrhizobium. Some PGP 
properties of the selected Bradyrhizobium were charac-
terized in comparison with that of Bradyrhizobium sp. 
USDA110. The PGP traits were determined as descri
bed below.

P-solubilization. The 10 µl of bacterial culture 
(108 CFU/ml) was dropped on Pikovskaya’s (PVK) 
medium plates containing 5 g/l of Ca3(PO4)2 as a sole 
source of phosphorus. The plates were incubated at 
30°C for 7 days. The ability of bacteria to solubilize the 
insoluble P was observed based on the clearing zone in 
the PVK agar plates (Nautiyal 1999). 

Exopolysaccharide (EPS) production. The 100 ml 
of 7 day-olds bacterial culture in 100 ml YM broth was 
centrifuged at 4,000 rpm for 20 min to remove bacterial 
cells. Then, the supernatant was transferred to a new 
centrifuge tube and mixed with final 35% (v/v) ethanol, 
and incubated overnight at 4°C. The EPS pellet was pre-
cipitated by centrifugation and dried at 30°C for a day. 
The EPS was measured as dry weight (mg) per 100 ml 
culture (Castellane et al. 2017). 

Indole acetic acid (IAA) production. The ability of 
rhizobial strains to produce IAA was determined in YM 
broth medium added with tryptophan (0.1 g/l). This 
broth medium was inoculated with standard inocu-
lum 1.0 × 108 CFU/ml. The broth cultures were incu-
bated in dark at 30°C for 7 days and then centrifuged 
at 4,000 rpm for 15 min. The supernatant was collected 
for 1 ml to mix with 2 ml of Salkowski’s reagent (1 ml 
of 0.5 M FeCl3 in 50 ml of 35% of HCLO4 solution) 
and kept in the dark. The optical density (OD) was 
recorded at 530 nm after 15 min (Sarwar et al. 1992). 
The IAA production of tested bacterial strains was also 
determined when they grew under stress conditions as 
described above. 

1-aminocyclopropane-1-carboxylic acid (ACC) 
deaminase activity. The cells from the early stationary 
phase were washed twice with minimal medium and 
induced for the ACC deaminase production by inocu-
lation in 15 ml of YM-supplemented minimal medium 
containing 1 mM ACC, then shaking at 200 rpm for 
40 hr. The α-ketobutyrate released from ACC during 
the culture supernatant incubation with ACC was 
measured for the ACC deaminase activity as described 
previously by Mayak et al. (2004).

Bacterial growth assay using sugar as an osmo-
protectant under stress conditions. Bradyrhizobium 
strains were aerobically grown at 28°C in YM broth 
for seven days as a starter. Then, 1% (v/v) (contain-
ing 108 CFU/ml) of starter was inoculated into mini-
mal broth medium (MSM) (Miller 1996) containing 
sucrose at different concentrations ranging from 0 to 
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500 mM (Gouffi et al. 1999; Le Rudulier 2005). Then, 
the stress conditions were applied by adjusting the 
conditions as described for the determination of cell 
survival and adaptation under stress. The number of 
surviving cells was determined at 10 DAI (like during 
the stationary phase). The selected sugar was used for 
further experiments to determine the appropriate con-
centrations that support the specific growth rate in each 
stress condition.

Determination of cell survival in the sand under 
stress conditions. Ten grams of sterilized sand were 
added into a test tube (50 ml); then, the pH was 
adjusted to 7.0 with 2 N NaOH and the sand was incu-
bated at 28°C as a normal condition, while other stress 
conditions were adjusted explicitly as follows. For the 
acidic condition, the sand pH was adjusted to 4.5 with 
acetic acid. For the high temperature, the sand was 
incubated at 40°C. For drought, the sand was desic-
cated to −3.02 bars using PEG8000. The mixed stress 
conditions were also arranged as described above. To 
determine the bacterial cells’ response to stress con-
ditions, 108 Bradyrhizobium cells were inoculated into 
the prepared sand tubes in each condition and incu-
bated for two days (as an approximate time for soybean 
germination after sowing). The survival of cells under 
the stress conditions was investigated by serial dilution 
and total plate count. The number of living bacteria was 
determined as CFU/g of the sand (Idris et al. 2007) and 
the percentage survival of cells in stress conditions was 
calculated in relation to the initial cell number.

Analysis of the accumulation of sugars in bacte-
rial cells by HPLC. The cell pellets were precipitated 
from 20 ml of the cultured medium at 108 CFU/ml and 
washed twice with sterilized 0.85% NaCl solution. The 
intracellular compatible solutes were extracted twice 
by incubating at 65°C for 5 min in 1 ml of 70% (v/v) 
ethanol. Crude extracts were centrifuged at 5,000 g 
for 5 min (Lai et al. 1991), and ethanol was evaporated 
using a rotary evaporator (Buechi R-142, Nordrhein-
Westfalen, Germany) at 45°C. The cell extracts were 
dissolved in 1 ml deionized water and filtered through 
a  0.2 µm hydrophobic membrane, and immediately 
injected into the chromatograph. The sugars were 
determined using HPLC with an ion-exchange column 
(Aminex HPX-87H, 7.8 × 300 mm, Bio-Rad) at 45°C 
and a refractive index detector (RI-150, Thermo Spec-
tra System, USA). The mobile phase was 4 mM sulfuric 
acid at a flow rate of 0.4 ml/min (Sangproo et al. 2012). 
A flow rate of 0.3 ml/min and a column temperature of 
60°C were used for sugar analyses.

Testing the symbiosis efficiency of Bradyrhizo-
bium inoculant supplemented with the selected sugar. 
The symbiosis efficiency tests were performed both 
in an experiment with the sterilized sand and in the 
soils collected from Suphan Buri Province (14°24′8″ N, 

100°9′16″ E), Phetchaburi Province (12°47′59″ N, 
99°58′1″ E), and Yasothon Province (15°47′41″ N, 
104°8′26″ E). These representative soils had been used 
in a crop rotation system of legume and rice (Table SII). 
All Bradyrhizobium strains were grown in YM medium 
with and without supplementation of an appropriate 
concentration of the selected sugar. The bacterial inocu-
lant was prepared as previously described. The plant 
experiment was performed under normal and different 
stress conditions using the same strategy as described 
above. The symbiosis efficiency of Bradyrhizobium 
inoculant supplemented with the selected sugar was 
also tested in soil samples collected from different loca-
tions. In this case, plants were watered with sterilized 
water and grown at 25°C on a 12/12 day/night cycle 
with a light intensity 639 µE/m2/s. At 30 DAI, data on 
nodule number, plant biomass, and nodule dry weight 
were collected.

Statistical analysis. Mean values and standard devi-
ations of the data in all experiments were determined 
with SPSS software (SPSS versions 19.0 Windows; SPSS 
Inc., Chicago, IL, USA) and the significance of the 
values determined by Tukey’s HSD (Honestly Signifi-
cant Difference) test (Tukey 1949). Student’s t-test was 
also used to determine the significant difference of the 
means between two sets of data.

Results

Growth, properties, and survival ability of Bra
dyrhizobium isolates in vitro under stress conditions. 
Six Bradyrhizobium isolates and the type strains were 
tested on an agar medium adjusted to different stress 
conditions. The strain CB1809 and isolates 188, 194, and 
197 grew very well in the acid condition of pH 5, while a 
poor growth of most strains was observed in strong acid 
of pH 4. Every strain, except isolate 199 and USDA110, 
could grow on the medium plate at high temperatures, 
even at 45°C, while CB1809 and 188 showed a better 
growth ability than other strains. Under drought con-
ditions, isolate 194 exhibited the highest percentage of 
survival (Table SI). Thus, several Bradyrhizobium iso-
lates can resist various stress conditions, while it seems 
that isolate 194 was able to grow under several stress 
conditions. Since these Bradyrhizobium isolates will be 
inoculated on plant grown under stress conditions, it 
is interesting to investigate their plant growth-promot-
ing (PGP) properties. Thus, isolate 194 was selected to 
preliminary determine its PGP properties compared 
to the reference strain of USDA110 (Table I). The EPS 
production by isolate 194 and USDA110 was 9 and 
6 mg/100 ml culture, respectively. Likewise, the ACC 
deaminase activity of isolate 194 was higher than that 
of USDA110 (1.100 and 0.736 µmol α-ketobutyrate/mg 
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protein/h, respectively). Unfortunately, the P-solubiliza-
tion ability of both isolate 194 and USDA110 could not 
be detected. Furthermore, the ability of IAA production 
by isolate 194 and USDA110, which might be involved 
in supporting plant growth under stress conditions, was 
determined exclusively under normal and stress condi-
tions. It was found that although isolate 194 was able to 
produce IAA higher than that of USDA110 under all 
tested conditions, the level of IAA production tended 
to reduce when encountering stresses (Table I). 

To further investigating these Bradyrhizobium iso-
lates on plant growth promotion under stress condi-
tions, DNA polymorphism using Box-PCR and den-
drogram analyses were used to select the representative 
Bradyrhizobium strains to avoid the repetitive isolate 
selection. The result indicated that there are two clades 
of Bradyrhizobium. The first large clade contained the 
closely related strains CB1809, USDA110, DASA1014, 
and isolates 184 and 197, while isolates 193, 188, 194, 
and 199 were separated to form the second clade  
(Fig. S1). Based on these data, isolates 184, 188, and 
194 were selected for further experiments. 

Plant growth promotion by selected Bradyrhizo-
bium isolates under single and mixed stress condi-
tions. All Bradyrhizobium strains promoted soybean 
growth well under normal conditions when compared 
with non-inoculated plants. However, the symbiotic 
efficiency of these bacteria in soybean was reduced 
when plants were grown under stress conditions, espe-
cially under mixed stresses (Fig. 1). Among the isolated 
strains, isolate 194 provided the highest plant biomass 
when tested under all single stress conditions, and 
the plant biomass was significantly different from that 
of USDA110 under the single stress of drought and in 
high-temperature conditions. However, the nodule 
dry weight and nodule number of soybean inocu-
lated with isolate 194 were not significantly different 
from those of plants inoculated with USDA110. Iso-
late 194 displayed the highest nitrogenase activity on 

soybean grown under every stress condition except in 
the drought condition, where isolate 184 exhibited the 
highest nitrogenase activity. However, isolate 184 had 
the lowest level of nitrogenase activity when plants were 
grown under other single stress conditions, while iso-
late 188 was in the middle range. Therefore, symbiosis 
with soybean was improved for isolate 194 compared 
to other isolated strains under both single and mixed 
stress conditions. However, the performance was not 
significantly different from that of USDA110 (Fig. 1). 
The STI value indicated that isolate 194 was the strain 
that best-facilitated plant growth under single and 
mixed stress conditions, while isolate 188 could also 
promote soybean growth under drought and mixed 
acid-drought conditions (Table SIII). Thus, isolate 194 
was selected for comparison with USDA110.

Soybean nodulation competitiveness of isolate 194 
and the type strain USDA110 under stress conditions. 
To investigate the competitive ability of isolate 194 with 
USDA110, which is usually used as the soybean ino
culant, both single and dual nodule occupancies were 
observed in soybean co-inoculated with isolate 194 and 
the GUS tagged strain of USDA110 under normal and 
stress conditions. The nodulation occupancy of isolate 
194 under normal, drought, and high-temperature 
stress conditions was significantly higher than that of 
USDA110, while there was no significant difference 
in nodule occupancy of these two strains under acid 
stress conditions (Fig. 2). Similarly, the nodulation 
competitiveness of isolate 194 was significantly better 
than that of USDA110 under mixed stress conditions. 
Some nodules were occupied by both bacteria and called 
dual occupied nodules. However, the percentage of dual 
occupied nodules was low in all conditions. This result 
indicated that isolate 194 has the potential to compete 
for nodulation under several stress conditions. 

Improved growth rate of Bradyrhizobium under 
stress conditions by supplementation of the culture 
medium with sugar. Optimization of the inoculant 

EPS production (mg/100 ml)	 6b ± 1.25	 9a ± 1.45
ACC deaminase (µmol α-ketobutyrate/mg protein/h)	 0.74b ± 0.05	 1.10a ± 0.05
P-solubilization	 no	 no

IAA production (µg/ml)
Normal condition	 0.015b ± 0.002	 0.030a ± 0.004
Acidity	 0.007b ± 0.000	 0.010a ± 0.001
Drought	 0.009b ± 0.001	 0.020a ± 0.002
High temperature	 0.006b ± 0.000	 0.013a ± 0.000

Table I
Characterization of the plant growth-promoting (PGP) properties of USDA110 and isolate 194.

Means (n = 3) in the same PGP activity followed by different letters in the same row are significantly 
different at p ≤ 0.05, ± standard deviation

PGP properties USDA110 Isolate 194
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formulation is one of the strategies to improve Bra­
dyrhizobium inoculant efficiency. Our preliminary 
result of sugar supplementation in culture medium 
implied that of the six supplemented sugars (mannitol, 
glucose, trehalose, sucrose, glycerol, and polyvinyl alco-
hol), sucrose was the most effective sugar for improving 
the growth of isolate 194 under stress conditions (data 
not shown). Although a low concentration of sucrose 
(1 mM sucrose) was added in the culture medium, it 
could enhance the growth rate of isolate 194 better than 
other tested sugars. Therefore, sucrose was selected as 
a  supplement to the medium, and the suitable con-
centration was further determined for improving the 
growth rate of isolate 194 in different stress condi-
tions. Under normal conditions, compared with non- 

sugar supplementation, there was no significant differ-
ence in specific growth rate per day (µ, in the range 
0.40–0.42) when sucrose was supplemented in the range 
5–300 mM. At concentrations of 400 and 500 mM, 
sucrose significantly reduced the growth of isolate 194 
under normal conditions (Fig. S2a). The growth rate 
of isolate 194 in the medium without sucrose supple-
mentation was obviously reduced when cultured under 
stress conditions. However, it was found that sucrose 
supplementation in the range of 50–300 mM could 
improve µ of the isolate 194 under acid (µ 0.31–0.34), 
drought (µ 0.38–0.42), and high-temperature stress 
(µ 0.32–0.34) conditions (Fig. S2b, S2c, and S2d). Since 
the best µ was obtained under several stress condi-
tions when sucrose was supplemented at 300 mM, this 

Fig. 1. Symbiotic efficiency of stress-tolerant Bradyrhizobium strains grown in soybean in Leonard’s jars containing the sand under stress 
conditions. The Acetylene Reduction Assay (ARA activity) was applied to determine the nitrogenase activity of plants inoculated with 
different bacterial strains under normal and stress conditions (a). The plant dry weight of non-inoculated and inoculated plants (b) and 
nodule dry weight per plant (c) were measured, and the nodule numbers were counted per plant (d). Means and standard deviations 
were calculated from three replicates; for each parameter under the same condition, values with different letters were significantly differ-

ent at p ≤ 0.05.

Fig. 2. Nodulation competition of Bradyrhizobium strains USDA 110 and isolate 194 in soybean grown in Leonard jars containing the 
sterilized sand under different stress conditions. Means and standard deviations were calculated from three replicates, and values in each 

condition with different letters were significantly different at p ≤ 0.05.
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concentration level was selected to study further how 
sucrose could maintain the growth of isolate 194 under 
stress conditions based on the generation of other sug-
ars that may act as compatible solutes inside the cell.

Sugars accumulation inside the bacterial cell may 
contribute to its stress tolerance ability. Since the sup-
plementation of sucrose in culture medium leads to 
an increased bacterial ability to tolerate stress, it was 
hypothesized that after being taken up by bacterial cells, 
sucrose could be transformed to other sugars that might 
act as compatible solutes inside the cells and resulted 
in supporting cell growth under several stress condi-
tions. Therefore, the number of viable cells and the 
concentration of sugars (including trehalose, glycerol, 
sucrose, glucose, and mannitol) accumulated inside 
the cell were determined in sucrose and non-sucrose-
supplemented cultures under normal and stress condi-
tions. Under normal and stress conditions of acid and 
high temperature, the number of viable cells at 10 DAI 
in the culture supplemented with sucrose remained 
higher than that in the non-sucrose-supplemented 
medium. With sucrose supplementation, the num-
bers of viable cells were (in log10 CFU/ml) 10.07, 7.93, 
and 9.55, while without sucrose supplementation, the 
numbers of viable cells were 8.68, 7.24, and 7.70 under 
normal, acid, and high-temperature stress conditions, 
respectively. However, the numbers of viable cells of 
isolate 194 supplemented with and without sucrose 
were similar when tested under drought stress: the 
cell numbers were (in log10 CFU/ml) 9.39 and 9.64, 
respectively. It was clearly shown that supplementa-
tion of the medium with sucrose tended to promote 
higher levels of sugar accumulation inside the cell than 
in non-sucrose-supplemented cells. Mannitol and glu-
cose were the main sugars accumulated in the cells 
when cultured for 0–10 days under normal and stress 
conditions of acid and high temperature. However, 
mannitol, sucrose, trehalose, and glycerol, which are 
classified as compatible solutes, could also be detected 
inside the cell when cultured with sucrose supplemen-
tation (Fig. 3). The concentration and the type of sugar 
accumulation fluctuated per day depending on culture 
conditions. However, it was noticed that high accumu-
lation of these compatible solutes at 8–10 DAI could 
reduce the loss of viable cells as shown under drought 
and high-temperature stress conditions (Fig. 3c and 
3d). This result suggested that these compatible solutes 
may functionally interchange and protect the cells from 
stress. Therefore, supplementing the culture medium 
with sucrose could be used as a strategy to prepare 
a Bradyrhizobium inoculum for further application in 
the field under stress conditions.

Sucrose-supplemented inoculum could improve 
cell survival under stress conditions. To investigate whe- 
ther Bradyrhizobium inoculum prepared from sucrose-

supplemented culture could improve its ability to toler-
ate stress, the survival of cells after inoculation into the 
sand at 2 DAI was determined under different stress 
conditions. The survival of isolate 194 was improved 
under normal conditions when cells were derived from 
the sucrose-supplemented inoculum. However, the 
percentage of cells surviving was obviously decreased 
when tested under single stress and mixed stress con-
ditions (Fig. 4). Acidity stress adversely affected the 
cell survival of isolate 194 to remain only 1.5%, which 
was equal to 104–105 cells/g of the sand at 2 DAI when 
sucrose was not supplied in the inoculum. The survival 
of isolate 194 was significantly improved to 21% when 
the inoculum was supplemented with sucrose. 

Interestingly, the cell survival of the sucrose-sup-
plemented inoculum of isolate 194 was significantly 
increased to more than 80% under drought and high-
temperature stress conditions. In addition, under the 
mixed stress of acid-drought conditions, the survival 
of isolate 194 increased up to 54% when supplemented 
with sucrose. However, the survival of this strain under 
the mixed stress of acid-high-temperature condition 
was less than 1% even when sucrose was supplemented 
into medium (Fig. 4).

Plant growth promotion by sucrose-supplemented 
Bradyrhizobium inoculum under single and mixed 
stress conditions. The experiment was performed 
in a Leonard jar containing the sterilized sand under 
normal and stress conditions. The plant biomass was 
highest when inoculated with a sucrose-supplemented 
inoculum of the isolate 194 under normal and all stress 
conditions, and the biomass was significantly different 
from that of other treatments in all conditions, except 
under mixed acid-drought stress (Fig. 5). In terms 
of nodule number and nodule dry weight, the stress 
conditions affected the symbiosis efficiency by reduc-
ing the nodule formation on soybean. In most cases, 
although the sucrose-supplemented inocula of isolate 
194 tended to increase nodule number, this treatment 
was not significantly different from that with non-
sucrose-supplemented inoculum. However, the dry 
nodule weight produced from soybean inoculated 
with a sucrose-supplemented inoculum of isolate 194 
was significantly increased in all single stress and the 
mixed acid-drought conditions (Fig. 5c). From these 
results, it could be concluded that supplementing the 
medium with sucrose would be suitable for improving 
plant growth under stress conditions with isolate 194. 
Therefore, soil pot experiments were performed with 
inocula of isolate 194 with and without sucrose sup-
plemented to test the performance.

Performance of the developed Bradyrhizobium 
inoculum on soybean symbiosis. The performance 
of isolate 194 inoculums supplemented with and with-
out sucrose on plant symbiosis was determined in pots 
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Fig. 3. Accumulation of intracellular sugars in isolate 194 cultured in minimal broth medium (MSM) supplemented with and without 
300 mM sucrose under different conditions and the number of viable cells at 10 DAI (days after inoculation). Student’s t-test was used to 

determine the significance of the difference in the means between the two data sets of viable cells in each condition.

Fig. 4. Survival of isolate 194 supplemented with and without 300 mM sucrose in the sand under different stress conditions
at 2 DAI (days after inoculation). Means and standard deviations were calculated from three replicates,

and in each condition, values with different letters were significantly different at p ≤ 0.05.
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Fig. 5. Symbiotic efficiency of stress-tolerant Bradyrhizobium inoculants supplemented with and without 300 mM sucrose on soybean 
grown in Leonard jars containing the sterilized sand under different stress conditions. Means and standard deviations were calculated 

from three replicates, and in each condition, values with different letters were significantly different at p ≤ 0.05.
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containing soil collected from three different locations 
in Thailand where soybean had been planted (Table SII). 
The results of plant growth and symbiosis are shown in 
Fig. 6. Soybean inoculated with sucrose-supplemented 
inoculum had a significantly higher biomass and nodule 
dry weight than non-inoculated plants or plants inocu-
lated with non-sucrose-supplemented inoculum when 
tested in all soil samples. The nodule number obtained 
on plants using sucrose-supplemented inoculum was 
significantly increased when compared with non-
sucrose-supplemented inoculum when grown in soil 
collected from Suphan Buri and Petchaburi provinces. 
These preliminary data revealed the good performance 
of inoculum supplemented with sucrose under soil con-
ditions. However, further field experiments are needed 
to ensure the efficiency of the developed inoculum.

Discussion

In this study, the abiotic stress-tolerant ability of iso-
lated Bradyrhizobium strains was compared with that 
of type strains of Bradyrhizobium, including USDA110 
and CB1809. USDA110 is normally used as soybean 
inoculum in Thailand, while the strain CB1809 has 
been reported as a stress-tolerant Bradyrhizobium in 
several conditions, such as acid soil and alkaline soil 

(Botha et al. 2004; Indrasumunar et al. 2011). How-
ever, it has been reported that USDA110 is sensitive 
to acid stress, and it grew slowly in acid agar medium 
at pH 4.5 (Indrasumunar et al. 2011; Manassila et al. 
2012). Our results indicate that although soybean 
inocula perform well with soybean under normal 
conditions, their performance could be reduced if the 
Bradyrhizobium strains cannot tolerate conditions of 
stress (Fig. 1 and Table SI). Soil environmental condi-
tion is one of the critical factors that affect the persis-
tence and survival of rhizobial inocula; thus, changes 
in the rhizosphere environment could influence the 
competitiveness and persistence of rhizobia (Abd-Alla 
et al. 2014). Environmental stress conditions, such as 
acid soil, drought, or high temperature in the field, 
can occur in terms of mixed stresses. Therefore, mixed 
stress conditions might have an extreme effect on 
symbiosis and plant growth. Stress in the environment 
additionally affects soybean development by impair-
ing the function of active nodules (Dimkpa et al. 2009; 
Wielbo et al. 2012). This study also found that plant 
growth was reduced under stress conditions, especially 
under mixed stress conditions. It has also been reported 
that the drought stress generated by PEG, in the range 
from −1.0 to −7.0 bars, decreases root elongation and 
plant development (Amooaghaie 2011; Uma et al. 2013). 
Marsh et al. (2006) also reported the effect of high 

Fig. 6. Symbiotic efficiency of isolate 194 inoculants supple-
mented with and without 300 mM sucrose in soybean grown in 
different soil types. Means and standard deviations were calcu-
lated from three replicates, and in each soil sample, values with 

different letters were significantly different at p ≤ 0.05.
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temperature, who indicated that the yields of soybean, 
pigeon pea, and cowpea inoculated with Bradyrhizo­
bium were decreased when plants were grown at 38°C. 
These data are similar to our results in that plant 
growth and symbiotic performance were significantly 
reduced at high temperatures. High temperatures may 
affect bacterial cell survival and damage some biologi-
cal pathways in plant development. These data agree 
with many studies that suggest the efficiency of tolerant 
Bradyrhizobium strains under adverse conditions could 
promote plant growth, but that plant growth may not be 
similar to that of plants cultivated under normal condi-
tions (Wielbo et al. 2012; Atieno and Lesueur 2019).

We identified isolate 194 as a Bradyrhizobium strain 
using the 16S ribosomal RNA gene and recorded it 
under accession number KF913342.1 in the GenBank. 
In this present study, this isolate was selected as a toler-
ant strain that can be developed as a soybean inoculant 
to be used under multi-stress conditions based on its 
performance in promoting plant growth in the sand-
involving experiments. Although isolate 194 did not 
provide significantly higher nitrogen fixation ability 
than USDA110, this strain overall promoted soybean 
growth under stress conditions better than USDA110. 
Mubarik et al. (2012) reported that the nitrogenase 
activity of stress-tolerant Bradyrhizobium strains might 
not significantly differ from that of USDA110. How-
ever, their ability to tolerate stress was the important 
criterion to select the best strain as soybean inoculum 
for further application under conditions of stress. The 
stress tolerance in many bacteria is linked to the appro-
priate composition and membrane structure of the 
cell. For example, the efficiency in exopolysaccharide 
(EPS) production of bean rhizobia and Bradyrhizobium 
sp. strains are related to their pH tolerance, leading 
to increased symbiotic nitrogen fixation in legumes 
(Donot et al. 2012; Razika et al. 2012).

Similarly, stressed bacterial cells have a high lipo
polysaccharide production (LPS) and accumulate com-
pound products from secondary metabolites such as 
polyols, polyamines, proline, trehalose, etc. (Saxena 
et al. 2013). These compounds could act as osmolytes, 
which protect the cell from osmotic stresses. Likewise, 
isolate 194 has a higher EPS production than USDA110 
when grown on medium (Table  I), which might be 
one reason why isolate 194 facilitates stress tolerance. 
Besides, its ability to grow better than USDA110 under 
various stress conditions may also be caused by the cel-
lular accumulation of appropriate compatible solute 
compounds, as shown in Fig. 3. Furthermore, isolate 
194 was found to contain some plant growth-promot-
ing (PGP) traits. The ACC deaminase activity of isolate 
194 was higher than that of USDA110 (Table I), sug-
gesting that isolate 194 also has the potential to alleviate 
plant stress by reducing the production in the plant of 

ethylene, which regulates many processes in response to 
biotic and abiotic stresses (Gamalero and Glick 2015). 
Another PGP trait is the production of indole-3-acetic 
acid (IAA). IAA is also involved in supporting plant 
growth under stress conditions. It has been reported 
that a high level of IAA promotes the formation of lat-
eral roots (Gupta and Pandey 2019) and increases root 
length and surface area (Olanrewaju et al. 2017), which 
might be essential for plant growth under drought con-
ditions. Isolate 194 and USDA110 also produce IAA. 
However, the level of IAA production was reduced 
when bacteria encounter conditions of stress. As shown 
in Table I, the levels of IAA production by isolate 194 
and USDA110 tended to reduce by more than 50% 
under stress conditions. Sijilmassi et al. (2020) also 
showed a significant reduction in IAA production by 
rhizobia when grown under abiotic stress conditions 
such as drought at −2 to −7.5 bar and concentrated 
salt at 0.5 to 3% NaCl. Based on this result, other PGP 
traits of isolate 194 and USDA110 may also be reduced 
under stress conditions, and this might adversely affect 
or could not fully facilitate plant growth under stress 
conditions. Although the level of IAA produced by iso-
late 194 was significantly higher than that of USDA110 
in all stress conditions, the question remains whether 
this level of IAA is appropriate to promote plant growth 
under conditions of stress and whether other PGP traits 
might be involved in this promotion of plant growth 
under different stress conditions. Therefore, it is inter-
esting to investigate further the mechanisms of this 
Bradyrhizobium, which not only performs nitrogen 
fixation but also has other PGP abilities that alleviate 
plant stress and promote plant growth under single- 
and multi-stress conditions.

The results of nodulation competition between iso-
late 194 and USDA110 under multi-stress conditions 
(Fig. 2) indicates that isolate 194 can overcome the 
stress and competes with USDA110 to nodulate soy-
bean under several stress conditions. Stress-sensitive 
Bradyrhizobium inoculants are directly affected by envi-
ronmental stress conditions and may lose their nodu-
lation competitiveness. Thus, the indigenous rhizobia, 
which generally have a low nitrogenase activity can 
compete with soybean inoculant, resulting in the reduc-
tion of the yield when most nodules are occupied by 
ineffective indigenous rhizobia (Shamseldin and Wer-
ner 2004). Therefore, the improved nodulation compe-
tition of isolate 194 under multi-stress conditions com-
pared to USDA110 revealed the potential of developing 
this stress-tolerant Bradyrhizobium strain as a soybean 
inoculant for application in the field.

To improve the stress tolerance efficiency of soy-
bean Bradyrhizobium inocula, using compatible solu
tes to protect the cell from stress was applied in this 
study. Several compatible solutes (sugars, polymers, 
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polyols, protein, and derivatives) have been studied for 
their function as osmotic balancers with Rhizobium, 
Sinorhizobium, and Bradyrhizobium (Deaker et al. 
2007; Fernandez-Aunión et al. 2010; Ghalamboran 
and Ramsden 2010). In this experiment, sucrose was 
supplemented in the medium during the cultivation of 
Bradyrhizobium. Sucrose has been reported to act as an 
osmoprotection against several environmental osmotic 
stresses in rhizobia by maintaining the membrane’s 
integrity (Le Rudulier 2005). The presence of sucrose 
in the culture medium is involved in the high EPS pro-
duction in Rhizobium strains and extends the shelf life of 
Rhizobium biofertilizers (Razika et al. 2012; Singh et al. 
2014). Supplementation of 0.5 mM sucrose was reported 
to increase cell survival of Sinorhizobium meliloti and 
Rhizobium leguminosarum strains during the stationary 
phase under salt stress (Gouffi et al. 1999). In addition, 
it has been most popular to use varying concentrations 
of sucrose as a compatible solute to induce stress toler-
ance in lactic acid bacteria (LABs) such as Lactococcus 
lactis (Kilimann et al. 2006) and Lactobacillus delbrueckii 
(Silva et al. 2004) and both strains could increase their 
survival under heat and drying conditions by supple-
menting with 0.06 and 1.5 M of sucrose, respectively. 
Interestingly, analysis of sugar accumulation inside 
the Bradyrhizobium cell after supplementation with 
sucrose found many more compatible solutes, such as 
mannitol, trehalose, and glycerol, inside the cell than 
in non-sucrose-supplemented cells (Fig. 3). In Gram-
negative bacteria, the extracellular sucrose can enter 
through the inner membrane (Reid and Abratt 2005) 
and enter to glycolysis as a translocated sugar, which 
can be transformed to other sugars by several pathway 
links (Lee et al. 2010). This explains why different sugars 
could be detected inside cells of isolate 194 after being 
supplemented with sucrose in the culture. 

Moreover, the stressed bacterial cells could synthe-
size compounds alleviating the stress from the supplied 
molecules by a biosynthetic de novo pathway (Blanco 
et al. 2010). Thus, the accumulation of soluble sugar 
inside the bacterial cell may be derived from self-
production and uptake. High accumulation of com-
patible solutes such as glycerol and trehalose during 
8–10 DAI could reduce the loss of viable cells, especially 
under drought and high-temperature stress conditions 
(Fig. 3c and 3d). The accumulation of trehalose in the 
cytoplasm is critical to the survival of Bradyrhizobium 
japonicum during desiccation (Streeter 2003). Trehalose 
and glycerol have been reported to stabilize proteins at 
high temperatures (Empadinhas and da Costa 2008) 
and preserve the present form of proteins, resulting in 
a favored hydration of protein surfaces (Thomas et al. 
2013). These sugars may maintain the ability of the cell 
to cope with stress conditions. The survival of sucrose-
supplemented Bradyrhizobium isolate 194 was signifi-

cantly increased under most stress conditions (Fig. 4) 
and may lead to improvements in the biomass of soy-
bean grown under several stress conditions as well as 
on different soils (Fig. 5 and 6). The good performance 
of sucrose-supplemented Bradyrhizobium inoculant 
when tested with soybean in soil samples indicates 
that cell survival was improved successfully, promoting 
the symbiosis efficiency compared with non-sucrose-
supplemented inoculum. The application of trehalose 
could increase the survival of cells of R. leguminosarum 
bv. trifolii strain NZP561 when compared to treatment 
with lactose and water (McIntyre et al. 2007). Mannitol 
has also been used as an osmoprotectant and found 
to enhance the survival of L. lactis (Efiuvwevwere et al. 
1999), Rhizobium tropici CIAT 899, and Rhizobium gal­
licum bv. phaseoli 8a3 (Fernandez-Aunión et al. 2010). 
Moreover, the application of 120 mM sucrose in a liquid 
medium for Azotobacter and Rhizobium inoculant pro-
duction could also increase the seed germination and 
development of Trigonella foenum-graecum L. under in 
vitro condition (Nagananda et al. 2010).

This study suggests that the application of abiotic-
stress-tolerant Bradyrhizobium strain and supplement
ing an appropriate sugar in the medium could be 
a promising strategy for developing a soybean Brady­
rhizobium inoculant for application under multi-envi-
ronmental stress conditions. Overcoming the chal-
lenges of climate change is very important for soybean 
inoculant developers. However, further testing of the 
soybean inoculant developed here under various field 
conditions is needed to validate its symbiotic efficiency 
and promote plant growth and soybean yield before 
adopting this technology.
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Introduction

Mugwort (Artemisia argyi) is found in Europe (Arte-
misia vulgaris), Africa (Artemisia vulgaris), India (Arte-
misia vulgaris), Asia (Artemisia argyi), and America 
(Artemisia douglasiana). Early humans may have trans-
ported this plant throughout the world for its medicinal 
and food value (Adams et al. 2012). Its leaves are rich in 
essential oils, flavonoids, sugars, and other major com-
ponents with pharmacological properties, such as bac-
teriostatic, insect-resistant, anti-inflammatory, antitus-
sive, expectorant, soothing, antiallergic, antioxidant, and 
antitumor compounds, etc. Jiang et al. 2019a, 2019b). 
They are widely used in traditional Chinese medicine as 
well as in pharmaceutical products, animal feed, disin-
fectants, and other everyday products. With the increas-
ing use of mugwort products, research on the quality 
and yield of mugwort cultivation to meet the growing 
global demand has increased.

Recent studies have shown that endophytic fungi, 
as a natural constituent of the plant micro-ecosystem, 
live in the tissues of healthy plants without causing any 
disease symptoms. These fungi have the functions of 
promoting plant growth, increasing plant disease resist-
ance, inhibiting pathogenic bacteria, and even affect-
ing the yield and quality of plants (Chu et al. 2020). 
Furthermore, endophytic fungi in plant leaves can not 
only directly or indirectly affect the synthesis of major 
therapeutic constituents of medicinal plants (Jiang et al. 
2008). However, they can also have a significant influ-
ence on the internal microenvironment of roots, stems, 
and leaves, as well as affect the quality of these plants 
(Zhang 2017).

In a previous study, Zhang et al. (2011) isolated 
19  strains of endophytic Actinomycetes from the 
leaves of A. argyi using plate culture screening method 
combined with crude extract of fermentation broth. 
Among these isolates, 11 strains presented extracellular 
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A b s t r a c t

To investigate the community structure and diversity of endophytic fungi in the leaves of Artemisia argyi, leaf samples were collected from 
five A. argyi varieties grown in different cultivation areas in China, namely, Tangyin Beiai in Henan (BA), Qichun Qiai in Hubei (QA), 
Wanai in Nanyang in Henan (WA), Haiai in Ningbo in Zhejiang (HA), and Anguo Qiai in Anguo in Hebei (AQA), and analyzed using 
Illumina high-throughput sequencing technology. A total of 365,919 pairs of reads were obtained, and the number of operational taxo-
nomic units for each sample was between 165 and 285. The alpha diversity of the QA and BA samples was higher, and a total of two phyla, 
eight classes, 12 orders, 15 families, and 16 genera were detected. At the genus level, significant differences were noted in the dominant 
genera among the samples, with three genera being shared in all the samples. The dominant genus in QA was Erythrobasidium, while that 
in AQA, HA, and BA was Sporobolomyces, and that in WA was Alternaria, reaching a proportion of 16.50%. These results showed that the 
fungal community structure and diversity in QA and BA were high. The endophytes are of great importance to the plants, especially for 
protection, phytohormone and other phytochemical production, and nutrition. Therefore, this study may be significant with the industrial 
perspective of Artemisia species.
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amylase activity and exhibited protease activity, and 
eight strains showed cellulase activity. Besides, two 
strains had antagonistic activity against pathogenic 
bacteria, and three strains presented antagonistic activ-
ity against penicillin-resistant Staphylococcus aureus. 
Furthermore, Shi et al. (2014) isolated and screened 
ten strains of Actinomycetes from the collective site of 
A. argyi rhizome by combining the primary screening 
method of confrontation culture with the rescreening 
method of fermentation broth, and noted that 70% of 
the isolates presented different degrees of antibacterial 
activity. Liu et al. (2019) used the plate culture method 
to isolate 13 strains of endophytic fungi belonging to 
three genera from the stems and leaves of North A. argyi 
grown in Tangyin, China and detected six species and 
three genera of endophytic fungi in the leaves. However, 
all these studies had employed traditional culture tech-
niques, which cannot support the growth of uncultur-
able microorganisms in the stems and leaves of A. argyi. 
To date, studies on the diversity of the endophytic fun-
gal community in A. argyi based on high-throughput 
sequencing have not yet been reported. Therefore, to 
evaluate the influence of endophytic fungi on the growth 
and quality of A. argyi, the present study employed 
high-throughput amplicon sequencing technology to 
compare and analyze the diversity and composition of 
endophytic fungal community structure in the leaves 
of A. argyi cultivated in different regions in China. 
Besides, the degree of health and biocontrol applica-
tion potential of A. argyi was also examined. The results 
obtained can provide a scientific basis and guidance for 
large-scale cultivation of A. argyi and its application 
for the biocontrol of plant diseases and pests.

Experimental

Materials and Methods

Overview of the test site. The experimental site was 
located in the A. argyi cultivation base of Anyang Insti-
tute of Technology in Henan Province, China (N36°0ʹ, 
E114°35ʹ). The region has a warm, temperate, continen-
tal monsoon climate with mild weather conditions and 
four distinct seasons. The annual average temperature is 
14.9°C, the annual sunshine duration is 2,500 h, and the 
annual average precipitation is 538.4 mm, with 206 days 
of frost-free period and sandy loam soil.

Sample collection. A. argyi, commonly known as 
Chinese mugwort, is widely distributed in Henan, 
Hebei, Hubei, Anhui, and Zhejiang in China. Differ-
ent ecological species have different biological flora. 
The leaves of 2-year-old A. argyi without diseases and 
pests on its surface were collected in June 2020 at the 
A. argyi cultivation base in Anyang Institute of Techno

logy. Five kinds of A. argyi leaves were collected from 
Tangy in Beiai in Henan (BA), Qichun Qiai in Hubei 
(QA), Wanai in Nanyang in Henan (WA), Haiai in 
Ningbo in Zhejiang (HA), and Anguo Qiai in Anguo 
in Hebei (AQA). The experimental field was weeded 
manually without the use of herbicides. Fertilizers were 
not applied, and two crops were cultivated in a year.

During sampling, the third leaf of A. argyi was 
selected, and 15 samples (three biological replicates 
per A. argyi variety and five A. argyi varieties in total) 
were put into sterile plastic bags with labels (indicating 
the sample number, name, place, date, and collector), 
transported to the laboratory, and stored in a –80°C 
refrigerator for the subsequent isolation of DNA.

Extraction and electrophoresis of endophytic 
fungi total DNA from A. argyi leaves. Firstly, the 
samples were surface-washed with 70% ethanol solu-
tion three times, then washed with 1 × PBS solution 
three times, dried, and then extracte with liquid nitro-
gen grinding or tissue disrupter. Then, the endophytic 
fungi total DNA was extracted with the OMEGA kit, 
qualitatively detected using agarose gel electrophoresis, 
quantified by nucleic acid quantitative spectrophotom-
eter (Nanodrop, USA), and stored in a refrigerator at 
–20°C for the subsequent analysis.

PCR amplification and sequencing of ITS1-ITS2 
region of 18S rRNA. The extracted total DNA was 
used as a template, and the internal transcribed spacer 
(ITS) region of fungi (ITS1-ITS2 region) was amplified 
using specific PCR primers (ITS1F: 5’-CTTGGTCATT-
TAGAGGAAGTAA-3’; ITS2: 5’-GCTGCGTTCATC-
GATGC-3’). The reaction system for PCR comprised 
the following: Phusion Master Mix (2×), 15 µl; primer 
(2 µmol/l), 3 µl; DNA (1 ng/µl), 10 µl; and ddH2O, 2 µl. 
The PCR conditions were as follows: pre-denaturation 
at 95°C for 3 min, followed by 25 cycles of denaturation 
at 94°C for 30 s, annealing at 55°C for 30 s, and exten-
sion at 72°C for 30 s, and a final extension at 72°C for 
7 min. The PCR products were qualitatively detected by 
electrophoresis using 2% agarose gel in 1 × TAE solu-
tion, purified, quantified, and a test library was con-
structed using Qubit 3.0. Subsequently, the test DNA 
library was subjected to high-throughput amplicon 
sequencing performed by Sangon Bioengineering Co., 
Ltd. (Shanghai) using the Illumina MiSeq sequenc-
ing platform (Liao et al. 2020). The raw data of high-
throughput amplicon sequencing was uploaded to the 
NCBI SRA database, and could be downloaded from 
website (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA714493) and the clean data was obtained by 
quality control and filtering from the raw data.

Bioinformatics analysis. UPARSE was used for 
operational taxonomic unit (OTU) classification of the 
representative sequences at 97% similarity level, and 
the fungal community composition in each sample was 
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determined at different classification levels. Mothur soft-
ware was used to analyze the dilution curves, and Shan-
non index, Simpson index, species richness index (ACE), 
and Chao1 index were employed to determine the 
microbial ecological diversity. The sequences were com-
pared with the functional genes in the NCBI NT data-
base using BLAST. The optimized sequences were iden-
tified at the phylum, class order, family, and genus levels 
according to the reference sequences in the database, 
and the community composition, abundance, and diver-
sity were compared and analyzed. Ramette’s method was 
used for principal component analysis (PCA), Excel 
(2007) was utilized to construct a histogram, and SPSS 
(19.0) software was employed to statistically analyze the 
class group test data of endophytic fungi in A. argyi.

FUNGuild functional analysis. The fungi classifi-
cation and functional analysis was completed by FUN-
Guild (Fungi Functional Guild) software. It is a  tool 
for classification and analysis of fungal communities 
through microecological guild depending on the cur-
rently published literature or authoritative website data.

Results

Qualitative analysis of endophytic fungi in 
A. argyi leaves. The optimal sequence and informa-
tion about the genus or species number (OTUs) of the 
endophytic fungal community in A. argyi leaves were 
obtained using high-throughput amplicon sequenc-
ing (Table  I). After merging and filtering of double-
ended reads, the clean tags for endophytic fungi in WA, 
AQA, HA, BA, and QA samples were 53,504.0, 69,364.0, 
71,661.0, 81,561.0, and 89,829.0, respectively. Species 
classification based on similarity level ≥ 97% revealed 
709.0 OTUs , and the number of OTUs in WA, AQA, 
HA, BA, and QA samples was 165.0, 205.0, 230.0, 224.0, 
and 285.0, respectively (Fig. 1). QA presented the high-
est sequence number and species classification, which 
was mostly consistent with the values of alpha-diversity 
index. The dilution curve for the endophytic fungi in 
the five samples is shown in Fig. 2. When the sequenc-
ing data reached 50,000, the number of OTUs in the 

five samples remained flat, indicating that the sequenc-
ing depth of the samples was essentially reasonable and 
that the obtained data could reflect the composition of 

WA	 53504.0	 2.09 ± 0.01a	 180.53 ± 15.03a	 193.54 ± 8.34a	 0.25 ± 0.000a
AQA	 69364.0	 2.19 ± 0.01a	 223.91 ± 9.32a	 226.58 ± 11.53a	 0.24 ± 0.000a
HA	 71661.0	 2.57 ± 0.02a	 239.38 ± 10.02a	 242.84 ± 10.02a	 0.14 ± 0.000a
BA	 81561.0	 2.62 ± 0.04a	 255.54 ± 8.39a	 253.33 ± 9.14a	 0.08 ± 0.000a
QA	 89829.0	 2.99 ± 0.03a	 291.73 ± 15.12a	 297.24 ± 12.02a	 0.12 ± 0.001a

Table I
Richness and diversity of endophytic fungi in A. argyi leaves.

Note:  Same lowercase letters indicate no significant difference among the samples (p > 0.05).

Treatments No. of reads Shannon index Chao1 index ACE index Simpson index

Fig. 1. Venn graph of OTUs distribution in the samples.

Fig. 2. Rarefaction curve of the samples.
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the fungal community structure in the samples under 
natural conditions more tangibly and comprehensively. 

Analysis of endophytic fungal diversity in A. argyi 
leaves. The values of soil microbial alpha-diversity were 
all > 100% based on the Coverage values (Table I). The 
microbial community diversity increased with the 
increasing values of Shannon, Chao1, and ACE indices 
and decreasing values of Simpson index. The Shannon, 
Chao1, and ACE indices for the samples exhibited the 
following trend: WA < AQA < HA < BA < QA, which 
indicated that the diversity of endophytic fungi in QA 
was the highest. The Simpson index presented the fol-
lowing trend: BA < QA < HA < AQA < WA, suggesting 
that BA showed the highest fungal diversity. The alpha-
diversity index revealed that the microbial diversity of 
BA and QA was the highest.

Composition of endophytic fungi in A. argyi 
leaves. High-throughput amplicon sequencing detected 
two phyla, Ascomycota and Basidiomycota, in the five 
samples (WA, AQA, HA, BA, and QA) (Fig. 2). In WA, 
Ascomycota was predominant, accounting for 28.34%, 
followed by Basidiomycota with a relative abundance 
of 17.85% (Fig. 3). In AQA, HA, BA, and QA samples, 
Basidiomycota was dominant with a relative abundance 
of 33.45%, 41.41%, 40.64%, and 64.72%, respectively 
(Fig. 3), followed by Ascomycota with a relative abun-
dance of 10.10%, 17.12%, 24.48%, and 16.27%, respec-
tively (Fig. 3). In addition, unclassified fungal group 
with the relative abundance of 52.83%, 50.98%, 41.33%, 
34.40%, and 18.27% was also detected in WA, AQA, 
HA, BA, and QA, respectively (Fig. 3), accounting for a 
large proportion of endophytic fungi in A. argyi leaves.

Furthermore, differences in the community compo-
sition and abundance of endophytic fungi at the class, 

order, family, and genus levels were noted in the five 
A. argyi samples. In WA and BA, Dothideomycetes 
belonging to Ascomycota was predominant, accounting 
for 20.96% and 22.33%, respectively, followed by Micro-
botryomycetes belonging to Basidiomycota, accounting 
for 8.36% and 17.25%, respectively. In AQA, Microbot-
ryomycetes was dominant (15.52%), followed by Cysto-
basidiomycetes belonging to Basidiomycota (12.90%). 
In HA, Cystobasidiomycetes was dominant (19.10%), 
followed by Microbotryomycetes (15.92%). In QA, Cys-
tobasidiomycetes was predominant (41.96%), followed 
by Dothideomycetes (12.68%). The dominant order in 
WA was Pleosporales, accounting for 17.73%, whereas 
that in AQA, HA, and BA was Sporidiobolales, with 
the relative abundance of 15.40%, 15.52%, and 15.25%, 
respectively. In QA, Erythrobasidiales was predomi-
nant with a relative abundance of 31.57%. The domi-
nant family in WA was Pleosporaceae, accounting for 
16.50%, while that in AQA, HA, and BA was Spordi-
obolaceae with a relative abundance of 15.39%, 15.52%, 
and 15.26%, respectively. In QA, Erythrobasidiaceae 
was predominant, with a relative abundance of 31.57%.

A total of 16 genera, including Erythrobasidium, 
Sporobolomyces, Alternaria, Symmetrospora, Aureobasi- 
dium, Cryptococcus, Filobasidium, Papiliotrema, Conio­
thyrium, Dioszegia, Kondoa, Sphaerulina, Leucospori­
dium, unclassified_Phaeosphaeriaceae, and unclassi-
fied_Ascomycota, were found in the samples (Fig. 4). 
Besides, other unclassified fungi were also detected. 
The common genera detected in all five samples were 
Sporobolomyces, Erythrobasidium, and Alternaria. While 
both AQA and QA contained Cryptococcus, which 
was not detected in the other samples, Sphaerulina, 
Aureobasidium, Symmetrospora, and unclassified_Asco­
mycota were found in WA, HA, and BA. Furthermore, 
Papiliotrema and unclassified_Phaeosphaeriaceae were 
detected in HA, but not in WA. Ten genera, including 
Symmetrospora, Aureobasidium, Filobasidium, Papilio­
trema, Sphaerulina, unclassified_Ascomycota, and three 
genera found in all the five samples, were common in 
BA and QA. However, Leucosporidium was detected 
only in BA, whereas Coniothyrium, Dioszegia, Kon- 
doa, Cryptococcus, unclassified_Phaeosphaeriaceae were 
found only in QA. According to the sequencing results, 
the richness of the endophytic fungal community struc-
ture in the five samples presented the following trend: 
QA > BA > HA > WA > AQA.

Analysis of phylogenetic relationship of the endo-
phytic fungi in A. argyi leaves. The phylogenetic rela-
tionship of the endophytic fungi among the five A. argyi 
leaves samples was investigated based on the heat map 
of the genetic distance between the samples (Fig. 5). 
The color block represents the distance value, with 
the distance between the samples decreasing with the 
increasing grayness. Three branches can be observed in 

Fig. 3. Fungal community composition in the samples
at the phylum level.
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the figure, with HA and BA, which presented a closer 
genetic relationship, merging into one branch, WA 
forming another branch, and AQA forming another 
branch. In addition, QA exhibited a systematic branch, 
indicating the distant genetic relationship between QA 
and the other samples.

PCA analysis. PCA can reduce the dimension of 
data based on linear algebra. The original high-dimen-

sional data are transformed and projected into the 
spatial coordinate system with lower dimensions (i.e., 
principal components) to show the natural distribu-
tion of samples. Each point represents a sample, and 
the shorter the distance is between the two points, the 
higher is the similarity in the microbial community 
structure between the two samples, and the smaller is 
the difference. The percentages on the axis parentheses 

Fig. 4. Fungal community composition in the samples at the genus level.

Fig. 5. Heatmap of genetic distance between the samples.
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represent the percentage of variance in the original 
data that the corresponding principal component 
can explain. If PCA is 50%, then the variance of the 
X-axis can explain 50% of the overall analysis results. 
As shown in Fig. 6, the distance between QA and the 
other four samples was long, indicating that the similar-
ity in the fungal communities between these samples 
was very low, whereas the difference was considerable. 

Similarly, the distance between AQA and the other 
four samples was very long, implying that the differ-
ence in the fungal communities between the samples 
was very large. In contrast, the distance between HA 
and BA was relatively short, followed by that between 
HA and WA, which suggested that the similarity in the 
fungal communities between these samples was rela-
tively higher, whereas the difference was more negli-
gible when compared to former ones. Furthermore, 
the distance between BA and QA and AQA was long, 
indicating that the similarity in the fungal communities 
between these samples was low, but the difference was 
large, and consistent with the results of the heat map 
analysis. Thus, it can be concluded that the endophytic 
fungal community structure in the five A. argyi leaves 
samples was significantly different.

Discussion

In this study, 18 S rRNA amplicon sequencing of 
endophytic fungi in the leaves of A. argyi was con-
ducted using a high-throughput sequencing platform 
based on fungal ITS1-ITS2 sequences. The variation 
in the sequencing reads was 53,504.0–89,829.0, with 
QA presenting the highest number of sequencing reads. 
The variation in the number of OTUs was between 165 

and 205, with QA exhibiting the maximum number of 
OTUs. Furthermore, OTUs analysis showed the pres-
ence of common fungal populations, variations in the 
fungal populations, as well as unique OTUs among the 
five samples. Moreover, the diversity of the endophytic 
fungal community in the leaves of A. argyi was lower 
than that of A. argyi roots. The alpha-diversity, Shan-
non, Chao1, and ACE indices showed that the diver-
sity of endophytic fungi in QA leaves was the highest, 
whereas the Simpson index revealed that the diversity 
of endophytic fungi in BA leaves was the highest. 

Furthermore, QA and BA presented the high-
est alpha-diversity index. These results revealed that 
the diversity of the endophytic fungal community in 
A. argyi leaves was low, consistent with the findings 
of Liu et al. (2019). High-throughput amplicon results 
detected two phyla, five classes, nine orders, nine fami-
lies, and nine genera in WA; two phyla, six classes, eight 
orders, eight families, and eight genera in AQA; two 
phyla, six classes, 10 orders, 11 families, and 11 gen-
era in HA; two phyla, eight classes, 13 families, and 
13 genera in BA; and two phyla, 10 classes, 13 orders, 
16 families, and 15 genera in QA, indicating that the 
diversity of endophytic fungi was the highest in QA, 
followed by that in BA.

The finding that Basidiomycota was the dominant 
phylum in BA is not in agreement with that reported 
by Liu Miao et al. (2019). At the genus level, significant 
differences were noted with respect to the dominant 
genus of endophytic fungi among the five samples. The 
predominant genus of endophytic fungi in WA, AQA, 
HA, and BA was unclassified, with a relative abundance 
of 52.83%, 50.98%, 41.33%, and 34.40%, respectively, 
whereas Erythrobasidium, with the relative abundance 
of 31.35%, was dominant in QA. In contrast, Liu Miao 
et al. (2019) isolated three genera and six species 
of endophytic fungi from the leaves of Artemisia sp. by 
using traditional culture, isolation, and molecular iden-
tification methods and found that Alternaria sp. was the 
dominant genus. These inconsistent results could be 
owing to the different sampling times, cultivation cli-
mates, and soil types. Erythrobasidium has been noted 
to infect the leaf veins of sugar orange, causing citrus 
yellow shoot and has been detected in a significantly 
higher proportion in the diseased plants. In the pre-
sent study, the abundance of Erythrobasidium was the 
highest in QA, and its ecological function needs to be 
further investigated.

Analysis of the fungal genera and species detected 
in the present study showed 33 pathogenic fungi, three 
symbiotic fungi, 34 saprophytic fungi, eight major plant 
pathogenic fungi, four biological control fungi, 39 envi-
ronmental fungi, and 19 other fungi in the leaves of 
A. argyi (Table II). While the overall proportion of the 
detected beneficial biological control fungi, including 

Fig. 6. PCA of the samples.
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Penicillium catenatum, Penicillium oxalicum, Asper­
gillus intermedius, Aspergillus sydowii, was not high, 
environmental fungi formed a large proportion of the 
fungal population detected in this study. These environ-
mental fungi could develop the symbiotic association 
with plants and transform the inorganic materials that 
plants cannot utilize into organic matter, degrade toxins 
such as phenol, decompose lignin, provide nutrients to 
plants, and promote plants’ growth and development, 
and improve the contents of medicinal components 
in plants. Nevertheless, further studies are needed to 
determine whether the detected beneficial biocontrol 
fungi and environmental fungi are directly related to 
the incidences of A. argyi diseases. Besides, research on 

the ecological functions of many other fungi detected 
in the present study, whose effects on plants are still 
unclear, could be crucial for healthy plant growth and 
development and the biocontrol of pathogens.

Sporobolomyces usually exist on the surface of leaves 
and accumulate useful metabolites, such as essential 
oil, a carotenoid pigment, fungal polysaccharide, and 
extracellular enzymes, which have wide applications in 
food and medicine, cosmetics, and breeding industries. 
Besides, Sporobolomyces can also remove chromium 
in sludge and degrade cellulose and lignin (Wei et al. 
2014). Alternaria, which is widely distributed in soil 
and plants, is a biocontrol agent with potential appli- 
cations (Chu et al. 2020). Some species of this genus 

Aspergillus_intermedius	 biocontrol fungi- saprotroph	 Phanerochaete	 pathotroph
Aspergillus_sydowii	 biocontrol fungi-saprotroph	 Phlebia	 pathotroph-saprotroph-symbiotroph
Penicillium_catenatum	 biocontrol fungi-saprotroph	 Phoma	 saprotroph-symbiotroph
Penicillium_oxalicum	 biocontrol fungi-saprotroph	 Podosphaera	 pathotroph-saprotroph-symbiotroph
Botryosphaeria	 pathotroph-saprotroph-symbiotroph	 Ramichloridium	 pathotroph-saprotroph
Botrytis	 pathotroph-saprotroph	 Rhodotorula	 saprotroph
Cladosporium	 pathotroph-saprotroph-symbiotroph	 Sarocladium	 pathotroph-saprotroph
Clonostachys	 pathotroph-saprotroph	 Schizophyllum	 pathotroph-symbiotroph
Curvularia	 saprotroph	 Sphaerulina	 saprotroph
Cyphellophora	 pathotroph-saprotroph-symbiotroph	 Sporisorium	 saprotroph
Cystobasidium	 saprotroph	 Sporobolomyces	 pathotroph-symbiotroph
Diaporthe 	 pathotroph-saprotroph-symbiotroph	 Stagonospora	 saprotroph
Dothidea	 saprotroph	 Stemphylium	 saprotroph
Edenia	 pathotroph	 Tilletiopsis	 saprotroph
Entocybe	 pathotroph	 Trametes	 pathotroph-saprotroph
Entodesmium	 pathotroph	 Tricharina	 pathotroph-saprotroph-symbiotroph
Erythrobasidium 	 pathotroph	 Trichomeriaceae	 pathotroph
Filobasidium	 pathotroph-saprotroph-symbiotroph	 Trichosporon	 pathotroph-saprotroph-symbiotroph
Fusarium	 pathotroph-saprotroph	 Verticillium	 pathotroph
Gibellulopsis	 pathotroph-saprotroph	 Alternaria	 pathotroph-saprotroph
Herpotrichiellaceae	 pathotroph-saprotroph-symbiotroph	 Amphisphaeriaceae	 pathotroph-saprotroph-symbiotroph
Knufia	 pathotroph	 Amphobotrys	 pathotroph-saprotroph-symbiotroph
Leptosphaeria	 pathotroph	 Anthracocystis	 pathotroph
Limonomyces	 saprotroph	 Apiotrichum	 pathotroph
Microdochium	 pathotroph-saprotroph-symbiotroph	 Articulospora	 pathotroph
Mycosphaerella	 pathotroph-symbiotroph	 Ascochyta	 pathotroph
Myrmecridium	 saprotroph	 Aurantiporus	 pathotroph
Myrothecium	 symbiotroph	 Aureobasidium	 pathotroph
Neosetophoma	 pathotroph-saprotroph-symbiotroph	 unclassified	 other
Occultifur	 saprotroph	 unclassified_Ascomycota	 other
Paraconiothyrium	 pathotroph-saprotroph	 unclassified_Fungi	 other
Paraphoma	 pathotroph-saprotroph	 unclassified_Phaeosphaeriaceae	 other
Phaeosphaeria	 pathotroph-saprotroph	 Others	 other

Table II
FUNGuild Functional analysis.

Generic Type Generic Type
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 isolated from Artemisia annua have been noted to pre-
sent antitumor and antioxidant effects (Li et al. 2020), 
while some Alternaria spp. could control tobacco red 
root disease (Wang et al. 2001). Ma et al. (2017) found 
that the endophytic fungus Cryptococcus J22 in the 
leaves of Nuoli contains high content of total phenols 
and total flavonoids and ABTS, a strong scavenger of 
free radicals. Moreover, the total flavonoid contents in 
the leaves of A. argyi cultivated in Hubei Province have 
been reported to be relatively high, possibly owing to the 
relatively high proportion of Cryptococcus (Dong et al. 
2016; Gong et al. 2019). Filobasidium is mainly found 
in the body and surface of plants (Ma et al. 2018; Liu 
et al. 2019), and could produce a variety of extracellular 
enzymes, such as α-amylase, which help in disease con-
trol and have a broad application prospect in the field of 
medicine (Wang et al. 2015). Thus, the antitumor, anti-
microbial, and antioxidant properties of A. argyi might 
possibly be attributed to the presence of Sporobolomyces, 
Alternaria, Cryptococcus, and Filobasidium, and requires 
further investigation. Besides, the characteristics and 
functions of unclassified and other fungi found within 
the leaves of A. argyi should also be studied.

Endophytic fungi live in healthy plant tissues but do 
not infect or damage the host plants. Strobel et al. (2003, 
2004) showed that the growth of endophytic fungi in 
medicinal plants produced natural medicinal products 
with therapeutic effects (Wang et al. 2016). In the pre-
sent study, a minor proportion of the endophytic fungi 
in the leaves of A. argyi was found to have potential anti-
tumor and antioxidant properties, which could have sig-
nificant application prospects in medicine and health.

The present study is the first to use high-throughput 
amplicon sequencing to investigate the fungal commu-
nity structure in the leaves of A. argyi grown in five 
different regions in China. The results showed that 
QA and BA had rich fungal community structure and 
diversity, presenting differences, although not signifi-
cant, in the fungal species and distribution. The PCA 
results revealed that the phylogenetic relationship of 
the five A. argyi leaves samples was distant. Moreover, 
the majority of the fungal species were detected in the 
leaves of A. argyi, with few major pathogenic fungi 
and very few beneficial biocontrol fungi. These results 
can provide a theoretical basis for accomplishing the 
healthy growth and quality of perennial root plants.
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The number of bacterial isolates extremely resistant 
to previously effective drugs is growing dynamically. 
Infections are increasingly being caused by pathogens 
that are not susceptible to all available antibiotics. This 
issue is particularly acute for Gram-negative bacilli, 
both the Enterobacterales strains and non-fermenting 
rods. Colistin is used as one of the last available treat-
ment options for patients with severe infections caused 
by carbapenem-resistant Gram-negative rods. Due to 
the increasing role of colistin in the treatment of human 
infections caused by multidrug-resistant (MDR) bacte-
ria, the resistance to this antibiotic ought to be moni-
tored (Prim et al. 2017; Petrosillo et al. 2019; Stefaniuk 
and Tyski 2019).

Until recently, colistin resistance was thought to 
be dependent only on mutations in the genes regulat-
ing LPS synthesis. In 2015, the plasmid-coded colistin 
resistance associated with the presence of mcr genes 
was first described (Liu et al. 2016). Since then, there 
have been many reports about plasmid resistance to 
colistin among strains isolated from human infections 

(Kluytmans 2017; Elbediwi et al. 2019). In Poland, the 
first Escherichia coli strain with the mcr-1 gene was 
described in 2016 (Izdebski et al. 2016). However, we 
do not have more information about the presence of 
mcr genes in Poland. As β-lactam antibiotics are “first-
line” drugs in the treatment of infections caused by 
Enterobacterales, the susceptibility of strains to this 
group of antimicrobial agents was tested; the most 
important resistance mechanism to this group of drugs 
is the production of β-lactamases. This study aimed to 
determine the occurrence of β-lactamases, including 
carbapenemases, in colistin-resistant Enterobacte
rales strains in Poland. Such strains are extremely 
dangerous because of treatment difficulties. Recently, 
new β-lactam/β-lactamase inhibitor combinations have 
been introduced into therapy, especially for ESBLs and 
carbapenemase-producing strains. We have also tested 
all collected strains against these new drugs as a pos-
sible alternative treatment.

The twelve hospitals located all over Poland, in the 
following voivodeships: Lesser Poland (n = 2), Lublin 
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A b s t r a c t

Sixty-five colistin-resistant Enterobacterales isolates recovered from different clinical specimens were analyzed. The strains were collected 
in 12 hospitals all over Poland within a period of nine months. Strains were analyzed for eight genes from the mcr family. The presence of 
mcr-1 gene was detected in three Escherichia coli strains. The 45/65 isolates were identified as ESBL producers. CTX-M-1-like enzymes 
were the most common ESBLs (n = 40). One E. coli and seven Klebsiella pneumoniae strains produced carbapenemases, with the NDM 
being produced by five isolates. Among all the strains tested, four and five were resistant to new drugs meropenem/vaborbactam and 
ceftazidime/avibactam, respectively. 
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(n = 1), Masovian (n = 2), Pomeranian (n = 1), Silesian 
(n = 2), Warmia-Masurian (n = 2), and West Pomera-
nian (n = 2), involved in this study were of similar sizes 
and had similar profiles, as regional, secondary-care 
medical centers, with all major types of wards. A total 
of 65 non-duplicate clinical isolates of Enterobacterales 
were recovered from inpatients with various infections 
between April 2019 and December 2019 and were 
included in this study. The strains were of the following 
species: Klebsiella pneumoniae (n = 45; 69.2%), E. coli 
(n = 15; 23.1%), Enterobacter cloacae (n = 3; 4.0%), and 
Klebsiella oxytoca (n = 2; 3.1%). All bacterial strains 
were identified to the species level in local hospital 
laboratories, and their susceptibility to antibiotics 
was determined using available methods. The strains 
were sent to the Department of Microbiology and Anti-
biotics of the National Medicines Institute (NMI) in 
Warsaw, Poland, together with basic clinical informa-
tion (the date of isolation, the species, the specimen 
type, the patient’s age and sex, and the hospitalization 
ward). The detailed analysis of patient’s demographic 
data and local antibiotics susceptibility data was per-
formed in the NMI. The strains used in the study were 
stored at –80°C. Before the investigation, strains were 
transferred onto the non-selective blood-containing 
agar (BAP; Columbia Agar with 5% Sheep Blood; Bec-
ton Dickinson, USA). All strains were re-identified by 
using ID GN cards in VITEK 2 Compact (bioMérieux, 
Marcy l’Etoile, France).

Based on the information provided by the labo-
ratories, the results of antibiotic susceptibility of the 
studied bacterial strains were pre-analyzed. In the 
NMI, the colistin MIC value (mg/l) was determined 
by a reference broth microdilution method according 
to ISO 20776 (ISO 2019). Susceptibility to colistin was 
performed in triplicate for each strain, using the same 
culture to establish a pool of strains with MIC > 2 mg/l 
of colistin. E-tests with concentration gradients of 
ceftazidime, ceftazidime/avibactam, imipenem, mero-
penem, and meropenem/vaborbactam (MIC Strep; 
Liofilchem, Italy) were used for determination of their 
MICs (mg/l) in colistin-resistant Enterobacterales 
strains. Susceptibility results were interpreted accord-
ing to the guidelines of the EUCAST (EUCAST 2020a). 
The following strains: E. coli ATCC 25922, E. coli ATCC 
35218, E. coli NCTC 13846 (mcr-1), and K. pneumoniae 
ATCC 700603 were used as controls (EUCAST 2020b).

All Enterobacterales isolates were tested for ESBLs 
and carbapenemases production by phenotypic and 
genotypic methods. ESBLs were detected by the double-
disk synergy (DDS) test with disks containing amoxi-
cillin with clavulanate (20 µg and 10 µg, respectively), 
cefotaxime (30 µg), and ceftazidime (30 µg) (EUCAST 
2017). The detection of carbapenemases were assessed 
by the disk test with phenylboronic acid for KPCs, 

the synergy test with EDTA for MBLs, and disc with 
temocillin for OXA-48-like carbapenemases (Żabicka 
et al. 2015). 

Total bacterial DNA was purified with a Geno
mic DNA Prep Plus kit (A&A Biotechnology, Gdańsk, 
Poland).

The blaCTX-M-1-, blaCTX-M-2-, blaCTX-M-8- blaCTX-M-9-, 
blaCTX-M-25-, blaSHV-, blaTEM- blaKPC-, blaNDM-, blaIMP-, 
blaVIM-, blaOXA48-like genes were identified by PCR as 
described previously (Woodford et al. 2006; Empel 
et al. 2008).

All isolates were screened by PCR for the presence 
of plasmid-mediated mcr genes, including mcr-1 (Liu 
et al. 2016), mcr-2 (Xavier et al. 2016), mcr-3 (Yin et al. 
2017), mcr-4 (Rebelo et al. 2018), mcr-5 (Borowiak et al. 
2017), mcr-7 (Wang et al. 2018), mcr-8 (Yuan et al. 2019) 
and mcr-9 (Carroll et al. 2019), as previously described. 

The isolates came from patients of various ages from 
1 to 89 years; the most numerous group comprised of 
patients aged 61–80 (n = 32; 49.2%) and 31–60  years 
of age (n = 16; 24.6%). The remaining patients were 
16–30 years of age (n = 4), ≥ 81 years of age (n = 11), and 
< 3.1 years (n = 2). The most frequently represented hos-
pital wards were: Intensive Care Unit (n = 20, 30.8%), 
internal medicine (n = 14, 21.5%), pulmonary (n = 12; 
18.5%), and burn wards (n = 8; 12.3%). The remain-
ing patients were hospitalized in the following order: 
surgery (n = 3), rehabilitation (n = 3), urology (n = 1), 
and oncology (n = 1). Three patients from whom the 
tested strains were isolated were patients of the surgical 
outpatient clinics (n = 2) and one resident of the Long 
Term Care Facility with documented hospital history.

Just over 40% of all patients’ clinical specimens 
(n = 28; 43.1%) for microbiological testing came from 
the lower respiratory tract, including: bronchial lavage 
(n = 16; 24.6%), and sputum (n = 11; 16%), pleural 
fluid (n = 1), specimens from skin and soft tissue infec-
tions (n = 8, 12.3%), and urine (n = 13, 20%). Only 
16.9% (n = 11) of the Enterobacterales isolates tested 
were collected from blood; single isolates came from 
peritoneal fluid (n = 1), bile (n = 1), and rectal swabs 
(n = 3). K. pneumoniae was the dominant organism in 
lower respiratory tract infections, followed by E. coli. 
K. pneumoniae caused nearly half of the cases of urinary 
tract infections (UTIs). In seven cases, K. pneumoniae 
(10.8%) was the pathogen isolated from blood. 

Resistance to colistin was demonstrated in all 65 iso-
lates. The MIC values of colistin in resistant strains 
ranged from 4 mg/l to > 64 mg/l. For PCR, positive 
results were achieved only with primers specific to 
the mcr-1 gene variant in three E. coli strains. One was 
simultaneously resistant to imipenem (MIC = 12 mg/l) 
and intermediate to meropenem (MIC = 4 mg/l). It was 
also resistant to ceftazidime/avibactam with an MIC 
of 32 mg/l, but sensitive to meropenem/avibactam 



Colistin-resistant Enterobacterales strains in Poland2 285

(MIC = 2 mg/l). Twelve isolates from all 65  strains 
showed elevated MIC values of imipenem and/or 
meropenem from 2 mg/l to ≥ 256 mg/l: E. coli (n = 2), 
E. cloacae (n = 1), and K. pneumoniae (n = 9). Four of 
these strains were resistant to meropenem/vaborbac-
tam, and five to ceftazidime/avibactam. Detailed results 
of susceptibility testing are presented in Table I.

In Kazmierczak and co-researcher’s study (2018) 
the most common ESBL genes in Polish isolates was 
CTX-M-15 (80% of 185 ESBL-positive isolates). 
Authors also observed high percentages of MDR Polish 
strains (21%); 29.2% of them were ceftazidime-resistant 
and 0.8% meropenem non-susceptible, but only one 
isolate produced carbapenemase and it belonged to 
carbapenemase subtype VIM-1. A higher percentage 
of Enterobacterales strains resistant to ceftazidime 
(56.9%) and non-susceptible to meropenem (16.9%) 
was observed in our study. 

Forty-five of the colistin-resistant isolates (69.2%) 
were identified as ESBL producers by the DDS test. 
The ESBL-positive strains belonged to three species 
including E. cloacae complex (n = 2, 4.4%), E. coli (n = 6, 
13.3%), and K. pneumoniae (n = 37, 82.2%). Thirty-
eight ESBL-positive isolates (84.4%) carried only one 
β-lactamase gene. The remaining seven strains pos-
sessed 2–4 bla genes. Forty-one ESBL-positive isolates 
(91.1% from 45 isolates) carried blaCTX-M-1-like genes; 
the most frequent organism was K. pneumoniae 
(n = 34), from which 64.7% of isolates demonstrated 
a colistin MIC > 64 mg/l. The blaCTX-M-9-like genes were 
detected only in two K. pneumoniae. Five isolates car-
ried blaSHV-like, and 10 carried blaTEM-like genes.

One E. coli and seven K. pneumoniae colistin-
resistant isolates produced carbapenemases. Carbape
nemase-encoding genes were detected as follows: blaKPC 
in one K. pneumoniae, blaNDM in five K. pneumoniae, 

	 4	 11	 0	 0	 11	 9	 2	 9	 0	 2	 9	 1	 1	 10	 1
	 8	 4	 0	 4	 0	 4	 0	 4	 0	 0	 4	 0	 0	 4	 0

K. pneumoniae	 16	 2	 0	 0	 2	 1	 0	 2	 0	 0	 2	 0	 0	 2	 0
(n = 45; 69.2%)	 32	 1	 0	 1	 0	 1	 1	 1	 0	 0	 1	 0	 0	 1	 0
	 64	 1	 0	 1	 0	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
	 > 64	 26	 0	 14	 12	 24	 2	 19	 1	 6	 19	 2	 5	 23	 3
	 4	 4	 0	 2	 2	 4	 0	 4	 0	 0	 4	 0	 0	 4	 0
	 8	 5	 0	 3	 2	 5	 0	 5	 0	 0	 5	 0	 0	 5	 0

E. coli	 16	 3	 1	 0	 3	 3	 0	 3	 0	 0	 3	 0	 0	 3	 0
(n = 15; 23.1%)	 32	 1	 1	 0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 1	 0
	 64	 1	 1	 0	 1	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
	 > 64	 1	 0	 0	 1	 1	 0	 0	 1	 0	 0	 1	 0	 1	 0
	 4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 8	 1	 0	 0	 1	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0

E. cloacae complex	 16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
(n = 3; 4.6%)	 32	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 64	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 > 64	 2	 0	 1	 1	 2	 0	 0	 1	 1	 1	 1	 1	 2	 0
	 4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0

K. oxytoca	 16	 1	 0	 1	 0	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
(n = 2; 3.1%)	 32	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 64	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 > 64	 1	 0	 1	 0	 1	 0	 1	 0	 0	 1	 0	 0	 1	 0
Total		  65	 3	 28	 37	 59	 6	 52	 3	 10	 53	 5	 7	 61	 4

Table I
Susceptibility of colistin-resistant Enterobacterales strains (n = 65) to ceftazidime, ceftazidime/avibactam, imipenem, meropenem,

and meropenem/vaborbactam.

CAZ – ceftazidime, CAZ/AVB – ceftazidime/avibactam, IPM – imipenem, MEM – meropenem, MEM/VB – meropenem/vaborbactam, 
S – sensitive, I – intermediate, R –resistant

Strains (n; %)
Colistin MEM/VBMEMIPMCAZ/AVBCAZ

S R S R S RMIC (mg/l)

mcr-1

Value Numer of isolates

S I RS I R
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and blaOXA-48-like in one E. coli (the carbapenem-resistant 
isolate with mcr-1 gene) and one K. pneumoniae. Five 
strains carrying bla genes and producing carbapen-
emases showed MIC > 64 mg/l of colistin, which indi-
cated their clinical significance.

The results of the detection of selected β-lactamases 
are shown in Table II.

The growing resistance of bacteria to antibiotics is 
a  challenge for 21st-century medicine. Carbapenems 
were considered so-called “last resort” agents in the 
treatment of serious infections, especially in hospitali
zed patients. The spread of carbapenem-resistant Gram- 
negative rods isolated from outpatients turned out to 
be a challenge for treating infections (Grundmann et al. 
2010; Parisi et al. 2015). The expansion of strains pro-
ducing carbapenemases has been observed for sev-
eral years worldwide, including in Poland (Baraniak 
et al. 2016). Numerous reports have indicated the 
disturbing phenomenon of large-scale spreading of 
Enterobacterales strains producing New Delhi metallo-
β-carbapenemase, and to a lesser extent producing 
Klebsiella pneumoniae carbapenemase, or OXA-48-car-
bapenemases and VIM-carbapenemases. Most of the 
carbapenemases producing strains are multi-drug-
resistant (MDR) strains, which significantly limit the 
therapeutic possibilities of life-threatening infections. 
Due to the frequent lack of therapeutic options for 
carbapenem-resistant strains infections, colistin is con-
sidered one of the few or sometimes only therapeutic 
options (Li et al. 2006; Nation and Li 2009; Lim et al. 
2010; Sandri et al. 2013; Vicari et al. 2013). The coexist-
ence of colistin resistance along with the production of 
carbapenemases in multi-drug resistant isolates poses 

a real threat in the use of carbapenems and colistin to 
fight infections (Lomonaco et al. 2018; Lee et al. 2019). 

Colistin is characterized by high activity against 
Gram-negative rods, despite numerous reports of 
increasing bacterial resistance to this drug (Petrosillo 
et al. 2019), most of which are chromosomally coded. 
The spread of plasmid-encoded resistance to colistin, 
related to the presence of mcr genes, is alarming, espe-
cially since it concerns to a large extent strains with 
“a  low level of resistance to colistin” (with a colistin 
minimum inhibitory concentration (MIC) range of 
2–8 mg/l). The repeatedly described diagnostic problems 
encountered in determining the MIC values of colistin 
are largely responsible for the lack of knowledge about 
the presence of such isolates (Stefaniuk and Tyski 2019). 
However, numerous reports indicate the universality of 
such strains (Bardet and Rolain 2018; Jayol et al. 2018), 
including in Poland, where for the first time E. coli strain 
was identified as possessing the mcr-1 gene in 2016 
(Izdebski et al. 2016). In Poland, little is known about the 
scale of the resistance of Gram-negative rods to colistin. 
Thus, an attempt was made to assess the degree of resist-
ance to other antimicrobial agents of colistin-resistant 
strains isolated from serious life-threatening infections 
in patients treated in hospitals throughout Poland. 

The project achieved the collection of colistin-
resistant Enterobacterales rods over three quarters of 
2019. Within the total number of collected strains, iso-
lates with the mcr-1 gene constituted only 4.2%. Prim 
and co-researchers (2017) showed that the mcr-1 gene 
in clinical isolates is still rare in Europe. Our study may 
indicate that the colistin resistance of Polish Entero-
bacterales isolates is mainly chromosomally encoded. 

Table II
Presence of selected ESBLs and carbapenemases among colistin-resistant Enterobacterales strains (n = 65*).

	 4	 11	 0	 6	 1	 2	 0	 0	 2	 0
	 8	 4	 0	 4	 0	 0	 0	 0	 0	 0

K. pneumoniae	 16	 2	 0	 0	 0	 1	 0	 0	 0	 0
(n = 45; 69.2%)	 32	 1	 0	 1	 0	 0	 0	 0	 0	 0
	 64	 1	 0	 1	 0	 0	 0	 0	 0	 0
	 > 64	 26	 0	 22	 1	 3	 4	 1	 3	 1
	 4	 4	 0	 1	 0	 1	 0	 0	 0	 0

E. coli	 8	 5	 0	 3	 0	 0	 0	 0	 0	 0
(n = 15; 23.1%)	 16	 3	 1	 1	 0	 1	 1	 0	 0	 1
	 64	 1	 1	 0	 0	 1	 0	 0	 0	 0

E. cloacae complex 	 8	 1	 0	 1	 0	 0	 0	 0	 0	 0
(n = 3; 4.6%)	 > 64	 2	 0	 1	 0	 1	 0	 0	 0	 0
Total		  61	 3	 41	 2	 10	 5	 1	 5	 2

Strains (n; %)

Colistin Types of ESBLs Types of carbapenemases

MIC (mg/l) mcr-1 CTX-M-1 CTX-M-9 TEM SHV KPC NDM OXA-48

Value Number of isolates

* – in two E. coli and two K. oxytoca strains (3.1%) resistant to colistin, the β-lactamases were not detected
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Further research is required to confirm this assump-
tion. It is noteworthy that the colistin-resistant Kleb­
siella strains constitute as much as 47/65 (69.2%) of 
isolates studied in this project, while E. coli represented 
only 15/65 (23.1%). In our study the mcr-1 genes were 
detected only in three E. coli strains; two of these strains 
produced ESBL and were susceptible to the new drugs 
meropenem/vaborbactam and ceftazidime/avibactam, 
while the third was resistant to carbapenems (produced 
OXA-48-like carbapenemase) and resistant to ceftazi-
dime with avibactam. Kazmierczak and co-researchers 
(2018) showed the activity of ceftazidime/avibactam 
and other agents against Enterobacteriaceae collected 
in 18 European countries from 2012 to 2015. The tested 
isolates also came from Poland; colistin-resistant Entero
bacterales isolates accounted for 1.8% of all Polish iso-
lates (Kazmierczak et al. 2018). Ceftazidime/avibactam 
was the most active agent from all tested antimicrobial 
agents. From all colistin-resistant isolates in this study, 
98.2% were susceptible to ceftazidime with avibactam. 

Globally, the mcr-gene family is widely dissemi-
nated among Enterobacterales, mainly in E. coli and 
K. pneumoniae isolated from human infections (Jeannot 
et al. 2017). Our study suggests that mcr-1 is currently 
more common in E. coli strains than in K. pneumoniae 
in Poland. Some authors also report that the MICs of 
colistin for E. coli carrying the mcr-1 gene are lower 
than the MICs of colistin for K. pneumoniae (MICs 
4–16 mg/l vs. 4–64 mg/l) (Walkty et al. 2016). In our 
study, MICs of colistin for E. coli with the mcr-1 gene 
were higher than indicated by Walkty et al. (2016), 
ranging from 16 to > 64 mg/l.

This is the first report on the occurrence of β-lac- 
tamases in colistin-resistant Enterobacterales strains in 
Poland. These data broaden the knowledge of the mech-
anism of resistance to colistin among Enterobacterales 
causing human infections in Poland. Demographic data 
of patients, from whom the strains resistant to colistin 
were isolated, indicate that the problem of this resist-
ance cannot be limited to a selected group of patients. 
The small number of colistin-resistant isolates (n = 65) 
obtained from hospitals that participated in the pilot 
study may indicate that the problem of colistin resist-
ance among Enterobacterales strains is low. However, 
due to the described issues of the infection therapy, 
this problem requires further research and analysis. In 
the future, the authors plan to compare the antibiotics 
susceptibility of Enterobacterales isolates resistant to 
colistin and other multidrug-resistant Enterobacterales 
species susceptible to colistin.
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INFORMACJE Z POLSKIEGO TOWARZYSTWA MIKROBIOLOGÓW

Od ostatniej informacji o działalności Zarządu Głównego Polskiego Towarzystwa Mikrobiologów, zamieszczonej w zeszy-
tach nr 1 z 2021 r. kwartalników Advancements of Microbiology – Postępy Mikrobiologii i Polish Journal of Microbiology, 
ZG PTM zajmował się następującymi sprawami:

I.	 Zgodnie ze Statutem PTM raz w roku odbywa się zebranie członków ZG PTM. Przeprowadzono je 22.03.2021 r. w formie 
on-line, korzystając z pomocy informatycznej Narodowego Instytutu Leków. Materiały związane z zebraniem wcześniej 
rozesłano e-mailowo do członków ZG PTM i zaproszonych osób.

	 W zebraniu udział wzięli Prezydium ZG PTM, Przewodniczący Oddziałów Terenowych PTM lub ich przedstawiciele, 
z wyjątkiem reprezentacji Oddziału PTM w Rzeszowie, Przewodnicząca Głównej Komisji Rewizyjnej PTM oraz Redak-
torzy naczelni czasopism PTM. 

	 Podczas Zebrania ZG PTM poruszano następujące zagadnienia: 

  1.  Przedstawiono informację o działalności Prezydium PTM od 30.03.2020 r. – poprzedniego zebrania ZG PTM. 
       W załączeniu przesłano informacje o PTM zamieszczone w numerach czasopism PM i PJM: 2 – 2020, 3 – 2020, 
       4 – 2020, 1 – 2021.
       Podjęto Uchwałę 4-2021 w sprawie akceptacji działalności Prezydium ZG PTM za miniony okres roczny.

  2.  Podjęto Uchwałę 5-2021 w sprawie uporządkowania listy członków zwyczajnych oraz członków wspierających PTM 
       i usunięcia z niej osób i firm niepłacących składki członkowskiej za 2020 r. w statutowo przewidzianym terminie.  
       W porównaniu z ubiegłym rokiem podobna jest liczba osób nieopłacających składki członkowskiej za rok 2020 r.,  
       pomimo przypominania o tym podstawowym obowiązku członka PTM przez OT PTM w styczniu 2021 r. i następnie 
       dwukrotnie przez sekretariat ZG PTM w lutym i marcu b.r. Imienne listy osób usuwanych z poszczególnych Oddzia- 
       łów zestawiono w załączniku 1 do Uchwały 5-2021.

  3.  Podjęto Uchwałę 6-2021 w sprawie przyjęcia pięciu nowych członków zwyczajnych PTM
       (Załącznik 1 do Uchwały 6-2021).

  4.  Spotykamy się z sytuacją, że osoby zaakceptowane Uchwałami PTM jako członkowie zwyczajni nie opłacają  
       pierwszej składki członkowskiej, pomimo wyraźnej informacji, że trzeba spełnić oba warunki, aby być przyjętym 
       do PTM. Na podstawie Uchwały 12-2020, usunięto ponad 40 deklaracji członka zwyczajnego, zaakceptowanych 
       Uchwałami ZG PTM, którym nie towarzyszyła pierwsza opłata składki członkowskiej wniesiona w ciągu 6 miesięcy  
       od daty Uchwał. 

  5.  Zgodnie z Uchwałą 33-2017 i Uchwałą 2-2019 oraz „Regulaminem wydatkowania i rozliczania środków pienięż- 
       nych przez Oddziały Terenowe Polskiego Towarzystwa Mikrobiologów” każdy Oddział otrzymuje co roku 
       fundusz złożony z 10% kwoty uzyskanej z tytułu składek członkowskich, 50% kwoty uzyskanej z tytułu pozyskania 
       sponsora ogólnego, Członka Wspierającego PTM, darowizny, lub innej dodatkowej kwoty na rzecz PTM oraz 100% 
       kwoty od sponsora konkretnego wydarzenia organizowanego przez dany Oddział. Przedstawiono Tabelę dotyczącą 
       liczby członków w Oddziałach oraz Tabelę przyznanych Oddziałom środków finansowych na przestrzeni kolejnych 
       ostatnich 3 lat.
       Dyskutowano nad rozwiązaniem problemu kumulacji środków niewykorzystywanych przez Oddziały, ponieważ 
       za kilka lat mógłby pojawić się problem, że w jednym roku kilka Oddziałów chciałoby wykorzystać swoje nagro- 
       madzone fundusze, a wtedy budżet PTM może tego nie udźwignąć. Prezydium ZG PTM zaproponowało, aby 
       Oddziały wydatkowały fundusze w okresie 3-letnim, jednakże po dyskusji zdecydowano, że będzie to okres czterech 
       lat, od dnia przyznania środków, w którym należy wydatkować fundusze z danego roku. Tym samym Oddział 
       dysponuje daną kwotą przez okres 4 lat i nie wpływa to na otrzymywanie funduszy w kolejnych latach. Po upły- 
       nięciu 4 lat niewykorzystana kwota z danego roku wraca do ogólnej puli środków PTM. Nie wpływa to na dostęp- 
       ność dla OT PTM sum funduszy z ostatnich 3 lat. Podjęto w tej sprawie Uchwalę 7-2021. Schemat zdefiniowania 
       okresu wydatkowania funduszy przez OT PTM przedstawiono w Załączniku 1 do Uchwały 7-2021. 
       Sekretariat ZG PTM co roku zobowiązany jest do przedstawienia danych dotyczących liczby członków w Oddziałach 
       oraz przyznanych Oddziałom środków finansowych w kolejnych latach. Zwrócono uwagę na fakt koniecznego 
       udziału Komisji Rewizyjnych Oddziałów w kontrolowaniu zgodności ze Statutem PTM wydatkowania środków 
       finansowych przez Oddziały.
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  6.  Przewodnicząca Oddziału Łódzkiego PTM zwróciła się z prośba o objęcie patronatem przez PTM „IV Sesji Młodych 
       Mikrobiologów Środowiska Łódzkiego”, które odbędzie się 23.06.2021 r. w formie on-line na Wydziale Biotechnologii  
       i Nauk o Żywności Politechniki Łódzkiej. Podjęto pozytywną Uchwałę 8-2021 w tej sprawie.

  7.  Przedstawiono informację o stanie finansowym PTM oraz Uchwałę Głównej Komisji Rewizyjnej PTM z 19.03.2021 r.  
       w sprawie zatwierdzenia Sprawozdania Finansowego PTM za rok 2020. Z uznaniem podkreślono zakończenie 
       roku 2020 zyskiem w wysokości ponad 28 tysięcy zł, co związane jest przede wszystkim z działalnością redakcji 
       Polish Journal of Microbiology.

  8.  Przewodniczący Oddziałów Terenowych przedstawili sprawozdania z działalności Oddziałów w okresie od 
       30.03.2020 r. do 22.03.2021 r. oraz plany Oddziałów na 2021 r. Okres pandemii znacznie przyhamował działalność 
       Towarzystwa. Niektóre Oddziały przeprowadzały spotkania on-line. Postanowiono, że adresy elektroniczne linków 
       z dostępem do wykładów odbywających się w Oddziałach zostaną przesyłane do Sekretariatu ZG PTM, a następnie 
       udostępnione na stronie PTM do wykorzystania przez zainteresowane osoby z innych Oddziałów.

  9.  Przewodniczący Oddziałów oraz członkowie Prezydium PTM przedstawili opinie i stanowiska w sprawie organizacji 
       Ogólnopolskiego XXIX Zjazdu PTM oraz Walnego Zgromadzenia Delegatów, podczas którego wybierani są człon- 
       kowie Prezydium PTM i Głównej Komisji Rewizyjnej PTM. Zdecydowanie przeważała opinia, aby w obecnej sytuacji  
       epidemicznej nie organizować Zjazdu PTM w 2021 roku, lecz przenieść Zjazd na 2022 rok. 
       Wiele osób jest zmęczonych zarówno walką z pandemią COVID-19 jak i koniecznością prowadzenia zajęć i naucza- 
       nia on-line. Ograniczone są możliwości i okres prowadzenia badań naukowych. Bardzo odczuwalny jest brak 
       kontaktów międzyludzkich i możliwości bezpośrednich dyskusji. Spodziewamy się, że za półtora roku sytuacja 
       epidemiczna będzie na tyle opanowana, przy realizacji masowych szczepień, że możliwe będzie przeprowadzenie 
       Zjazdu w tradycyjnej formie, uwzględniającej wykłady i dyskusje na sali oraz prezentacje plakatów i dyskusje przy 
       nich. Możliwe będzie również bezpośrednie spotkanie mikrobiologów. Biorąc pod uwagę wypowiedzi Przewodni- 
       czących Oddziałów przygotowano i następnie podjęto Uchwałę 9-2021 dotyczącą przesunięcia Zjazdu PTM 
       i Walnego Zgromadzenia Delegatów PTM na rok 2022.

10.  Przedstawiono informacje z FEMS oraz IUMS. 
       W dniach 16–20.11.2020 r. odbył się Międzynarodowy Kongres International Union of Microbiological Societies 
       IUMS 2020 w Daejeon w Korei Południowej w formie hybrydowej. Planowany na 11–15.07.2021 r. w Hamburgu 
       Kongres FEMS 2021 nie odbędzie się, natomiast w terminie 20–24.06.2021 odbędzie się on-line wspólny kongres FEMS 
       i ASM (American Society for Microbiology): World Microbe Forum 2021. https://www.worldmicrobeforum.org/.
       Brak informacji z FEMS o ewentualnym przyznaniu grantów dla młodych naukowców z Polski. Wprowadzony 
       w FEMS od zeszłego roku sposób informowania towarzystw o otrzymanych grantach nie pozwala na uzyskanie 
       wiedzy o liczbie i tematyce aplikowanych wnioskach grantowych.
       FEMS przyjął, że International Microorganisms Day będzie odbywać się 17 września każdego roku.
       Pani prof. dr hab. Elżbieta Anna Trafny, Członek Prezydium PTM, Redaktor Naczelna Polish Journal of Micro- 
       biology, została włączona do grona naukowców oceniających składane projekty grantowe, FEMS Grant Committee. 
       Jest to duży sukces Pani profesor i wyraz uznania dla naszego Towarzystwa.

11.  Informacje o wydawanych przez PTM czasopismach: Polish Journal of Microbiology (PJM) oraz Advancents of 
       Microbiology – Postępy Mikrobiologii (PM).
       * Kwartalnik PJM powiększył w ostatnim roku wartości współczynnika IF oraz CiteScore, które obecnie wynoszą: 
       Impact Factor 2019: 0,897 / 5-year 1,052; CiteScore 2019: 1,3.
       Po raz pierwszy w historii czasopisma zaczęło ono przynosić zysk Towarzystwu, ponieważ przychody związane 
       z opłatami redakcyjnymi przewyższyły koszty wydawania czasopisma. Redakcja nie ma problemów z napływem 
       manuskryptów, głównie od autorów z krajów dalekiego wschodu. Obserwowane są trudności z pozyskiwaniem 
       recenzentów i utrzymaniem krótkiego terminu od otrzymania manuskryptu do decyzji odnośnie publikacji. 
       * Kwartalnik PM powoli przekształca się w czasopismo o szerokim odbiorze międzynarodowym, powiększając liczbę 
       artykułów w języku angielskim. Do redakcji zaczynają przychodzić manuskrypty autorów zagranicznych. Redakcja 
       sygnalizuje małą liczbę nadsyłanych manuskryptów i trudności z pozyskaniem recenzentów. Wydaje się jednak, 
       że przyjęty kierunek rozwoju czasopisma w oparciu o współpracę z wydawnictwem Exeley jest właściwy. Wymagany 
       jest jednak czas aby wprowadzane zmiany w kierunku umiędzynarodowienia czasopisma zaczęły przynosić 
       wymierne efekty w postaci wzrostu współczynników oceny czasopisma, zwłaszcza cytowalności i IF oraz dużej 
       liczby autorów zagranicznych.
       W trakcie dyskusji nad rozwojem czasopism podnoszono kwestię zwiększenia cytowalności publikacji z czasopism 
       PTM, a także listy MNiSW dotyczącej punktowanych czasopism.
       Oba czasopisma znajdują się na liście filadelfijskiej, ale mają niską punktację MNiSW: PM – 20, a PJM – 40 punków. 

12.  Na dzień 31 marca 2021 r. Polskie Towarzystwo Mikrobiologów liczy 860 członków. Najliczniejsze oddziały tere- 
       nowe, to OT Warszawa – 156 członków i OT Kraków – 113 członków.
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    II.	 Prezydium ZG PTM podjęto Uchwałę 10-2021 w sprawie organizacji przełożonego na 2022 rok Ogólnopolskiego 
XXIX Zjazdu PTM w nowym terminie tj. dniach 13–16.09.2022 r. w Warszawie. Podejmujemy starania, aby zachować 
przyznane środki finansowe przez MNiSW na organizację Zjazdu w nowym terminie. Natomiast FEMS wyraziła już 
zgodę na przesunięcie przyznanych środków na organizacje Zjazdu w 2022 r.

   III.	 Prezydium ZG PTM podjęło Uchwałę 11-2021 w sprawie objęcia patronatem cyklicznej konferencji: „POMOR-
SKIE SPOTKANIA Z MIKROBIOLOGIĄ”, w tym roku pt. „Drobnoustroje – wrogowie i sprzymierzeńcy”, w dniach 
24–25.06.2021 r. w formie on-line. Organizatorem Konferencji była Katedra Biotechnologii Molekularnej i Mikro-
biologii Politechniki Gdańskiej, Katedra Mikrobiologii Gdańskiego Uniwersytetu Medycznego oraz Oddział PTM 
w Gdańsku.

    IV.	Na stronie PTM udostępniono link do zebrania naukowo-szkoleniowego organizowanego przez Odział PTM 
w Bydgoszczy oraz firmę ARGENTA w dniu – 23.04.2021 r. 

      V.	 Oddział PTM w Krakowie w dniu 29.04.2021 r. przeprowadził ogólnodostępne szkolenie on-line na temat: 
„Leptospira – powracający patogen”. Na stronie PTM udostępniono link do szkolenia.

   VI.	 Oddział PTM we Wrocławiu współorganizował Konferencje Naukowo-Szkoleniową pt; „Nowe technologie w labora-
torium okresu pandemii COVID-19”, która odbyła się w formie zdalnej 18.05. 2021 r. Na stronie PTM udostępniono 
link do konferencji.

  VII.	Oddział PTM w Krakowie zaprosił na wykład on-line pt.: „Odporność poszczepienna – w tym po szczepieniach 
przeciw COVID-19”, który odbył się 27.05. 2021 r.

VIII.	Na stronie PTM udostępniono link do konferencji cyklicznej „HydroMikro2021”, której współorganizatorem byli 
członkowie Oddziału PTM w Gdańsku, pt. „Mikroorganizmy w środowisku wodnym – zagrożenia i nadzieje”. 
Konferencja odbyła się on-line 09–11.06.2021 r. w Instytucie Oceanologii PAN w Sopocie. 

   IX.	 Oddział PTM w Szczecinie zapraszał na spotkanie naukowo-szkoleniowe na temat: Wirus SARS-CoV-2 a układ 
odpornościowy człowieka, on-line 10.06.2021 r. 

     X.	 Prezydium ZG PTM podjęto Uchwałę 12-2021 w sprawie przyjęcia jedenastu nowych członków zwyczajnych PTM 
(Załącznik 1 do Uchwały 12-2021).

   XI.	 Uchwałą 13-2021 Prezydium ZG PTM objęło patronatem konferencję „IV Mazowieckie Spotkanie Mikrobiologów 
i Epidemiologów” organizowaną w wersji on-line w dniu 07.06.2021 r. przez Konsultanta Wojewódzkiego w dziedzinie 
Mikrobiologia Lekarska Panią Prof. dr hab. Ewę Augustynowicz-Kopeć. 

  XII.	Uchwałą 14-2021 Prezydium ZG PTM zdecydowało o zawarciu umowy z Panią mgr Karoliną Stępień dotyczącej 
wprowadzania informacji na stronę PTM oraz do portalu facebook, w latach 2021–2022.

XIII.	 Informowaliśmy i zapraszaliśmy członków PTM do udziału w pierwszym wspólnym Kongresie Federacji Europej-
skich Towarzystw Mikrobiologicznych (FEMS) i Amerykańskiego Towarzystwa Mikrobiologicznego (ASM): The 
2021 World Microbe Forum, on-line 20–24 czerwca 2021 r. Siedmiu członków PTM wzięło udział w tym Kongresie 
uzyskując zniżki w opłacie rejestracyjnej.

 XIV.	FEMS zakłada, że pandemia SARS-CoV-2 wkrótce wygaśnie i zaprasza do udziału w konferencji organizowanej 
w  formie klasycznej – stacjonarnej „Conference on Microbiology 2022” w dniach 30 czerwca – 2 lipca 2022 r. 
w Belgradzie, Serbia. Informacje na stronie PTM.

Warszawa, 14.06.2021 r.
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CZŁONKOWIE WSPIERAJĄCY PTM

Członek Wspierający PTM – Złoty
od 27.03.2017 r.

HCS Europe – Hygiene & Cleaning Solutions
ul. Warszawska 9a, 32-086 Węgrzce k. Krakowa

tel. (12) 414 00 60, 506 184 673, fax (12) 414 00 66
www.hcseurope.pl

Firma projektuje profesjonalne systemy utrzymania czystości i higieny dla klientów o szczególnych
wymaganiach higienicznych, m.in. kompleksowe systemy mycia, dezynfekcji, osuszania rąk dla pracowników

służby zdrowia, preparaty do dezynfekcji powierzchni dla służby zdrowia, systemy sterylizacji narzędzi.

Członek Wspierający PTM – Srebrny
od 12.09.2017 r.

Firma Ecolab Sp. z o.o. zapewnia: najlepszą ochronę środowiska pracy przed patogenami powodującymi
zakażenia podczas leczenia pacjentów, bezpieczeństwo i wygodę personelu, funkcjonalność posiadanego sprzętu

i urządzeń. Firma jest partnerem dla przemysłów farmaceutycznego, biotechnologicznego i kosmetycznego. 

Członek Wspierający PTM – Zwyczajny
od 12.09.2017 r.

Merck Sp. z o.o. jest częścią międzynarodowej grupy Merck KGaA z siedzibą w Darmstadt, Niemcy i dostarcza
na rynek polski od roku 1992 wysokiej jakości produkty farmaceutyczne i chemiczne,

w tym podłoża mikrobiologiczne
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