Isotropicity of surfaces in Lorentzian 4-manifolds with zero mean curvature vector

Naoya Ando (Kumamoto University)

Contents

1. Mixed-type structures of 4-dimensional Lorentzian vector spaces
2. Space-like surfaces in Lorentzian 4-manifolds
3. Time-like surfaces in Lorentzian 4-manifolds
4. The images of the lifts by the curvature tensor
5. Surfaces with zero mean curvature vector in 4-dimensional Lorentzian space forms

1. Mixed-type structures of 4-dimensional Lorentzian vector spaces

X : an oriented 4-dimensional vector space, h_{X} : a symmetric and indefinite bilinear form of X with signature $(3,1)$, $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$: an ordered basis of X giving the orientation of X s.t.

$$
\begin{aligned}
& h_{X}\left(e_{i}, e_{j}\right)=0 \quad(i \neq j), \\
& h_{X}\left(e_{i}, e_{i}\right)=1 \quad(i=1,2,3), \quad h_{X}\left(e_{4}, e_{4}\right)=-1 .
\end{aligned}
$$

\mathcal{B}_{X} : the set of ordered bases of X as $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$.
$\theta_{i j}:=e_{i} \wedge e_{j}$,
\hat{h}_{X} : a bilinear form of $\bigwedge^{2} X$ defined by

$$
\hat{h}_{X}\left(\theta_{i j}, \theta_{k l}\right)=h_{X}\left(e_{i}, e_{k}\right) h_{X}\left(e_{j}, e_{l}\right)-h_{X}\left(e_{i}, e_{l}\right) h_{X}\left(e_{j}, e_{k}\right)
$$

$\Theta_{ \pm, 1}:=\frac{1}{\sqrt{2}}\left(\theta_{12} \pm \theta_{34}\right), \Theta_{ \pm, 2}:=\frac{1}{\sqrt{2}}\left(\theta_{13} \pm \theta_{42}\right), \Theta_{ \pm, 3}:=\frac{1}{\sqrt{2}}\left(\theta_{14} \pm \theta_{23}\right)$.
These are light-like and we have

$$
\begin{aligned}
& \hat{h}_{X}\left(\Theta_{\varepsilon, i}, \Theta_{\varepsilon^{\prime}, j}\right)=0 \quad\left(\varepsilon, \varepsilon^{\prime} \in\{+,-\}, \quad 1 \leqq i<j \leqq 3\right) \\
& \hat{h}_{X}\left(\Theta_{+, i}, \Theta_{-, i}\right)=1 \quad(i=1,2), \quad \hat{h}_{X}\left(\Theta_{+, 3}, \Theta_{-, 3}\right)=-1 .
\end{aligned}
$$

We see that \hat{h}_{X} is a symmetric and indefinite bilinear form of $\bigwedge^{2} X$ with signature $(3,3)$.

Remark

- If h_{X} is positive-definite, then noticing a double covering $S O(4) \longrightarrow S O(3) \times S O(3)$, we have a decomposition $\Lambda^{2} X=\Lambda_{+}^{2} X \oplus \bigwedge_{-}^{2} X$, where $\bigwedge_{+}^{2} X, \bigwedge_{-}^{2} X$ are subspaces of $\bigwedge^{2} X$ with $\operatorname{dim} \bigwedge_{ \pm}^{2} X=3$ s.t.

$$
\bigwedge_{+}^{2} X=\left\langle E_{+, 1}, E_{+, 2}, E_{+, 3}\right\rangle, \quad \bigwedge_{-}^{2} X=\left\langle E_{-, 1}, E_{-, 2}, E_{-, 3}\right\rangle .
$$

- If h_{X} has signature $(2,2)$,
then noticing a double covering $S O_{0}(2,2) \longrightarrow S O_{0}(1,2) \times S O_{0}(1,2)$,
we have $\Lambda^{2} X=\Lambda_{+}^{2} X \oplus \bigwedge_{-}^{2} X$, where $\bigwedge_{+}^{2} X, \bigwedge_{-}^{2} X$ are subspaces of $\bigwedge^{2} X$ with $\operatorname{dim} \bigwedge_{ \pm}^{2} X=3$ s.t.

$$
\bigwedge_{+}^{2} X=\left\langle E_{-, 1}, E_{+, 2}, E_{+, 3}\right\rangle, \quad \bigwedge_{-}^{2} X=\left\langle E_{+, 1}, E_{-, 2}, E_{-, 3}\right\rangle .
$$

K : a linear transformation of X.
We call K a mixed-type structure of X
if K has invariant subspaces $X_{ \pm}$of X with $\operatorname{dim} X_{ \pm}=2$ s.t.

- $X_{ \pm}$are eigenspaces of K^{2} so that ∓ 1 are the corresponding eigenvalues, respectively,
- $\left.K\right|_{X_{-}}$is not the identity map.
K : a mixed-type structure of X.
We say that K is compatible with h_{X} if K satisfies
- each nonzero element of X_{+}is space-like,
- $\left(\left.K\right|_{X_{ \pm}}\right)^{*} h_{X}= \pm h_{X}$,
- $X_{ \pm}$are perpendicular to each other.
K : a mixed-type structure of X compatible with h_{X}.
We say that K is compatible with the orientation of X
if $\left(e_{1}, K\left(e_{1}\right), e_{3}, K\left(e_{3}\right)\right) \in \mathcal{B}_{X}$ for any unit vector $e_{1} \in X_{+}$and any space-like and unit vector $e_{3} \in X_{-}$.
K_{+}: a mixed-type structure of X compatible with h_{X} and the orientation of X. We see that

$$
\frac{1}{\sqrt{2}}\left(e_{1} \wedge K_{+}\left(e_{1}\right)+e_{3} \wedge K_{+}\left(e_{3}\right)\right)
$$

is light-like and determined by K_{+}, and does not depend on the choice of a pair $\left(e_{1}, e_{3}\right)$.
K_{-}: a mixed-type structure of X s.t.

- K_{-}is compatible with h_{X},
- K_{-}is not compatible with the orientation of X.

We see that

$$
\frac{1}{\sqrt{2}}\left(e_{1} \wedge K_{-}\left(e_{1}\right)+e_{3} \wedge K_{-}\left(e_{3}\right)\right)
$$

is light-like and determined by K_{-}, and does not depend on the choice of $\left(e_{1}, e_{3}\right)$.

Example

$\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in \mathcal{B}_{X}$,
K_{+}: a linear transformation of X defined by

$$
\begin{gathered}
\left(K_{+}\left(e_{1}\right) K_{+}\left(e_{2}\right) K_{+}\left(e_{3}\right) K_{+}\left(e_{4}\right)\right)=\left(e_{1} e_{2} e_{3} e_{4}\right)\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] . \\
\Longrightarrow\left(K_{+}^{2}\left(e_{1}\right) K_{+}^{2}\left(e_{2}\right) K_{+}^{2}\left(e_{3}\right) K_{+}^{2}\left(e_{4}\right)\right)=\left(e_{1} e_{2} e_{3} e_{4}\right)\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

$X_{+}:=\left\langle e_{1}, e_{2}\right\rangle, \quad X_{-}:=\left\langle e_{3}, e_{4}\right\rangle$.
$\Longrightarrow K_{+}$is a mixed-type structure, that is, K_{+}satisfies the above conditions:

- $K_{+}\left(X_{+}\right)=X_{+}, K_{+}\left(X_{-}\right)=X_{-}$,
- $X_{ \pm}$are the ∓ 1-eigenspaces of K_{+}^{2},
- $K_{+} \mid X_{-} \neq \mathrm{id}_{X_{-}}$.

In addition, K_{+}is compatible with h_{X} :

- $\left(\left.K_{+}\right|_{X_{+}}\right)^{*} h_{X}=h_{X} \quad\left(h_{X}\left(K_{+}\left(e_{i}\right), K_{+}\left(e_{j}\right)\right)=h_{X}\left(e_{i}, e_{j}\right)\right.$ for $\left.i, j=1,2\right)$,
- $\left(\left.K_{+}\right|_{X_{-}}\right)^{*} h_{X}=-h_{X}$ by

$$
\begin{aligned}
& h_{X}\left(K_{+}\left(e_{3}\right), K_{+}\left(e_{3}\right)\right)=h_{X}\left(e_{4}, e_{4}\right)=-h_{X}\left(e_{3}, e_{3}\right), \\
& h_{X}\left(K_{+}\left(e_{4}\right), K_{+}\left(e_{4}\right)\right)=h_{X}\left(e_{3}, e_{3}\right)=-h_{X}\left(e_{4}, e_{4}\right), \\
& h_{X}\left(K_{+}\left(e_{3}\right), K_{+}\left(e_{4}\right)\right)=h_{X}\left(e_{4}, e_{3}\right)=-h_{X}\left(e_{3}, e_{4}\right),
\end{aligned}
$$

- $X_{+} \perp X_{-}$.

Since $\left(e_{1}, K_{+}\left(e_{1}\right), e_{3}, K_{+}\left(e_{3}\right)\right)=\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \in \mathcal{B}_{X}, K_{+}$is compatible with the orientation of X.
K_{-}: a linear transformation of X defined by

$$
\left(K_{-}\left(e_{1}\right) K_{-}\left(e_{2}\right) K_{-}\left(e_{3}\right) K_{-}\left(e_{4}\right)\right)=\left(e_{1} e_{2} e_{3} e_{4}\right)\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right] .
$$

$\Longrightarrow K_{-}$is a mixed-type structure of X s.t.

- K_{-}is compatible with h_{X},
- K_{-}is not compatible with the orientation of X.
X^{\prime} : an oriented 2-dimensional subspace of X s.t. each nonzero element of X^{\prime} is space-like.
$\Longrightarrow \exists K_{+}$: a mixed-type structure of X compatible with h_{X} and the orientation of X s.t.
- $X^{\prime}=X_{+}$,
- for a nonzero vector $e_{1} \in X_{+}$, $\left(e_{1}, K_{+}\left(e_{1}\right)\right)$ gives the orientation of $X^{\prime}=X_{+}$.
$\exists K_{-}$: a mixed-type structure of X compatible with h_{X} and not compatible with the orientation of X s.t.
- $X^{\prime}=X_{+}$,
- for a nonzero vector $e_{1} \in X_{+}$, $\left(e_{1}, K_{-}\left(e_{1}\right)\right)$ gives the orientation of $X^{\prime}=X_{+}$.
$X^{\prime \prime}$: an oriented 2-dimensional subspace of X which has a time-like vector of X.
$\Longrightarrow \exists K_{+}$: a mixed-type structure of X compatible with h_{X} and the orientation of X s.t.
- $X^{\prime \prime}=X_{-}$,
- for a space-like vector $e_{3} \in X_{-}$, $\left(e_{3}, K_{+}\left(e_{3}\right)\right)$ gives the orientation of $X^{\prime \prime}=X_{-}$.
$\exists K_{-}$: a mixed-type structure of X compatible with h_{X} and not compatible with the orientation of X s.t.
- $X^{\prime \prime}=X_{-}$,
- for a space-like vector $e_{3} \in X_{-}$, $\left(e_{3},-K_{-}\left(e_{3}\right)\right)$ gives the orientation of $X^{\prime \prime}=X_{-}$.

2. Space-like surfaces in Lorentzian 4-manifolds

M : a manifold,

E : an oriented vector bundle over M of rank 4.
h : an indefinite metric of E with signature $(3,1)$,
∇ : a connection of E s.t. $\nabla h=0$.
\hat{h} : the metric of $\bigwedge^{2} E$ induced by h.
$\Longrightarrow \hat{h}$ has signature $(3,3)$.
$\hat{\nabla}$: the connection of $\bigwedge^{2} E$ induced by ∇.
$\Longrightarrow \hat{\nabla} \hat{h}=0$.
E^{\prime} : an oriented subbundle of E of rank 2 s.t. each nonzero element of each fiber of E is space-like.
Then E^{\prime} defines mixed-type structures $K_{ \pm}$of E, i.e., sections of $\operatorname{End}(E)$ which give mixed-type structures of the fiber E_{a} of E defined by the fiber E_{a}^{\prime} of E^{\prime} for each $a \in M$.

Mixed-type structures $K_{ \pm}$of E defined by E^{\prime} give light-like sections $\Theta_{ \pm}$of $\Lambda^{2} E$ by ($\sharp 1$) and ($\sharp 2$).
M : a Riemann surface,
N : an oriented 4-dimensional Lorentzian manifold,
$F: M \longrightarrow N:$ a space-like and conformal immersion.
$E:=F^{*} T N$.
We see that F gives a subbundle E^{\prime} of E by $E^{\prime}=F^{*}(d F(T M))$.
$K_{F, \pm}$: the mixed-type structures of E given by E^{\prime}.
We call each of light-like sections $\Theta_{F, \pm}$ of $\bigwedge^{2} E$ given by $K_{F, \pm}$ a lift of F.
$w=u+\sqrt{-1} v$: a local complex coordinate of M,
$T_{1}:=d F\left(\frac{\partial}{\partial u}\right), T_{2}:=d F\left(\frac{\partial}{\partial v}\right)$.
Suppose that F has zero mean curvature vector.
$\Longrightarrow \nabla_{T_{1}} T_{1}+\nabla_{T_{2}} T_{2}=0$.

- We say that F is isotropic
if we can choose w s.t.

$$
\begin{aligned}
& h\left(\sigma\left(T_{1}, T_{1}\right), \sigma\left(T_{1}, T_{1}\right)\right)=-h\left(\sigma\left(T_{1}, T_{2}\right), \sigma\left(T_{1}, T_{2}\right)\right), \\
& h\left(\sigma\left(T_{1}, T_{1}\right), \sigma\left(T_{1}, T_{2}\right)\right)=0
\end{aligned}
$$

- We say that F is strictly isotropic
if we can choose w s.t. $K_{F,+} \sigma\left(T_{1}, T_{1}\right)=\sigma\left(T_{1}, T_{2}\right)$.
Remark If F is strictly isotropic, then F is isotropic.

$$
\begin{aligned}
& \Psi:=d F(\partial / \partial w) . \\
& \Longrightarrow \bar{\nabla}_{\partial / \partial w}(\Psi d w)=\sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right) d w .
\end{aligned}
$$

We can define a complex quartic differential Q on M by

$$
Q:=h\left(\sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right), \sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right)\right) d w \otimes d w \otimes d w \otimes d w .
$$

If N is a 4 -dimensional Lorentzian space form, then we see by the equations of Codazzi that Q is holomorphic.

Theorem

N : an oriented 4-dimensional Lorentzian manifold,
M: a Riemann surface,
$F: M \longrightarrow N:$ a space-like and conformal immersion with zero mean curvature vector.

Then F is isotropic if and only if one the following holds:
(a) $Q \equiv 0$;
(b) F is strictly isotropic, by rechoosing the orientation of N if necessary.

Proof

ν_{1}, ν_{2} : normal vector fields of F s.t.

$$
h\left(\nu_{1}, \nu_{1}\right)=1, \quad h\left(\nu_{2}, \nu_{2}\right)=-1, \quad h\left(\nu_{1}, \nu_{2}\right)=0 .
$$

We represent $\sigma\left(T_{k}, T_{l}\right)$ as $\sigma\left(T_{k}, T_{l}\right)=c_{k l}^{1} \nu_{1}+c_{k l}^{2} \nu_{2}$.
Suppose that F is isotropic.
Then we obtain $\left(\left(c_{11}^{1}\right)^{2}-\left(c_{11}^{2}\right)^{2}\right)\left(\left(c_{12}^{1}\right)^{2}-\left(c_{11}^{2}\right)^{2}\right)=0$.

- If $\left(c_{11}^{1}\right)^{2}=\left(c_{11}^{2}\right)^{2}$, then we have $\left(c_{11}^{2}, c_{12}^{2}\right)= \pm\left(c_{11}^{1}, c_{12}^{1}\right)$, i.e., $Q \equiv 0$.
- If $\left(c_{12}^{1}\right)^{2}=\left(c_{11}^{2}\right)^{2}$, then we have $\left(c_{11}^{2}, c_{12}^{2}\right)= \pm\left(c_{12}^{1}, c_{11}^{1}\right)$ and then F is strictly isotropic, by rechoosing the orientation of N if necessary.

If either $Q \equiv 0$ or F is strictly isotropic, then F is isotropic.

Theorem N, M, F : as in the previous theorem.

Then the following are mutually equivalent:
(a) $Q \equiv 0$;
(b) $\hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F,+}, \hat{\nabla}_{T_{k}} \Theta_{F,+}\right)=0$,

$$
\begin{aligned}
& \hat{h}\left(\hat{\nabla}_{T_{k}}^{n} \Theta_{F,-}, \hat{\nabla}_{T_{k}}^{n} \Theta_{F,-}\right)=0 \\
& \hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F,+}, \hat{\nabla}_{T_{k}} \Theta_{F,-}\right)=0 \text { for } k=1,2 ;
\end{aligned}
$$

(c) the second fundamental form is light-like or zero.

Remark

Suppose that F is strictly isotropic.
Then we obtain $\hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F,+}, \hat{\nabla}_{T_{k}} \Theta_{F,--}\right)=0$,
while we do not necessarily obtain $\hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F, \varepsilon}, \hat{\nabla}_{T_{k}} \Theta_{F, \varepsilon}\right)=0$ for $\varepsilon \in\{+,-\}$.

Remark

N : an oriented 4-dimensional Riemannian or neutral manifold, $F: M \longrightarrow N:$ a space-like and conformal immersion with zero mean curvature vector.
Then by the bundle decomposition $\bigwedge^{2} E=\bigwedge_{+}^{2} E \oplus \bigwedge_{-}^{2} E$ with $E=F^{*} T N$, we have $\hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F,+}, \hat{\nabla}_{T_{k}} \Theta_{F,--}\right)=0$.
We see that F is strictly isotropic if and only if a suitable one of $\Theta_{F, \pm}$ is horizontal.

Remark

N : an oriented 4-dimensional neutral manifold,
M : a Lorentz surface,
$F: M \longrightarrow N:$ a time-like and conformal immersion with zero mean curvature vector.
Then we have analogues of results mentioned in the previous remark. In addition, if F is isotropic and if none of the covariant derivatives of $\Theta_{F, \pm}$ become zero, then the covariant derivatives are light-like and the second fundamental form of F is light-like or zero.

3. Time-like surfaces in Lorentzian 4-manifolds

M : a Lorentz surface,
N : an oriented 4-dimensional Lorentzian manifold,
$F: M \longrightarrow N:$ a time-like and conformal immersion,
$E:=F^{*} T N$.
We see that F gives a subbundle $E^{\prime \prime}$ of E by $E^{\prime \prime}=F^{*}(d F(T M))$.
E^{\prime} : the subbundle of E given by the orthogonal complement of $E^{\prime \prime}$,
$K_{F, \pm}$: the mixed-type structure of E given by E^{\prime}.
We call each of light-like sections $\Theta_{F, \pm}$ of $\bigwedge^{2} E$ given by $K_{F, \pm}$ a lift of F.
$w=u+j v:$ a local paracomplex coordinate of M,
$T_{1}:=d F\left(\frac{\partial}{\partial u}\right), T_{2}:=d F\left(\frac{\partial}{\partial v}\right)$.
Suppose that F has zero mean curvature vector.
$\Longrightarrow \nabla_{T_{1}} T_{1}=\nabla_{T_{2}} T_{2}$.

- We say that F is isotropic
if we can choose w s.t.

$$
\begin{aligned}
& h\left(\sigma\left(T_{1}, T_{1}\right), \sigma\left(T_{1}, T_{1}\right)\right)=h\left(\sigma\left(T_{1}, T_{2}\right), \sigma\left(T_{1}, T_{2}\right)\right), \\
& h\left(\sigma\left(T_{1}, T_{1}\right), \sigma\left(T_{1}, T_{2}\right)\right)=0
\end{aligned}
$$

- We say that F is strictly isotropic if we can choose w s.t. $K_{F,+} \sigma\left(T_{1}, T_{1}\right)=\sigma\left(T_{1}, T_{2}\right)$.

Remark If F is strictly isotropic, then F is isotropic.
$\Psi:=d F\left(\frac{\partial}{\partial w}\right)=\frac{1}{2}\left(T_{1}+j T_{2}\right)$.
$\Longrightarrow \bar{\nabla}_{\partial / \partial w}(\Psi d w)=\sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right) d w$.
We can define a complex quartic differential Q on M by

$$
Q:=h\left(\sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right), \sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right)\right) d w \otimes d w \otimes d w \otimes d w
$$

We see that $Q \equiv 0$ if and only if F is totally geodesic.
If N is a 4 -dimensional Lorentzian space form, then we see by the equations of Codazzi that Q is holomorphic.

Theorem

N : an oriented 4-dimensional Lorentzian manifold,
M: a Lorentz surface,
$F: M \longrightarrow N:$ a time-like and conformal immersion with zero mean curvature vector.

Then F is isotropic if and only if F is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark

Suppose that F is strictly isotropic.
Then we obtain $\hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F,+}, \hat{\nabla}_{T_{k}} \Theta_{F,-}\right)=0$,
while we do not necessarily obtain $\hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F, \varepsilon}, \hat{\nabla}_{T_{k}} \Theta_{F, \varepsilon}\right)=0$ for $\varepsilon \in\{+,-\}$. If $\hat{h}\left(\hat{\nabla}_{T_{k}} \Theta_{F, \varepsilon}, \hat{\nabla}_{T_{k}} \Theta_{F, \varepsilon^{\prime}}\right)=0$ for $k=1,2$ and $\varepsilon, \varepsilon^{\prime} \in\{+,-\}$, then we have $\sigma\left(T_{1}, T_{2}\right)= \pm \sigma\left(T_{1}, T_{1}\right)$.

4. The images of the lifts by the curvature tensor

R : the curvature tensor of ∇ :

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

\hat{R} : the curvature tensor of $\hat{\nabla}$.
$\Longrightarrow \hat{R}\left(X_{1}, X_{2}\right)\left(Y_{1} \wedge Y_{2}\right)=\left(R\left(X_{1}, X_{2}\right) Y_{1}\right) \wedge Y_{2}+Y_{1} \wedge R\left(X_{1}, X_{2}\right) Y_{2}$.
M : a Riemann surface,
$F: M \longrightarrow N:$ a space-like and conformal immersion,
$\left(e_{1}, e_{2}\right)$: a local ordered orthonormal frame field of $T M$ giving the orientation of M.

Theorem (A, 2020)

$F: M \longrightarrow N:$ a space-like and conformal immersion with zero mean curvature vector s.t. $\hat{R}\left(e_{1}, e_{2}\right) \Theta_{F, \pm}=0$.
Then the following hold:
(a) Q is holomorphic;
(b) if $Q \equiv 0$ and if $d \omega^{\perp}=0$ with $\omega^{\perp}:=h\left(\nabla e_{3}, e_{4}\right)$,
then F is strictly isotropic, by rechoosing the orientation of N if necessary;
(c) if F is strictly isotropic and if F is not totally geodesic on any open set of M, then the connection forms $\omega:=h\left(\nabla e_{1}, e_{2}\right)$ and ω^{\perp} satisfy $d * \omega=0$ and $d \omega^{\perp}=0$ for a suitable $\left(e_{1}, e_{2}\right)$, and the 2nd fundamental form of F is constructed by a solution of an over-determined system s.t. the compatibility condition is given by $d * \omega=0$ and $d \omega^{\perp}=0$.

Proof of (b) of the theorem

Suppose $Q \equiv 0$.
\Longrightarrow The shape operator of a light-like normal vector field ν of F vanishes.
U : a neighborhood of a point of M where the 2nd fundamental form does not vanish,
(\tilde{u}, \tilde{v}) : local coordinates on U s.t. $\partial / \partial \tilde{u}, \partial / \partial \tilde{v}$ are in principal directions of F w.r.t. a light-like normal vector field ι satisfying $h(\iota, \nu)=-1$. The induced metric g on M by F is represented as $g=\tilde{A}^{2} d \tilde{u}^{2}+\tilde{B}^{2} d \tilde{v}^{2}$.

Since $\hat{R}\left(e_{1}, e_{2}\right) \Theta_{F, \pm}=0$, we have $\left(R\left(e_{1}, e_{2}\right) e_{i}\right)^{\perp}=0 \quad(i=1,2)$.
Since $d \omega^{\perp}=0$, we can find a function γ defined on a neighborhood of each point of M s.t. $\omega^{\perp}=-d \gamma$.
In addition, we obtain $\gamma_{\tilde{u}}=h\left(\nabla_{\partial / \partial \tilde{u}} \iota, \nu\right)$ and $\gamma_{\tilde{v}}=h\left(\nabla_{\partial / \partial \tilde{v}} \iota, \nu\right)$.
k : a positive-valued function on U s.t. k and $-k$ are principal curvatures of F w.r.t. ι.

Then using $\left(R\left(e_{1}, e_{2}\right) e_{i}\right)^{\perp}=0, \gamma_{\tilde{u}}=h\left(\nabla_{\partial / \partial \tilde{u}^{L}}, \nu\right)$ and $\gamma_{\tilde{v}}=h\left(\nabla_{\partial / \partial \tilde{u}}, \nu\right)$, we obtain $\left(k e^{\gamma} \tilde{A}^{2}\right)_{\tilde{v}}=0$ and $\left(k e^{\gamma} \tilde{B}^{2}\right) \tilde{u}=0$, which mean $k e^{\gamma} \tilde{A}^{2}=\phi^{2}$ and $k e^{\gamma} \tilde{B}^{2}=\psi^{2}$ for positive-valued functions $\phi=\phi(\tilde{u}), \psi=\psi(\tilde{u})$.
u, v : functions of one variable \tilde{u}, \tilde{v} respectively s.t. $\frac{d u}{d \tilde{u}}=\phi, \frac{d v}{d \tilde{v}}=\psi$.
$\Longrightarrow(u, v)$ are isothermal coordinates of M w.r.t. g and $w=u+\sqrt{-1} v$ is a local complex coordinate of M.
A_{ι} : the shape operator of F w.r.t. ι.
Then we can suppose

$$
A_{\iota}\left(\frac{\partial}{\partial u}\right)=k \cdot d F\left(\frac{\partial}{\partial u}\right), \quad A_{\iota}\left(\frac{\partial}{\partial v}\right)=-k \cdot d F\left(\frac{\partial}{\partial v}\right) .
$$

$\hat{w}=\hat{u}+\sqrt{-1} \hat{v}$: a local complex coordinate of M given by

$$
\hat{w}=\exp (\sqrt{-1} \pi / 8) w=e^{\sqrt{-1} \theta} w \quad\left(\theta=\frac{\pi}{8}\right)
$$

$\cos \frac{\pi}{8}=\frac{\sqrt{2-\sqrt{2}}}{2}(\sqrt{2}+1)$,
$\sin \frac{\pi}{8}=\frac{\sqrt{2-\sqrt{2}}}{2}$.

Since

$$
\begin{aligned}
& \frac{\partial}{\partial u}=\frac{\sqrt{2-\sqrt{2}}}{2}\left((\sqrt{2}+1) \frac{\partial}{\partial \hat{u}}+\frac{\partial}{\partial \hat{v}}\right) \\
& \frac{\partial}{\partial v}=\frac{\sqrt{2-\sqrt{2}}}{2}\left(-\frac{\partial}{\partial \hat{u}}+(\sqrt{2}+1) \frac{\partial}{\partial \hat{v}}\right)
\end{aligned}
$$

we obtain

$$
(-4-2 \sqrt{2}) A_{\iota}\left(\frac{\partial}{\partial \hat{u}}\right)=-2(\sqrt{2}+1) k\left(\frac{\partial}{\partial \hat{u}}+\frac{\partial}{\partial \hat{v}}\right)
$$

which means $\sigma\left(\hat{T}_{1}, \hat{T}_{1}\right)=\sigma\left(\hat{T}_{1}, \hat{T}_{2}\right)$ and therefore F is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark

$F: M \longrightarrow N$: a space-like and conformal immersion with zero mean

$$
\text { curvature vector s.t. } \hat{R}\left(e_{1}, e_{2}\right) \Theta_{F, \pm}=0, d \omega^{\perp}=0
$$

Then we see by the above theorem that F is isotropic if and only if F is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark

Let N be a 4-dimensional Lorentzian space form. Then $\hat{R}\left(e_{1}, e_{2}\right) \Theta_{F, \pm}=0$. In addition, by $Q \equiv 0$, we obtain $d \omega^{\perp}=0$.
In the next section, we will prove that if F is strictly isotropic, then $Q \equiv 0$.
M : a Lorentz surface,
$F: M \longrightarrow N$: a time-like and conformal immersion,
$\left(e_{3}, e_{4}\right)$: a local ordered pseudo-orthonormal frame field of $T M$ giving the orientation of M.

Suppose that e_{4} is time-like.
$\left(\omega^{3}, \omega^{4}\right)$: the dual frame field of $\left(e_{3}, e_{4}\right)$,
$*$: a linear transformation of $T_{a}^{*} M$ defined by $* \omega_{3}=\omega_{4}, * \omega_{4}=\omega_{3}$.

Theorem

$F: M \longrightarrow N:$ a time-like and conformal immersion with zero mean curvature vector s.t. $\hat{R}\left(e_{3}, e_{4}\right) \Theta_{F,+}=0$.
Then the following hold:
(a) Q is holomorphic;
(b) the 2nd fundamental form of F is constructed by solutions of two families of systems of ordinary differential equations defined along integral curves of light-like vector fields $e_{3} \pm e_{4}$ and given by the connection forms $\omega:=h\left(\nabla e_{3}, e_{4}\right), \omega^{\perp}:=h\left(\nabla e_{1}, e_{2}\right)$;
(c) if F is strictly isotropic and if F is not totally geodesic on any open set of M, then ω, ω^{\perp} satisfy $d * \omega=0$ and $d \omega^{\perp}=0$ for a suitable $\left(e_{3}, e_{4}\right)$, and the second fundamental form of F is constructed by a solution of an over-determined system such that the compatibility condition is given by $d * \omega=0$ and $d \omega^{\perp}=0$.
5. Surfaces with zero mean curvature vector in 4-dimensional Lorentzian space forms
N : a 4-dimensional Lorentzian space form, L_{0} : the constant sectional curvature of N.

- $L_{0}=0 \Longrightarrow N=E_{1}^{4}=\left(\mathbb{R}^{4},\langle,\rangle_{3,1}\right)$,

$$
\langle x, y\rangle_{3,1}=x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}-x^{4} y^{4}
$$

$$
\left(x=\left(x^{1}, x^{2}, x^{3}, x^{4}\right), y=\left(y^{1}, y^{2}, y^{3}, y^{4}\right)\right) .
$$

- $L_{0}>0 \Longrightarrow N=S_{1}^{4}\left(L_{0}\right)=\left\{x \in E_{1}^{5} \left\lvert\,\langle x, x\rangle_{4,1}=\frac{1}{L_{0}}\right.\right\}$.
- $L_{0}<0 \Longrightarrow N=H_{1}^{4}\left(L_{0}\right)=\left\{x \in E_{2}^{5} \left\lvert\,\langle x, x\rangle_{3,2}=\frac{1}{L_{0}}\right.\right\}$.
M : a Riemann surface,
$F: M \longrightarrow N:$ a space-like and conformal immersion with zero mean curvature vector.

Suppose that F is strictly isotropic.
$w=u+\sqrt{-1} v$: a local complex coordinate of M s.t.

$$
\begin{array}{r}
K_{F,+} \sigma\left(T_{1}, T_{1}\right)=\sigma\left(T_{1}, T_{2}\right) \\
\text { for } T_{1}:=d F\left(\frac{\partial}{\partial u}\right), T_{2}:=d F\left(\frac{\partial}{\partial v}\right) .
\end{array}
$$

g : the induced metric by F.
We represent g as $g=e^{2 \alpha} d w d \bar{w}$.
N_{1}, N_{2} : normal vector fields of F s.t.

$$
h\left(N_{1}, N_{1}\right)=e^{2 \alpha}, \quad h\left(N_{2}, N_{2}\right)=-e^{2 \alpha}, \quad h\left(N_{1}, N_{2}\right)=0 .
$$

$\Longrightarrow \exists \mu_{1}, \mu_{2}, \beta_{1}, \beta_{2}$ s.t.

$$
\left.\begin{array}{l}
{\left[\begin{array}{llll}
D_{T_{1}} F & D_{T_{1}} T_{1} & D_{T_{1}} T_{2} & D_{T_{1}} N_{1} \\
D_{T_{1}} N_{2}
\end{array}\right]=\left[\begin{array}{llll}
F & T_{1} & T_{2} & N_{1}
\end{array} N_{2}\right.}
\end{array}\right] S,
$$

where

$$
S:=\left[\begin{array}{ccccc}
0 & -L_{0} e^{2 \alpha} & 0 & 0 & 0 \\
1 & \alpha_{u} & \alpha_{v} & -\mu_{1} & \mu_{2} \\
0 & -\alpha_{v} & \alpha_{u} & -\mu_{2} & \mu_{1} \\
0 & \mu_{1} & \mu_{2} & \alpha_{u} & \beta_{1} \\
0 & \mu_{2} & \mu_{1} & \beta_{1} & \alpha_{u}
\end{array}\right], T:=\left[\begin{array}{ccccc}
0 & 0 & -L_{0} e^{2 \alpha} & 0 & 0 \\
0 & \alpha_{v} & -\alpha_{u} & -\mu_{2} & \mu_{1} \\
1 & \alpha_{u} & \alpha_{v} & \mu_{1} & -\mu_{2} \\
0 & \mu_{2} & -\mu_{1} & \alpha_{v} & \beta_{2} \\
0 & \mu_{1} & -\mu_{2} & \beta_{2} & \alpha_{v}
\end{array}\right] .
$$

Since $S_{v}-T_{u}=S T-T S$, we obtain

- $\alpha_{u u}+\alpha_{v v}=-L_{0} e^{2 \alpha} \quad$ (the equation of Gauss),
- $\left(e^{\alpha} \mu_{p}\right)_{u}=-e^{\alpha} \mu_{q} \beta_{1},\left(e^{\alpha} \mu_{p}\right)_{v}=-e^{\alpha} \mu_{q} \beta_{2}$ for $\{p, q\}=\{1,2\}$ (the equations of Codazzi),
- $\left(\beta_{1}\right)_{v}-\left(\beta_{2}\right)_{u}=2\left(\mu_{1}^{2}-\mu_{2}^{2}\right) \quad$ (the equation of Ricci).

Noticing $\left(e^{\alpha} \mu_{p}\right)_{u v}=\left(e^{\alpha} \mu_{p}\right)_{v u}$, we obtain $\mu_{2}= \pm \mu_{1}$ and $\left(\beta_{1}\right)_{v}=\left(\beta_{2}\right)_{u}$. From $\mu_{2}= \pm \mu_{1}$, we obtain $Q \equiv 0$.
From $\left(\beta_{1}\right)_{v}=\left(\beta_{2}\right)_{u}$, we can find a function ϕ s.t. $\phi_{u}=\beta_{1}, \phi_{v}=\beta_{2}$.
Then by the equations of Codazzi, we can find a constant C s.t. $\mu_{1}=C e^{-\alpha \mp \phi}$.

Theorem (A, 2020)

N: a 4-dimensional Lorentzian space form,
L_{0} : the constant sectional curvature of N,
M: a Riemann surface.
(a) For a Hermitian metric $g=e^{2 \alpha} d w d \bar{w}$ on M with constant curvature L_{0} and a function ϕ on M,
$\exists F$: a space-like and conformal immersion of a neighborhood of each point of M into N with zero mean curvature vector satisfying

- $Q \equiv 0$;
- F is strictly isotropic, by rechoosing the orientation of N if necessary.
Such an immersion is uniquely determined up to an isometry of N.
(b) $F: M \longrightarrow N:$ a space-like and conformal immersion with zero mean curvature vector.

If F is strictly isotropic, then $Q \equiv 0$.

Remark

N : as in the above theorem,
$F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector.
$\Longrightarrow \bullet \hat{R}\left(e_{1}, e_{2}\right) \Omega_{F, \pm}=0$,

- $Q \equiv 0$ means $d \omega^{\perp}=0$.

Therefore F satisfies $Q \equiv 0$ if and only if
F is strictly isotropic, by rechoosing the orientation of N if necessary.
This means that the following are mutually equivalent:

- F is isotropic;
- F is strictly isotropic, by rechoosing the orientation of N if necessary;
- $Q \equiv 0$.

Example

M : a Riemann surface, $\iota: M \longrightarrow E^{3}:$ a minimal conformal immersion of M into E^{3}. $\Longrightarrow \iota$ is Willmore and $\tilde{Q} \equiv 0$.
$L^{+}:=\left\{x=\left(x^{1}, x^{2}, x^{3}, x^{4}, x^{5}\right) \in E_{1}^{5} \mid\langle x, x\rangle_{4,1}=0, x^{5}>0\right\}$.
We consider E^{3} to be a subset $L^{+} \cap\left\{x^{5}=x^{1}+1\right\}$ of L^{+}and therefore we consider ι to be an L^{+}-valued function.
γ : the conformal Gauss map of ι,
$\operatorname{Reg}(\iota)$: the set of non-umbilical points of ι.
$\left.\Longrightarrow \bullet \gamma\right|_{\operatorname{Reg}(\iota)}$ has zero mean curvature vector,

- the holomorphic quartic differential Q on $\operatorname{Reg}(\iota)$ defined by $F=\left.\gamma\right|_{\operatorname{Reg}(\iota)}$ vanishes.
$w=u+\sqrt{-1} v$: a local complex coordinate of $\operatorname{Reg}(\iota)$.
We can suppose
- $\partial / \partial u, \partial / \partial v$ are in the principal directions of ι,
- $d \gamma\left(\frac{\partial}{\partial u}\right)=-\varepsilon d \iota\left(\frac{\partial}{\partial u}\right), d \gamma\left(\frac{\partial}{\partial v}\right)=\varepsilon d \iota\left(\frac{\partial}{\partial v}\right)$,
where $\varepsilon:=\sqrt{-K}$ and K is the Gaussian curvature of ι.
Therefore ι is a light-like normal vector field of $\left.\gamma\right|_{\operatorname{Reg}(\iota)}$ in $S_{1}^{4}=S_{1}^{4}(1)$.
A_{ι} : the shape operator of $\left.\gamma\right|_{\operatorname{Reg}(\iota)}$ w.r.t. ι.
$\Longrightarrow A_{\iota}\left(\frac{\partial}{\partial u}\right)=\frac{1}{\varepsilon} d \gamma\left(\frac{\partial}{\partial u}\right), A_{\iota}\left(\frac{\partial}{\partial v}\right)=-\frac{1}{\varepsilon} d \gamma\left(\frac{\partial}{\partial v}\right)$.
Therefore by $\hat{w}=\exp (\sqrt{-1} \pi / 8) w$, we see that $F=\left.\gamma\right|_{\operatorname{Reg}(\iota)}$ is strictly isotropic, by rechoosing the orientation of S_{1}^{4} if necessary.

Remark

$\iota: M \longrightarrow S^{3}:$ a conformal and Willmore immersion,
$\gamma: M \longrightarrow S_{1}^{4}$: the conformal Gauss map of ι.
$\Longrightarrow \bullet \iota$ is a light-like normal vector field of $\left.\gamma\right|_{\operatorname{Reg}(\iota)}$,

- $\left.\gamma\right|_{\operatorname{Reg}(\iota)}$ has zero mean curvature vector.

Suppose that the holomorphic quartic differential Q on $\operatorname{Reg}(\iota)$ defined by $\left.\gamma\right|_{\operatorname{Reg}(\iota)}$ vanishes.
\Longrightarrow A light-like normal vector field ν of $\left.\gamma\right|_{\operatorname{Reg}(\iota)}$ s.t. $\langle\iota, \nu\rangle_{4,1}=-1$ is contained in a constant direction in E_{1}^{5}
x_{0} : a point of S^{3} determined by ν
\Longrightarrow The image of $\iota(M) \backslash\left\{x_{0}\right\}$ by the stereographic projection $\mathrm{pr}: S^{3} \backslash\left\{x_{0}\right\} \longrightarrow E^{3}$ from x_{0} is a minimal surface in E^{3}.

Bryant showed that a Willmore sphere in S^{3} gives a complete minimal surface in E^{3} with finite total curvature s.t. all the ends are embedded and planar.

Based on this result, Kusner constructed complete minimal surfaces $\Sigma_{2 k+1}$ $(k \in \mathbb{N})$ in E^{3} given by punctured real projective planes s.t. each $\Sigma_{2 k+1}$ has $2 k+1$ planar ends, and inverting them, he gave examples of Willmore projective planes

Referring to these minimal surfaces, Hamada-Kato constructed complete minimal surfaces $\Sigma_{2 k+2}(k \in \mathbb{N})$ in E^{3} given by punctured real projective planes s.t. each $\Sigma_{2 k+2}$ has $2 k+1$ catenoidal ends and one planar end.
M : a Lorentz surface,
$F: M \longrightarrow N:$ a time-like and conformal immersion with zero mean curvature vector.

Suppose that F is strictly isotropic.
$w=u+j v$: a local paracomplex coordinate of M s.t.

$$
\begin{array}{r}
K_{F,+} \sigma\left(T_{1}, T_{1}\right)=\sigma\left(T_{1}, T_{2}\right) \\
\text { for } T_{1}:=d F\left(\frac{\partial}{\partial u}\right), T_{2}:=d F\left(\frac{\partial}{\partial v}\right)
\end{array}
$$

g : the induced metric by F.
We represent g as $g=e^{2 \alpha} d w d \bar{w}$.
N_{1}, N_{2} : normal vector fields of F s.t. $h\left(N_{p}, N_{q}\right)=\delta_{p q} e^{2 \alpha}$.
$\Longrightarrow \exists \mu_{1}, \mu_{2}, \beta_{1}, \beta_{2}$ s.t.

$$
\begin{aligned}
& {\left[D_{T_{1}} F D_{T_{1}} T_{1} D_{T_{1}} T_{2} D_{T_{1}} N_{1} D_{T_{1}} N_{2}\right]=\left[\begin{array}{llll}
F & T_{1} & T_{2} & N_{1}
\end{array} N_{2}\right] S,} \\
& {\left[\begin{array}{c}
D_{2}
\end{array} D_{T_{2}} T_{1} D_{T_{2}} T_{2} D_{T_{2}} N_{1} D_{T_{2}} N_{2}\right]=\left[\begin{array}{llll}
F & T_{1} & T_{2} & N_{1}
\end{array} N_{2}\right] T,}
\end{aligned}
$$

where

$$
S:=\left[\begin{array}{ccccc}
0 & -L_{0} e^{2 \alpha} & 0 & 0 & 0 \\
1 & \alpha_{u} & \alpha_{v} & -\mu_{1} & -\mu_{2} \\
0 & \alpha_{v} & \alpha_{u} & -\mu_{2} & \mu_{1} \\
0 & \mu_{1} & -\mu_{2} & \alpha_{u} & -\beta_{1} \\
0 & \mu_{2} & \mu_{1} & \beta_{1} & \alpha_{u}
\end{array}\right], T:=\left[\begin{array}{ccccc}
0 & 0 & L_{0} e^{2 \alpha} & 0 & 0 \\
0 & \alpha_{v} & \alpha_{u} & \mu_{2} & -\mu_{1} \\
1 & \alpha_{u} & \alpha_{v} & \mu_{1} & \mu_{2} \\
0 & -\mu_{2} & \mu_{1} & \alpha_{v} & -\beta_{2} \\
0 & \mu_{1} & \mu_{2} & \beta_{2} & \alpha_{v}
\end{array}\right] .
$$

Since $S_{v}-T_{u}=S T-T S$, we obtain

- $\alpha_{u u}-\alpha_{v v}=-L_{0} e^{2 \alpha} \quad$ (the equation of Gauss),
- $\left(e^{\alpha} \mu_{p}\right)_{u}=(-1)^{p+1} e^{\alpha} \mu_{q} \beta_{1},\left(e^{\alpha} \mu_{p}\right)_{v}=(-1)^{p+1} e^{\alpha} \mu_{q} \beta_{2}$ for $\{p, q\}=\{1,2\}$ (the equations of Codazzi),
- $\left(\beta_{1}\right)_{v}-\left(\beta_{2}\right)_{u}=2\left(\mu_{1}^{2}+\mu_{2}^{2}\right) \quad$ (the equation of Ricci).

Noticing $\left(e^{\alpha} \mu_{p}\right)_{u v}=\left(e^{\alpha} \mu_{p}\right)_{v u}$, we obtain $\mu_{1}=\mu_{2}=0$ and $\left(\beta_{1}\right)_{v}=\left(\beta_{2}\right)_{u}$.

Theorem (A, 2020)

N: a 4-dimensional Lorentzian space form,
M: a Lorentz surface,
$F: M \longrightarrow N:$ a time-like and conformal immersion with zero mean curvature vector.
If F is isotropic, then F is totally geodesic.

THANK YOU FOR YOUR ATTENTION!

