Isotropicity of surfaces in Lorentzian 4-manifolds with zero mean curvature vector

Naoya Ando (Kumamoto University)

Contents

- 1. Mixed-type structures of 4-dimensional Lorentzian vector spaces
- 2. Space-like surfaces in Lorentzian 4-manifolds
- 3. Time-like surfaces in Lorentzian 4-manifolds
- 4. The images of the lifts by the curvature tensor
- 5. Surfaces with zero mean curvature vector in 4-dimensional Lorentzian space forms

1. Mixed-type structures of 4-dimensional Lorentzian vector spaces

X: an oriented 4-dimensional vector space,

 h_X : a symmetric and indefinite bilinear form of X with signature (3,1), (e_1, e_2, e_3, e_4) : an ordered basis of X giving the orientation of X s.t.

$$h_X(e_i, e_j) = 0 \quad (i \neq j),$$

 $h_X(e_i, e_i) = 1 \quad (i = 1, 2, 3), \quad h_X(e_4, e_4) = -1.$

 \mathcal{B}_X : the set of ordered bases of X as (e_1, e_2, e_3, e_4) .

$$\theta_{ij} := e_i \wedge e_j,$$

 \hat{h}_X : a bilinear form of $\bigwedge^2 X$ defined by

$$\hat{h}_X(\theta_{ij}, \theta_{kl}) = h_X(e_i, e_k)h_X(e_j, e_l) - h_X(e_i, e_l)h_X(e_j, e_k).$$

$$\Theta_{\pm,1} := \frac{1}{\sqrt{2}}(\theta_{12} \pm \theta_{34}), \ \Theta_{\pm,2} := \frac{1}{\sqrt{2}}(\theta_{13} \pm \theta_{42}), \ \Theta_{\pm,3} := \frac{1}{\sqrt{2}}(\theta_{14} \pm \theta_{23}).$$

These are light-like and we have

$$\hat{h}_{X}(\Theta_{\varepsilon,i},\Theta_{\varepsilon',j}) = 0 \quad (\varepsilon, \varepsilon' \in \{+, -\}, \ 1 \le i < j \le 3),$$

$$\hat{h}_{X}(\Theta_{+,i},\Theta_{-,i}) = 1 \quad (i = 1, 2), \quad \hat{h}_{X}(\Theta_{+,3},\Theta_{-,3}) = -1.$$

We see that \hat{h}_X is a symmetric and indefinite bilinear form of $\bigwedge^2 X$ with signature (3,3).

Remark

• If h_X is positive-definite, then noticing a double covering $SO(4) \longrightarrow SO(3) \times SO(3)$, we have a decomposition $\bigwedge^2 X = \bigwedge^2_+ X \oplus \bigwedge^2_- X$, where $\bigwedge^2_+ X$, $\bigwedge^2_- X$ are subspaces of $\bigwedge^2 X$ with dim $\bigwedge^2_\pm X = 3$ s.t.

$$\bigwedge_{+}^{2} X = \langle E_{+,1}, E_{+,2}, E_{+,3} \rangle, \quad \bigwedge_{-}^{2} X = \langle E_{-,1}, E_{-,2}, E_{-,3} \rangle.$$

• If h_X has signature (2,2), then noticing a double covering $SO_0(2,2) \longrightarrow SO_0(1,2) \times SO_0(1,2)$, we have $\bigwedge^2 X = \bigwedge^2_+ X \oplus \bigwedge^2_- X$, where $\bigwedge^2_+ X$, $\bigwedge^2_- X$ are subspaces of $\bigwedge^2 X$ with dim $\bigwedge^2_+ X = 3$ s.t.

$$\bigwedge_{+}^{2} X = \langle E_{-,1}, E_{+,2}, E_{+,3} \rangle, \quad \bigwedge_{-}^{2} X = \langle E_{+,1}, E_{-,2}, E_{-,3} \rangle.$$

K: a linear transformation of X.

We call K a mixed-type structure of X

if K has invariant subspaces X_{\pm} of X with dim $X_{\pm} = 2$ s.t.

- X_{\pm} are eigenspaces of K^2 so that ∓ 1 are the corresponding eigenvalues, respectively,
- $K|_{X_{-}}$ is not the identity map.

K: a mixed-type structure of X.

We say that K is compatible with h_X if K satisfies

- \bullet each nonzero element of X_+ is space-like,
- $\bullet (K|_{X+})^*h_X = \pm h_X,$
- X_{\pm} are perpendicular to each other.

K: a mixed-type structure of X compatible with h_X .

We say that K is compatible with the orientation of X if $(e_1, K(e_1), e_3, K(e_3)) \in \mathcal{B}_X$ for any unit vector $e_1 \in X_+$ and any space-like and unit vector $e_3 \in X_-$.

 K_+ : a mixed-type structure of X compatible with h_X and the orientation of X. We see that

$$\frac{1}{\sqrt{2}}(e_1 \wedge K_+(e_1) + e_3 \wedge K_+(e_3)) \tag{\sharp 1}$$

is light-like and determined by K_+ , and does not depend on the choice of a pair (e_1, e_3) .

 K_{-} : a mixed-type structure of X s.t.

- K_{-} is compatible with h_X ,
- K_{-} is not compatible with the orientation of X.

We see that

$$\frac{1}{\sqrt{2}}(e_1 \wedge K_-(e_1) + e_3 \wedge K_-(e_3)) \tag{2}$$

is light-like and determined by K_{-} , and does not depend on the choice of (e_1, e_3) .

Example

 $(e_1, e_2, e_3, e_4) \in \mathfrak{B}_X,$

 K_{+} : a linear transformation of X defined by

$$(K_{+}(e_{1}) K_{+}(e_{2}) K_{+}(e_{3}) K_{+}(e_{4})) = (e_{1} e_{2} e_{3} e_{4}) \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$\implies (K_{+}^{2}(e_{1}) K_{+}^{2}(e_{2}) K_{+}^{2}(e_{3}) K_{+}^{2}(e_{4})) = (e_{1} e_{2} e_{3} e_{4}) \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$X_+ := \langle e_1, e_2 \rangle, \ X_- := \langle e_3, e_4 \rangle.$$

 $\implies K_+$ is a mixed-type structure, that is, K_+ satisfies the above conditions:

- $\bullet K_{+}(X_{+}) = X_{+}, K_{+}(X_{-}) = X_{-},$
- X_{\pm} are the ∓ 1 -eigenspaces of K_{\pm}^2 ,
- $\bullet K_+|_{X_-} \neq \mathrm{id}_{X_-}.$

In addition, K_+ is compatible with h_X :

•
$$(K_{+}|_{X_{+}})^*h_X = h_X$$
 $(h_X(K_{+}(e_i), K_{+}(e_j)) = h_X(e_i, e_j)$ for $i, j = 1, 2)$,

•
$$(K_{+}|_{X_{-}})^*h_X = -h_X$$
 by

$$h_X(K_+(e_3), K_+(e_3)) = h_X(e_4, e_4) = -h_X(e_3, e_3),$$

 $h_X(K_+(e_4), K_+(e_4)) = h_X(e_3, e_3) = -h_X(e_4, e_4),$
 $h_X(K_+(e_3), K_+(e_4)) = h_X(e_4, e_3) = -h_X(e_3, e_4),$

 $\bullet X_+ \perp X_-$.

Since $(e_1, K_+(e_1), e_3, K_+(e_3)) = (e_1, e_2, e_3, e_4) \in \mathcal{B}_X$, K_+ is compatible with the orientation of X.

 K_{-} : a linear transformation of X defined by

$$(K_{-}(e_{1}) K_{-}(e_{2}) K_{-}(e_{3}) K_{-}(e_{4})) = (e_{1} e_{2} e_{3} e_{4}) \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

- $\implies K_{-}$ is a mixed-type structure of X s.t.
 - K_{-} is compatible with h_X ,
 - K_{-} is not compatible with the orientation of X.

- X': an oriented 2-dimensional subspace of X s.t. each nonzero element of X' is space-like.
- $\implies \exists K_+$: a mixed-type structure of X compatible with h_X and the orientation of X s.t.
 - $\bullet X' = X_+,$
 - for a nonzero vector $e_1 \in X_+$, $(e_1, K_+(e_1))$ gives the orientation of $X' = X_+$.
 - $\exists K_{-}$: a mixed-type structure of X compatible with h_{X} and not compatible with the orientation of X s.t.
 - $X' = X_+,$
 - for a nonzero vector $e_1 \in X_+$, $(e_1, K_-(e_1))$ gives the orientation of $X' = X_+$.

X'': an oriented 2-dimensional subspace of X which has a time-like vector of X.

- $\implies \exists K_+$: a mixed-type structure of X compatible with h_X and the orientation of X s.t.
 - $X'' = X_{-}$,
 - for a space-like vector $e_3 \in X_-$, $(e_3, K_+(e_3))$ gives the orientation of $X'' = X_-$.
 - $\exists K_{-}$: a mixed-type structure of X compatible with h_{X} and not compatible with the orientation of X s.t.
 - $\bullet X'' = X_{-},$
 - for a space-like vector $e_3 \in X_-$, $(e_3, -K_-(e_3))$ gives the orientation of $X'' = X_-$.

2. Space-like surfaces in Lorentzian 4-manifolds

M: a manifold,

E: an oriented vector bundle over M of rank 4.

h: an indefinite metric of E with signature (3,1),

 ∇ : a connection of E s.t. $\nabla h = 0$.

 \hat{h} : the metric of $\bigwedge^2 E$ induced by h.

 $\implies \hat{h}$ has signature (3,3).

 $\hat{\nabla}$: the connection of $\bigwedge^2 E$ induced by ∇ .

 $\implies \hat{\nabla} \hat{h} = 0.$

E': an oriented subbundle of E of rank 2 s.t. each nonzero element of each fiber of E is space-like.

Then E' defines mixed-type $structures\ K_{\pm}$ of E, i.e., sections of $End\ (E)$ which give mixed-type structures of the fiber E_a of E defined by the fiber E'_a of E' for each $a \in M$.

Mixed-type structures K_{\pm} of E defined by E' give light-like sections Θ_{\pm} of $\bigwedge^2 E$ by $(\sharp 1)$ and $(\sharp 2)$.

M: a Riemann surface,

N: an oriented 4-dimensional Lorentzian manifold,

 $F: M \longrightarrow N$: a space-like and conformal immersion.

 $E := F^*TN$.

We see that F gives a subbundle E' of E by $E' = F^*(dF(TM))$.

 $K_{F,\pm}$: the mixed-type structures of E given by E'.

We call each of light-like sections $\Theta_{F,\pm}$ of $\bigwedge^2 E$ given by $K_{F,\pm}$ a lift of F.

 $w = u + \sqrt{-1}v$: a local complex coordinate of M,

$$T_1 := dF\left(\frac{\partial}{\partial u}\right), \ T_2 := dF\left(\frac{\partial}{\partial v}\right).$$

Suppose that F has zero mean curvature vector.

$$\implies \nabla_{T_1} T_1 + \nabla_{T_2} T_2 = 0.$$

• We say that F is isotropic if we can choose w s.t.

$$h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = -h(\sigma(T_1, T_2), \sigma(T_1, T_2)),$$

 $h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0.$

• We say that F is strictly isotropic if we can choose w s.t. $K_{F,+}\sigma(T_1,T_1)=\sigma(T_1,T_2)$.

Remark If F is strictly isotropic, then F is isotropic.

$$\Psi := dF(\partial/\partial w).$$

$$\implies \overline{\nabla}_{\partial/\partial w}(\Psi dw) = \sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right) dw.$$

We can define a complex quartic differential Q on M by

$$Q := h\left(\sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right), \ \sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right)\right) dw \otimes dw \otimes dw \otimes dw.$$

If N is a 4-dimensional Lorentzian space form, then we see by the equations of Codazzi that Q is holomorphic.

Theorem

N: an oriented 4-dimensional Lorentzian manifold,

M: a Riemann surface,

 $F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector.

Then F is isotropic if and only if one the following holds:

- (a) $Q \equiv 0$;
- (b) F is strictly isotropic, by rechoosing the orientation of N if necessary.

Proof

 ν_1, ν_2 : normal vector fields of F s.t.

$$h(\nu_1, \nu_1) = 1$$
, $h(\nu_2, \nu_2) = -1$, $h(\nu_1, \nu_2) = 0$.

We represent
$$\sigma(T_k, T_l)$$
 as $\sigma(T_k, T_l) = c_{kl}^1 \nu_1 + c_{kl}^2 \nu_2$.

Suppose that F is isotropic.

Then we obtain
$$((c_{11}^1)^2 - (c_{11}^2)^2)((c_{12}^1)^2 - (c_{11}^2)^2) = 0.$$

- If $(c_{11}^1)^2 = (c_{11}^2)^2$, then we have $(c_{11}^2, c_{12}^2) = \pm (c_{11}^1, c_{12}^1)$, i.e., $Q \equiv 0$.
- If $(c_{12}^1)^2 = (c_{11}^2)^2$, then we have $(c_{11}^2, c_{12}^2) = \pm (c_{12}^1, c_{11}^1)$ and then F is strictly isotropic, by rechoosing the orientation of N if necessary.

If either $Q \equiv 0$ or F is strictly isotropic, then F is isotropic.

Theorem N, M, F: as in the previous theorem.

Then the following are mutually equivalent:

- (a) $Q \equiv 0$;
- (b) $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,+}, \hat{\nabla}_{T_k}\Theta_{F,+}) = 0,$ $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,-}, \hat{\nabla}_{T_k}\Theta_{F,-}) = 0,$ $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,+}, \hat{\nabla}_{T_k}\Theta_{F,-}) = 0 \text{ for } k = 1, 2;$
- (c) the second fundamental form is light-like or zero.

Remark

Suppose that F is strictly isotropic.

Then we obtain $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,+},\hat{\nabla}_{T_k}\Theta_{F,-})=0$, while we do not necessarily obtain $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,\varepsilon},\hat{\nabla}_{T_k}\Theta_{F,\varepsilon})=0$ for $\varepsilon\in\{+,-\}$.

Remark

N: an oriented 4-dimensional Riemannian or neutral manifold,

 $F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector.

Then by the bundle decomposition $\bigwedge^2 E = \bigwedge^2_+ E \oplus \bigwedge^2_- E$ with $E = F^*TN$, we have $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,+}, \hat{\nabla}_{T_k}\Theta_{F,-}) = 0$.

We see that F is strictly isotropic if and only if a suitable one of $\Theta_{F,\pm}$ is horizontal.

Remark

N: an oriented 4-dimensional neutral manifold,

M: a Lorentz surface,

 $F: M \longrightarrow N$: a time-like and conformal immersion with zero mean curvature vector.

Then we have analogues of results mentioned in the previous remark.

In addition, if F is isotropic and if none of the covariant derivatives of $\Theta_{F,\pm}$ become zero,

then the covariant derivatives are light-like and the second fundamental form of F is light-like or zero.

3. Time-like surfaces in Lorentzian 4-manifolds

M: a Lorentz surface,

N: an oriented 4-dimensional Lorentzian manifold,

 $F: M \longrightarrow N$: a time-like and conformal immersion,

 $E := F^*TN$.

We see that F gives a subbundle E'' of E by $E'' = F^*(dF(TM))$.

E': the subbundle of E given by the orthogonal complement of E'',

 $K_{F,\pm}$: the mixed-type structure of E given by E'.

We call each of light-like sections $\Theta_{F,\pm}$ of $\bigwedge^2 E$ given by $K_{F,\pm}$ a lift of F.

w = u + jv: a local paracomplex coordinate of M,

$$T_1 := dF\left(\frac{\partial}{\partial u}\right), \ T_2 := dF\left(\frac{\partial}{\partial v}\right).$$

Suppose that F has zero mean curvature vector.

$$\implies \nabla_{T_1} T_1 = \nabla_{T_2} T_2.$$

• We say that F is isotropic if we can choose w s.t.

$$h(\sigma(T_1, T_1), \sigma(T_1, T_1)) = h(\sigma(T_1, T_2), \sigma(T_1, T_2)),$$

 $h(\sigma(T_1, T_1), \sigma(T_1, T_2)) = 0.$

• We say that F is strictly isotropic if we can choose w s.t. $K_{F,+}\sigma(T_1,T_1)=\sigma(T_1,T_2)$.

Remark If F is strictly isotropic, then F is isotropic.

$$\Psi := dF\left(\frac{\partial}{\partial w}\right) = \frac{1}{2}(T_1 + jT_2).$$

$$\Longrightarrow \overline{\nabla}_{\partial/\partial w}(\Psi dw) = \sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right) dw.$$

We can define a complex quartic differential Q on M by

$$Q := h\left(\sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right), \ \sigma\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial w}\right)\right) dw \otimes dw \otimes dw \otimes dw.$$

We see that $Q \equiv 0$ if and only if F is totally geodesic.

If N is a 4-dimensional Lorentzian space form,

then we see by the equations of Codazzi that Q is holomorphic.

Theorem

N: an oriented 4-dimensional Lorentzian manifold,

M: a Lorentz surface,

 $F: M \longrightarrow N$: a time-like and conformal immersion with zero mean curvature vector.

Then F is isotropic if and only if F is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark

Suppose that F is strictly isotropic.

Then we obtain $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,+},\hat{\nabla}_{T_k}\Theta_{F,-})=0$, while we do not necessarily obtain $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,\varepsilon},\hat{\nabla}_{T_k}\Theta_{F,\varepsilon})=0$ for $\varepsilon\in\{+,-\}$. If $\hat{h}(\hat{\nabla}_{T_k}\Theta_{F,\varepsilon},\hat{\nabla}_{T_k}\Theta_{F,\varepsilon'})=0$ for k=1,2 and $\varepsilon,\varepsilon'\in\{+,-\}$, then we have $\sigma(T_1,T_2)=\pm\sigma(T_1,T_1)$.

4. The images of the lifts by the curvature tensor

R: the curvature tensor of ∇ :

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

 \hat{R} : the curvature tensor of $\hat{\nabla}$.

$$\implies \hat{R}(X_1, X_2)(Y_1 \land Y_2) = (R(X_1, X_2)Y_1) \land Y_2 + Y_1 \land R(X_1, X_2)Y_2.$$

M: a Riemann surface,

 $F: M \longrightarrow N$: a space-like and conformal immersion,

 (e_1, e_2) : a local ordered orthonormal frame field of TM giving the orientation of M.

Theorem (A, 2020)

 $F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector s.t. $\hat{R}(e_1, e_2)\Theta_{F,\pm} = 0$.

Then the following hold:

- (a) Q is holomorphic;
- (b) if $Q \equiv 0$ and if $d\omega^{\perp} = 0$ with $\omega^{\perp} := h(\nabla e_3, e_4)$, then F is strictly isotropic, by rechoosing the orientation of N if necessary;
- (c) if F is strictly isotropic and if F is not totally geodesic on any open set of M, then the connection forms $\omega := h(\nabla e_1, e_2)$ and ω^{\perp} satisfy $d * \omega = 0$ and $d\omega^{\perp} = 0$ for a suitable (e_1, e_2) , and the 2nd fundamental form of F is constructed by a solution of an over-determined system s.t. the compatibility condition is given by $d * \omega = 0$ and $d\omega^{\perp} = 0$.

Proof of (b) of the theorem

Suppose $Q \equiv 0$.

- \implies The shape operator of a light-like normal vector field ν of F vanishes.
- U: a neighborhood of a point of M where the 2nd fundamental form does not vanish,
- (\tilde{u}, \tilde{v}) : local coordinates on U s.t. $\partial/\partial \tilde{u}$, $\partial/\partial \tilde{v}$ are in principal directions of F w.r.t. a light-like normal vector field ι satisfying $h(\iota, \nu) = -1$.
- The induced metric g on M by F is represented as $g = \tilde{A}^2 d\tilde{u}^2 + \tilde{B}^2 d\tilde{v}^2$.
- Since $\hat{R}(e_1, e_2)\Theta_{F,\pm} = 0$, we have $(R(e_1, e_2)e_i)^{\perp} = 0$ (i = 1, 2).
- Since $d\omega^{\perp} = 0$, we can find a function γ defined on a neighborhood of each point of M s.t. $\omega^{\perp} = -d\gamma$.
- In addition, we obtain $\gamma_{\tilde{u}} = h(\nabla_{\partial/\partial \tilde{u}}\iota, \nu)$ and $\gamma_{\tilde{v}} = h(\nabla_{\partial/\partial \tilde{v}}\iota, \nu)$.

k: a positive-valued function on U s.t. k and -k are principal curvatures of F w.r.t. ι .

Then using $(R(e_1, e_2)e_i)^{\perp} = 0$, $\gamma_{\tilde{u}} = h(\nabla_{\partial/\partial \tilde{u}}\iota, \nu)$ and $\gamma_{\tilde{v}} = h(\nabla_{\partial/\partial \tilde{v}}\iota, \nu)$, we obtain $(ke^{\gamma}\tilde{A}^2)_{\tilde{v}} = 0$ and $(ke^{\gamma}\tilde{B}^2)_{\tilde{u}} = 0$, which mean $ke^{\gamma}\tilde{A}^2 = \phi^2$ and $ke^{\gamma}\tilde{B}^2 = \psi^2$ for positive-valued functions $\phi = \phi(\tilde{u})$, $\psi = \psi(\tilde{u})$.

u, v: functions of one variable \tilde{u}, \tilde{v} respectively s.t. $\frac{du}{d\tilde{u}} = \phi, \frac{dv}{d\tilde{v}} = \psi$. $\implies (u, v)$ are isothermal coordinates of M w.r.t. g and

 $w = u + \sqrt{-1}v$ is a local complex coordinate of M.

 A_{ι} : the shape operator of F w.r.t. ι .

Then we can suppose

$$A_{\iota}\left(\frac{\partial}{\partial u}\right) = k \cdot dF\left(\frac{\partial}{\partial u}\right), \quad A_{\iota}\left(\frac{\partial}{\partial v}\right) = -k \cdot dF\left(\frac{\partial}{\partial v}\right).$$

 $\hat{w} = \hat{u} + \sqrt{-1}\hat{v}$: a local complex coordinate of M given by

$$\hat{w} = \exp(\sqrt{-1}\pi/8)w = e^{\sqrt{-1}\theta}w \quad \left(\theta = \frac{\pi}{8}\right).$$

$$\cos\frac{\pi}{8} = \frac{\sqrt{2 - \sqrt{2}}}{2}(\sqrt{2} + 1),$$

$$\sin\frac{\pi}{8} = \frac{\sqrt{2 - \sqrt{2}}}{2}.$$

Since

$$\frac{\partial}{\partial u} = \frac{\sqrt{2 - \sqrt{2}}}{2} \left((\sqrt{2} + 1) \frac{\partial}{\partial \hat{u}} + \frac{\partial}{\partial \hat{v}} \right),$$

$$\frac{\partial}{\partial v} = \frac{\sqrt{2 - \sqrt{2}}}{2} \left(-\frac{\partial}{\partial \hat{u}} + (\sqrt{2} + 1) \frac{\partial}{\partial \hat{v}} \right),$$

we obtain

$$(-4 - 2\sqrt{2})A_{\iota}\left(\frac{\partial}{\partial \hat{u}}\right) = -2(\sqrt{2} + 1)k\left(\frac{\partial}{\partial \hat{u}} + \frac{\partial}{\partial \hat{v}}\right),$$

which means $\sigma(\hat{T}_1, \hat{T}_1) = \sigma(\hat{T}_1, \hat{T}_2)$ and therefore F is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark

 $F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector s.t. $\hat{R}(e_1, e_2)\Theta_{F,\pm} = 0$, $d\omega^{\perp} = 0$.

Then we see by the above theorem that F is isotropic if and only if F is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark

Let N be a 4-dimensional Lorentzian space form. Then $\hat{R}(e_1, e_2)\Theta_{F,\pm} = 0$. In addition, by $Q \equiv 0$, we obtain $d\omega^{\perp} = 0$.

In the next section, we will prove that if F is strictly isotropic, then $Q \equiv 0$.

M: a Lorentz surface,

 $F: M \longrightarrow N$: a time-like and conformal immersion,

 (e_3, e_4) : a local ordered pseudo-orthonormal frame field of TM giving the orientation of M.

Suppose that e_4 is time-like.

 (ω^3, ω^4) : the dual frame field of (e_3, e_4) ,

*: a linear transformation of T_a^*M defined by $*\omega_3 = \omega_4, *\omega_4 = \omega_3$.

Theorem

 $F: M \longrightarrow N$: a time-like and conformal immersion with zero mean curvature vector s.t. $\hat{R}(e_3, e_4)\Theta_{F,+} = 0$.

Then the following hold:

- (a) Q is holomorphic;
- (b) the 2nd fundamental form of F is constructed by solutions of two families of systems of ordinary differential equations defined along integral curves of light-like vector fields $e_3 \pm e_4$ and given by the connection forms $\omega := h(\nabla e_3, e_4), \ \omega^{\perp} := h(\nabla e_1, e_2);$
- (c) if F is strictly isotropic and if F is not totally geodesic on any open set of M, then ω , ω^{\perp} satisfy $d * \omega = 0$ and $d\omega^{\perp} = 0$ for a suitable (e_3, e_4) , and the second fundamental form of F is constructed by a solution of an over-determined system such that the compatibility condition is given by $d * \omega = 0$ and $d\omega^{\perp} = 0$.

5. Surfaces with zero mean curvature vector in 4-dimensional Lorentzian space forms

N: a 4-dimensional Lorentzian space form,

 L_0 : the constant sectional curvature of N.

•
$$L_0 = 0 \implies N = E_1^4 = (\mathbb{R}^4, \langle , \rangle_{3,1}),$$

 $\langle x, y \rangle_{3,1} = x^1 y^1 + x^2 y^2 + x^3 y^3 - x^4 y^4$
 $(x = (x^1, x^2, x^3, x^4), y = (y^1, y^2, y^3, y^4)).$

•
$$L_0 > 0 \implies N = S_1^4(L_0) = \left\{ x \in E_1^5 \mid \langle x, x \rangle_{4,1} = \frac{1}{L_0} \right\}.$$

•
$$L_0 < 0 \implies N = H_1^4(L_0) = \left\{ x \in E_2^5 \mid \langle x, x \rangle_{3,2} = \frac{1}{L_0} \right\}.$$

M: a Riemann surface,

 $F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector.

Suppose that F is strictly isotropic.

 $w = u + \sqrt{-1}v$: a local complex coordinate of M s.t.

$$K_{F,+}\sigma(T_1,T_1)=\sigma(T_1,T_2)$$

for
$$T_1 := dF\left(\frac{\partial}{\partial u}\right)$$
, $T_2 := dF\left(\frac{\partial}{\partial v}\right)$.

g: the induced metric by F.

We represent g as $g = e^{2\alpha} dw d\overline{w}$.

 N_1 , N_2 : normal vector fields of F s.t.

$$h(N_1, N_1) = e^{2\alpha}, \quad h(N_2, N_2) = -e^{2\alpha}, \quad h(N_1, N_2) = 0.$$

 $\implies \exists \mu_1, \, \mu_2, \, \beta_1, \, \beta_2 \text{ s.t.}$

$$[D_{T_1}F \ D_{T_1}T_1 \ D_{T_1}T_2 \ D_{T_1}N_1 \ D_{T_1}N_2] = [F \ T_1 \ T_2 \ N_1 \ N_2]S,$$
$$[D_{T_2}F \ D_{T_2}T_1 \ D_{T_2}T_2 \ D_{T_2}N_1 \ D_{T_2}N_2] = [F \ T_1 \ T_2 \ N_1 \ N_2]T,$$

where

$$S := \begin{bmatrix} 0 & -L_0 e^{2\alpha} & 0 & 0 & 0 \\ 1 & \alpha_u & \alpha_v & -\mu_1 & \mu_2 \\ 0 & -\alpha_v & \alpha_u & -\mu_2 & \mu_1 \\ 0 & \mu_1 & \mu_2 & \alpha_u & \beta_1 \\ 0 & \mu_2 & \mu_1 & \beta_1 & \alpha_u \end{bmatrix}, T := \begin{bmatrix} 0 & 0 & -L_0 e^{2\alpha} & 0 & 0 \\ 0 & \alpha_v & -\alpha_u & -\mu_2 & \mu_1 \\ 1 & \alpha_u & \alpha_v & \mu_1 & -\mu_2 \\ 0 & \mu_2 & -\mu_1 & \alpha_v & \beta_2 \\ 0 & \mu_1 & -\mu_2 & \beta_2 & \alpha_v \end{bmatrix}.$$

Since $S_v - T_u = ST - TS$, we obtain

- $\alpha_{uu} + \alpha_{vv} = -L_0 e^{2\alpha}$ (the equation of Gauss),
- $(e^{\alpha}\mu_p)_u = -e^{\alpha}\mu_q\beta_1$, $(e^{\alpha}\mu_p)_v = -e^{\alpha}\mu_q\beta_2$ for $\{p,q\} = \{1,2\}$ (the equations of Codazzi),
- $(\beta_1)_v (\beta_2)_u = 2(\mu_1^2 \mu_2^2)$ (the equation of Ricci).

Noticing $(e^{\alpha}\mu_p)_{uv} = (e^{\alpha}\mu_p)_{vu}$, we obtain $\mu_2 = \pm \mu_1$ and $(\beta_1)_v = (\beta_2)_u$.

From $\mu_2 = \pm \mu_1$, we obtain $Q \equiv 0$.

From $(\beta_1)_v = (\beta_2)_u$, we can find a function ϕ s.t. $\phi_u = \beta_1$, $\phi_v = \beta_2$.

Then by the equations of Codazzi, we can find a constant C s.t. $\mu_1 = Ce^{-\alpha \mp \phi}$.

Theorem (A, 2020)

N: a 4-dimensional Lorentzian space form,

 L_0 : the constant sectional curvature of N,

M: a Riemann surface.

- (a) For a Hermitian metric $g = e^{2\alpha} dw d\overline{w}$ on M with constant curvature L_0 and a function ϕ on M,
 - $\exists F$: a space-like and conformal immersion of a neighborhood of each point of M into N with zero mean curvature vector satisfying
 - $\bullet Q \equiv 0;$
 - ullet F is strictly isotropic, by rechoosing the orientation of N if necessary.

Such an immersion is uniquely determined up to an isometry of N.

- (b) $F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector.
 - If F is strictly isotropic, then $Q \equiv 0$.

Remark

N: as in the above theorem,

 $F: M \longrightarrow N$: a space-like and conformal immersion with zero mean curvature vector.

- $\implies \hat{R}(e_1, e_2)\Omega_{F,\pm} = 0,$
 - $Q \equiv 0 \text{ means } d\omega^{\perp} = 0.$

Therefore F satisfies $Q \equiv 0$ if and only if

F is strictly isotropic, by rechoosing the orientation of N if necessary.

This means that the following are mutually equivalent:

- \bullet F is isotropic;
- \bullet F is strictly isotropic, by rechoosing the orientation of N if necessary;
- $\bullet Q \equiv 0.$

Example

M: a Riemann surface,

 $\iota: M \longrightarrow E^3$: a minimal conformal immersion of M into E^3 .

 $\implies \iota$ is Willmore and $\tilde{Q} \equiv 0$.

$$L^+ := \{x = (x^1, x^2, x^3, x^4, x^5) \in E_1^5 \mid \langle x, x \rangle_{4,1} = 0, \ x^5 > 0\}.$$

We consider E^3 to be a subset $L^+ \cap \{x^5 = x^1 + 1\}$ of L^+ and therefore we consider ι to be an L^+ -valued function.

 γ : the conformal Gauss map of ι ,

Reg (ι) : the set of non-umbilical points of ι .

- \implies $\bullet \gamma|_{\text{Reg}(\iota)}$ has zero mean curvature vector,
 - the holomorphic quartic differential Q on $\text{Reg}(\iota)$ defined by $F = \gamma|_{\text{Reg}(\iota)}$ vanishes.

 $w = u + \sqrt{-1}v$: a local complex coordinate of Reg (ι) . We can suppose

• $\partial/\partial u$, $\partial/\partial v$ are in the principal directions of ι ,

•
$$d\gamma \left(\frac{\partial}{\partial u}\right) = -\varepsilon d\iota \left(\frac{\partial}{\partial u}\right), \ d\gamma \left(\frac{\partial}{\partial v}\right) = \varepsilon d\iota \left(\frac{\partial}{\partial v}\right),$$

where $\varepsilon := \sqrt{-K}$ and K is the Gaussian curvature of ι .

Therefore ι is a light-like normal vector field of $\gamma|_{\text{Reg}(\iota)}$ in $S_1^4 = S_1^4(1)$.

 A_{ι} : the shape operator of $\gamma|_{\text{Reg}(\iota)}$ w.r.t. ι .

$$\implies A_{\iota}\left(\frac{\partial}{\partial u}\right) = \frac{1}{\varepsilon}d\gamma\left(\frac{\partial}{\partial u}\right), \ A_{\iota}\left(\frac{\partial}{\partial v}\right) = -\frac{1}{\varepsilon}d\gamma\left(\frac{\partial}{\partial v}\right).$$

Therefore by $\hat{w} = \exp(\sqrt{-1}\pi/8)w$, we see that $F = \gamma|_{\text{Reg}(\iota)}$ is strictly isotropic, by rechoosing the orientation of S_1^4 if necessary.

Remark

 $\iota: M \longrightarrow S^3$: a conformal and Willmore immersion,

 $\gamma: M \longrightarrow S_1^4$: the conformal Gauss map of ι .

- \implies ι is a light-like normal vector field of $\gamma|_{\text{Reg}(\iota)}$,
 - $\gamma|_{\text{Reg}(\iota)}$ has zero mean curvature vector.

Suppose that the holomorphic quartic differential Q on $\text{Reg}(\iota)$ defined by $\gamma|_{\text{Reg}(\iota)}$ vanishes.

- \implies A light-like normal vector field ν of $\gamma|_{\text{Reg}(\iota)}$ s.t. $\langle \iota, \nu \rangle_{4,1} = -1$ is contained in a constant direction in E_1^5
- x_0 : a point of S^3 determined by ν
- \implies The image of $\iota(M) \setminus \{x_0\}$ by the stereographic projection $\operatorname{pr}: S^3 \setminus \{x_0\} \longrightarrow E^3$ from x_0 is a minimal surface in E^3 .

Bryant showed that a Willmore sphere in S^3 gives a complete minimal surface in E^3 with finite total curvature s.t. all the ends are embedded and planar.

Based on this result, Kusner constructed complete minimal surfaces Σ_{2k+1} $(k \in \mathbb{N})$ in E^3 given by punctured real projective planes s.t. each Σ_{2k+1} has 2k+1 planar ends, and inverting them, he gave examples of Willmore projective planes

Referring to these minimal surfaces, Hamada-Kato constructed complete minimal surfaces Σ_{2k+2} $(k \in \mathbb{N})$ in E^3 given by punctured real projective planes s.t. each Σ_{2k+2} has 2k+1 catenoidal ends and one planar end.

M: a Lorentz surface,

 $F: M \longrightarrow N$: a time-like and conformal immersion with zero mean curvature vector.

Suppose that F is strictly isotropic.

w = u + jv: a local paracomplex coordinate of M s.t.

$$K_{F,+}\sigma(T_1,T_1)=\sigma(T_1,T_2)$$

for
$$T_1 := dF\left(\frac{\partial}{\partial u}\right)$$
, $T_2 := dF\left(\frac{\partial}{\partial v}\right)$.

g: the induced metric by F.

We represent g as $g = e^{2\alpha} dw d\overline{w}$.

 N_1, N_2 : normal vector fields of F s.t. $h(N_p, N_q) = \delta_{pq} e^{2\alpha}$.

$$\implies \exists \mu_1, \, \mu_2, \, \beta_1, \, \beta_2 \text{ s.t.}$$

$$[D_{T_1}F \ D_{T_1}T_1 \ D_{T_1}T_2 \ D_{T_1}N_1 \ D_{T_1}N_2] = [F \ T_1 \ T_2 \ N_1 \ N_2]S,$$
$$[D_{T_2}F \ D_{T_2}T_1 \ D_{T_2}T_2 \ D_{T_2}N_1 \ D_{T_2}N_2] = [F \ T_1 \ T_2 \ N_1 \ N_2]T,$$

where

$$S := \begin{bmatrix} 0 & -L_0 e^{2\alpha} & 0 & 0 & 0 \\ 1 & \alpha_u & \alpha_v & -\mu_1 & -\mu_2 \\ 0 & \alpha_v & \alpha_u & -\mu_2 & \mu_1 \\ 0 & \mu_1 & -\mu_2 & \alpha_u & -\beta_1 \\ 0 & \mu_2 & \mu_1 & \beta_1 & \alpha_u \end{bmatrix}, T := \begin{bmatrix} 0 & 0 & L_0 e^{2\alpha} & 0 & 0 \\ 0 & \alpha_v & \alpha_u & \mu_2 & -\mu_1 \\ 1 & \alpha_u & \alpha_v & \mu_1 & \mu_2 \\ 0 & -\mu_2 & \mu_1 & \alpha_v & -\beta_2 \\ 0 & \mu_1 & \mu_2 & \beta_2 & \alpha_v \end{bmatrix}.$$

Since $S_v - T_u = ST - TS$, we obtain

- $\alpha_{uu} \alpha_{vv} = -L_0 e^{2\alpha}$ (the equation of Gauss),
- $(e^{\alpha}\mu_p)_u = (-1)^{p+1}e^{\alpha}\mu_q\beta_1$, $(e^{\alpha}\mu_p)_v = (-1)^{p+1}e^{\alpha}\mu_q\beta_2$ for $\{p,q\} = \{1,2\}$ (the equations of Codazzi),
- $(\beta_1)_v (\beta_2)_u = 2(\mu_1^2 + \mu_2^2)$ (the equation of Ricci).

Noticing $(e^{\alpha}\mu_p)_{uv} = (e^{\alpha}\mu_p)_{vu}$, we obtain $\mu_1 = \mu_2 = 0$ and $(\beta_1)_v = (\beta_2)_u$.

Theorem (A, 2020)

N: a 4-dimensional Lorentzian space form,

M: a Lorentz surface,

 $F: M \longrightarrow N$: a time-like and conformal immersion with zero mean curvature vector.

If F is isotropic, then F is totally geodesic.

THANK YOU FOR YOUR ATTENTION!