Fur seals and sea lions (Otariidae): identification of species and taxonomic review

Sylvia Brunner

Australian Marine Mammal Research Centre, University of Sydney, NSW 2006, Australia CSIRO Sustainable Ecosystems, GPO Box 284, Canberra City, ACT 2601, Australia University of Alaska Museum, 907 Yukon Drive, Fairbanks AK 99775, United States*

submitted December 2002
accepted May 2003

Contents

Abstract 340 Introduction 340 Materials and methods 343 Results 344 Description of species: sea lions Steller sea lion – Eumetopias jubatus 345 Southern sea lion – Otaria byronia 352 Australian sea lion – Neophoca cinerea 354 Hooker's sea lion – Phocarctos hookeri 354 California sea lion – Zalophus californianus californianus 357 Galapagos sea lion – Zalophus californianus wollebaeki 357 Japanese sea lion – Zalophus californianus japonicus 360 Description of species: fur seals Northern fur seal – Callorhinus ursinus 360 Antarctic fur seal – Arctocephalus gazella 363 Subantarctic fur seal – Arctocephalus tropicalis 363 New Zealand fur seal – Arctocephalus forsteri 366 South African fur seal – Arctocephalus pusillus pusillus 366 Australian fur seal – Arctocephalus pusillus doriferus 368 Guadalupe fur seal – Arctocephalus townsendi 370 Galapagos fur seal – Arctocephalus galapagoensis 370 South American fur seal – Arctocephalus australis 371 Juan Fernandez fur seal – Arctocephalus philippii 374 A comparison of subspecies Arctocephalus pusillus 374 Zalophus californianus 374 Arctocephalus australis 375 The Otariidae 377 Discussion 378 References 384 Appendices Summary details of specimens 386 1 II Univariate statistics for male and female otariids 405

Abstract The standard anatomical descriptions given to identify species of the family Otariidae (fur seals and sea lions), particularly those for the genus *Arctocephalus*, have been largely inconclusive. Specimens of some species conformed more to the description of others, overlapping in many identifying characteristics. Recent re-examination of the genetic basis of taxonomic diversity within otariids required matching by comprehensive new studies of skull morphometry based on large sample sizes, to provide a sound basis for re-appraisal of species limits in the family. The typical skull morphology of otariids fall into two general characteristics: a short, mesocephalic skull observed primarily in the fur seals and a more dolichocephalic skull common in most sea lions. Subfamily separation of otariid seals was not supported. Instead, a separation of genus, species and subspecies was proposed, with re-arrangement of taxonomy at the levels of genus, species and subspecies. *Arctocephalus australis, A. forsteri* and *A. galapagoensis* appeared congeneric, with only subspecific differences in morphology. *Arctocephalus townsendi* and *A. philippii* appeared congeneric, yet were morphologically divergent from the remaining *Arctocephalus*. Skulls of *Zalophus californianus japonicus* were significantly different from those of *Z. c. californianus* and *Z. c. wollebaeki*, and were considered a separate species of *Zalophus*.

... in no family of mammals, probably, have more diversities of opinion been expressed by zoologists, both with respect to the number of species in the family and their arrangement in genera and subfamilies, than in the Otariidae. (Turner, 1888)

Key words otariid, fur seal, sea lion, taxonomy, description, morphometrics, skull, species, subspecies

Introduction

In many treatments, the Pinnipedia are a suborder of Carnivora and divided into three families: Odobenidae or walruses, the Phocidae or true seals and the Otariidae or eared seals (Rand, 1956; King, 1983). The family Otariidae are commonly separated into the subfamilies Otariinae, the sea lions and Arctocephalinae, the fur seals, based on the presence (in fur seals) or absence (in sea lions) of abundant underfur. This distinction is dubious, as abundant secondary hairs may have evolved twice in the history of the Otariidae or may have been retained randomly as a primitive feature of marine mammals and are indicative of a shallow-water adaptation to conserve body heat in an aquatic environment (Repenning *et al.*, 1971).

Although most researchers today recognize there is little substance for a subfamilial split of the Otariidae, subfamilial recognition still appears in the literature. For instance, Rice (1998, p. 22) stated that "... studies showed that all the living species [of otariids] fall into two monophyletic groups which many authors recognize as subfamilies: Arctocephalinae for the fur-seals, and Otariinae for the sea-lions". The two groups of otariids are also referred to commonly as fur seals and sea lions. To address the issue of subfamilies, a morphometric comparison of the two groups is made in this study.

The southern fur seals are placed in the genus *Arctocephalus* that currently comprises eight extant species, whereas the northern fur seal, *Callorhinus ursinus*, is classified as a separate, monotypic genus. The sea lions comprise five monotypic genera.

The most widely accepted nomenclature for the Otariidae is described below, and is based primarily on King (1983). Rice (1998) introduced some changes to the taxonomy in his systematic review of marine mammals; these are currently not as widely accepted as that of King (1983), and are reviewed in this study.

'Otariinae'

Otaria Péron, 1816 byronia (de Blainville, 1820) Eumetopias Gill, 1866 jubatus (Schreber, 1776) Neophoca Gray, 1866 cinerea (Péron, 1816) Phocarctos Gray, 1844 hookeri (Gray, 1844) Zalophus Gill, 1866 californianus (Lesson, 1828) californianus (Lesson, 1828) wollebaeki (Sivertsen, 1953) japonicus (Peters, 1866) 'Arctocephalinae' Callorhinus Gray, 1859 ursinus (Linnaeus, 1758) Arctocephalus Geoffroy Saint-Hilaire and Cuvier, 1824 australis (Zimmerman, 1783) australis (Zimmerman, 1783) gracilis (Nehring, 1887) galapagoensis Heller, 1904 gazella (Peters, 1875) forsteri (Lesson, 1828) tropicalis (Gray, 1872) pusillus (Schreber, 1776) pusillus (Schreber, 1776) doriferus (Wood Jones, 1925) philippii (Peters, 1886) townsendi (Merriam, 1897)

The standard anatomical descriptions given to identify species of otariids, particularly those for the genus *Arctocephalus*, have been largely inconclusive. Specimens of some species conform more to the description of others, overlapping in many identifying characteristics (King, 1983). The problems of identification lie primarily in the original taxonomic studies that were based on small sample sizes, sex and age bias, and misidentified specimens. Allen (1880, p. 227) stated that "... of about fifty synonyms pertaining to the Eared Seals, probably two-thirds have been based, directly or indirectly, upon differences dependent on sex and age, and the rest upon the defective descriptions of these animals by travellers ...".

Morphometric studies on species of Arctocephalus have rarely focused on more than one or two species at a time, making any comparative studies difficult. King (1983) stated that species of Arctocephalus are so widely dispersed over the world that it has always been difficult to get reasonable numbers of specimens of each species, and to assemble enough skulls in one place for comparative analyses. Repenning et al. (1971) analysed a significant number of skulls but were able to access only a small number of mixed age and sex of some species available at that time (e.g. A. townsendi, A. philippii, A. gazella, Z. c. japonicus), basing their results on these. Sivertsen (1954) had only one specimen each of A. philippii and A. townsendi that he used to separate these from the Arctocephalus as a distinct genus, Arctophoca. Repenning et al. (1971) used a larger sample size (11 A. townsendi and five A. philippii) although their samples included both sexes and contained at least five subadults and three juveniles. Repenning et al. (1971) retained both species within the genus Arctocephalus. Subsequently, King (1983) accepted the arrangement of eight extant species by Repenning et al. (1971), as did most other researchers. Since Repenning et al. (1971), a complete taxonomic review of the Otariidae, based on new material, has not been undertaken.

Some taxonomic studies of otariid seals at the species level have been published. For instance, King (1983) stated that it was not possible to find any osteological characters of the skull that might infallibly distinguish *A. forsteri* from *A. p. doriferus* at any stage of maturity and between the skulls of males and females. Nevertheless, she mentioned that skulls of adults could be separated visually because of the greater size of *A. p. doriferus*. The inability to differentiate between these species was due primarily to small sample sizes and a paucity of information on growth of the skull for both sexes. This problem has since been addressed by Brunner (1998*b*) who provided visual and statistical methods to separate *A. forsteri* from *A. p. doriferus*, by utilizing large sample sizes and identifying the variation in cranial morphology for different age groups in both males and females.

In most instances, sample sizes used for classification were insufficient to eliminate bias from sexual dimorphism and incomplete cranial growth. The inadvertent pooling of sexes and subadults has contributed significantly to the present taxonomic confusion (Brunner, 1998*a*, 1998*b*). In species such as *A. philippii* and *A. gazella*, the original descriptions were based upon juvenile specimens only and little was known about the exact skull proportions in adult specimens (Sivertsen, 1954). A primary component of this study was to utilize adult skulls only for taxonomic review (Brunner, 2000).

The nomenclature for the Otariidae has been equally problematic. Up to 1816, two species only were known; later the number exceeded 50, most of which proved to be synonyms (Sivertsen, 1954). Péron (1816)¹ first identified the eared seals under the genus *Otaria*. The eared seals were then raised to the rank of family by Brookes (1828), under the name Otariadae. This classification was not generally adopted until 1866, when it was revised by Gill (when introducing the name Otariidae) and used immediately by Gray and subsequently by most researchers (Allen, 1880). Gray, Turner and others had previously considered the Eared Seals a subfamily of the Phocidae for which Gray, at different times, used the names Otariina and Arctocephalina, the latter also being adopted for the name of the group by Turner in 1848 (Allen, 1880).

Allen (1870) divided the Otariidae into two groups, Trichophocinae for the sea lions and Oulophocinae for the fur seals, alluding to their pelage. Von Boetticher (1934) rejected Allen's names and identified the sea lion and fur seal groups with the names of their included genera. He also added a third category: the 'mitte-robben Phocarctinae' to contain only *P. hookeri*, presumed to possess pelage intermediate between the fur seals and sea lions (Scheffer, 1958).

Gray (1869) divided the family into five tribes, Otariina, Callorhinina, Arctocephalina, Zalophina and Eumetopina, primarily with reference to the number of postcanines (PCs) and the position of the posterior pair. He also separated these tribes into two 'sections', based on the posterior extension of the palate (Otariina, consisting of the genus *Otaria*, and the remaining tribes mentioned above).

In 1873, Gray proposed another arrangement of the Otariidae in which they were placed in two primary divisions according to the number of PCs (6-6, 5-5; or, 5-5, 5-5) (Allen, 1880). By 1874 he added a new tribe, Gypsophocina, and united Callorhinina, Arctocephalina and Eumetopiina into one tribe under the name Arctocephalina, thus reducing the number to four: Otariina, Gypsophicina, Arctocephalina and Zalophina.

Around this time, Gill (1872) made two primary divisions of the family, the genus *Zalophus* constituting one division and the remaining otariids the other.

Genera

The first generic division of the Otariidae was introduced by Cuvier (1824), who separated the family into 'Arctocéphales' (*Arctocephalus*) and 'Platyrhinques' (*Platyrhinchus* = the current name, *Otaria*) with *Phoca ursina* (type, *Arctocephalus delalandii* Cuvier = *Callorhinus*; *A. antarcticus* Gray = *Arctocephalus pusillus pusillus*) and *Phoca leonina* (type, *Otaria jubata* = *Otaria byronia*). Prior to 1824 the only commonly recognised genera were *Otaria* and *Arctocephalus* (Allen, 1880).

Gray (1859) separated the northern fur seal from Arctocephalus under the name Callorhinus, and Gill (1866) recognized a further two genera, namely Eumetopias and Zalophus. The former had for its type and only species the northern sea lion, or Leo marinus (Steller) (=Eumetopias jubatus), while the latter was founded on Otaria gilliespii (Macbain)

References to early nomenclaturial history can be found in Allen (1870, 1880) and Scheffer (1958).

(=*Zalophus californianus*). At this point, there were five recognized genera:

- (i) Otaria (Péron 1816, type Phoca jubata Forster = Otaria byronia)
- (ii) *Arctocephalus* (Cuvier 1824, type *Phoca ursina* Linnaeus, = *Callorhinus* Gray 1859, and not Cuvier)
- (iii) Eumetopias Gill, 1866 (type Otaria californiana Lesson, = Arctocephalus monteriensis Gray, the intended type being Otaria stelleri Müller = Eumetopias jubatus)
- (iv) Zalophus Gill, 1866 (type Otaria gilliespii Macbain = Zalophus californianus Lesson)
- (v) Halarctus, Gill (type Arctocephalus delalandii, Gray, = Arctocephalus, Cuvier 1824).

Some months after this separation, Peters (1866*a*) accepted the above classifications (albeit as subgenera) and included two others, namely the subgenera *Phocarctos* (type *Arctocephalus hookeri*, Gray = *Phocarctos hookeri*) and *Arctophoca* (type *Otaria philippii*, Peters = *Arctocephalus philippii*). Gray (1859) then added a new genus *Neophoca*, based upon *Arctocephalus lobatus*, Gray (*Arctocephalus cinereus*, Péron = *Neophoca cinerea*), which was referred previously to *Zalophus* by Peters. He also added two new subgenera of *Arctocephalus*, namely *Euotaria* (based on *Arctocephalus nigrescens*, Peters = *Arctocephalus australis*) and *Gypsophoca* (on *Arctocephalus cinereus*, Gray = *Neophoca cinerea*). The type for *Phocarctos* was also associated with *Otaria ulloae* (von Tschudi) which was later found to be *Otaria jubata* (= *Eumetopias jubatus*).

By 1869, Gray had retained 10 genera: Otaria, Callorhinus, Phocarctos, Arctocephalus, Euotaria, Gypsophoca, Zalophus, Neophoca, Eumetopias and Arctophoca. In 1871, Euotaria and Gypsophoca were treated again as subgenera of Arctocephalus by Gray but were re-introduced as genera in 1874. At this time, Gray made no reference at all to Arctophoca. Gill (1872, 1866) and Allen (1870) retained the five generic groups first recognized by Gill in 1866, with corrections in nomenclature introduced by Gray and Peters: Otaria, Eumetopias, Zalophus, Callorhinus and Arctocephalus.

Species

The history of species nomenclature for the Otariidae is more confused. Allen (1880) provided a detailed account, describing the naming by such authors as Anson, Pernetty, Forster, Weddell, Péron, Lesueur, Quoy and Gaimard, Lesson and Garnot, Byron and others. Allen (1880, p. 193) stated "To these authors, and to the often-quoted remark of Péron that he believed there were not less than 20 species of Otaries, we are indebted for much of the confusion and obscurity that must ever be inseparable from the early history of this group." The greatest inaccuracies with the early species accounts lay in the fact that they were described mainly by 'habits and localities of occurrence', with few accounts based upon tangible specimens (Allen, 1880). Scheffer (1958) also provided a systematic account of the Otariidae.

The status of the specific name for the southern sea lion is still controversial, with two names currently in use: *Otaria byronia* (type – *Phoca byronia* de Blainville, 1820) and *Otaria flavescens* (type – *Phoca flavescens* Shaw, 1800). Otaria flavescens was defended by Cabrera (1940, pp. 17-22), who concluded that the yellow seal Phoca flavescens of Shaw (1800) can only have been a southern sea lion pup after its first moult. Phoca flavescens Shaw is the earliest available name, with an appropriate type locality but uncertain identification, whereas the locality of Phoca byronia de Blainville is incorrect but its identification is obvious, including the prolonged roof of the palate (King, 1978; Rodríguez & Bastida, 1993) unique to Otaria. Rodríguez & Bastida (1993) asserted Otaria flavescens is the correct name, basing their argument primarily on pale coat colour, ear length and breeding locality; Rice (1998) also used the name O. flavescens for these reasons. Although light coat colour and albinism are rare in most otariids, they do occur; individuals from more than one species of otariid could be partially, or completely, albino. For instance, a lack of pigment in guard hairs appears in individuals of A. gazella, for both sexes and in all age groups, making the animals appear white although they are not albinos (Bonner, 1968; King, 1983). Rodríguez & Bastida (1993) stated that it is improbable A. gazella would be found in the locality of the type specimen, due to the location of breeding rookeries for A. gazella. Nevertheless, it is known that individuals of many species of Arctocephalus (including A. gazella) tend to stray from their normal range (Bonner, 1981, p. 181).

Although a light colour phase exists in the Southern sea lion, neonates are black, turning dark brown after the first molt, with occasional lighter shades (Oliva, 1988; Rodríguez & Bastida, 1993). Based on coat colour, it is possible the specimen from Shaw (1800) was a southern sea lion but it cannot be ruled out that it may have been another species. Rodríguez & Bastida (1993) did not compare ear length of Shaw's specimen with that of many species of otariids and Oliva (1988) stated that ear length of Shaw's specimen was too large for *O. byronia*. Conversely, the description of the palate in de Blainville's (1820) specimen can only have been that of a southern sea lion. For these reasons, the name *Otaria byronia* is used in this study, instead of *O. flavescens*.

The South American fur seal, *A. australis*, was recognized as two subspecies initially by King (1954) and subsequently by Rice (1998) and others. King (1954) suggested *A. australis* should be classified into two subspecies, a 'larger' form, *A. a.* gracilis, found on the Falkland Islands and a 'smaller' form, *A. a. australis*, from the mainland. It was observed later that three skulls of the Galapagos fur seal, *A. galapagoensis*, were included in King's mainland sample of 11 specimens (Bonner, 1981). Thus, the subspecific split based upon this analysis is doubtful and is reassessed in this study.

The genus Zalophus comprises three sub-species: Z. c. californianus (California sea lion), Z. c. wollebaeki (Galapagos sea lion), and Z. c. japonicus (the presumed-extinct Japanese sea lion) (Scheffer, 1958). Itoo (1985) compared the cranial morphology of the three subspecies and suggested Z. c. japonicus may be a distinct species of Zalophus, rather than a subspecies of Z. californianus. Rice (1998) considered all three as separate species based on work by Itoo (1985) for the Japanese sea lion, and Sivertsen (1953, 1954) for splitting Z. c. californianus and Z. c. wollebaeki into separate species. Itoo (1985) used the number of PCs as one of the primary separating variables to remove Z. c. japonicus from the species

Z. californianus. The number of PCs in the genus *Zalophus* varies significantly in all three groups, thus cannot be applied definitively as a guide to separate *Z. c. japonicus* from the species group. Sivertsen (1954) used eight adult male skulls of *Z. c. californianus* for his taxonomic comparisons with adult male *Z. c. wollebaeki*, one with a suture index of only 21. For adult female *Z. c. wollebaeki*, Sivertsen (1954) used only one specimen in his comparisons with adult female *Z. c. californianus*; the small sample sizes for taxonomic comparisons would allow for significant error. For these reasons, separation of the genus *Zalophus* into species by Sivertsen (1953, 1954), Itoo (1985) and Rice (1998) is questionable and the group will be considered subspecies as recognized by Scheffer (1958), King (1983), Reeves *et al.* (1992) and Maldonado *et al.* (1995) until tested analytically in this study.

In Australia, the presence of more than one species of Arctocephalus has long been acknowledged. Flinders (1814) recognized a brown and black fur seal in Bass Strait (see Warneke, 1982), although the taxonomy of these animals has been confused. Those seals that occur in Western Australia, South Australia and Victoria have been referred to by various names, but usually as A. doriferus (Wood Jones, 1925), and those in Tasmania were distinguished as A. tasmanicus (Scott & Lord, 1926). King (1968, 1969) showed that two taxa were in fact present, the New Zealand fur seal, A. forsteri, in the waters off South Australia and the southern coast of Western Australia, and a larger species in Tasmania, Victoria and New South Wales, which she identified as A. doriferus (this name gaining precedence over A. tasmanicus). King (1969) noted the similarity between A. doriferus and A. pusillus, and had concluded that these two fur seals were conspecific, while Repenning et al. (1971) compared skulls of all species of Arctocephalus and concluded independently that they too could not distinguish between skulls of A. pusillus and A. doriferus.

The discipline of taxonomy is central to our knowledge and appreciation of biological diversity, and should be based on both morphometric and molecular approaches that contribute towards a 'total evidence' approach to the study of biodiversity. The current examination of genetic diversity and relationships within the Otariidae (Maldonado et al., 1995; Lento et al., 1997; Wynen et al., 2001) requires matching by comprehensive new studies of skull morphometry based on large sample sizes, in order to provide a sound basis for reappraisal of species limits in the family (Boness, 1996). Controversy surrounding the assertion that the sperm whale, an odontocete, is more closely related to mysticete whales than to other odontocetes (Milinkovitch et al., 1993) has underlined the importance of anatomical observation and morphometric analysis to systematics. Rice (1998, p. 4) stated that the "Initial faith in the near-infallibility of ... molecular studies has now been tempered by a more sober appraisal of their strengths and weaknesses ... Unlike morphological data, nucleotide sequence data generate only gene-phylogenies, not species-phylogenies. In any given clade, gene-phylogenies are not necessarily congruent with the species-phylogeny or with each other, so that cladograms derived from different kinds of molecular data are frequently contradictory."

To gain a comprehensive understanding of the biodiversity of otariids, it is essential to observe not only interspecific relationships, but also morphological variations *within* species. Recent work has been completed on this topic, which shows that variation in skull morphology is observed between most allopatric populations of otariids (Brunner, 2000; Brunner *et al.*, 2002). Previous studies on geographic variation of otariids have been undertaken, such as genetic investigations for populations of *Z. c. californianus* (Maldonado *et al.*, 1995) and *E. jubatus* (Bickham *et al.*, 1996, 1998), blood transferrin types in *A. p. pusillus* and *A. p. doriferus* (Shaughnessy, 1982), cranial morphology of *A. forsteri* and *A. pusillus* (Brunner, 1998b), mean adult body size in populations of *A. tropicalis* (Bester & Van Jaarsveld, 1994), variation in mtDNA of *A. philippii* (Goldsworthy *et al.*, 2000), and geographic variation in skulls of otariid seals (Brunner, 2000; Brunner *et al.*, 2002).

Finally, and most importantly, a taxonomic review based on cranial morphometrics requires extensive familiarity with the morphology of skulls for each species and for each sex, particularly when dealing with groups of similar appearance (e.g. Arctocephalus). Sivertsen (1954) noted that two of the problems in dealing with the systematics of otariids are the enormous sexual differences in size and the very large individual variation. The effects of these on species identification become much reduced when only fully mature adults are used for taxonomic study (Brunner, 1998b, 2000, submitted). To this end, a significant number of crania were identified to genus, species, subspecies (where appropriate), sex and relative age, then measured and the data analysed. This synopsis provides a detailed description of the skull for males and females of each species of otariid, and a review of the current taxonomy of the family, using morphometric techniques applied to a large series of skulls. The identification of species includes quantitative and qualitative morphological descriptions for skulls (for both sexes), summaries of univariate and multivariate statistics, and photographic reference plates. Morphological variation in skulls for taxa that comprise current subspecific delineations are also discussed. These are: Z. californianus (Z. c. californianus, Z. c. wollebaeki and Z. c. japonicus), A. australis (A. a. australis and A. a. gracilis) and A. pusillus (A. p. pusillus and A. p. doriferus). Morphological relationships between species of the Otariidae are then described, the report concluding with summary recommendations for taxonomic revision of the family.

Materials and methods

Data collection and preparation

I examined and measured 2345 specimens representing all species of otariids in museums and other institutions, worldwide (Table 1). Skulls were photographed from dorsal, ventral and lateral perspectives. Summary details of each specimen used in this study are listed in Appendix I.

Specimens were grouped into categories of species, sex and relative age (Brunner, 1998*a*). Relative age was estimated by applying a suture-ageing index (Doutt, 1942; Sivertsen, 1954). For each skull, nine cranial sutures were assigned a value between 1–4, according to degree of closure (1 = suture fully open; 2 = less than half-fused; 3 = more than half-fused;

Code	Museum	Country
AM	Australian Museum, Sydney	Australia
AMNH	American Museum of Natural History, New York	USA
ASD	Asahi University, Gifu Prefecture	Japan
BMNH	British Museum of Natural History, London	England
CAS	California Academy of Sciences, San Francisco	USA
DMNH	Denver Museum of Natural History, Denver	USA
FMNH	Field Museum of Natural History, Chicago	USA
HU	Hokkaido University, Hakodate	Japan
НМН	Historical Museum of Hokkaido, Sapporo	Japan
НМЈН	Historical Museum of Japanese History, Tokyo	Japan
LACM	Los Angeles County Museum, Los Angeles	USA
MNHN	Museum Nationale d'Histoire Naturelle, Paris	France
MVZ	Museum of Vertebrate Zoology, Berkeley	USA
NMML	National Marine Mammal Laboratory, Seattle	USA
NMNH	National Museum of Natural History, Washington DC	USA
NMNZ	National Museum of New Zealand, Wellington	New Zealand
MV	Museum of Victoria, Melbourne	Australia
NRM	Museum of Natural History, Stockholm	Sweden
PEM	Port Elizabeth Museum, Port Elizabeth	South Africa
SAM(1)	South Australian Museum, Adelaide	Australia
SAM(2)	South African Museum, Cape Town	South Africa
SDNHM	San Diego Natural History Museum, San Diego	USA
UAM	University of Alaska Museum, Fairbanks	USA
UMZC	University Museum of Zoology, Cambridge	England
WAM	Western Australian Museum, Perth	Australia
ZMB	Zoological Museum of Berlin, Berlin	Germany

 Table 1
 Collection localities specimens used in this study.

and 4 = suture fused completely) (Brunner, 1998*a*). These values were then added to provide an overall suture index (SI), ranging from 9–36.

Adult specimens only were used for taxonomic review to avoid age-related bias. Thus, a total of 1100 were used for taxonomic analyses. Growth curves were applied initially to specimens of each species and for each sex (Brunner, 2000; Brunner *et al.*, submitted), to identify the stage at which skulls reached physical maturity (i.e. condylobasal length no longer increases and, in males, a sagittal crest is present). Relative age of mature adults was at SI 21–24 for males and SI 17–19 for females, depending on the species (Brunner, 2000, submitted). Although this technique is not widely applied outside the work of pinniped morphology, it is an effective technique used successfully by the author in previous studies (Brunner, 1998*a*, *b*, 2000, 2002). Forty-one measurements were then recorded for each skull, using Mitotoyo digital callipers, and were mostly those from Sivertsen (1954) (Table 2, Fig. 1).

Analyses

Univariate statistics were computed with SYSTAT 8.0. Student's *t*-test was applied to test for significant differences in single measurements between various groups (interspecific, intersexual and population comparisons).

Principal Components Analysis (PCA) was applied using SYSTAT 8.0 to investigate variation within each group by extracting independent facets of variation from a matrix measuring dispersion. Components were ordered in terms of magnitude of their variances (*i*th principal component having the *i*th largest variance). The values for the original variables were initially standardized to *z*-scores, so that each variable had equal weighting. Only adult specimens for which no data points were missing were used for multivariate analyses, thus reducing the possibility for bias. Factor matrices of product-moment correlation coefficients, indicating the character loadings for the first three components and the percentage of variation accounted for by each component, were computed (Brunner, 1998*b*, 2000; Jolicoeur & Mosimann, 1960; Pimentel, 1979). All variables were tested initially, then those which contributed little to the variance of the data (identified by low coefficient scores) were discarded.

Discriminant analyses using SYSTAT 8.0 were applied to examine relationships between groups. Methods comprised multivariate analysis of variance (MANOVA) followed by either two-group or multi-group discriminant function analysis (Pimentel, 1979).

Hierarchical cluster analyses were applied to adult male Otariidae, using single linkage R-squared distances to illustrate relationships between species. Ten skulls from the brown bear, *Ursus arctos*, as used by Berta & Sumich (1999) in their phylogenetic study, were used for comparison with otariid specimens in this study.

Results

The typical skull morphology of otariids can be described as supporting two general characteristics: a short, mesocephalic skull observed primarily, but not exclusively, in the fur seals and a more dolichocephalic form common in most sea lions. With the exception of *A. pusillus* (large fur seal) and *Z. c. wollebaeki* (small sea lion), the sea lions were the larger representatives of the Otariidae. Skulls of adult *E. jubatus* were the largest of the otariids and were relatively dolichocephalic,

variable No.	Parameter
1	Condylobasal length, from gnathion to posterior of basion
2	Gnathion-middle of occipital crest
3	Gnathion-posterior end of nasals
4	Breadth of nares, from interior of nares at widest point
5	Greatest length of nasals, from anterior margin of nasal to posterior margin
6	Breadth at preorbital processes
7	Interorbital constriction
8	Breadth at supraorbital processes, measured at widest point
9	Breadth of braincase, measured dorsally at coronal suture
10	Occipital crest–mastoid, from mid-occipital crest to ventral margin of mastoid
11	Palatal notch-incisors, from anterior point of palatal notch to posterior edge of central incisor alveoli; where a palatal cleft was present, measurement was taken from palatal notch at margin of, but excluding, cleft
12	Distance behind border of canines, from posterior margin of canine alveolus to posterior margin of postcanine 6 alveolus
13	Rostral width, at widest point of rostrum
14	Gnathion–posterior end of maxilla (palatal)
15	Breadth of zygomatic root of maxilla, maximal breadth anteroposterior, from ventral perspective
16	Breadth of palate between postcanines 3 and 4, between postcanines 3 and 4 alveoli
17	Breadth of palate between postcanines 4 and 5, between postcanines 4 and 5 alveoli
18	Breadth of palate at postcanine 5, from proximal margin of postcanine 5 alveoli
19	Gnathion–caudal border postglenoid process
20	Zygomatic breadth, at widest point of zygomatic arch, from posterior of squamosals
21	Basion–zygomatic root of maxilla, ventral perspective, from anterior of basion to anterior of zygomatic root
22	Auditory breadth, greatest distance at auditory bullae
23	Mastoid breadth
24	Basion–bend of pterygoid, from anterior of basion to anterior of pterygoid
25	Height of canine above alveolus, a straight line from the posterior margin of alveolus to the tip of the canine
26	Gnathion–foramen infraorbitale, from gnathion to anterior of foramen infraorbitale
27	Height of skull at supraorbital processes, from base of skull at postcanine 6 alveolus to dorsal margin of skull at supraorbital processes
28	Height of skull at ventral margin of mastoid, dorsoventrally, from skull at base of sagittal crest to ventral margin of mastoid
29	Height of sagittal crest, dorsoventrally, from highest point of crest to skull at base of crest
30	Mesiodistal diameter of postcanines, at root of postcanine above alveolus
31	Length of mandible, from posterior margin of condyle to anterior margin of dentary
32	Length of mandibular teeth row (inclusive of canines), from anterior margin of canine alveolus to posterior margin of postcanine 6 alveolus
33	Mesiodistal diameter of canines, across base of canine at alveolus
34	Length of lower postcanine row, from anterior margin of postcanine 1 alveolus to posterior margin of postcanine 6 alveolus
35	Height of mandible at meatus, from dorsal margin of angularis at meatus to dorsal margin of coronoid process
36	Angularis–coronoideus, from ventral margin of angularis to dorsal margin of coronoid process
37	Length of masseteric fossa, from anterior margin of fossa to posterior margin of coronoid process
38	Breadth of masseteric fossa, dorsoventrally through centre of fossa
39	Gnathion–caudal border of preorbital process, from gnathion to posterior margin of preorbital process
40	Length of orbit-from ventral margin of postglenoid process to dorsal margin of the base of orbit
41	Breadth of orbit–mesiodistal from inside margin of orbit

 Table 2
 Measurements taken from otariid skulls used in this study.

while those of *O. byronia* were by far the most robust and possessed a mesocephalic skull type. Those of *C. ursinus* and *Arctocephalus* spp. (excluding *A. townsendi* and *A. philippii*) were relatively short and robust, also showing mesocephalic morphology. The remaining otariids, *Z. californianus*, *A. townsendi*, *A. philippii*, *A. p. pusillus* and *A. p. doriferus* had dolichocephalic proportions including a longer, tapering rostrum, narrower palatal regions and a longer, less curvaceous zygomatic arch.

Description of species: sea lions

..

There are currently five monotypic species of sea lions. Only one, *Zalophus californianus*, is separated into three subspecies. The following are summary descriptions for each species or subspecies of sea lions, outlining morphological characteristics that are constant within each species and those that express sexual dimorphism. Results from PCA are described, many of which show low resolution as may be expected when analysing variation within a single species. Results from PCA are summarized in Table 3. Univariate statistics are listed in Appendix II (http://curator.museum.uaf.edu/brunner/appendices/).

Steller sea lion – Eumetopias jubatus (Schreber, 1776) *General morphology*

Specimens of *E. jubatus* were the largest of the family Otariidae. The rostrum was elongate, tapered and broad in males; in females, it was narrower at the canines than in males and broader than males at the posterior of the maxilla. Breadth at preorbital processes was greater than rostral width, in males. The orbit was elongate dorsoventrally (length of orbit was generally greater than its breadth); whereas, the zygomatic arch

Figure 1 Measurements taken from otariid skulls used in this study, showing dorsal (a), ventral (b) and right lateral (c) perspectives (from Brunner 2002).

was long and narrow at the jugal-squamosal margins, and was less dense in females than in males. For most male E. jubatus, a convex rise was present at the frontal immediately behind the supraorbital processes. The frontal was long in both sexes. Supraorbital processes were quadrate, set close to the interorbital constriction and preorbital processes, and were smaller in females than in males. Sagittal and occipital crests were exaggerated in adult males, with heavy and rugose bone deposition around the cresting. The palate was broad and long, terminating squarely at its posterior. The canines were large in males, particularly at the roots, and less so in females. The auditory bullae were large and rounded with a pointed rise towards their inside edge. The bullae in older specimens possessed spur-like extensions at their posterior. The mastoid processes were thick and lengthened with age, particularly in males. The mandible was long and the angle between the dentary and coronoid process was large. The masseteric fossa was deep, especially in older specimens, and long. Postcanines were unicuspid, with posterior angling of PC 5 and a large diastema between PCs 4-5 (Plate 1).

Measured variables

Means for variables relating to length of skull, when observed relative to CBL, showed that males were larger than females in all but one characteristic: basion – bend of pterygoid. Relative to CBL, *E. jubatus* expressed sexual dimorphism (males larger than females) in all variables relating to robustness, excluding: breadth of braincase, and length and breadth of orbit. Ranges for three variables relating to the braincase and orbit overlapped between males and females (actual measurements). As a percentage of CBL, most variables relating to the mandible and teeth were larger in male *E. jubatus* than they were in females, excluding: distance behind border of upper canines, length of lower PC row and breadth of masseteric fossa.

Multivariate analyses

Principal components analysis for adult female E. jubatus was based on standardized data for 12 variables. The greatest within-sex variation in cranial morphology for female E. jubatus was one of size, observed in Component 1, and accounted for over half the total variance (54.6%). The most significant variables for Component 1 related primarily to dimensions of cranial length including CBL, gnathion-middle of occipital crest, gnathion-caudal border of postglenoid process and rostral width. Component 2 was influenced by shape, as seen by both positive and negative coefficients, and contributed another 16.6% to the total variance. In Component 2, there was an increase in palatal, condylobasal and rostral dimensions, compared with those for nasal and aural characteristics which decreased in magnitude. Length of nasals (coefficient: -0.653) and gnathion-posterior margin of nasals (-0.612) were the most significant variables for this component. Component 3 was also influenced by shape, and contributed a further 6.7% to the total variance. Variation was emphasized primarily in nasal and frontal dimensions, the most significant being length of nasals and gnathion-posterior margin of nasals which were positive (0.683 and 0.440, respectively). These two variables showed an increase in magnitude relative to interorbital constriction in Component 3, breadth of skull at supraorbital processes and auditory breadth which all possessed negative.

As with adult female E. jubatus, Component 1 described over half the total observed variance for adult males of this species (57.4%). Condylobasal length and gnathion-caudal border of postglenoid process in male E. jubatus showed both high and positive coefficients (0.917 and 0.924, respectively). Male E. jubatus expressed greater size variation than females in rostral width and zygomatic breadth which, in males, also had high, positive coefficients (0.835 and 0.895, respectively). Component 2, also influenced by shape, contributed another 14.4% to the total variance and was emphasized primarily by breadth of palate at PCs 4-5 (-0.755) and 5 (-0.775). Breadth of skull at supraorbital processes (-0.709) contributed the most variance to Component 3, decreasing in magnitude compared with length of nasals and gnathion-posterior margin of nasals. Condylobasal length, gnathion-caudal border of postglenoid process, rostral width, zygomatic breadth and basion-zygomatic root (anterior), contributed little to the total variance of Component 3, in adult male E. jubatus.

Variable	Component 1	Component 2	Component 3
(a) Eumetopias jubatus			
Females (n = 27)			
Length of nasals	0.200	-0.653	0.683
Gnathion–posterior margin of nasals	0.606	-0.612	0.440
Interorbital constriction	0.625	-0.570	-0.435
Breadth of skull at supraorbital processes	0.607	-0.531	-0.409
Auditory breadth	0.709	-0.121	-0.380
Breadth of palate at postcanines 4–5	0.715	0.360	0.369
Breadth of palate at postcanines 3–4	0.801	0.408	0.168
Gnathion–middle of occipital crest	0.895	0.009	-0.112
Gnathion–caudal border of postglenoid process	0.909	0.160	0.112
Palatal notch-incisors	0.774	0.474	-0.035
Condylobasal length	0.910	0.145	0.019
Rostral width	0.821	0.037	-0.005
Percentage of total variance	546	16.6	11.2
Figenvalues	66	2.0	1.6
	0.0	2.0	4
Males $(n = 34)$			
Breadth of palate at postcanine 5	0.489	-0.775	0.174
Breadth of palate at postcanines 4–5	0.606	-0.755	0.038
Breadth of skull at supraorbital processes	0.435	0.133	-0.709
Gnathion–middle of occipital crest	0.206	0.258	-0.587
Length of nasals	0.432	0.281	0.521
Gnathion–posterior margin of nasals	0.675	0.345	0.439
Breadth of skull at preorbital processes	0.686	0.011	-0.395
Distance behind border of upper canines	0.574	0.426	0.375
Mastoid breadth	0.764	0.212	-0.350
Condylobasal length	0.917	0.223	0.107
Gnathion–caudal border of postglenoid process	0.924	0.167	0.084
Rostral width	0.835	-0.212	0.080
Zygomatic breadth	0.895	0.038	-0.078
Breadth of palate at postcanines $3-4$	0.726	-0.588	-0.032
Basion–zygomatic root (anterior)	0.837	0.202	-0.032
Percentage of total variance	57.4	14.4	9.5
Eigenvalues	6.3	1.5	1.0
(b) Otaria byronia			
Females (n = 37)			
Breadth of palate at postcanine 5	0.700	-0.679	0.010
Auditory breadth	0.787	0.056	0.434
Gnathion–caudal border of preorbital process	0.843	0.005	-0.432
Zygomatic breadth	0.828	-0.028	0.413
Gnathion–posterior margin of nasals	0.791	0.033	-0.401
Gnathion–middle of occipital crest	0.902	0.178	-0.241
Gnathion–caudal border of postglenoid process	0.885	0.314	0.192
Breadth of palate at postcanines $4-5$	0.753	-0.622	0.048
Palatal notch-incisors	0.725	0.570	0.044
Basion-zygomatic root (anterior)	0.888	0.216	-0.020
Condylohasal length	0.005	0.242	-0.006
Breadth of palate at postcapines $3-4$	0.780	-0.584	-0.006
		0.904	6.000
Percentage of total variance	67.1	15.5	6.7
Eigenvalues	8.1	1.8	0.8
Males male $(n = 49)$			
Breadth of palate at postcanine 5	0.640	-0.729	0.095
Breadth of palate at postcanines 4–5	0.694	-0.696	0.123
Gnathion-posterior margin of nasals	0.683	0.263	0.611
Gnathion–caudal border of preorbital process	0.714	0.237	0.573
Mastoid breadth	0.869	0.227	-0.322
Auditory breadth	0.895	-0.001	-0.264
Height of skull at ventral margin of mastoid	0.861	0.030	-0.248
Occipital crest-mastoid	0.887	8000	_0.240
Zvgomatic broadth	0.007	-0.051	-0.231
Condulabasal length	0.907	-0.051	-0.155
Concytopasal length Pasion zugomatic root (anterior)	0.043	0.390	0.134
Dasion-zygonialic rool (anterior)	0.869	0.299	-0.058
Breadth of palate at postcanines 3–4	0.762	-0.593	0.054

Table 3Factor matrices from principal component analyses for specimens of adult male and female otariids, showing character loadings on
the first three components.

Variable	Component 1	Component 2	Component 3
Percentage of total variance	65.2	15.8	8.9
Eigenvalues	7.8	1.9	1.1
(c) Neophoca cinerea Females (n = 34)			
Breadth of skull at supraorbital processes	0.695	0.642	0.225
Breadth of skull at preorbital processes	0.754	0.526	-0.108
Mastoid breadth	0.837	0.030	-0.455
Occipital crest–mastoid	0.807	-0.206	-0.439
Palatal notch-incisors	0.871	0.050	0.416
Auditory breadth	0.845	0.220	-0.241
Condylobasal length	0.926	-0.232	0.224
Gnathion–caudal border of postglenoid process	0.939	-0.236	0.180
Gnathion–caudal border of preorbital process	0.872	-0.259	0.098
Basion–zygomatic root (anterior)	0.898	-0.300	0.045
Percentage of total variance	71.9	10.5	7.9
Eigenvalues	7.2	1.1	0.8
<i>Males</i> (n = 58)			
Breadth of palate at postcanines 3–4	0.685	-0.601	0.288
Zygomatic breadth	0.754	-0.476	-0.333
Gnathion–caudal border of preorbital process	0.844	0.210	-0.323
Condylobasal length	0.893	0.146	0.230
Gnathion–caudal border of postglenoid process	0.951	0.066	0.128
Gnathion–posterior of maxilla (palatal)	0.817	0.448	0.097
Gnathion-middle of occipital crest	0.908	0.036	-0.088
Percentage of total variance	70.6	12.3	5.5
Eigenvalues	4.9	0.9	0.4
(d) Phocarctos hookeri			
Females ($n = 32$)	0.508	2 919	0.0/0
Conthian middle of accinital croct	0.508	-0.818	0.240
Basian zugemetic root (enterior)	0.817	-0.333	-0.446
Palatal notch_incisors	0.899	0.207	0.312
Condulobasal length	0.070	0.310	-0.070
Gnathion-caudal border of postglenoid process	0.952	0.203	0.022
Percentage of total variance	71 1	16.1	60
Eigenvalues	4.3	1.0	0.4
Males $(n = 25)$			
Height of skull at supraorbital processes	0.841	0.314	-0.354
Gnathion-caudal border of preorbital process	0.890	0.127	0.295
Gnathion-middle of occipital crest	0.938	0.084	0.236
Palatal notch–incisors	0.885	-0.289	-0.167
Gnathion–posterior margin of nasals	0.922	0.043	0.155
Height of sagittal crest	0.794	0.516	-0.147
Basion–zygomatic root (anterior)	0.876	-0.396	-0.111
Rostral width	0.888	0.175	0.044
Gnathion–caudal border of postglenoid process	0.904	-0.392	-0.039
Occipital crest-mastoid	0.861	0.305	0.031
Condylobasal length	0.897	-0.408	0.004
Percentage of total variance	77.8	9.8	3.3
Eigenvalues	8.6	1.1	0.4
(e) Zalophus californianus californianus			
<i>remaies</i> (n = 42)	a (a)	a (1-	
neight of skull at ventral margin of mastold	0.698	-0.647	-0.003
Occipital crest-mastold	0.770	-0.532	0.032
Gradinion-posterior margin of nasals	0.687	0.175	-0.702
Dasion-Zygomatic root (anterior)	0.842	0.354	0.244
Conthion, could border of nostelessiders	0.948	0.251	0.133
Gnathion-caudal border of postglenoid process	0.921 0.878	0.243 -0.021	0.083
Percentage of total variance	68 2	14.0	 & >
Figenvalues	60.3 A R	10	0.3
Moles (n (r)	4.0	1.0	0.0
males $(n = 61)$ Height of societal creat	0 4 4 7	0.579	o / / 9
ווכוצווו טו למצוונמו נופלו	0.007	-0.570	0.440

Variable	Component 1	Component 2	Component 3
Mastoid breadth	0.876	-0.328	-0.255
Auditory breadth	0.885	-0.255	-0.238
Gnathion–middle of occipital crest	0.939	0.123	0.149
Occipital crest-mastoid	0.879	-0.346	-0.109
Gnathion–posterior margin of nasals	0.798	0.508	0.078
Gnathion–caudal border of preorbital process	0.756	0.565	0.031
Condylobasal length	0.896	0.284	0.005
Percentage of total variance	70.8	16.2	4.5
Eigenvalues	5.7	1.3	0.4
(†) Zalophus californianus wollebaeki			
Males (n = 27)			
Palatal notch-incisors	0.806	-0.463	0.314
Rostral width	0.796	0.389	0.432
Mastoid breadth	0.896	0.129	-0.254
Zygomatic breadth	0.919	0.197	-0.238
Condylobasal length	0.870	-0.322	-0.176
Gnathion–middle of occipital crest	0.923	0.052	0.002
Percentage of total variance	75.7	8.8	7.3
Eigenvalues	4.5	0.5	0.4
(g) Callorhinus ursinus			
Females (n = 131)		0	
Breadth of palate at postcanines 4–5	0.623	-0.748	0.045
Gnathion–posterior margin of hasals	0.739	0.214	-0.523
Occipital crest–mastoid	0.645	0.066	0.390
Gnathion–caudal border of preorbital process	0.828	0.209	-0.373
Basion–zygomatic root (anterior)	0.777	0.404	0.250
Condylobasal length	0.856	0.389	0.148
Gnathion–caudal border of postglenoid process	0.840	0.392	0.109
Breadth of palate at postcanine 5	0.654	-0.685	0.063
Breadth of palate at postcanines 3–4	0.652	-0.671	-0.059
Percentage of total variance	54.8	22.7	7.5
Eigenvalues	4.9	2.0	0.7
Males (n = 49)			
Gnathion–caudal border of preorbital process	0.815	0.404	0.199
Height of skull at ventral margin of mastoid	0.807	-0.387	-0.312
Zygomatic breadth	0.843	-0.304	0.285
Height of skull at supraorbital processes	0.867	0.159	0.283
Condylobasal length	0.933	0.173	-0.249
Auditory breadth	0.887	-0.092	0.195
Gnathion–middle of occipital crest	0.889	0.239	-0.187
Basion–zygomatic root (anterior)	0.897	0.021	-0.168
Gnathion–caudal border of postglenoid process	0.946	0.064	-0.142
Mastold breadth	0.870	-0.310	0.132
Percentage of total variance	76.8	6.3	5.0
Eigenvalues	/./	0.0	0.5
(n) Arctocephalus gazella Females (n -20)			
Zygomatic breadth	0 5 5 5	-0.206	-0 568
Gnathion_caudal border of preorbital process	0.330	0.500	-0.482
Basion-bend of ntervgoid	0.279	0.363	0.405
Breadth of palate at postcanines $2-4$	0.6/1	-0.562	0.371
Breadth of palate at postcanine 5	0.774	-0.443	-0.227
Breadth of skull at supraorbital processes	0.508	0.643	0.178
Breadth of palate at postcanines $4-\epsilon$	0.390	-0.466	0.178
Interorbital constriction	0.707	0.400	0.120
Breadth of skull at preorbital processes	0.807	0.273	-0.095
Percentage of total variance	41.4	22.1	10.3
Eigenvalues	3.7	2.0	0.9
<i>Males</i> (n = 52)			
Gnathion–posterior margin of nasals	0.273	0.021	-0.851
Gnathion–caudal border of preorbital process	0.346	0.226	-0.804
Auditory breadth	0.598	-0.573	0.327
Gnathion-middle of occipital crest	0.474	-0.557	-0.215
Breadth of palate at postcanines 3–4	0.676	0.538	0.215

Variable	Component 1	Component 2	Component 3
Breadth of palate at postcanine 5	0.639	0.643	0.175
Breadth of palate at postcanines 4–5	0.731	0.576	0.124
Zygomatic breadth	0.821	-0.394	0.089
Rostral width	0.626	-0.557	-0.006
Percentage of total variance	36.0	24.3	18.0
Eigenvalues	3.2	2.2	1.6
(i) Arctocephalus tropicalis Females $(n - 12)$			
Breadth of palate at postcanines $3-4$	0.229	0.800	-0.500
Breadth of skull at supraorbital processes	0.482	-0.695	-0.375
Interorbital constriction	0.299	-0.584	-0.682
Breadth of skull at preorbital processes	0.699	-0.314	0.600
Breadth of zygomatic root of maxilla	0.725	0.388	-0.333
Zygomatic breadth	0.855	0.224	0 307
Gnathion-middle of occinital crest	0.822	0.161	-0.275
Distance behind border of upper canines	0.033	0.104	0.275
Palatal notch-incisors	0.077	-0.048	0.215
Gnathion–caudal border of preorbital process	0.959	-0.040	-0.147
Gnathion caudal border of precibilital process	0.071	-0.000	-0.109
Basion-zygomatic root (anterior)	0.954	-0.000	-0.004
Condulobasal length	0.907	0.031	0.045
Condytobasat length Conthign caudal barder of postgloppid process	0.979	0.022	0.039
Ghathion–caudal border of postglenoid process	0.981	-0.081	0.033
Percentage of total variance	64.2	13.2	11.3
Eigenvalues	9.0	1.8	1.6
Males $(n = 43)$			
Breadth of palate at postcanine 5	0.419	0.871	-0.082
Breadth of palate at postcanines 4–5	0.517	0.809	0.088
Basion–bend of pterygoid	0.637	-0.213	-0.695
Occipital crest-mastoid	0.716	-0.275	0.415
Gnathion–caudal border of preorbital process	0.870	0.056	0.132
Height of skull at supraorbital processes	0.858	0.021	-0.121
Condylobasal length	0.892	-0.288	0.116
Basion–zygomatic root (anterior)	0.873	-0.298	0.021
Percentage of total variance	55.2	21.4	8.9
Eigenvalues	4.4	1.7	0.7
(i) Arctocephalus forsteri			
Females $(n = 15)$			
Breadth of zygomatic root of maxilla	0.206	0.965	-0.046
Gnathion–foramen infraorbitale	0.807	0.036	-0.518
Gnathion–caudal border of preorbital process	0.859	0.016	-0.320
Occipital crest-mastoid	0.892	0.104	0.310
Palatal notch-incisors	0.922	0.052	0.270
Gnathion–caudal border of postglenoid process	0.973	0.004	0.126
Basion-bend of ntervisid	0.850	-0.271	-0.110
Gnathion-posterior of maxilla (nalatal)	0.030	0.063	0.110
Condylobasal length	0.929	-0.147	0.100
Gnathion_middle of occinital crest	0.972	-0.147	0.090
Basion-zygomatic root (anterior)	0.0531	-0.120	-0.007
	0.937	-0.130	0.025
Percentage of total variance	75.8	10.4	5.4
Eigenvalues	8.3	1.2	0.6
<i>Males</i> (n = 53)			
Length of nasals	0.602	0.626	-0.436
Auditory breadth	0.677	-0.575	-0.356
Condylobasal length	0.921	-0.015	0.250
Gnathion–posterior of maxilla (palatal)	0.791	0.220	0.245
Basion–zygomatic root (anterior)	0.872	-0.153	0.244
Gnathion–caudal border of postglenoid process	0.899	0.063	0.236
Zygomatic breadth	0.725	-0.545	-0.230
Gnathion–posterior margin of nasals	0.827	0.392	-0.216
Percentage of total variance	62.4	15 6	8 2
Figenvalues	4.co	1 2 1 2	0.2
(k) Arctoconhalus nusillus nusillus	<u></u>	ر.ـ	0.0
(n) Aicioceptialas pusillas pusillas Females (n — 40)			
Auditory breadth	0 822	-0 /20	0 242
Height of skull at supraorbital processes	0.800	-0.252	-0 517
insight of skull at supravisital processes	0.009	0.233	0.21/

Zypomatic breadth0.88-0.1960.572Grathom-midde occipial rest-mastoid0.853-0.3940.052Orcipial rest-mastoid0.8530.3240.024Grathom-midde looter of postelenoid process0.9660.3210.039Bailen-regular blorder of postelenoid process0.9658.14.0Preventage of truct variance8.058.14.0Eigenvalues7.20.70.4Macis (n = 37)-0.6690.0950.095Grathino-radio blorder of postelenoid process0.763-0.6690.095Grathino-radio blorder of postelenoid process0.763-0.6690.300-0.44Grathino-madio blorder of postelenoid process0.9630.300-0.44Grathino-madio blorder of postelenoid process0.9630.310-0.436Condvibosal length0.8660.310-0.4330.315Condvibosal length0.854-0.4710.101Condvibosal length0.854-0.4710.101Condvibosal length0.854-0.4710.101Condvibosal length0.9630.121-0.335Grathino-madia blorder of postelenoid process0.9630.237-0.138Condvibosal length0.9630.265-0.104Condvibosal length0.9630.237-0.138Condvibosal length0.9630.237-0.138Grathino-madia blorder of prostilial process0.9630.237-0.138Basion-peed potter of maxilia (palata)0.963 <th>Variable</th> <th>Component 1</th> <th>Component 2</th> <th>Component 3</th>	Variable	Component 1	Component 2	Component 3
Gambian-middle d'accipilal rest0.9610.1150.031Condybbasal length0.9530.4220.032Condybbasal length0.9540.4220.032Gambian-systemic of maxilla [salat]0.9600.3110.030Bailon-regionalito to familion0.8870.3420.022Gambian-systemic of maxilla [salat]0.8870.3420.022Precentage at total variance8.6.58.14.0Eigenenlaes7.20.70.4Matsial (rest-mastold0.712-0.6600.093Occipital (rest-mastold0.741-0.6590.093Occipital (rest-mastold0.743-0.6590.031Condybolase length present process0.880-0.391-0.760Gambian-consult for der of program la process0.9430.1610.033Preentage of total variance8.91.50.31Gambian-caudit for der of program la process0.9430.411-0.73Gambian-caudit for der of program la process0.9430.4210.10Gambian-caudit for der of program la process0.9430.4210.132Gambian-caudit for der of program la process0.9430.4210.393Gambian-caudit for der of program la process0.9430.4210.310Gambian-caudit for der of program la process0.9410.4210.393Gambian-caudit for der of program la process0.9410.3210.373Zapanatic Length0.9550.2030.373Gambian-caudit for	Zygomatic breadth	0.881	-0.196	0.152
Decipial crest-mastoi 0.839 -0.394 0.052 Gnathien-could border of postglenoid process 0.940 0.212 0.039 Gnathien-could border of postglenoid process 0.956 0.231 0.039 Basion-zygganatic tool (narierion) 0.857 0.372 0.42 Verentage of focul wahnee 8.05 8.1 4.0 Eigenvalues 7.2 0.7 0.4 Masiod breadth 0.715 -0.656 0.095 Gnathion-could breadth 0.743 0.451 0.473 Gnathon-could breadt of postglenoid process 0.843 0.101 0.023 Gnathon-could breadt of postglenoid process 0.943 0.161 0.023 Gnathon-could breadt of postglenoid process 0.943 0.161 0.023 Gnathon-could breadt of postglenoid process 0.943 0.161 0.023 Gnathon-could breadt 0.856 -0.471 0.101 Gnathon-could breadt 0.890 0.152 0.312 Grathon-breadt 0.893 0.152 0.313 D	Gnathion–middle of occipital crest	0.961	0.115	-0.091
Candy lossal length 0.953 0.242 0.039 Gandy lossal length 0.956 0.211 0.039 Gandy lossal length 0.956 0.231 0.039 Gandy lossal length 0.956 0.231 0.039 Basion-rygomatic root [anterion] 0.854 0.242 0.272 Percentage of total variance 80.5 8.1 4.0 Eigenvalues 7.2 0.7 0.4 Moles (n = 37)	Occipital crest-mastoid	0.839	-0.394	0.052
Grathin-pacteria of maxila (galatal) 0.940 0.712 0.039 Grathin-pacteria of maxila (galatal) 0.887 0.312 0.039 Basion-zyganatic root (anterior) 0.887 0.312 0.039 Basion-zyganatic root (anterior) 0.857 0.72 0.7 0.4 Massia breadth 0.715 -0.656 0.095 0.095 Grathino-crane infraorbatelle 0.743 0.451 -0.266 Grathino-crane infraorbatelle 0.743 0.451 -0.266 Grathino-crane infraorbatelle process 0.886 -0.002 -0.184 Grathino-crane infraorbatelle process 0.943 0.161 0.623 Grathino-crane infraorbate process 0.943 0.162 0.330 -0.144 Grathino-pacteria of maxila (galatal) 0.896 0.121 -0.395 0.231 0.339 Grathino-pacteria of maxila (galatal) 0.893 0.121 0.339 0.010 Grathino-galatal barder of postigenoid process 0.901 -0.391 0.312 0.339 Grathino-maxila barder of maxila (galatal) <td>Condylobasal length</td> <td>0.953</td> <td>0.242</td> <td>0.044</td>	Condylobasal length	0.953	0.242	0.044
Grathion-cudal border of postglenoid process 0.956 0.231 0.032 Percentage of total variance 80.5 8.1 4.0 Eigenvalues 7.2 0.4 Moles (n = 37) Matsid braadth 0.741 -0.659 0.093 Occipital crest-mastoid 0.741 -0.693 0.095 Occipital crest-mastoid 0.741 -0.693 0.095 Occipital crest-mastoid 0.741 -0.693 0.095 Candylobanal length 0.896 0.102 -0.180 Candylobanal length 0.896 0.102 -0.180 Candylobanal length 0.896 0.103 -0.393 Candylobanal length 0.896 0.169 -0.383 Candylobanal length 0.896 0.123 -0.393 Candylobanal length 0.895 0.232 -0.383 Candylobanal length 0.893 0.232 -0.383 Candylobanal length 0.925 0.132 -0.393 Candylobanal length 0.925 0.132 -0.393 <td>Gnathion–posterior of maxilla (palatal)</td> <td>0.940</td> <td>0.212</td> <td>0.039</td>	Gnathion–posterior of maxilla (palatal)	0.940	0.212	0.039
Basion-ryggmatic root (anterior) 0.887 0.322 0.022 Decentary of trobuly variance 80.5 8.1 4.0 Egenvalues 7.2 0.7 0.4 Masted breadth 0.715 -0.669 0.095 Control for anti-control breadth 0.741 -0.659 0.029 Gnathion-could breadth Dorder of protholial process 0.863 -0.020 -0.366 Gnathion-could breadth Dorder of protholial process 0.863 -0.020 -0.364 Gnathion-could breadth Dorder of protholial process 0.943 0.616 0.023 Condylobasal length 0.856 -0.021 -0.314 Gnathion-could breadth Dorder of protholial process 0.943 0.616 0.023 Condylobasal length 0.856 -0.471 0.110 Grathion-proster of malial policitarest 0.890 0.212 -0.383 Grathion-could breadth 0.854 -0.471 0.103 Grathion-could breadth 0.933 0.023 0.023 Grathion-could breadth 0.941 -0.398 -0.403 <td>Gnathion–caudal border of postglenoid process</td> <td>0.956</td> <td>0.231</td> <td>0.030</td>	Gnathion–caudal border of postglenoid process	0.956	0.231	0.030
Percentage of total variance80.58.14.0Elegenvalues7.20.70.4Males (n = 37)	Basion–zygomatic root (anterior)	0.887	0.342	0.022
Eigenvalues 7.2 0.7 0.4 Mastes (n = 37)	Percentage of total variance	80.5	8.1	4.0
Mates (n = 37)	Eigenvalues	7.2	0.7	0.4
Mastici breadth0.715-0.6600.095Gnathion-crautel border of perchilal process0.742-0.6590.394-0.766Gnathion-crautel border of perchilal process0.869-0.002-0.180Gnathion-caudel border of postglenoid process0.9430.1610.023Grenzino-caudel border of postglenoid process0.9430.1610.023Figenvolues4.81.20.4Un Arctocephalis pusillas dorferasFigenvoluesGnathion-caudel border of postglenoid process0.9030.1610.023Gistion-midiel of eccipital crest0.8900.122-0.383Gnathion-midiel of eccipital crest0.8900.123-0.383Gnathion-posterior of maxilla (palatal)0.8900.123-0.104Condylobasal length0.901-0.336-0.104Condylobasal length0.9530.2230.073Auditory breadth0.954-0.408-0.304Condylobasal length0.954-0.4820.132Auditory breadth0.756-0.4820.132Condylobasal length0.945-0.493-0.303Eigenvolues0.957-0.4820.132Auditory breadth0.756-0.4820.132Condylobasal length0.945-0.493-0.493Basion-zygonatic troot (anterior)0.897-0.492-0.435Basion-zygonatic troot (anterior)0.897-0.492-0.435Basion-zygon	<i>Males</i> (n = 37)			
Occipital crest-mastoid0.741-0.6190.098Garthion-caudal border of preorbital process0.8630.194-0.266Garthion-caudal border of preorbital process0.8630.030-0.149Candylobasal length0.8960.300-0.149Garthion-caudal border of preorbital process0.9430.1610.023Percentage of tatal variance68.91.695.3Eigenvalues4.81.20.4(I) Actacephalus pusillus doriferus-0.4710.110Kastoid breath0.854-0.4710.110Garthion-caudal border of preorbital process0.9010.237-0.183Garthion-caudal border of preorbital process0.9010.237-0.186Bislon-regarantic real (arterior)0.8920.135-0.104Garthion-caudal border of preorbital process0.9010.237-0.186Bislon-regarantic real (arterior)0.9230.135-0.030Garthion-caudal border of preorbital process0.931-0.308-0.104Garthion-caudal border of preorbital process0.9350.2320.075Garthion-caudal border of preorbital process0.9350.2320.031Zigomatic breadth0.911-0.308-0.104Garthion-caudal border of preorbital process0.9350.2320.055Garthion-caudal border of postglenoid process0.9350.2320.053Garthion-caudal border of postglenoid process0.9350.2320.043Zigomatic breadth0.747	Mastoid breadth	0.715	-0.660	0.095
Grathion-formen infraorbilate0.7430.4510.477Grathion-caudal border of prothilat process0.8690.002-0.164Grathion-caudal border of postglenoid process0.9430.1610.023Eigenvalues4.81.20.4Grathion-caudal border of postglenoid process0.9430.1610.023Eigenvalues4.81.20.4I) Arctocephalus pusitus donferusFernelss (n = 4.3)0.854-0.4710.110Grathion-middle of occipital crest0.8900.1550.301Grathion-middle of occipital proteinal process0.9010.2327-0.188Basion-zygomatic root (naterior)0.9250.0230.075Grathion-middle of occipital process0.911-0.3830.023Grathion-Guada border of postglenoid process0.911-0.326-0.030Percentage of total variance8.777.23.6Grathion-Cauda border of postglenoid process0.9550.2090.073Auditory breadth0.747-0.4820.312Auditory breadth0.747-0.4820.312Auditory breadth0.747-0.4820.341Auditory breadth0.747-0.4820.324Auditory breadth0.747-0.4820.312Auditory breadth0.747-0.4820.341Auditory breadth0.747-0.4820.341Auditory breadth0.747-0.4820.341Condylobasal length0.945 <td>Occipital crest-mastoid</td> <td>0.741</td> <td>-0.619</td> <td>0.098</td>	Occipital crest-mastoid	0.741	-0.619	0.098
Gnathion-auidal border of preorbital process0.8690.029-0.180Condylobasal length0.8960.310-0.144Condylobasal length0.8960.310-0.143Condylobasal length0.8920.6140.023Percentage of total variance68.916.95.3Egenvolutis4.81.20.4I Arttoc-equidatis pusillus donferus	Gnathion–foramen infraorbitale	0.743	0.451	0.477
Gnathion-middle of accipital cresta.880-0.02-0.180Condylobasal lengtha.8960.301-0.144Gnathion-caudal border of postglenoid process0.9430.1610.023Percentage of total variance68.91.20.4(I) Articocepholits pusillus donferus	Gnathion–caudal border of preorbital process	0.863	0.194	-0.266
Condybobsail length0.8960.310-1.144Condybobsail border of posiglenoid process0.9430.1610.023Precentage of total variance68.91.60.4I Actocephalis pusitus donferus	Gnathion–middle of occipital crest	0.880	-0.002	-0.180
Gnathion-audal border of postglenoid process0.9430.1510.023Percentage of total variance68.91.60.4(I) Arctocephalus pusillus doriferusnemales (n = 4)0.4Tennels (n = 4)0.854-0.4710.110Gnathion-middle of occipital crest0.8900.1550.301Gnathion-posterior of maxilla (patatal)0.8900.0550.303Gnathion-posterior of maxilla (patatal)0.9010.372-0.188Basion-zygomatic root (interior)0.9250.0320.075Gnathion-cuid aborder of perchilat process0.9530.2230.075Gnathion-cuid aborder of postglenoid process0.9530.2320.075Gnathion-cuid aborder of postglenoid process0.9550.2090.073Auditory breadth0.911-0.356-0.030Percentage of total variance82.77.23.6Egenvalues7.40.60.31Males (n = 4,5)-0.4660.245Basion-bend of persysiol0.8824-0.222-0.413Basion-bend of persysiol0.8824-0.2320.618Gnathion-cuidab border of postglenoid process0.8110.4660.245Basion-bend of postglenoid process0.9250.0380.662Gnathion-cuidab border of postglenoid process0.9260.171-0.179Gnathion-cuidab border of postglenoid process0.9250.0630.622Gnathion-cuidab border of postglenoid process0.9250.3280.662Gnathi	Condylobasal length	0.896	0.310	-0.144
Percentage of total variance 63.9 1.6.9 5.3 Eigenvalues 4.8 1.2 0.4 Constructions (n = 4.2) Natioial breadth 0.8594 -0.471 0.110 Gnathion-middle of occipital crest 0.8590 0.121 -0.383 Gnathion-neided of operothial process 0.901 0.337 -0.188 Basion-zygonatic root (anterior) 0.925 0.132 0.139 Zygonatic breadth 0.901 -0.386 -0.040 Basion-zygonatic root (anterior) 0.925 0.203 0.075 Gnathion-caudal border of postglenoid process 0.951 -0.386 -0.030 Percentage of total variance 82.7 7.2 3.6 Eigenvalues 7.4 0.6 0.324 Maltory breadth 0.755 -0.466 0.324 Basion-zygonatic troot (anterior) 0.8397 -0.232 -0.431 Conductor of prostilal process 0.8311 0.419 0.312 Auditory breadth 0.747 -0.426 0.324 Basion-zyg	Gnathion–caudal border of postglenoid process	0.943	0.161	0.023
Eigenvalues 4.8 1.2 0.4 (1) Arccephalus pusillus doniferus Fernales (n = 4) -0.471 0.110 Mastioid breadth 0.854 -0.471 0.333 Gnathion-midie of occipital crest 0.859 0.221 -0.338 Gnathion-posterior of maxilla (galatal) 0.890 0.625 0.331 Gnathion-posterior of maxilla (galatal) 0.9255 0.332 0.75 Gnathion-caudal border of postglenoid process 0.9955 0.209 0.073 Gnathion-caudal border of postglenoid process 0.955 0.209 0.073 Gnathion-caudal border of postglenoid process 0.955 0.209 0.073 Malior breadth 0.911 -0.356 -0.030 Percentage of total variance 82.7 7.2 3.6 Eigenvalues 7.4 0.6 0.312 Auditory breadth 0.756 -0.462 0.212 Auditory breadth 0.756 -0.466 0.245 Basion-zygomatic root (anterior) 0.837 0.292 0.184 Condy	Percentage of total variance	68.9	16.9	5.3
(1) Arctocephalus pusillus doniferus Fernales (n = 4.2) Masiola breadti 0.854 -0.471 0.110 Gnathion-middle of occipital (rest 0.890 0.121 -0.381 Gnathion-caudal border of preorbital process 0.901 0.237 -0.138 Basion-zygomatic root (anterior) 0.925 0.132 0.132 Condylobasal length 0.901 -0.308 -0.046 Condylobasal length 0.953 0.223 0.075 Gnathion-caudal border of postglenoid process 0.955 0.209 0.073 Audtory breadth 0.911 -0.366 -0.030 Percentage of total variance 82.7 7.2 3.6 Ejgenvalues 7.4 0.6 0.342 Audtory breadth 0.747 -0.482 0.312 Audtory breadth 0.747 -0.495 0.312 Basion-zygomatic troot (anterior) 0.843 -0.222 -0.433 Basion-zygomatic root (anterior) 0.845 0.471 -0.030 Gnathion-caudal border of postglenoid process 0.811 0.419 -0.232 Gnathion-caudal	Eigenvalues	4.8	1.2	0.4
Females (n = 42) 0.110 0.110 Mastoid breadth 0.854 -0.471 0.130 Gnathion-noidel of occipital crest 0.890 0.165 0.301 Gnathion-posterior of maxilla (palatal) 0.990 0.6237 -0.188 Basion-zygomatic root (anterior) 0.925 0.132 0.139 Zygomatic breadth 0.991 -0.308 -0.104 Condylobasal length 0.991 -0.335 -0.030 Gnathion-caudal border of postglenoid process 0.953 0.229 0.073 Auditory breadth 0.911 -0.356 -0.030 Percentage of total variance 82.7 7.2 3.6 Zygomatic breadth 0.747 -0.482 0.312 Auditory breadth 0.756 -0.4662 0.2435 Basion-berd of plengojid 0.839 -0.118 -0.352 Gnathion-caudal border of postglenoid process 0.811 0.419 0.241 Gnathion-audal border of postglenoid proces 0.926 0.171 -0.352 Gnathion-audal border of postglenoid pr	(I) Arctocephalus pusillus doriferus			
Mastici breadth 0.854 -0.471 0.100 Gnathion-middle of occipital crest 0.890 0.121 -0.383 Gnathion-posterior of maxilla (palata) 0.890 0.155 0.301 Gnathion-caudal border of precrbital process 0.901 -0.383 -0.188 Basion-zygomatic troot (anterior) 0.925 0.223 0.075 Gnathion-caudal border of postglenoid process 0.955 0.209 -0.300 Percentage of total variance 82.7 7.2 3.6 Higher of total variance 82.7 7.2 3.6 Vereentage of total variance 82.7 7.2 3.6 Higher of total variance 82.7 7.2 3.6 Vereentage of total variance 82.7 7.2 3.6 Higher of tractificat 0.911 -0.462 0.312 Auditary breadth 0.756 -0.468 0.324 Basion-zygomatic root (anterior) 0.893 -0.184 -0.452 Basion-zygomatic root (anterior) 0.837 0.222 -0.413 Basion	Females $(n = 42)$			
Gnathion-middle of accipital crest 0.800 0.165 0.301 Gnathion-posterior of maxilla (palata) 0.890 0.165 0.301 Gnathion-sygenatic root (anterior) 0.925 0.132 0.139 Zygomatic breadth 0.901 0.308 0.0073 Condylobasal length 0.953 0.223 0.073 Auditory breadth 0.911 -0.366 -0.303 Condylobasal length 0.911 -0.366 -0.303 Auditory breadth 0.911 -0.366 -0.303 Auditory breadth 0.747 -0.66 0.3 Zygomatic breadth 0.747 -0.482 0.312 Auditory breadth 0.747 -0.482 0.312 Auditory breadth 0.756 -0.462 0.324 Sasion-bend of pitergoid 0.824 -0.222 -0.433 Basion-bend of pitergoid 0.837 0.292 0.184 Gnathion-audual border of postglenoid process 0.926 0.171 -0.179 Gnathion-audual border of postglenoid process 0.926 <td>Mastoid breadth</td> <td>0.854</td> <td>-0.471</td> <td>0.110</td>	Mastoid breadth	0.854	-0.471	0.110
Gnathion-posterior of maxilla (palatal)0.8900.1650.701Gnathion-caudal border of preorbital process0.9010.237-0.188Basion-xygomatic root (anterior)0.9250.23230.075Gnathion-caudal border of postglenoid process0.9550.2090.073Gnathion-caudal border of postglenoid process0.9550.2090.073Gnathion-caudal border of postglenoid process0.9550.2090.073Madter of postglenoid process0.951-0.336-0.030Percentage of total variance82.77.23.6Eigenvalues7.4-0.4660.32Auditory breadth0.756-0.4660.342Auditory breadth0.756-0.4660.32Basion-zygomatic root (anterior)0.899-0.118-0.352Gnathion-caudal border of preorbital process0.8110.4190.241Gnathion-caudal border of preorbital process0.9550.1071-0.179Gnathion-caudal border of preorbital process0.9550.1840.622Condylobasal length0.8430.4190.241Gnathion-middle of occipital crest0.9550.1080.622Condylobasal length0.843-0.6260.32Percentage of total variance72.99.46.4Eigenvalues0.623-0.7330.092Occipital crest0.9530.0670.247Basion-zygomatic root (anterior)0.643-0.651-0.237Percentage of total variance5	Gnathion–middle of occipital crest	0.890	0.121	-0.383
Gnathion-raudal border of preorbital process 0.901 0.337 -0.188 Basion-zaygomatic root (anterior) 0.925 0.132 0.139 Zygomatic breadth 0.993 0.223 0.075 Gnathion-caudal border of postglenoid process 0.955 0.209 0.073 Auditory breadth 0.911 -0.356 -0.030 Percentage of total variance 2.27 7.2 3.6 Eigenvalues 7.4 0.6 0.31 Zygomatic breadth 0.756 -0.482 0.312 Auditory breadth 0.756 -0.466 0.245 Basion-zaygomatic root (anterior) 0.899 -0.118 0.312 Auditory breadth 0.756 -0.466 0.242 Basion-zaygomatic root (anterior) 0.892 0.171 -0.032 Gnathion-caudal border of preorbital process 0.926 0.171 -0.032 Gnathion-caudal border of postglenoid process 0.926 0.171 -0.032 Gnathion-caudal border of postglenoid process 0.926 0.171 0.092	Gnathion–posterior of maxilla (palatal)	0.890	0.165	0.301
Basion-yegomatic root (anterior) 0.925 0.132 0.139 Zygomatic breadth 0.901 -0.308 -0.104 Condylobasal length 0.955 0.209 0.073 Auditory breadth 0.911 -0.356 -0.030 Percentage of total variance 82.7 7.2 3.6 Eigenvalues 7.4 0.6 0.245 Males (n = 4.5) -0.482 0.312 Zygomatic breadth 0.747 -0.482 0.312 Auditory breadth 0.756 -0.466 0.245 Basion-bend of pterygoid 0.832 -0.232 -0.413 Condylobasal length 0.756 -0.426 -0.212 Gnathion-caudal border of probital process 0.815 0.131 -0.392 Gnathion-audal border of probital process 0.926 0.171 -0.079 Gnathion-audal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 <td>Gnathion–caudal border of preorbital process</td> <td>0.901</td> <td>0.237</td> <td>-0.188</td>	Gnathion–caudal border of preorbital process	0.901	0.237	-0.188
Zygomatic breadth 0.901 -0.308 -0.104 Condylobasal length 0.953 0.223 0.075 Gnathion-caudal border of postglenoid process 0.995 0.209 0.073 Auditory breadth 0.911 -0.356 -0.030 Percentage of total variance 82.7 7.2 3.6 Eigenvalues 7.4 0.6 0.31 Wales (n = 45) -0.482 0.312 Zygomatic breadth 0.766 -0.482 0.312 Auditory breadth 0.756 -0.466 0.225 Basion-bend of petrygoid 0.889 -0.118 -0.352 Gnathion-caudal border of protopital process 0.811 0.419 0.241 Gnathion-audal border of protopital process 0.926 0.171 -0.139 Gnathion-audal border of postglenoid process 0.926 0.171 -0.032 Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 7.2.9 9.4 6.4 Eigenvalues 0.643 -0.733 0.092 <td>Basion–zygomatic root (anterior)</td> <td>0.925</td> <td>0.132</td> <td>0.139</td>	Basion–zygomatic root (anterior)	0.925	0.132	0.139
Condylobasal length 0.953 0.233 0.075 Gnathion-caudal border of postglenoid process 0.955 0.209 0.073 Auditory breadth 0.911 -0.356 -0.030 Percentage of total variance 82.7 7.2 3.6 Eigenvalues 7.4 0.6 0.3 Males (n = 4.5) -0.482 0.312 Zygomatic breadth 0.767 -0.482 -0.232 Basion-bend of pterygoid 0.824 -0.222 -0.413 Basion-zygomatic root (anterior) 0.899 -0.118 -0.352 Gnathion-caudal border of prostglenoid process 0.811 0.419 0.241 Gnathion-caudal border of postglenoid process 0.811 0.419 0.322 Gnathion-caudal border of postglenoid process 0.926 0.171 -0.030 Percentage of total variance 6.6 0.8 0.6 Gnathion-caudal border of postglenoid process 0.926 0.171 0.032 Percentage of total variance 7.2.9 9.4 6.4 Eigenvalues	Zygomatic breadth	0.901	-0.308	-0.104
Gnathion-caudal border of postglenoid process 0.955 0.209 0.073 Auditory breadth 0.911 -0.336 -0.030 Percentage of total variance 82.7 7.2 3.6 Eigenvalues 7.4 0.6 0.3 Males (n = 4,5) -0.4682 0.312 Auditory breadth 0.747 -0.4682 0.312 Auditory breadth 0.756 -0.466 0.245 Basion-Dend of pterygoid 0.829 -0.118 -0.352 Gnathion-caudal border of preorbital process 0.811 0.419 0.241 Gnathion-caudal border of postglenoid process 0.915 0.108 0.622 Gnathion-caudal border of postglenoid process 0.926 0.171 -0.079 Gnathion-caudal border of postglenoid process 0.926 0.71 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 0.63 -0.733 0.027 Gnathion-caudal border of postglenoid process 0.947 0.043 -0.474 Eigenvalues <td< td=""><td>Condylobasal length</td><td>0.953</td><td>0.223</td><td>0.075</td></td<>	Condylobasal length	0.953	0.223	0.075
Auditory breadth0.911-0.356-0.030Percentage of total variance82.77.23.6Eigenvalues7.40.60.31Males (n = 45)Zygomatic toreadth0.747-0.4820.312Auditory breadth0.756-0.4660.245Basion-yagomatic root (anterior)0.899-0.118-0.352Gnathion-posterior of maxilla (palatal)0.8370.2920.184Condylobasal length0.9450.171-0.179Gnathion-audal border of postelenoid process0.9150.1080.062Gnathion-audal border of postelenoid process0.9260.1710.003Percentage of total variance72.99.46.4Eigenvalues6.60.80.6(m) Arctocephalus australis-0.4730.0920.241Basion-zygomatic root (anterior)0.643-0.7330.092Occipital crest0.9470.040-0.474Breadth of palate at postcanines 3-40.9530.0970.221Breadth of palate at postcanines 5-40.95930.0970.221Precentage of total variance7.6310.26.1Eigenvalues5.60.60.4Males (n = 26)-0.634-0.6540.555Precentage of total variance5.60.60.4Breadth of palate at postcanine 50.959-0.694-0.555Percentage of total variance5.60.60.4Males (n = 26) <td< td=""><td>Gnathion–caudal border of postglenoid process</td><td>0.955</td><td>0.209</td><td>0.073</td></td<>	Gnathion–caudal border of postglenoid process	0.955	0.209	0.073
Percentage of total variance 82.7 7.2 3.6 Eigenvalues 7.4 0.6 0.3 Males (n = 4)	Auditory breadth	0.911	-0.356	-0.030
Eigenvalues 7.4 0.6 0.3 Males (n = 45)	Percentage of total variance	82.7	7.2	3.6
Males (n = 45) 0.747 -0.482 0.312 Zygomatic breadth 0.756 -0.466 0.245 Basion-bend of pterygoid 0.824 -0.222 -0.413 Basion-zygomatic root (anterior) 0.899 -0.118 -0.352 Gnathion-caudal border of preorbital process 0.811 0.419 0.241 Gnathion-caudal border of preorbital process 0.945 0.171 -0.179 Gnathion-caudal border of postglenoid process 0.926 0.711 0.003 Percentage of total variance 72.9 9.4 6.4 Efgenvalues 6.6 0.8 0.6 (m) Arctocephalus australis -0.453 -0.733 0.092 Precentage of total variance 72.9 9.4 6.4 Efgenvalues 6.6 0.8 0.6 (m) Arctocephalus australis - - - Femaltes (n = 2.4) - - - Breadth of palate at postcanines 4-5 0.947 0.400 - Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 5-4 0.959	Eigenvalues	7.4	0.6	0.3
Zygomatic bradth 0.747 -0.482 0.312 Auditry breadth 0.756 -0.466 0.245 Basion-end of pterygoid 0.824 -0.222 -0.413 Basion-audial border of preorbital process 0.811 0.499 0.241 Gnathion-caudal border of preorbital process 0.811 0.419 0.241 Gnathion-caudal border of preorbital process 0.812 0.171 -0.179 Gnathion-caudal border of postglenoid process 0.926 0.171 -0.033 Condylobasal length 0.945 0.168 0.662 Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis - - - Females (n = 24) 0.847 0.040 -0.474 Breadth of palate at postcanines 4-5 0.947 0.129 0.247 Zygomatic breadth 0.847 0.040 -0.474 Breadth of palate at	Males $(n = 45)$			
Additory breadth 0.756 -0.466 0.245 Basion-bend of pterygoid 0.824 -0.222 -0.413 Basion-ygomatic root (anterior) 0.899 -0.118 -0.352 Gnathion-caudal border of preorbital process 0.811 0.419 0.241 Gnathion-posterior of maxilla (palatal) 0.837 0.292 0.184 Condylobasal length 0.945 0.171 -0.079 Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis -0.473 0.092 Cociptal crest-mastoid 0.847 0.040 -0.474 Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occiptal crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4-5 0.947 0.129 0.247 Zygomatic root (anterior) 0.643 -0.65 -0.237 Breadth of palate at postcanines 3-	Zygomatic breadth	0.747	-0.482	0.312
Basion-bend of pterygoid 0.824 -0.222 -0.43 Basion-zygomatic root (anterior) 0.899 -0.118 -0.352 Gnathion-zudal border of preorbital process 0.811 0.419 0.241 Gnathion-posterior of maxilla (palatal) 0.837 0.292 0.184 Condylobasal length 0.945 0.171 -0.179 Gnathion-motide of occipital crest 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arcocephalus australis 0.473 0.922 0.247 Feradts (n = 24) 0.474 0.847 0.043 -0.474 Breadth of palate at postcanines 4-5 0.947 0.129 0.247 Zygomatic root (anterior) 0.643 -0.655 -0.37 Breadth of palate at postcanines 3-4 0.953 -0.065 -0.237 Breadth of palate at postcanines 5-4 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059	Auditory breadth	0.756	-0.466	0.245
Basion-zygomatic root (anterior) 0.899 -0.118 -0.352 Gnathion-caudal border of preorbital process 0.811 0.449 0.241 Gnathion-solerior of maxilla (palatal) 0.837 0.292 0.184 Condylobasal length 0.945 0.171 -0.179 Gnathion-middle of occipital crest 0.915 0.108 0.062 Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis 0.733 0.092 Percentage of total variance 72.9 9.4 6.4 Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 3-4 0.953 0.097 0.221 Breadth of palate at postcanines 5-4 0.953 0.097 0.221 Breadth of palate at postcanines 5 0.959 0.687 0.164 <t< td=""><td>Basion-bend of pterygoid</td><td>0.824</td><td>-0.222</td><td>-0.413</td></t<>	Basion-bend of pterygoid	0.824	-0.222	-0.413
Gnathion-caudal border of preorbital process 0.811 0.419 0.241 Gnathion-posterior of maxilla (palatal) 0.837 0.292 0.184 Condylobasal length 0.945 0.108 0.062 Gnathion-middle of occipital crest 0.915 0.108 0.062 Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus austalis	Basion–zygomatic root (anterior)	0.899	-0.118	-0.352
Gnathion-posterior of maxilla (palatal) 0.837 0.292 0.184 Condylobasal length 0.945 0.171 -0.179 Gnathion-niddle of occipital crest 0.915 0.068 0.062 Gnathion-niddle of occipital crest 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis $Fernales$ ($n = 24$) -0.733 0.092 Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines $4-5$ 0.947 0.129 0.247 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines $3-4$ 0.953 0.097 0.221 Breadth of palate at postcanines 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) -0.694 0.555 Length of skull at supraorbital processes 0.439 -0.694 0.555 Length of skull at supraorbital processes 0.591 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of skull at supraorbital processes 0.591 -0.694 0.555 Length of skull at supraorbital processes 0.591	Gnathion–caudal border of preorbital process	0.811	0.419	0.241
Condylobasal length 0.945 0.171 -0.179 Gnathion-middle of occipital crest 0.915 0.108 0.062 Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis - - - Females (n = 24) - 0.047 0.040 - Basion-zygomatic root (anterior) 0.643 -0.129 0.247 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4-5 0.947 0.129 0.247 Zygomatic breadth of palate at postcanines 3-4 0.953 0.097 0.221 Breadth of palate at postcanines 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.59 Percentage of total variance 5.6 0.6 0.4 Eigenvalues 5.6 0.64 -0.458 Occipital crest-mastoid 0.	Gnathion–posterior of maxilla (palatal)	0.837	0.292	0.184
Gnathion-middle of occipital crest 0.915 0.108 0.062 Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis 5 0.63 0.6 Females (n = 24) 5 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4–5 0.947 0.129 0.227 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 3–4 0.953 0.097 0.221 Breadth of palate at postcanines 3–4 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 5.6 0.6 0.4 Males (n = 26) 5.6 0.61 -0.455 Length of skull at suprorbital processes 0.591 -0.694 -0.555 Length of rasals	Condylobasal length	0.945	0.171	-0.179
Gnathion-caudal border of postglenoid process 0.926 0.171 0.003 Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis -	Gnathion–middle of occipital crest	0.915	0.108	0.062
Percentage of total variance 72.9 9.4 6.4 Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis - - - Females (n = 24) - - - - Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4-5 0.947 0.129 0.247 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 3-4 0.953 0.097 0.221 Breadth of palate at postcanines 3-4 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.66 0.4 Males (n = 26) - - - - Breadth of skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681	Gnathion–caudal border of postglenoid process	0.926	0.171	0.003
Eigenvalues 6.6 0.8 0.6 (m) Arctocephalus australis Females (n = 24) -0.733 0.092 Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4–5 0.947 0.129 0.247 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 3–4 0.953 0.097 0.221 Breadth of palate at postcanine 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) -0.654 -0.658 -0.458 Docipital crest-mastoid 0.874 0.001 -0.262 Breadth of skull at supraorbital processes 0.439 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.	Percentage of total variance	72.9	9.4	6.4
(m) Arctocephalus australis Females (n = 24) Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4–5 0.947 0.129 0.247 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 3–4 0.953 0.097 0.221 Breadth of palate at postcanine 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) Breadth of skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total var	Eigenvalues	6.6	0.8	0.6
Females (n = 24) Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4–5 0.947 0.129 0.247 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 3–4 0.953 0.097 0.221 Breadth of palate at postcanine 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) Understand the skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 <	(m) Arctocephalus australis			
Basion-zygomatic root (anterior) 0.643 -0.733 0.092 Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4-5 0.947 0.129 0.247 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 3-4 0.953 0.097 0.221 Breadth of palate at postcanines 3-4 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) -0.654 -0.458 Breadth of skull at supraorbital processes 0.439 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zgomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 <td>Females $(n = 24)$</td> <td></td> <td></td> <td></td>	Females $(n = 24)$			
Occipital crest-mastoid 0.847 0.040 -0.474 Breadth of palate at postcanines 4-5 0.947 0.129 0.247 Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines 3-4 0.953 0.097 0.221 Breadth of palate at postcanines 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) 874 0.001 -0.258 Length of skull at supraorbital processes 0.439 -0.694 0.555 Length of skull at supraorbital processes 0.439 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.	Basion–zygomatic root (anterior)	0.643	-0.733	0.092
Breadth of palate at postcanines 4–5 0.947 0.129 0.247 Zygomatic breadth 0.883 –0.165 –0.237 Breadth of palate at postcanines 3–4 0.953 0.097 0.221 Breadth of palate at postcanines 3–4 0.959 0.087 0.164 Rostral width 0.842 0.339 –0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) 8 –0.694 0.555 Length of skull at supraorbital processes 0.501 –0.681 –0.458 Occipital crest–mastoid 0.874 0.001 –0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 0.298 –0.039 Zygomatic breadth 0.929 0.129 0.024	Occipital crest-mastoid	0.847	0.040	-0.474
Zygomatic breadth 0.883 -0.165 -0.237 Breadth of palate at postcanines $3-4$ 0.953 0.097 0.221 Breadth of palate at postcanine 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) -0.694 0.555 Breadth of skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Breadth of palate at postcanines 4–5	0.947	0.129	0.247
Breadth of palate at postcanines 3-4 0.953 0.097 0.221 Breadth of palate at postcanine 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance 76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) -0.694 0.555 Breadth of skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Zygomatic breadth	0.883	-0.165	-0.237
Breadth of palate at postcanine 5 0.959 0.087 0.164 Rostral width 0.842 0.339 -0.059 Percentage of total variance76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) -0.694 0.555 Breadth of skull at supraorbital processes 0.439 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 -0.036 0.054 Mastoid breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Breadth of palate at postcanines 3–4	0.953	0.097	0.221
Rostral width 0.842 0.339 -0.059 Percentage of total variance76.3 10.2 6.1 Eigenvalues 5.6 0.6 0.4 Males (n = 26) -0.694 0.555 Breadth of skull at supraorbital processes 0.439 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.906 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Breadth of palate at postcanine 5	0.959	0.087	0.164
Percentage of total variance76.310.26.1Eigenvalues5.60.60.4Males (n = 26) -0.694 0.555Breadth of skull at supraorbital processes0.439 -0.694 0.555Length of nasals0.501 -0.681 -0.458 Occipital crest-mastoid0.8740.001 -0.262 Breadth of zygomatic root of maxilla0.7850.3670.228Auditory breadth0.916 -0.036 0.054 Mastoid breadth0.9060.298 -0.039 Zygomatic breadth0.9290.129 0.024 Percentage of total variance62.116.911.6Eigenvalues4.51.40.9	Rostral width	0.842	0.339	-0.059
Eigenvalues 5.6 0.6 0.4 Males (n = 26) Breadth of skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.916 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Percentage of total variance	76.3	10.2	6.1
Males (n = 26) Breadth of skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.916 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Eigenvalues	5.6	0.6	0.4
Breadth of skull at supraorbital processes 0.439 -0.694 0.555 Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.916 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Males $(n = 26)$			
Length of nasals 0.501 -0.681 -0.458 Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.916 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Breadth of skull at supraorbital processes	0.439	-0.694	0.555
Occipital crest-mastoid 0.874 0.001 -0.262 Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.916 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Length of nasals	0.501	-0.681	-0.458
Breadth of zygomatic root of maxilla 0.785 0.367 0.228 Auditory breadth 0.916 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Occipital crest–mastoid	0.874	0.001	-0.262
Auditory breadth 0.916 -0.036 0.054 Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Breadth of zygomatic root of maxilla	0.785	0.367	0.228
Mastoid breadth 0.906 0.298 -0.039 Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Auditory breadth	0.916	-0.036	0.054
Zygomatic breadth 0.929 0.129 0.024 Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Mastoid breadth	0.906	0.298	-0.039
Percentage of total variance 62.1 16.9 11.6 Eigenvalues 4.5 1.4 0.9	Zygomatic breadth	0.929	0.129	0.024
<i>Eigenvalues</i> 4.5 1.4 0.9	Percentage of total variance	62.1	16.9	11.6
	Eigenvalues	4.5	1.4	0.9

Plate 1 Eumetopias jubatus – adult male (left), adult female (right).

Southern sea lion – Otaria byronia (de Blainville, 1820)

General morphology

Skulls of adult *O. byronia* are by far the most robust of all the otariids. The rostrum in males was sloped and extremely broad, particularly at the canines, with mean rostral width 30% of total skull length in males and 22% in females. The nasals were short and broad, as were the preorbital processes. Interorbital constriction was wide, and the supraorbital processes heavy

and rounded-to-quadrate, particularly in males. The palate was long, almost reaching the hamular process of the pterygoid, and wide with its lateral edges curved ventrally. The posterior border of the palate was virtually straight, unique to *O. byronia*. Zygomatic breadth was large, especially in adult males, and the zygomatic arch wide, dorsoventrally, at the squamoso-jugular margin. The mastoids were heavy and long in adult males but more reduced in females. The canines were large, robust, widely spaced and often splayed outwards. The sagittal crest

30 mm 1939.1.21.181 (BMNH)

1939.1.21.38 (BMNH)

Plate 2 *Otaria byronia* – adult male (left), adult female (right).

in adult males was pronounced, rising along the entire frontal and increasing in height until it joined the occipital crest. The occipital crest in male *O. byronia* was the most robust of all the otariids, flaring dorsolaterally from the posterior margins of the sagittal crest. The mandible was heavy, particularly at the canine roots, the coronoid process possessing a deep and long masseteric fossa (Plate 2).

Measured variables

Condylobasal length was significantly larger in males than in females. Means for the remaining ten variables relating to length of skull, when observed relative to CBL, showed males were larger than females, or equal to them, in all but one characteristic: basion – bend of pterygoid. Relative to CBL, *O. byronia* expressed marked sexual dimorphism (males larger than females) in all variables relating to robustness, excluding four whose means were smaller in males: breadth of braincase, height of skull at ventral margin of mastoid, and length and breadth of orbit. Ranges for three variables relating to the braincase and orbit overlapped significantly when compared in actual measurements. As a percentage of CBL, most variables relating to mandible and teeth were also larger in male *O. byronia* than they were in females, excluding: distance behind border of upper canines and length of lower PC row.

Multivariate analyses

The greatest within-sex variation in cranial morphology for female *O. byronia* was observed in Component 1, and accounted for 67.1% of the total variance. The most significant variables for Component 1 were those related to length of skull, including CBL, gnathion-middle of occipital crest, gnathion-caudal border of postglenoid process and basion-zygomatic root (anterior). The second was a shape component and contributed another 15.1% to the total variance. Breadth of palate at PC 4–5 (-0.622) and 5 (-0.679) and palatal notch-incisors (0.570) were the most significant variables for this component which showed a decrease in magnitude compared with variables relating to palatal length. Component 3 contributed a further 6.7% to the total variance and was influenced mainly by auditory breadth (0.434) and gnathion-caudal border of preorbital processes (-0.432).

In adult male *O. byronia*, within-sex variation in cranial morphology was observed primarily in Component 1, accounting for 65.2% of the total variance with large, positive coefficients for most variables. Component 2 in adult male *O. byronia* was influenced strongly by breadth of palate at PCs 4–5 (-0.696) and 5 (-0.729) which were reduced in magnitude compared with other variables, and contributed a further 15.8% to the total variance. Component 3 added another 8.9% to the total variance and was influenced primarily by gnathion–posterior margin of nasals and gnathion–caudal border of preorbital processes (0.611 and 0.573, respectively).

Australian sea lion – *Neophoca cinerea* (Péron, 1816)

General morphology

Skulls of N. cinerea were smaller and less robust than those of E. jubatus and O. byronia. Cranial morphology was similar to that of P. hookeri and, to a lesser degree, A. p. doriferus. The rostrum of N. cinerea was long, sloping and narrow with wide nasals that flared anteriorly. The preorbital processes were broad in both sexes but more so in males. Interorbital constriction was wide in males, less so in females. Supraorbital processes in males were robust, angular and flared ventrolaterally. In females, the supraorbital processes were similar to males, but reduced. The frontal was broad and convex, especially in males. The sagittal crest was prominent in males, rising along the frontal from the posterior of the supraorbital processes, becoming pronounced ventrally where it joins the occipital crest. The occipital crest was exaggerated in males, and was present but reduced in females. The zygomatic arch curved at the jugal-squamosal joint (particularly at jugal). The canines in males were robust, especially at their roots. The

palate was long and deep at the anterior, particularly so at canines. The auditory bullae were triangular with lateral and posterior spurs in older specimens, which were less obvious in females. The mastoids in males were robust and longer in older specimens of both sexes. The PCs (usually five upper) were broad with lateral cusps. The mandible was heavy at the ramus with a deep masseteric fossa in older specimens (Plate 3).

Measured variables

Relative to CBL, variables relating to length of skull shows male *N. cinerea* were similar to females in basion–bend of pterygoid, and basion–zygomatic root of maxilla (palatal), and were larger in the remaining variables relating to length. For variables relating to breadth of skull, breadth of orbit was similar in both sexes. Breadth of braincase, length of orbit, and height of skull at ventral margin of mastoid were proportionately larger in female *N. cinerea* than in males. The remaining variables related to breadth of skull were proportionately larger in males. Distance behind border of upper canines and length of lower PC row were proportionately smaller in male *N. cinerea* than in females. Relative to CBL, length of mandibular tooth row was similar for both sexes, whereas the remaining characteristics for mandible and teeth were all larger in males.

Multivariate analyses

Principal components analysis for adult female *N. cinerea* was based on standardized data for 10 variables. Component 1 was a size component with all large and positive coefficients from variables relating predominantly to length of skull, and accounted for 71.9% of the total variance. Component 2 was a shape component that accounted for a further 10.5% of the total variance, influenced primarily by breadth of skull at preorbital (0.526) and supraorbital (0.642) processes. Component 3 accounted for another 7.9% of the total variance. Mastoid breadth and occipital crest-mastoid (-0.455 and -0.439, respectively) were reduced in magnitude compared with palatal notch-incisors (0.416), which increased in magnitude.

Component 1 for adult male *N. cinerea*, described 70.6% of the total variance and was influenced strongly by size of measurements related to length of skull. These were primarily CBL, gnathion–caudal border of postglenoid process, gnathion–posterior of maxilla (palatal) and gnathion–middle of occipital crest. Component 2 described a further 12.3% of the total variance and showed breadth of palate at PCs 3–4 contributed significantly (-0.601). Component 3 expressed only small coefficient values and contributed 5.5% to the total variance. Zygomatic breadth and gnathion–caudal border of preorbital process were reduced in magnitude (-0.333 and -0.323, respectively) for this Component, compared with those variables related to length of skull.

Hooker's sea lion – *Phocarctos hookeri* (Gray, 1844)

General morphology

Skulls of adult male and female *P. hookeri* were morphologically similar to those of *N. cinerea*. As with all otariids, specimens of *P. hookeri* were significantly sexually dimorphic in size; adult males attained a mean CBL of 317 mm and females 261 mm. Skulls of adult male *P. hookeri* had pronounced

Plate 3 Neophoca cinerea – adult male (left), adult female (right).

sagittal crests, with a bone surface that was particularly rugose at the paraoccipital crest. The rostrum was elongated and convex. The zygomatic arch was long, with reduced curvature at the jugal-squamosal joint. The palate was long, broad and deep at the canines. The auditory bullae were small and flattened with prominent posterior spurs in older specimens. The mastoids were large, particularly in older males, and set close behind the pterygoid. The anterior of the zygomatic arch was narrow. The preorbital processes were long and often notched distally. Interorbital constriction was broad, especially in older males. The supraorbital processes were large in males, ventrolaterally angled and occasionally asymmetric. The upper PCs in skulls of *P. hookeri* varied in number between five and six but were usually found to have six. The mandible was robust in males, with a deep masseteric fossa in older specimens. Postcanines were unicuspid with small accessory cusps (Plate 4).

Measured variables

Adult male *P. hookeri* were similar to females in only one characteristic relating to length of skull (basion-bend of pterygoid), and were larger in the remaining ten length variables.

Plate 4 Phocarctos hookeri – adult male (left), adult female (right).

Four characteristics relating to breadth of skull were similar in both sexes: breadth of nares, breadth of zygomatic root of maxilla, breadth of orbit and height of skull at ventral margin of mastoid. Breadth of braincase, and length and breadth of orbit were proportionately larger in females than in males, although these overlapped considerably when observed in mm. The remaining variables relating to breadth of skull were proportionately larger in males than in females. Distance behind border of upper canines and length of lower PC row, were marginally smaller in males than in females. Relative to CBL, the remaining characteristics relating to mandible and teeth were all larger in male *P. hookeri* than in females.

Multivariate analyses

The greatest within-sex variation in cranial morphology for female *P. hookeri* was one of size, observed in Component 1, and accounted for 71.7% of the total variance. Most measurements for Component 1 described length of skull, contributing another 16.1% to the total variance. Height of skull at supraorbital processes (-0.818) was the most significant variable for Component 2 (a shape component) and the only measurement related to breadth, or robustness, of skull for female *P. hookeri*. Component 3 contributed a further 6.0% to the total variance and was influenced mainly by gnathion–middle of occipital crest (-0.446) and Basion–zygomatic root (anterior) (0.312).

Within-sex variation in cranial morphology for adult male *P. hookeri* was also described primarily by Component 1, accounting for 77.8% of the total variance with large, positive coefficients for most variables relating mostly to length of skull. The four measurements relating to robustness of skull (height of skull at supraorbital processes, height of sagittal crest, rostral width and occipital crest–mastoid) expressed lower coefficient values. Component 2 in adult male *P. hookeri* was influenced strongly by height of sagittal crest (0.516) and CBL (-0.408), contributing a further 9.8% to the total variance and was influenced primarily by height of skull at supraorbital processes (-0.354).

California sea lion – Zalophus californianus californianus (Lesson, 1828)

General morphology

Condylobasal length was greater in male Z. c. californianus (mean 282 mm) than in females (mean 231 mm). The rostrum was elongate and narrow, the nasals long, slender and expanded anteriorly. Preorbital processes were long, especially in adult males. Interorbital constriction was broad in males, less so in females. The supraorbital processes were pronounced and angular, extending just posterior from the interorbital constriction. The sagittal crest was prominent in males, rising abruptly at the supraorbital processes and forming a high convex ridge along the dorsal surface of the frontal through to the occipital crest. The occipital crest was curved and pronounced in males. For adult females, sagittal and occipital crests were also present but reduced. The zygomatic arch was elongate. The palate was long, narrow compared with other sea lions and deep at the anterior. The auditory bullae were bulbous with reduced posterior spurs in older, predominantly male, specimens. The mastoids were robust, longer in older specimens and were usually set further back from the pterygoid than for other sea lions. The PCs were of moderate size with reduced anterior and posterior accessory cusps, and were frequently asymmetric in number. The frontal was long and narrow. The mandible was long, with a large angle between the dentary and coronoid processes. Both maxillary and mandibular canines were robust in males, less so in females, and often splayed outwards from the vertical in both sexes. The third upper incisors were enlarged in both sexes (Plate 5).

Measured variables

Variables relating to length of skull (in actual and relative measurements) were mostly larger in male Z. c. californianus than in females. Length of nasals, and gnathion-posterior of maxilla (palatal) were of similar size in both sexes. The mean value for basion-bend of pterygoid, when compared relative to CBL, was smaller in male Z. c. californianus than in females. Zalophus c. californianus expressed marked sexual dimorphism in all but four variables relating to robustness: breadth of nares and breadth of orbit were of similar size in both sexes, whereas breadth of braincase and length of orbit were smaller in males than in females. The ranges for breadth of braincase overlapped significantly between males and females of this species (actual measurements). As a percentage of CBL, most variables relating to the mandible and teeth were larger in male Z. c. californianus than in females, excluding length of mandibular tooth row, which was the same for both sexes. Distance behind border of upper canines and length of lower PC row were smaller in males of this species than in females.

Multivariate analyses

Principal components analysis for adult female Z. c. californianus was based on standardized data for seven variables. Component 1 was influenced by size, with most variables relating to length of skull; these were basion–zygomatic root (anterior), CBL, gnathion–caudal border of postglenoid process and gnathion–middle of occipital crest. The first Component accounted for 68.3% of the total variance, whereas the second accounted for a further 14.0% and was described by shape. Component 2 was affected primarily by variables related to breadth of skull (height of skull at ventral margin of mastoid (-0.647) and occipital crest–mastoid (-0.532)), that possessed large negative coefficients. The third Component explained another 8.3% of the total variance in which gnathion–posterior margin of nasals was the most influential variable, with a coefficient of -0.702.

Component 1 in adult male Z. c. californianus explained 70.8% of the total variance, again showing large, positive coefficients. Component 2 in adult males explained a further 16.2% of the total variance, influenced primarily by variables relating to the rostral region and sagittal crest. These included gnathion–caudal border of preorbital process, height of sagittal crest and gnathion–posterior margin of nasals (0.565, -0.578 and 0.508, respectively. Component 3 expressed only small coefficient values and contributed 4.5% to the total variance. It was influenced primarily by height of sagittal crest (0.448), which increased in magnitude for this component, compared with mastoid and auditory breadth.

Galapagos sea lion – Zalophus californianus wollebaeki (Sivertsen, 1953) *General morphology*

As with Z. c. californianus, the rostrum was elongate and narrow in Z. c. wollebaeki. The nasals were long, slender and broadened at the anterior. Preorbital processes were moderately long, more so in males than in females. Interorbital constriction was broad in males, less so in females. Supraorbital processes were pronounced and angular, extending posterior

Plate 5 Zalophus californianus californianus – adult male (left), adult female (right).

from the interorbital constriction. The sagittal crest was prominent in males, similar to that of *Z. c. californianus* but generally not as high. The occipital crest was curved and pronounced in males, and in adult females both sagittal and occipital crests were present but reduced. The zygomatic arch was elongate, and the palate long, narrow and deep at the anterior in many specimens. The mastoids were large and longer in older specimens and, as with *Z. c. californianus*, were usually set further back from the pterygoid than for other sea lions. The PCs were small compared to other sea lions, with reduced anterior and posterior accessory cusps with frequent asymmetry in numbers. The frontal was long and narrow. The mandible was slender, with a large angle between the dentary and coronoid process. Both maxillary and mandibular canines were robust in males, less so in females. The third upper incisors were enlarged in both sexes (Plate 6).

Plate 6 Zalophus californianus wollebaeki – adult male (left), adult female (right).

Measured variables

Relative to CBL, means for all but basion–bend of pterygoid were greater in males than in females. *Zalophus c. wollebaeki* expressed marked sexual dimorphism in all but six variables relating to robustness. Breadth of palate at PC 5 was similar in both sexes, whereas the remaining variables were smaller in males than in females (breadth of braincase, breadth of palate at PCs 3–4 and 4–5, and length and breadth of orbit). As a percentage of CBL, most variables relating to the mandible

and teeth were larger in male *Z. c. wollebaeki*; exceptions were distance behind border of upper canines and length of lower PC row.

Multivariate analyses

Adult female Z. c. wollebaeki were not available for PCA analyses, due to insufficient numbers. Component 1 in adult males of this species expressed high loadings for most variables, contributing 75.7% to the total variance. Palatal notch–incisors

and rostral width were influential in both Components 2 and 3. In the second component, palatal notch–incisors decreased in magnitude compared with rostral width, whereas both increased in magnitude for the third. These two contributed a further 8.8% and 7.3% respectively, to the total variance.

Japanese sea lion – Zalophus californianus japonicus (Peters, 1866)

General morphology

Skulls of the subspecies Z. c. japonicus were the largest in the genus Zalophus, with a mean CBL for adult males of 312 mm. Only one adult female Z. c. japonicus was available for data collection, which had a CBL of 242 mm. The rostrum of adult male Z. c. japonicus was elongate and broader than that of Z. c. californianus and Z. c. wollebaeki. The nasals were long and slender. Preorbital processes were broad and long. The interorbital constriction was broad, followed by triangulate supraorbital processes that extended dorsoventrally. The sagittal crest was prominent in all males and was the largest of all the Zalophus. The occipital crest was curved and pronounced. The zygomatic arch was elongate and wide at the squamosojugular margin. The palate was long, broader than that found in Z. c. californianus and Z. c. wollebaeki at PCs 3-4, and deeper at the anterior. The auditory bullae were bulbous with posterior spurs. The mastoids were robust and long. The PCs that were not worn possessed reduced anterior and posterior accessory cusps, and showed asymmetry in numbers of PCs. The frontal was long and narrow. The mandible was long, with a large angle between the dentary and the coronoid process. Both maxillary and mandibular canines were robust in males. The third upper incisors were enlarged (Plate 7).

Measured variables

Comparison of measurements between male and female skulls should be considered with caution, as there was only one adult female specimen of *Z. c. japonicus* available. Nevertheless, means for variables relating to length of skull, when observed relative to CBL, showed males were smaller than the female in basion–bend of pterygoid. Relative to CBL, *Z. c. japonicus* expressed marked sexual dimorphism in all but three variables relating to robustness which were smaller in males: breadth of braincase, and length and breadth of orbit. The ranges for these three variables overlapped significantly when observed in mm, whereas breadth of palate at PC 5 was the same for both sexes. As a percentage of CBL, most variables relating to the mandible and teeth were larger in male *Z. c. japonicus*, excluding distance behind border of upper canines.

Principal components analyses could not be completed for Z. c. *japonicus* due to insufficient representative samples.

Description of species: fur seals

The fur seals currently comprise two genera: the monotypic northern fur seal, *Callorhinus ursinus*, and eight species of southern fur seals of the genus *Arctocephalus*. The following are summary descriptions for each, outlining morphological characteristics that are constant within each species and those that express sexual dimorphism. Summary statistics are provided in Appendix II (http://curator.museum.uaf.edu/ brunner/appendices/).

Northern fur seal – *Callorhinus ursinus* (Linnaeus, 1758)

General morphology

Specimens of C. ursinus were distinguished readily from skulls of the genus Arctocephalus primarily by characteristics relating to the rostral region. Rostral length was significantly reduced compared with those of the Arctocephalus, terminating abruptly and possessing a 'sawn-off' appearance. Rostral width varied in males more so than in females, but was generally broad with some males attaining widths up to 60.5 mm. The nasals were wide and curved downward at the premaxilla. The breadth of skull at preorbital processes varied, mainly between males, but was primarily broad. The preorbital processes were reduced in both sexes. Interorbital constriction, relative to CBL, was wide although less so in female C. ursinus. Supraorbital processes were small and robust in males and were often developed immediately posterior to, or over the top of, the interorbital constriction. Many male C. ursinus possessed a pronounced convex frontal at the supraorbital processes. Supraorbital processes for females were similar in structure to males but not as large and lacked the convex dimensions of the frontal. Sagittal and occipital crests were developed in adult males, whereas in females no sagittal crests were observed. The anterior of the zygomatic arch was narrow in both sexes. The upper canines were angled downward almost vertically and were approximately twice as large in males than in females. PCs were small and unicuspid, with pc 6 possessing a small posterior accessory cusp. The auditory bullae were flattened, triangular, with small posterior spurs found in older specimens. The zygomatic arch was thick and curved, particularly at the jugal-squamosal joint, and was again less robust in females. The palate was short and wide, and occasionally appeared with some posterior clefting. The mandible was robust at the anterior of the dentary, with heavy bone deposition at the canine roots in males. The masseteric fossa was deep, particularly in males and more so in older specimens (Plate 8).

Measured variables

Means for variables relating to length of skull, when observed relative to CBL, showed males were smaller than females in basion–bend of pterygoid, and of a similar size in palatal notch–incisors, gnathion–posterior of maxilla (palatal), and basion–zygomatic root. Relative to CBL, male *C. ursinus* were larger than females in all but breadth of braincase, and length and breadth of orbit, measurements that overlapped significantly when observed in mm. As a percentage of CBL, most variables relating to mandible and teeth were larger in male *C. ursinus* than in females, excluding mesiodistal diameter of PCs, distance behind border of upper canines and length of lower PC row.

Multivariate analyses

The greatest variation in cranial morphology for female C. *ursinus* was observed in Component 1 and accounted for just over half the total variance explained (54.8%), in which

Plate 7 Zalophus californianus japonicus – adult male (left), adult female (right).

measurements relating to length of skull contributed significantly. Component 2 was a shape component and described another 22.7% to the total variance. Breadth of palate at PCs 3–4, 4–5 and 5 were the most significant variables for this component, all expressing large negative coefficients (-0.671, -0.748) and -0.685, respectively). Component 3 contributed a further 7.5% to the total variance; gnathion–posterior margin of nasals (-0.523) was the most influential measurement, decreasing in magnitude with gnathion–caudal border of preorbital process (-0.373).

Plate 8 Callorhinus ursinus – adult male (left), adult female (right).

For adult male *C. ursinus*, Component 1 described 76.8% of the total variance, over 20% more than that observed for adult female *C. ursinus*. Measurements with the largest coefficients were those relating primarily to length of skull, including CBL (0.933), gnathion–caudal border of postglenoid process (0.946) and basion–zygomatic root (anterior) (0.897). Component 2 contributed another 14.4% to the total variance.

Gnathion–caudal border of preorbital process increased in magnitude (0.404) compared with variables relating to breadth of skull, such as height of skull at ventral margin of mastoid, mastoid breadth and zygomatic breadth. The latter three measurements all possessed negative coefficients (-0.387, -0.310 and -0.304, respectively). Height of skull at ventral margin of mastoid (-0.312) contributed the most variance

to Component 3, which added 5.0% to the total variance explained.

Antarctic fur seal – Arctocephalus gazella (Peters, 1875) General morpholoav

Skulls of adult male A. gazella were the most robust of the genus Arctocephalus, relative to CBL. The rostral region for this species was short and robust in males but less so in females. The palate was generally wide and shallow, particularly at pc 5. The auditory bullae were small, flat and triangulate. Mastoid processes were set close to the pterygoid and were longer in older specimens, extending ventrally. The zygomatic arch was short, curved significantly and was wide, dorso-ventrally at the jugul-squamosal margin. The supraorbital processes extended posteriorly and were larger in males than in females. The sagittal and occipital crests were well developed in male A. gazella, especially in older specimens but were reduced, or not present, in females. The anterior nares were wide and the nasals generally sloped downward in a continuation of the convex curve of the frontal. The nasals were often fused posteriorly. Most PCs were unicuspid, with pcs 5 and 6 reduced to 'nubs'. Interorbital constriction was broad, especially in males (Plate 9).

Measured variables

Variables relating to length of skull (%CBL) showed male *A. gazella* were shorter than females in basion–bend of pterygoid, were similar in basion–zygomatic root and length of nasals, and were longer in the remaining seven variables. For characteristics relating to breadth of skull, breadth of nares was the same for both sexes. Breadth of braincase, and length and breadth of orbit were proportionately larger in females than in males although they overlapped considerably when observed in mm. The remaining 15 variables relating to breadth of skull were proportionately larger in male *A. gazella* than in females. For variables relating to the mandible and teeth, distance behind border of upper canines and length of lower PC row were smaller in males than in females; the remaining variables were larger in males.

Multivariate analyses

The greatest within-sex variation in cranial morphology for female *A. gazella* was observed in Component 1 but accounted for less than half the total variance explained (41.4%). Coefficients for this Component were all positive, yet were significantly lower than those found in other species. Measurements explaining most of the variance in Component 1 for female *A. gazella* related primarily to breadth of skull. Component 2 was a shape component and contributed another 22.1% to the total variance. Breadth of skull at supraorbital processes (0.643), breadth of palate at PCs 3–4 (-0.562) and gnathion– caudal border of preorbital process (0.568) were the most significant variables. Component 3 contributed a further 10.3% to the total variance explained and was influenced mainly by zygomatic breadth (-0.568) and, as with Component 2, gnathion–caudal border of preorbital processes (-0.483). In adult male *A. gazella*, variation was observed primarily in Component 1, although it accounted for only 36.0% of the total variance explained. Coefficients for Component 1 were all positive yet, as with adult female *A. gazella*, were significantly lower than those found in other otariids. Component 2 in adult males contributed 24.3% to the total variance explained, and was influenced strongly by palatal breadth at PCs 3–4, 4–5 and 5 which all expressed strongly negative coefficients. Component 3 also described a large proportion of the total variance explained (18.0%) and was influenced primarily by gnathion–posterior margin of nasals and gnathion–caudal border of preorbital process (–0.851 and –0.804, respectively).

Subantarctic fur seal – *Arctocephalus tropicalis* (Gray, 1872)

General morphology

Skulls of A. tropicalis were generally smaller than those of other Arctocephalus, excluding A. galapagoensis. The rostral region was narrow, usually with a small, well-defined gnathion. The rostrum in females was narrower than in males when compared in actual size and relative to CBL. The palate was long and deep towards the anterior, particularly at PCs 1-2. The zygomatic arch was elongate and curved at the jugal-squamosal margin. The zygomatic arch was longer than those of other species of Arctocephalus when observed as a percentage of CBL. The sagittal and occipital crests were pronounced in males and usually absent in females. The interorbital constriction was narrow and the nasals were long, and wide at their anterior. Supraorbital processes were present but reduced, especially in females. The PCs were unicuspid and spaced, with maxillary PCs 4-6 often angled outward from the palate rather than extending vertically downwards. Specimens of A. tropicalis were less sexually dimorphic in size when compared with skulls of larger species of Arctocephalus, confirmed by the greater number of variables that expressed the same mean values when observed as a percentage of CBL (Plate 10).

Measured variables

Male A. tropicalis were larger than females (relative to CBL) in five variables relating to length of skull: palatal notch-incisors, gnathion-posterior of maxilla (palatal), Gnathion-caudal border postglenoid process, gnathion-foramen infraorbitale, and Gnathion-caudal border of preorbital process. Gnathion-mid occipital crest and length of nasals was similar in both sexes, whereas basion-zygomatic root and basion-bend of pterygoid were proportionately smaller in females. Skulls of male A. tropicalis were larger than those of females in breadth of nares, zygomatic breadth, height of skull at supraorbital processes and height of skull at ventral margin of mastoid. Females were comparatively larger than males in breadth of braincase, and length and breadth of orbit. As with other species of otariids, these three variables overlapped considerably between males and females in actual measurements. For variables relating to the mandible and teeth, skulls of male A. tropicalis were comparatively smaller than those of females in distance behind border of upper canines, and were similar to

Plate 9 Arctocephalus gazella – adult male (left), adult female (right).

females in height of upper canines above alveolus, mesiodistal diameter of PCs and length of lower PC row.

Multivariate analyses

From the PCA, Component 1 for adult female *A. tropicalis* accounted for 64.2% of the total variance explained with predominantly large, positive coefficients, particularly for measurements relating to length of skull. Component 2 was a shape component and contributed another 13.2% to the total variance. Breadth of palate at PCs 3–4 increased in magnitude compared with breadth of skull at supraorbital processes (0.800 and -0.695, respectively). These were the most significant variables for Component 2. The third Component for adult female *A. tropicalis* was also influenced by shape and contributed

Plate 10 Arctocephalus tropicalis – adult male (left), adult female (right).

a further 11.3% to the total variance explained. It was influenced mainly by interorbital constriction and breadth of skull at preorbital processes, the former decreasing in magnitude compared with the latter in Component 3 (-0.682 and 0.600, respectively).

In adult male *A. tropicalis*, Component 1 described a little over half the total variance explained (55.2%) in which, as with adult females of this species, the measurements ex-

pressing the largest coefficients were those relating to length of skull. Component 2 contributed another 21.4% to the total variance explained, and was influenced primarily by breadth of palate at PCs 4–5 and 5 (0.871 and 0.809, respectively). For Component 3, basion–bend of pterygoid (-0.695) decreased in magnitude compared with variables relating to length of skull, such as CBL (0.116) and gnathion–caudal border of preorbital process (0.132). The third component contributed a further 8.9% to the total variance explained for adult male *A*. *tropicalis*.

New Zealand fur seal – Arctocephalus forsteri (Lesson, 1828)

General morphology

Skulls of A. forsteri were morphologically similar to those of A. australis. The rostrum was moderate, narrow and well defined. The nasals flared anteriorly, were narrow at the junction with the frontal and usually showed no obvious continuation of curvature from the frontal. The interorbital constriction was narrow with well-defined supraorbital processes that extended posteriorly. The frontal was generally flat, or moderately convex in males, and usually flat in females. The anterior of the zygomatic arch was broad in both sexes. The zygomatic arch was short, with moderate curvature at the jugal-squamosal margin. Sagittal and occipital crests were pronounced in males, especially in older specimens. Females, predominantly older specimens, possessed reduced sagittal and occipital crests. The preorbital processes were narrow and well defined. Postcanines had anterior and posterior accessory cusps (unlike A. tropicalis which are unicuspid) and usually abutted each other to PC 5. The mandible was short with the masseteric fossa deeper in older specimens (Plate 11).

Measured variables

Condylobasal length was larger in males than in females, again reflecting pronounced sexual dimorphism. Means for the remaining ten variables relating to length of skull relative to CBL, showed that males were smaller than females in basion– bend of pterygoid, and of a similar size in length of nasals. Relative to CBL, *A. forsteri* expressed marked dimorphism in most variables relating to robustness, particularly: breadth at supraorbital processes, interorbital constriction, rostral width, zygomatic breadth, mastoid breadth and height of sagittal crest. Variables relating to the mandible and teeth were also proportionately larger in male *A. forsteri* than in females, excluding distance behind border of upper canines and length of lower PC row.

Multivariate analyses

In adult female *A. forsteri*, the greatest variation in cranial morphology was observed primarily in variables relating to length of skull in Component 1, describing 75.8% of the total variance explained. Component 2 was influenced by shape and added another 10.4% to the total variance explained. Breadth of zygomatic root of maxilla possessed a strongly positive coefficient (0.965) and increased in magnitude compared with all other variables for this component. The third component contributed a further 5.4% to the total variance explained and was influenced mainly by gnathion–middle of occipital crest with a coefficient of -0.518.

Component 1 for adult male *A. forsteri* accounted for 63.4% of the total variance explained with large, positive coefficients for most variables, particularly those relating to length of skull. Component 2 contributed a further 15.6% to the total variance and as with female *A. forsteri*, was influenced strongly by length of nasals, auditory breadth and zygomatic breadth

 $(0.626, -0.575 \text{ and } -0.545, \text{ respectively. Component 3 described another 8.2% of the total variance explained and was influenced primarily by length of nasals, with a coefficient of -0.436.$

South African fur seal – Arctocephalus pusillus pusillus (Schreber, 1775) General morphology

Specimens of A. p. pusillus were generally smaller than those of A. p. doriferus. Skulls of A. p. pusillus were narrow at the anterior of the zygomatic arch. The auditory bullae were large, rounded and bulbous. The rostrum was long and narrow. The nasals were elongate and often fused posteriorly. The preorbital processes were long, well defined, and larger in male A. p. pusillus than in females. Supraorbital processes were large in males, smaller in females, and often asymmetric in both sexes. The frontal was long, narrow, with the sagittal crest often developed to the supraorbital processes and was convex posterior to the interorbital constriction. Irregular ossifications were frequent on the cranium of male A. p. pusillus, located primarily towards the anterior of the parietal (these ossifications reached an extreme in O. byronia). The sagittal and occipital crests were large in males and possessed a rugose surface of bone surrounding the crests. The zygomatic arch was elongate and broad dorso-ventrally at the jugal-squamosal margin. The palate was long and deep at the canines through to PCs 1-2. Many specimens of A. p. pusillus expressed varying degrees of posterior palatal clefting or malformations. The auditory bullae were bulbous with small, spur-like posterior extensions in older specimens. The anterior of the zygomatic arch was narrow in both sexes of A. p. pusillus. The mandible was long with the angle of dentary and coronoid process larger than that of other Arctocephalus (e.g. A. gazella, A. forsteri). The PCs were large with significant anterior and posterior accessory cusps. Specimens of female A. p. pusillus (and A. p. doriferus) expressed the most masculine traits of all female Arctocephalus, usually with sagittal and occipital crests present (Plate 12).

Measured variables

When means are compared, relative to CBL, most variables were larger in adult male *A. p. pusillus* than in adult females, excluding four that were similar in both sexes (length of nasals, gnathion–posterior of maxilla (palatal), basion–zygomatic root, and height of upper canines above alveolus). Six variables were smaller in males than in females (basion–bend of pterygoid, breadth of braincase, length and breadth of orbit, and distance behind border of upper canines).

Multivariate analyses

From the PCA, Component 1 for adult female *A. p. pusillus* described 80.5% of the total variance explained and was influenced mainly by variables relating to length of skull. Component 2 contributed another 8.1% to the total variance, in which all variables relating to breadth of skull decreased in magnitude compared with those relating to length of skull. Component 3 added a further 4.0% to the total variance explained. It was influenced mainly by height of skull at supra-orbital processes, with a coefficient of -0.517. The remaining

Plate 11 Arctocephalus forsteri – adult male (left), adult female (right).

variables for this component contributed little to the total variance explained.

Component 1 for adult male *A. p. pusillus* described 68.9% of the total variance and, as with adult females of this species, was influenced primarily by variables relating to length of skull including CBL (0.896) and gnathion–caudal

border of postglenoid process (0.943). Mastoid breadth and occipital crest-mastoid (-0.660 and -0.619, respectively) were the most heavily weighted variables for Component 2, which decreased in magnitude compared with most variables relating to length of skull. Component 2 added a further 16.9% to the total variance explained. The third component contributed

Plate 12 Arctocephalus pusillus pusillus – adult male (left), adult female (right).

another 5.3% to the total variance, in which gnathion–foramen infraorbitale (0.477) had the largest coefficient value.

Australian fur seal – Arctocephalus pusillus doriferus Wood Jones, 1925

General morphology

Skulls of the subspecies A. p. doriferus were the largest of the genus Arctocephalus. The rostrum was long and narrow, as for

A. p. pusillus. The preorbital processes were prominent and well defined, particularly in males. The supraorbital processes were broad and, again, more pronounced in males than in females. The frontal was wide at the supraorbital processes, and became narrow at the anterior of the braincase. The sagittal crest was pronounced in males, less so in females and usually did not extend forward of the cranium. The occipital crest was large with a rugose surface on the braincase, especially

Plate 13 Arctocephalus pusillus doriferus – adult male (left), adult female (right).

near the occipital crest in male specimens. The zygomatic arch was long and curved at the jugal-squamosal margin, the anterior of which was narrow in both sexes. The palate was long, narrow and deep. As with *A. p. pusillus*, many specimens of *A. p. doriferus*, regardless of age or sex, possessed posterior clefting or malformation of the palate. The auditory bullae were rounded and bulbous. The mandible was long and the angle of the dentary and coronoid process was large. The masseteric

fossa was long, and deeper in older specimens. The PCs were robust with large anterior and posterior accessory cusps. Some asymmetry was observed in the number of maxillary PCs, but was less common in PCs of the mandible (Plate 13).

Measured variables

Length of nasals, palatal notch-incisors, gnathion-posterior of maxilla (palatal), basion-zygomatic root, and basion-bend of

pterygoid were proportionately similar in both sexes of *A. p. doriferus*. All variables relating to breadth of skull (excluding breadth of braincase) were significantly larger in males. Although adult female *A. p. doriferus* possessed reduced cresting and bone mass compared with that of males, skulls of older female *A. p. doriferus* had sagittal crests that were more prominent than those for most other female *Arctocephalus*. Female *A. p. doriferus* were proportionately larger than males in breadth of braincase, distance behind border of upper canines and length of lower PC row.

Multivariate analyses

Results from the PCA for adult female *A. p. doriferus* showed that Component 1 explained 82.7% of the total variance. This value was comparable with that found in adult female *A. p. pusillus*. Component 2 was a shape component and contributed another 7.2% to the total variance and, again similar to female *A. p. pusillus*, showed variables relating to breadth of skull decreased in magnitude while those relating to length of skull increased. Mastoid breadth (-0.471) was the most significant variable for this component. Component 3 was also a shape component and contributed a further 3.6% to the total variance. It was influenced mainly by gnathion–middle of occipital crest and gnathion–posterior of maxilla (palatal) (-0.383 and 0.301, respectively).

For adult male A. p. doriferus, Component 1 described 72.9% of the total variance and was comparable with that of Component 1 in adult male A. p. pusillus. Cranial characteristics relating to length of skull possessed the largest coefficients, particularly CBL (0.945), gnathion-middle of occipital crest (0.915) and gnathion-caudal border of postglenoid process (0.926). Component 2 contributed another 9.4% to the total variance, approximately half that observed for adult male A. p. pusillus. This component was influenced primarily by zygomatic breadth (-0.482), auditory breadth (-0.466) and gnathion-caudal border of preorbital process (0.419). Auditory and zygomatic breadth decreased in magnitude compared with variables relating to the rostral and frontal regions. Component 3 added another 6.4% to the total variance explained, in which basion-bend of pterygoid expressed the greatest negative coefficient (-0.413).

Guadalupe fur seal – *Arctocephalus townsendi* Merriam, 1897

General morphology

Cranial morphology of *A. townsendi* was similar to that of *A. philippii*, but the skulls of *A. townsendi* were generally smaller. The rostrum and preorbital processes were long and narrow in both sexes. The nasals were long, slender and flared anteriorly. The interorbital constriction was narrow. The supraorbital processes were narrow and angled ventrally. The frontal was long and comparatively slender. The palate was long, narrow and deep at the canines. The upper canine roots were larger in males than in females. The PCs were large, unicuspid and spaced apart. The zygomatic arch was long and thin at the jugal-squamosal margins. The auditory bullae were rounded. A sagittal crest was present in males, reduced in females, and rose from the posterior of the frontal to the occipital crest.

The occipital crest was present in males. The mandible was elongate, usually with a narrow dentary and shallow masseteric fossa in both sexes (Plate 14).

Measured variables

Condylobasal length was significantly larger in. Measurements for the remaining ten variables relating to length of skull showed males were proportionately smaller than the female in basion-bend of pterygoid and proportionately similar to females in length of nasals. Relative to CBL, *A. townsendi* expressed marked dimorphism in most variables relating to robustness, particularly breadth at supraorbital processes, interorbital constriction, rostral width, zygomatic breadth, mastoid breadth, and height of sagittal crest. Variables relating to the mandible and teeth were also proportionately larger in male *A. townsendi* than in females, excluding distance behind border of upper canines and length of lower PC row.

Multivariate statistics were not applied to this species as too few adult specimens were available.

Galapagos fur seal – Arctocephalus galapagoensis Heller, 1904 General morphology

Skulls of A. galapagoensis were the smallest of all the otariids and, although smaller, were morphologically similar to A. australis and A. forsteri. Arctocephalus galapagoensis also showed the least sexual dimorphism for the Otariidae. The rostrum was short and broad. The nasals were moderate in length, flared anteriorly and were narrow at the junction with the frontal. The interorbital constriction was slender with small supraorbital processes that extended posteriorly. The frontal was generally flat, or moderately convex in males, and usually flat in females. The auditory bullae were small and triangulate. The zygomatic arch was short with moderate curvature at the jugal-squamosal margin, similar to that of A. forsteri but narrower at the anterior of the zygomatic arch as observed in A. australis. The sagittal and occipital crests were moderate in males, becoming larger in older specimens. Female A. galapagoensis showed little, if any, cresting. The preorbital processes were small and well defined. The PCs were large, with anterior and posterior accessory cusps that usually abutted against each other. The mandible was short and robust with the masseteric fossa deeper in older specimens (Plate 15).

Measured variables

Variables relating to length of skull were proportionately greater in males than in females, including gnathion–posterior end of nasals, palatal notch–incisors, basion–zygomatic root, gnathion–caudal border postglenoid process, and gnathion–caudal border of preorbital process. The remaining variables relating to length of skull were the same for both sexes, or proportionately smaller in males than in females. Male *A. galapagoensis* were larger than females in all but five variables relating to breadth of skull, in which males were proportionately smaller than females (breadth of skull at supraorbital processes, breadth of braincase, height of skull at ventral margin of mastoid, and length and breadth of orbit). For variables

Plate 14 Arctocephalus townsendi – adult male (left), adult female (right).

relating to the mandible and teeth, means relative to CBL showed males were smaller than females in mesiodistal diameter of PCs, distance behind border of upper canines, and length of lower PC row. Both sexes expressed the same means for breadth of masseteric fossa and length of mandibular tooth row. The remaining variables related to the mandible and teeth were proportionately larger in males.

Multivariate comparisons of male and female A. galapagoensis were not applied due to the small sample

size of adult specimens (seven males and four fe-males).

South American fur seal – Arctocephalus australis (Zimmerman, 1783)

General morphology

Specimens of A. *australis* were morphologically similar to those of A. *forsteri*. The rostrum was long, and narrow. The nasals were elongate and narrow at the junction with the frontal.

Plate 15 Arctocephalus galapagoensis – adult male (left), adult female (right).

The interorbital constriction was slender with well-defined supraorbital processes that extended posteriorly. As with *A. forsteri*, the frontal was generally flat or moderately convex in males, and usually flat in females. The auditory bullae were small and triangulate. The zygomatic arch was short with moderate curvature at the jugal-squamosal margin, similar to that of *A. forsteri* but narrower at the anterior of the zygomatic

arch. The sagittal and occipital crests were well developed in males. Females, predominantly older specimens, possessed reduced sagittal and occipital crests. The preorbital processes were small and well defined. Structure of the PCs varied somewhat in the size of the anterior and posterior accessory cusps (some specimens had larger cusps, some smaller), but all showed the PCs abutting against each other. The mandible was

Plate 16 Arctocephalus australis – adult male (left), adult female (right).

relatively short with the masseteric fossa deeper in older specimens (Plate 16).

Measured variables

Male *A. australis* were proportionately larger than females in variables relating to length of skull, excluding three with the same means for both sexes (length of nasals, palatal notch–

incisors, and gnathion–posterior of maxilla (palatal)). Males were comparatively smaller than females in basion–bend of pterygoid. For variables relating to breadth of skull, breadth of zygomatic root of maxilla, and height of skull at supraorbital processes showed the same mean values for both sexes, and three variables were comparatively smaller in males (breadth of braincase, and length and breadth of orbit). Means for the remaining 14 variables relating to breadth of skull were all greater for male *A. australis*, than for females. For variables relating to the mandible and teeth, males were proportionately smaller than females in height of canines above alveolus, distance behind border of upper canines and height of mandible at meatus. Both sexes showed the same mean values for length of lower PC row.

Multivariate analyses

Component 1 for adult female *A. australis* was influenced mainly by size of variables relating to breadth, or robustness, of skull and accounted for 76.3% of the total variance explained. Breadth of palate at PCs 3–4, 4–5 and 5 contributed the most variation showing large, positive coefficients. Component 2, a shape component, contributed another 10.2% to the total variance and was influenced primarily by basion–zygomatic root of maxilla (anterior) (-0.733), the only measurement in the analysis that related to length of skull. Component 3 was also a shape component and described a further 6.1% to the total variance. Occipital crest–mastoid (-0.474) contributed most to the variation described in Component 3.

The greatest within-sex variation for adult male *A. australis* was observed in Component 1 and accounted for 62.1% of the total variance. As with adult female *A. australis*, the most significant variables for adult males described by Component 1 were those related to breadth of skull, particularly auditory, mastoid and zygomatic breadth. Component 2 contributed another 16.9% to the total variance and was influenced primarily by breadth of skull at supraorbital processes and length of nasals, which were both reduced in magnitude (-0.694 and -0.681, respectively). Both of these measurements also contributed most to the variation described in Component 3.

Juan Fernandez fur seal – *Arctocephalus philippii* (Peters, 1866)

General morphology

Cranial morphology of A. philippii was similar to that of A. townsendi, but the skulls of A. philippii were the larger. The rostrum and nasals were long and narrow. The preorbital processes were long and larger in older specimens. Interorbital constriction and supraorbital processes were narrow, the latter angled ventrally. The frontal was long and slender, as was the palate which was deep at the canines. The upper canine roots were bulbous in male A. philippii, and the PCs were large, unicuspid and widely spaced, similar to those of A. townsendi. The zygomatic arch was long and thin at the squamoso-jugal margins. Auditory bullae were primarily rounded. A sagittal crest was present in subadult and adult males, and was reduced in females, rising from the posterior of the frontal to the occipital crest. An occipital crest was present in males. The mandible was elongate, usually with a narrow dentary and relatively shallow masseteric fossa (Plate 17).

Measured variables

Condylobasal length was considerably larger in male *A. philippii* than in females. Palatal notch–incisors and basion– zygomatic root were similar for both sexes of *A. philippii*, whereas the remaining measurements for variables relating to length of skull, relative to CBL, showed that male *A. philippii* were smaller than the female. Males expressed marked sexual dimorphism in most variables relating to robustness, excluding breadth of braincase, and length and breadth of orbit which were comparatively smaller in males than in females. Variables relating to the mandible and teeth were proportionately larger in male *A. philippii* than in females, excluding distance behind border of upper canines, length of mandibular tooth row and mesiodistal diameter of lower canines.

Multivariate statistics were not applied to this species as too few adult specimens were available (one male and one female).

A comparison of subspecies

The following describes variation of skull morphology within species of otariids that currently comprise subspecific groups; namely, *A. pusillus*, *Z. californianus* and *A. australis*.

Arctocephalus pusillus. Cranial characteristics for each sex were compared between adult A. p. pusillus and A. p. doriferus. Eight variables were used for maximum separation in two-group discriminant function analysis for males (Wilks' lambda = 0.18, P < 0.0001), and nine for females (Wilks' lambda = 0.34, P < 0.0001) (Fig. 2). Results showed that in both sexes the skull of A. p. doriferus was generally larger than that of A. p. pusillus. Male A. p. doriferus expressed the greatest intraspecific difference in CBL, with only moderate overlap with A. p. pusillus (Table 4). Relative to CBL, there was little difference in cranial morphology between A. p. doriferus and A. p. pusillus, which would be expected when comparing two closely related subspecies. Nevertheless, in absolute measurements (mm), the rostral region of A. p. doriferus was longer than that of A. p. pusillus (reflecting the greater CBL in the former subspecies) and the palate was wider.

Zalophus californianus. Variation in cranial morphology was also observed in specimens of adult Z. c. californianus, Z. c. wollebaeki and Z. c. japonicus. The 14 variables used in multi-group discriminant function analysis for males, and the 13 for females, provided maximum separation between groups (males: Wilks' lambda = 0.04, P < 0.0001; females: Wilks' lambda = 0.06, P < 0.0001). Figure 3 shows that skulls of Z. c. californianus and Z. c. wollebaeki grouped together with minor overlap, whereas those of Z. c. japonicus separated significantly from the other subspecies. Skulls of Z. c. japonicus were significantly larger than those of Z. c. californianus and Z. c. wollebaeki. Besides greater total skull length in Z. c. japonicus, other differences were observed. The sagittal crest in Z. c. japonicus was significantly larger and more rounded dorsally, than it was in Z. c. californianus and Z. c. wollebaeki; the zygomatic arch was thicker at the jugal-squamosal margin; the rostrum and palate were broader in Z. c. japonicus; the supraorbital processes were shorter and thicker; the angle between the dentary and the coronoid process was more acute; and, the dentary was broader dorso-ventrally. There were fewer significant differences found between Z. c. californianus and Z. c. wollebaeki, the main being that Z. c. wollebaeki was smaller (Table 5).

Plate 17 Arctocephalus philippii – adult male (left), adult female (right).

Arctocephalus australis. Fifteen variables were used for multi-group discriminant function analysis for male A. australis from Falkland Islands, Punta del Diablo, Argentina and San Juan, Peru. The scatterplot resulting from the discriminant function analysis shows specimens from the Falkland Islands and Punta del Diablo overlapped, while those from San Juan formed a separate group (Wilks' lambda = 0.01, P = 0.001) (Fig. 4a). Skulls from San Juan appeared to be shorter, yet

more robust in mastoid and zygomatic breadth, than those from the Falkland Islands and Punta del Diablo. Separation of adult female *A. australis* into geographic groups (Punta del Diablo and San Juan) was also significant. Twelve variables used in the two-group discriminant function analysis provided maximum separation between the groups (Wilks' lambda = 0.06, P = 0.003) (Fig. 4b). Means for the 12 variables show that skulls of adult female *A. australis* from Punta del Diablo were

Figure 2 Mahalanobis distances with .95 confidence ellipses for adult male (a) and female (b) *Arctocephalus pusillus pusillus* (males: n = 34, females: n = 42) and *A. p. doriferus* (malaes: n = 44, females: n = 42).

Figure 3 Mahalanobis distances with .95 confidence ellipses for adult male (a) and female (b) Zalophus californianus californianus (males: n = 57, females: n = 41), Z. c. japonicus (males: n = 8, females: n = 1) and Z. c. wollebaeki (males: n = 21, females: n = 5).

	A	. p. dorif	erus (mm)	A. p. pusillus (mm)		
Variable	Mean	SD	Range	Mean	SD	Range
Males						
Condylobasal length	282.02	7.60	265.77-302.15	269.67	6.44	254.86–280.50
Breadth of nares	37.34	2.13	32.75-43.60	33.96	3.47	25.21–41.16
Palatal notch-incisors	121.44	10.21	97.65–139.20	117.27	6.07	104.01–125.56
Gnathion–posterior of maxilla (palatal)	135.36	4.40	126.30–143.89	127.41	4.74	118.14–137.27
Basion–zygomatic root (anterior)	191.66	5.96	182.00–207.40	184.11	4.98	175.30–198.62
Gnathion–caudal border of preorbital process	94.96	3.96	84.33–101.65	91.69	3.42	83.83–98.00
Breadth of palate at postcanines 3–4	38.53	3.21	28.90-44.17	34.26	3.09	30.32–41.86
Breadth of palate at postcanines 4–5	42.77	3.35	36.07-48.37	37.09	3.87	25.73-45.16
Females						
Condylobasal length	226.22	6.88	207.52–238.41	217.41	9.27	196.54–235.19
Gnathion–middle of occipital crest	191.31	7.45	176.38–205.97	185.49	9.12	163.31–201.82
Breadth of skull at preorbital processes	56.42	2.99	49.57-63.50	55.78	3.50	48.44–67.76
Gnathion–posterior of maxilla (palatal)	107.64	4.38	96.04–117.04	101.92	5.76	86.35-112.52
Gnathion–caudal border postglenoid process	170.39	6.12	153.34–181.23	162.62	8.81	137.60–178.07
Basion–zygomatic root (anterior)	152.75	5.01	140.35–163.35	147.23	6.91	127.20–160.81
Basion–bend of pterygoid	70.51	2.53	63.70–77.61	68.47	3.05	61.42-73.39
Gnathion–foramen infraorbitale	69.57	2.87	63.41–77.02	68.15	4.39	58.43–78.91
Breadth of palate at postcanines 4–5	29.78	2.71	25.04-35.09	27.52	2.62	20.58–32.95

Table 4Group means for adult male and female Arctocephalus pusillus pusillus (males: n = 34, females: (n = 42) and A. p.doriferus (males: n = 44, females: n = 42).

	Z. c. californianus (mm)			Z. c. japonicus (mm)			Z. c. wollebaeki (mm)		
Variable	Mean	SD	Range	Mean	SD	Range	Mean	SD	Range
Males									
Condylobasal length	283.86	10.78	253.01-303.95	314.38	8.17	299.51-323.44	266.94	6.75	250.59-277.77
Breadth of nares	29.62	2.15	21.49-33.82	36.82	2.75	28.77-41.01	28.69	1.82	25.71-33.01
Breadth of skull at	82.56	5.21	70.63-93.26	95.75	4.97	85.06-102.88	70.41	3.74	62.59-78.27
preorbital processes	5	2	, , , , , , , , , , , , , , , , , , , ,	,,,,	1.57	5	, ,	571	<i></i>
Breadth of skull at	69.14	7.20	52.14-87.08	80.62	5.02	70.22–86.93	68.44	5.78	60.27-81.28
supraorbital processes									
Breadth of braincase	81.86	2.83	75.90–88.56	89.33	3.19	84.05–94.58	79.64	2.39	74.68–84.43
Occipital crest-mastoid	130.59	9.30	104.79–148.61	146.32	8.31	126.44–158.93	119.44	8.62	95.28–138.13
Zygomatic breadth	159.21	10.38	132.14–177.56	184.18	8.34	162.03–193.90	149.25	7.70	129.22–160.23
Basion–zygomatic root of maxilla (palatal)	189.35	6.42	115.78–143.76	210.90	7.27	137.13–160.84	175.01	5.53	109.68–132.43
Mastoid breadth	142.95	9.68	115.59–163.77	172.64	8.52	154.27–186.38	128.29	7.95	111.55–142.32
Basion – bend of pterygoid	81.25	4.03	73.54-89.28	93.83	5.89	84.76-108.49	78.82	4.61	70.97-93.26
Gnathion–caudal border of preorbital process	98.89	4.33	88.98–107.69	109.39	5.61	97.10-116.81	88.62	3.69	83.00-95.93
Height of skull at ventral	106.64	7.16	90.84–121.90	120.07	6.77	108.51–134.32	97.89	5.67	84.33–110.93
Breadth of palate at	45.90	3.15	40.33-54.21	49.59	2.88	41.15-53.15	39.61	2.06	34.94-44.17
Breadth of palate at postcanine 5	45.01	3.37	38.69–52.85	46.83	3.21	38.96-53.12	40.03	2.17	35.06-46.23
Females									
Condvlobasal length	231.31	6.05	221.30-247.77	242.00	_	_	231.77	6.47	223.73-239.17
Gnathion-middle	204.46	5.46	194.05-217.52	213.38	-	-	204.35	4.08	200.11-208.65
of occipital crest	0.4								
Breadth of skull at	58.65	2.77	53.07-66.52	66.49	-	-	54.40	1.96	52.00-57.47
preorbital processes	(0	,					0		a (a
Palatal notch-incisors	95.68	4.61	82.92–104.58	99.48	-	-	92.81	2.88	89.20-96.84
of upper canines	54.91	3.92	48.63–64.19	66.92	-	-	59.36	4.42	51.56–62.36
Gnathion–posterior of maxilla (palatal)	106.51	3.52	97.09–114.24	113.03	-	-	104.38	1.97	102.26–107.25
Breadth of zygomatic	11.74	1.22	8.95–14.28	14.79	-	-	11.69	1.09	10.70–13.45
Breadth of orbit	46.02	1 16	44 22-40 22	50.67	_	_	45.04	0.82	44 82-46 85
Auditory broadth	40.93	2.05	44.22-49.22 88.00 of 27	102.80			45.94	0.03	44.02-40.05 87.26 02.46
Racion bond of	91.04	2.05	60.09-90.27	78 70	-	-	09.00 71.25	2.30	6/.20-93.40
pterygoid	07.44	2.55	02.50-73.00	/0./9	-	-	/1.25	0.53	04.05-01.50
Breadth of palate at postcanines 3-4	30.40	1.61	25.88–33.24	31.97	-	-	31.27	1.96	28.85–34.01
Breadth of palate	34.06	1.85	30.39-37.75	37.12	_	_	35.00	1.32	34.81-37.52
at postcanines 4–5	J4.00	ر ۵۰۰					55.77		2(، /ر ۲۰۰۰ و
Breadth of palate at postcanines 5	34.04	1.96	29.59-38.34	35.43	-	-	35.96	1.62	33.62–37.46

Table 5Group mean, standard deviation and range for adult Zalophus californianus californianus (males: n = 57, females: n = 41), Z. c.*japonicus* (males: n = 8, females: n = 1) and Z. c. wollebaeki (males: n = 21, females: n = 5).

smaller in all but one variable (gnathion–foramen infraorbitale) than those from San Juan. In specimens of *A. australis*, females from Peru were larger than those from the Falkland Islands, whereas skulls of males from Peru appeared shorter but more robust than those from the Falkland Islands and Punta del Diablo (Table 6).

The Otariidae

Results from the hierarchical cluster analysis, using single linkage R-squared distances, indicate an initial grouping of the Otariidae from the brown bear, *Ursus arctos* (Fig. 5). Within the Otariidae, *O. byronia* separated from the remaining otariids. *Callorhinus ursinus* was separate from all the fur seals, whereas the cluster comprising *Arctocephalus*, *A. p. pusillus* and *A. p. doriferus* grouped together closely, as did *A. forsteri* and *A. australis. Arctocephalus tropicalis* and *A. galapagoensis* also remained within the genus *Arctocephalus*, as did *A. gazella* which, on the periphery of this cluster, was still included within the genus. Most notably, Figure 5 illustrates a close relationship between *A. philippii* and *A. townsendi*, yet did not incorporate them within the genus *Arctocephalus*. The genus *Zalophus* was placed closer to the fur seals than the sea lions, which indicates the 'Arctocephalinae' and 'Otariinae' may not be reciprocally monophyletic. *Arctocephalus townsendi* and *A. philippii* were the furthest removed from

Figure 4Mahalanobis distances with .95 confidence ellipses for adult male (a) and female (b) A. australis from Falkland Island (males: n = 9),
Punta del Diablo, Argentina (males: n = 4, females: n = 6) and San Juan, Peru (males: n = 14, females: n = 10).

Figure 5 Hierarchical cluster tree for the family Otariidae with brown bear *Ursus arctos* as outgroup, based on skull measurements of adult males, using single-linkage R-squared distances. (*A. towns* = *Arctocephalus townsendi, A. phil* = *A. philippii, Z. c. woll* = *Z. c. wollebaeki, Z. c.* c = Z. *c. californianus, Z. c.* j = Z. *c. japonicus, A. gaz* = *A. gazella, A. p. pus* = *A. p. pusillus, A. p. dor* = *A. p. doriferus, A. a* = *A. australis, A forst* = *A. forsteri, A. trop* = *A. tropicalis, A. galap* = *A. galapagoensis, C. urs* = *Callorhinus ursinus, N. cin* = *Neophoca cinerea, P. hook* = *Phocarctos hookeri, E. jub* = *Eumetopias jubatus, O. byro* = *Otaria byronia*).

other species of *Arctocephalus*, close to the genus *Zalophus*, which again does not support subfamilial separation on phenetic grounds.

Discussion

The Pinnipedia are diagnosed systematically by a suite of derived morphological characters that distinguish them from terrestrial mammals and other marine mammals. Pinnipeds, including the Otariidae, possess cranial morphology that differs fundamentally from that of terrestrial mammals. As described by Berta & Sumich (1999), these include:

- Large orbit The orbit in pinnipeds is large, both in absolute size and relative to the body, compared with that of terrestrial mammals.
- 2 Large infraorbital foramen The infraorbital foramen is large in pinnipeds contrasting with its small size in most terrestrial carnivores.
- 3 Maxilla forms a significant part of the orbital wall The maxilla of pinnipeds forms part of the lateral and anterior walls of the orbit. In terrestrial carnivores, the maxilla is usually limited in its posterior extent by contact of the jugal, palatine, and/or lacrimal.
- 4 Lacrimal absent or fusing early in ontogeny and does not contact the jugal The lacrimal is greatly reduced or absent in pinnipeds. In terrestrial carnivores, the lacrimal contacts the jugal or is separated from it by a thin sliver of the maxilla.

The overall shape of the skull in both sexes is unique within a given species of otariid. For instance, in skulls of *A*. *forsteri* both males and females exhibit the same general shape (e.g. broad anterior zygomatic arch, small triangular auditory bullae), yet the muscle-attaching components are always greater in males. The extreme sexual dimorphism in size of otariids is reflected in the skulls of all otariid species (Brunner, 2000; Brunner *et al.*, 2002).

Phylogenetic relationships

In a study of cytochrome *b* and 12SrRNA, Lento *et al.* (1995, 1997) revealed paraphyly among both fur seals and sea lions, although their studies did not include representatives of all species of otariids. A currently accepted phylogeny for the Otariidae described by Berta & Sumich (1999) indicates that *C. ursinus* diverged early (shortly after *Pithanotaria*), then a monophyletic *Arctocephalus* diverged, followed by the appearance of sea lions (*Zalophus* diverging first, then *Eumetopias*)

	Falkland Island (mm)			Punta del Diablo (mm)			San Juan, Peru (mm)		
Variable	Mean	SD	Range	Mean	SD	Range	Mean	SD	Range
Males									
Gnathion–middle of occipital crest	208.93	4.70	201.34–217.13	208.50	5.36	202.26–213.85	205.71	7.76	193.82–216.36
Breadth of nares	30.97	2.22	26.74-34.05	32.02	1.96	29.61–33.88	31.74	1.90	29.44-35.53
Interorbital constriction	34.29	3.73	29.76–41.05	34.89	3.26	30.69–37.80	34.42	3.40	30.51–41.67
Breadth of skull at supraorbital processes	52.14	4.56	44.94–59.96	55.60	4.48	50.71–61.43	50.22	5.06	40.87–57.03
Occipital crest–mastoid	109.54	6.61	99.90–121.18	111.66	7.97	103.41–122.43	111.23	5.09	102.28–115.96
Palatal notch-incisors	104.36	6.76	94.29–114.92	97.57	3.20	93.99–101.76	102.47	6.94	93.35-113.05
Distance behind border of upper canines	58.49	2.23	56.25–63.94	56.74	1.39	55.35-58.66	60.83	4.32	49.83–66.07
Zygomatic breadth	139.68	7.74	125.53-155.37	141.43	7.27	132.04–149.78	143.97	5.62	129.58–148.62
Basion–zygomatic root of maxilla (palatal)	166.15	5.92	156.38–173.00	160.75	5.03	156.26–167.94	167.18	6.22	153.77–176.09
Mastoid breadth	129.52	7.35	115.27–143.76	129.07	4.88	124.01–135.24	133.50	6.46	119.71–140.44
Gnathion–foramen infraorbitale	84.04	11.10	52.21–95.38	81.27	8.96	75.17-94.53	80.93	4.35	75.92–90.71
Gnathion–caudal border of preorbital process	77.79	1.80	74.50-80.82	77.45	1.84	74.90–79.23	78.14	2.69	72.30-82.10
Height of sagittal crest	8.19	3.13	3.58–12.77	10.10	2.12	7.56–12.53	8.30	2.72	5.64–13.88
Breadth of palate at postcanines 3–4	32.59	2.26	30.15-36.91	29.23	3.21	24.71-31.79	32.48	2.53	26.29–34.90
Breadth of palate at postcanines 4–5	35.75	2.97	31.44–40.99	32.41	2.23	29.71–35.12	36.65	2.75	32.02-40.20
Females	_	_	_	86.10	6.00	80.10-00.02	80.77	6.05	81 68-07 12
Distance behind border				50.19 F1.66	2.09	60.10-90.93	59.//	2.05	6 26-56 21
of upper canines	-	-	-	51.00	3.94	45.27-50.15	53.43	2.00	40.20-50.21
Costhion postarior of	-	-	-	33.99	2.06	30.20-30.00	30.50	2.52	34.40-41.59
maxilla (palatal)	-	-	-	93.01	5.90	05.10-101.20	97.55	3.29	91.20-103.16
root of maxilla	-	-	-	12.81	1.67	11.29–15.98	14.40	1.24	12.29–16.93
Gnathion–caudal border postglenoid process	-	-	-	145.33	8.91	130.45–156.00	154.50	3.39	149.43–160.82
Basion-bend of pterygoid	-	-	-	64.44	3.37	58.24–68.05	67.65	2.31	63.20–70.58
Gnathion–foramen infraorbitale	-	-	-	66.54	5.48	60.62–76.02	64.71	2.89	61.36–70.58
Gnathion–caudal border of preorbital process	-	-	-	61.23	3.69	54.83–65.04	62.27	2.33	57.45–65.81
Height of skull at supraorbital process	-	-	-	57.58	3.91	50.09–61.50	58.73	1.75	55.73–62.94
Height of skull at ventral margin of mastoid	-	-	-	73.76	3.73	69.16–79.38	74.48	3.72	69.98–84.13
Breadth of palate at postcanine 5	-	-	-	26.29	1.74	24.79–29.26	30.55	2.07	26.79-33.77

Table 6Group means for adult Arctocephalus australis from the Falkland Islands (males: n = 10, females, n/a), Punta del Diablo, Argentina
(males: n = 4, females, n = 6) and San Juan, Peru (males: n = 10, females: n = 10).

and finally *Otaria*). The dendogram based on cranial morphometrics from this study shows a different structure from that described by Berta & Sumich (1999), one that is more congruent with the recent genetic data of Wynen *et al.* (2001), with some exceptions. Results from the morphometric study described here show *Otaria* separate from all other otariids, the grouping of a sea lion complex comprising *E. jubatus*, *N. cinerea*, and *P. hookeri*, and another containing the remaining Otariidae. Within the latter, *A. philippii* and *A. townsendi* separated from the *Arctocphalus* complex, yet grouped with each other. *Callorhinus ursinus* was separate from the remaining *Arctocephalus*. Zalophus formed one group close to the Arctocephalus complex, whereas the remaining Arctocephalus formed the other. Within Arctocephalus, A. forsteri and A. australis formed a close group, as did A. p. pusillus and A. p. doriferus.

Berta & Wyss (1994) suggested the Arctocephalus were more closely related to sea lions than to Callorhinus. Indeed, from this study the Arctocephalus (excluding A. philippii and A. townsendi) appeared more closely related to Zalophus than they did to C. ursinus. Nevertheless, based on this morphometric study C. ursinus appears more closely related to the Arctocephalus–Zalophus complex than it does to the other sea lions.

Kim et al. (1975) suggested that C. ursinus is a specialized offshoot of the Arctocephaline stem, based on external parasites. Results from this study support their hypothesis, in that cranial morphology of C. ursinus is significantly different from that of other otariids, particularly at the rostrum and canines, but appears morphologically closer to Arctocephalus and Zalophus than to A. philippii, A. townsendi and the remaining otariids. Significant differences between skulls of the genera Callorhinus and Arctocephalus can be found primarily in the structure of the rostrum and the angle of the canines. The facial angle of Callorhinus is abrupt (less than 125°) whereas for Arctocephalus it is more than 125° (King, 1983). The canines of Callorhinus are angled vertically, compared with the more curved canines of Arctocephalus. The PCs of C. ursinus, although not as reduced as those of A. gazella, are small and reminiscent of this latter species.

Data from the hierarchical cluster analysis suggest *C. ursinus* may have diverged after *A. philippii* and *A. townsendi*. From a genetic perspective, Wynen *et al.* (2001) and Bininda-Emonds *et al.* (1999) found that *C. ursinus* was basal to the remaining fur seal and sea lion taxa; this was only partially reflected in the present morphological study, with *C. ursinus* appearing basal to the *Arctocephalus–Zalophus* group, but not to the remaining otariids.

Repenning et al. (1971) suggested that possibly all species of Arctocephalus have a relationship to, and perhaps an origin from, A. australis due to one common trait, the evolution of simplified PC structures. An extinct, ancient otariid, Arctocephalus fischeri, was described from a left mandible found in Miocene fossil beds, Province of Paraná, Argentina. The specimen resembled closely that of A. australis (Kellogg, 1922). Conversely, later work on the Miocene fossils Thalassoleon and Pethanotaria, which were shown to possess simple PCs, suggested that modern otariids with well-developed cusps such as A. australis and A. pusillus, are more advanced (Repenning & Tedford, 1977). Results from this study indicate a strong morphological link between at least three species of Arctocephalus (A. australis, A. forsteri and A. galapagoensis), supporting subspecific status described by Scheffer (1958) and King (1954), and genetic results of Wynen et al. (2001). Results from the hierarchical cluster analysis also support the late appearance of the genus Arctocephalus as indicated by Repenning & Tedford (1977).

Wynen *et al.* (2001) show *A. pusillus* falling well within the *Arctocephalus*, again congruent with the morphometric data within this study. Repenning *et al.* (1971), Stirling & Warneke (1971), Trillmich & Majluf (1981), and Goldsworthy *et al.* (1997) stated that *A. pusillus* is phenotypically intermediate between fur seals and sea lions. Nevertheless, results from Wynen *et al.* (2001) and data from this study do not reflect a close phylogenetic affinity with any sea lion lineage; they appear to be well within the genus *Arctocephalus*.

Systematics and taxonomy

Division of the Otariidae into subfamilies on the basis of abundant underfur has long been considered dubious (e.g. Repenning & Tedford, 1977), particularly since that character may have evolved more than once among the otariids (Repenning et al., 1971; Lento et al., 1995). Lento et al. (1995) noted that genetic evidence of more than one appearance of underhair was supported by a study of three mtDNA genes in an extended survey of otariine taxa. Results from this, and other, morphological and genetic studies indicate the separation between the 'subfamilies' Arctocephalinae and Otariinae, as frequently described, is redundant. At the time of writing, only one genetic review for the entire family Otariidae has been published (Wynen et al., 2001); they found no support for the recognition of the two subfamilies, based on analyses of mtDNA. Árnason et al. (1995) studied the molecular systematics of pinnipeds (including four species of otariids: Z. californianus, E. jubatus, A. gazella and A. forsteri) and found the two otariid subfamilies separated but the bootstrap value for the Otariinae was low (51), as were nucleotide differences between subfamilies, approximately 8.5% (sea lions -5.0%, fur seals -6.1%).

As with the change in use of subfamily delineations within the Otariidae, the current taxonomic structure of genera also requires amendment. For instance, atypical Arctocephalus morphology is observed in skulls of A. philippii and A. townsendi. Primarily, both species possess a narrower, more elongated skull, than observed in other species of Arctocephalus. The rostrum is significantly longer, and the PCs are without accessory cusps and spaced apart, unlike those in A. forsteri, A. australis, A. galapagoensis, A. p. pusillus and A. p. doriferus (refer Repenning et al., 1971). Also, zygomatic breadth is narrower in A. philippii and A. townsendi than it is in other species of Arctocephalus. Few morphological differences between A. philippii and A. townsendi are apparent, yet both exhibit marked structural differences from other species of the genus. Arctocephalus townsendi is generally smaller than A. philippii (e.g. body length of A. townsendi males = 180 cm, females = 120 cm; A. philippii males = 200 cm, females = 140 cm) (Bonner, 1994). The significantly elongated rostrum in both species is accentuated by a bulbous terminal rhinarium and ventrally angled nostrils, a trait found in no other species of Arctocephalus (Repenning et al., 1971). Wynen et al. (2001) found the divergence of mtDNA between A. philippii and A. townsendi to be very low ($D_a = 0.004$) and questioned the retention of these as separate species. They also described a significant divergence between the A. townsendi/A. philippii group and the remaining Arctocephalus, showing congruence with morphometric data presented here.

Scheffer (1958), King (1954) and others considered *A. philippii* and *A. townsendi* to be subspecies of *A. philippii* because of their morphological similarities. Sivertsen (1954) also considered both species as a separate genus, *Arctophoca*, because the skulls of *A. townsendi* and *A. philippii* are exceptionally narrow compared with those of *Arctocephalus*. The distance from the middle of the occipital crest to the mastoid processes in *A. philippii* and *A. townsendi* is very short, the condyles of the mandible are 'particularly narrow', and the diastema between PCs is large, compared with that of *Arctocephalus*. Conversely, Repenning *et al.* (1971) noted '... the *philippii-townsendi* complex is in some ways distinctive, but classing these two species in a separate genus, *Arctophoca*, seems unwarranted'. Repenning *et al.* (1971) analysed a small

sample size¹ of skulls of mixed age and sex, basing their conclusions on these. Since Repenning *et al.* (1971), there has not been another taxonomic revision of these seals, with most researchers accepting unquestioningly the species as part of the genus *Arctocephalus*.

Both *A. philippii* and *A. townsendi* possess relatively docile dispositions (King, 1983) and appear to have similar habits, including hauling out on lava rock at the base of cliffs (Hubbs & Norris, 1971). Also, only *A. townsendi* approaches *A. philippii* in the duration of its foraging cycle (Francis & Boness, 1998) which is approximately 11.5 days at sea and 5.0 days on land (Figueroa, 1994). Both species occur in the western Pacific, off the coasts of America (*A. townsendi* to the north, primarily at Guadalupe Island, *A. philippii* to the south, primarily at Juan Fernandez Island). Thus, both species at one point may have occurred sympatrically.

There are few morphological differences between skulls of *A. philippii* and *A. townsendi* other than size, which indicates strongly that separation into species is not warranted. The difference in size may perhaps reflect an adaptation to environmental factors such as water temperature and primary productivity. *Arctocephalus philippii* inhabits more cold-temperate latitudes than *A. townsendi* and thus may have become larger, as is the trend in other otariids (Brunner, 2000, 2002). Results from this study, and data from genetic, behavioural and other morphological research indicate that both species should, in fact, be considered subspecies and form a genus separate from the remaining species of *Arctocephalus*, as *Arctophoca philippii philippii* and *Arctophoca philippii townsendi*.

From the analyses, *O. byronia* grouped separately from the remaining otariids, rather than falling within a monotypic group of otariines, as would be expected from two distinct subfamilies. *Otaria byronia* is by far the most robust of the Otariidae, with unique and instantly recognizable cranial morphology. Particularly, the palate of this species is unlike that of any other otariid, and is reminiscent of the palate found in the walrus, *Odobenus rosmarus*. Results from this study conflict with those of previous genetic and phylogenetic research, and should be considered with caution. Further studies on the origins of *O. bryonia* would be beneficial.

The sea lions *E. jubatus*, *N. cinerea* and *P. hookeri* formed a separate morphological group within the Otariidae, indicating relatively close similarities and, with particular regard to *N. cinerea* and *P. hookeri*, probably a close ancestral link. In pelage appearance, female *P. hookeri* are virtually identical to female *N. cinerea*, silvery-grey dorsally and creamy ventrally. Male *N. cinerea* and *P. hookeri* are similar in size, are light coloured when first moulted from their natal coat, and both darken with age (Marlow, 1975; Bonner, 1994). Both *N. cinerea* and *P. hookeri* were once considered to be within the genus *Neophoca* (Sivertsen, 1954; Scheffer, 1958). Scheffer (1958) believed the differences between *N. cinerea* and *P. hookeri* were

not of generic importance, but that they should retain the specific names cinerea and hookeri in order to identify the two populations. Although the geographic proximity of Neophoca cinerea and Phocarctos hookeri would suggest a close relationship, Wynen et al. (2001) found no genetic evidence of this in their data, although they did describe a close intergeneric relationship, as did Bininda-Emonds et al. (1999). A major biological difference between these species is that N. cinerea experiences a unique 18 month breeding cycle, whereas the breeding season for P. hookeri is yearly, beginning in December (Ling & Walker, 1978). There are also major differences in breeding behaviour, in that male P. hookeri possess a more ritualized defence of territory, whereas male N. cinerea are more aggressive but will desert a chosen territory if no females appear (Marlow, 1975). Marlow (1975, p. 227) stated that "... the considerable differences in behaviour which exist between Neophoca cinerea and Phocarctos hookeri leave no doubt whatsoever that they are different species ... Moreover, these differences are sufficiently great to make it doubtful that any advantage could be gained by combining them in one genus". Results from this study highlight the morphological similarities of the skull of N. cinerea and P. hookeri, yet they vary sufficiently in other biological respects for them not to be considered congeneric.

Interestingly, specimens of *E. jubatus* fell within the cluster containing *N. cinerea* and *P. hookeri*. Proportions of the skull, relative to CBL, are similar between these genera, although *E. jubatus* is by far the largest. Besides size, the most conspicuous differences between *E. jubatus* and the latter genera include the shape and position of the PCs, dimensions of the auditory bullae and palatal breadth. The PCs in *E. jubatus* are large, unicuspid and possess a significant diastema between maxillary PCs four and five. Postcanines of *N. cinerea* and *P. hookeri* are smaller, have anterior and posterior accessory cusps and show no obvious diastema. Other than these features, *E. jubatus* resembled similar structural morphology as *N. cinerea* and *P. hookeri*.

Arctocephalus australis was recognized as two subspecies by King (1954) and subsequently by Rice (1998) and others who based their assumptions on King's (1954) research. King (1954) suggested A. australis should be classified into two subspecies, a 'larger' form, A. a. gracilis, found on the Falkland Islands and a 'smaller' form, A. a. australis, from the mainland. Subsequently, Bonner (1981) found that three skulls of A. galapagoensis were included in King's mainland sample of 11 specimens, thus casting doubt upon King's analysis. Results from this study, using significantly larger sample sizes and accurate species identification, supports King's subspecific separation, although specimens from Punta del Diablo were morphologically closer to A. a. australis than to A. a. gracilis, thus should also be included in the former group. Results from this study support conclusions of King (1954) in that there are significant differences between A. australis from the Falkland Islands (A. a. australis) and those from Peru on the mainland of South America (A. a. gracilis) although the patterns in skull size differ between males and females.

From multivariate analyses, specimens of *A. australis* clustered closely with those of *A. forsteri*. Cranial morphology

¹ Skulls from *A. philippii*: three adult males, one subadult male and one immature male, plus one possible female. Skulls from *A. townsendi*: two adult males (plus three partial crania), two subadult males plus one subadult female, two juvenile males plus one juvenile female.

for these two species differed little; both multivariate and bivariate analyses expressed similarities to an extent found when comparing subspecies such as *A. p. pusillus* and *A. p. doriferus*. For instance, when comparing *A. forsteri* and *A. australis*, results from the *t*-tests showed 51% of measured variables in males and 56% in females showed no significant differences. When comparing *A. p. pusillus* and *A. p. doriferus*, 44% of measured variables for both males and females showed no significant differences. Nevertheless, the anterior of the zygomatic arch was broader in *A. forsteri* than in *A. australis*. Male *A. forsteri* had a mean CBL approximately 5 mm less than that for male *A. australis*. There was no significant difference in CBL between females of both groups.

Repenning et al. (1971, p. 21) stated that although the shape of PCs varies in A. australis (with some specimens possessing PCs with prominent anterior and posterior accessory cusps), some specimens "... have postcanines that consist almost entirely of a single main cusp, with only a slight suggestion of anterior accessory cusp, and that are very similar to the postcanines of some specimens of A. forsteri ... ". Morphological data from this study confirm the similarities in structure of the PCs for both species, as described by Repenning et al. (1971). Striking morphological similarities between A. forsteri and A. australis were also apparent in other cranial characteristics. These include CBL, length and curvature of the zygomatic arch, rostral width, length of the palate, shape and size of the auditory bullae, size of canines, length of nasals, height of skull at supraorbital processes, shape and angle of the mastoid processes, and size and shape of sagittal and occipital crests.

There are other biological similarities between A. australis and A. forsteri, including breeding and behavioural characteristics. The breeding season for A. australis begins in November, the males are polygynous, but do not gather females into harems (King, 1983). Pups are born in November and December weighing 3-5 kg at birth, after which adults mate in late November and December, approximately 6-8 days post-parturition, and breeding groups begin to break up by the beginning of January (King, 1983). For A. forsteri, breeding occurs mainly through November and December, pups are born between late November and mid-January, with a peak in mid-December (King, 1983). Most copulations are in December (New Zealand) and January (Australia). During January, there is a general breakdown of the harem system as the males depart to sea. At birth, the pups weigh about 3.5 kg (King, 1983). The primary conclusion drawn from this study for these two species, in combination with other biological factors described by previous researchers, is that A. australis and A. forsteri are similar enough to be considered subspecies.

King (1954) considered *A. galapagoensis* conspecific with *A. australis*, and Scheffer (1958), too, treated it as a subspecies of the latter. Data from this study confirm that cranial morphology of *A. galapagoensis* is similar in most respects to that of *A. australis* and *A. forsteri*, when compared as a proportion of CBL. When skull characters of *A. galapagoensis* and *A. australis* were compared relative to CBL, 67% in males and 56% in females showed no significant differences.

These results describe less variation than what is found in closely related subspecies such as *A. p. pusillus* and *A. p. dor-iferus* (Brunner, 2000). The PCs for *A. galapagoensis* were described previously by Repenning *et al.* (1971); although they had small sample sizes (and the fact that the structure of PCs varies somewhat within species of otariids), the most common PC shape for *A. galapagoensis* is similar to that of *A. australis* and *A. forsteri*. Wynen *et al.* (2001) described a close genetic relationship between *A. australis*, *A. forsteri* and *A. galapagoensis*, which is congruent with the morphometric results described here. Thus, it appears strongly that *A. galapa-goensis* is morphologically and genetically similar enough to be considered a subspecies of *A. australis*.

Arctocephalus p. pusillus and A. p. doriferus were once considered separate species, primarily because of the great geographic separation between both, until Repenning et al. (1971) reviewed the taxonomy and found no characteristics to sharply differentiate one from the other. Warneke & Shaughnessy (1985), King (1983) and others later confirmed their conspecific status. Cruwys & Friday (1995) suggested A. p. pusillus and A. p. doriferus be considered separate species because A. p. doriferus displays a greater degree of sexual dimorphism in CBL than does A. p. pusillus. Results from the cluster analyses in this study, and multivariate analyses in previous research (Brunner, 1998b), support A. p. pusillus and A. p. doriferus as subspecies and indicate few significant differences between them that would warrant specific separation. Arctocephalus pusillus appears to be a large species of the genus Arctocephalus rather than a morphometric simile of any other otariid genera, and should remain within the genus Arctocephalus.

The difference in skull size may have evolved as a consequence of variation in water temperature between Eastern Cape waters of South Africa, and Australia. The mean surface water temperature at Algoa Bay was recorded at 19 °C (Ross, 1984), while that of the southern coasts of Victoria and Tasmania was 14-15 °C (Ross & Cockroft, 1990). Variation of size was also found within the subspecies A. p. pusillus (Brunner et al., in press), in that skulls of males from southeast South Africa were smaller than those from Namibia and south-west South Africa. This may indicate variation in climate and resources, and suggests restricted movement of individuals between groups. A difference in size has been observed previously in skulls of A. p. pusillus and A. p. doriferus, although a smaller sample size of A. p. pusillus was utilized (Brunner, 1998b). Shaughnessy (1982) found that blood transferrin types A and C were common to both A. p. pusillus at False Bay, South Africa and A. p. doriferus but a third transferrin type, P, was absent from a series of 53 A. p. doriferus.

Nevertheless, *A. p. pusillus* and *A. p. doriferus* possess a more dolichocephalic skull than that observed for other species of *Arctocephalus*. Both subspecies have more elongated rostral and palatal regions compared with species such as *A. forsteri* or *A. gazella*, and show a strong morphological similarity to *N. cinerea*. This may be partly attributed to the greater total skull length of *A. pusillus* compared with other *Arctocephalus*. The zygomatic arch for both subspecies of *A. pusillus* is long, yet the dimensions of the orbit are similar to those of other

species within the genus. Thus, due to the greater condylobasal length in *A. pusillus*, the squamosal appears extended more posteriorly to accommodate the greater length of skull for this species. Although closest to the *Arctocephalus* in cranial morphology, skull length and elongation of the zygomatic arch in *A. pusillus* are similar to those found in other large otariids such as *N. cinerea* and *P. hookeri*, and contribute to the skull's 'sea lion-like' appearance.

Although not the largest, skulls of *A. gazella* are the most robust within the genus *Arctocephalus*. They are identified readily by the structure of PCs 5 and (particularly) 6, which are reduced significantly to small nubs. The rostral width of *A. gazella* is the broadest for the genus. Cranial morphology of *C. ursinus* is also instantly recognizable. The rostrum for this species is significantly shorter than that observed in *Arctocephalus*, terminating abruptly and enhanced by vertically angled canines.

Arctocephalus gazella and A. tropicalis were considered subspecies for some time (King, 1959a, b), whereas Scheffer (1958) and Sivertsen (1954) thought they were the same animal and only recently were they considered separate species (e.g. Repenning et al., 1971; King, 1983). In this morphometric study, both A. tropicalis and A. gazella grouped with other species of Arctocephalus, yet A. gazella remained on the periphery of the main group of Arctocephalus and was removed from A. tropicalis. Although both A. gazella and A. tropicalis are known to interbreed (e.g. Kerley & Robinson, 1987; Shaughnessy et al., 1998; Brunner, 1998b), interspecific morphological differences are obvious. Of all the species of Arctocephalus, skulls of A. gazella are the most robust, and possess PC structures not seen in any other otariid. Conversely, skulls of A. tropicalis express more typical Arctocephalus morphology, including a less robust skull than A. gazella, a more slender rostrum, and more narrow supraorbital processes and interorbital constriction. A significant characteristic of A. trop*icalis* is its small, unicuspid PCs, unlike those of A. *forsteri*, A. australis, A. galapagoensis and A. pusillus. In A. tropicalis, these splay outwards at PCs 4-6 and are similar in structure to those of A. townsendi and A. philippii.

From the analyses, all three subspecies of Z. californianus clustered together. Itoo (1985) suggested Z. c. japonicus should be considered a separate species based primarily on greater CBL and variation in the number of PCs, and Rice (1998) considered them all as separate species. Results from this study indicate the number of PCs varied significantly within all subspecies of Z. californianus, thus cannot be used definitively as a separating characteristic. Besides greater total skull length, other differences were observed between Z. c. japonicus and the other two subspecies of Z. californianus. The sagittal crest in Z. c. japonicus was larger and more rounded dorsally, the zygomatic arch was thicker at the jugal-squamosal margin, the rostrum and palate were broader, the supraorbital processes were shorter and more robust, the angle between the dentary and coronoid process was more acute, and the dentary was broader dorso-ventrally. There are fewer significant differences between skulls of the two subspecies Z. c. californianus and Z. c. wollebaeki, the main distinction being Z. c. wollebaeki is smaller. Results from this study support the recognition of Z. c. *japonicus* as a distinct species of Zalophus; further, Z. c. californianus and Z. c. wollebaeki should remain subspecies.

Conclusion

Considering the results presented in this study, combined with findings from previous morphological and genetic research, summary recommendations to amend the current taxonomy of the family Otariidae, are as follows.

- (i) Separation of the otariids into the subfamilies Otariinae and Arctocephalinae should no longer be recognized. The family Otariidae should be separated into genus, species and subspecies only.
- (ii) Arctocephalus townsendi and A. philippii should be excluded from the genus Artctocephalus and form a separate group, the previously recognized Arctophoca philippii philippii and Arctophoca philippii townsendi.
- (iii) Arctocephalus p. pusillus and A. p. doriferus should remain subspecies and stay within the genus Arctocephalus.
- (iv) The subspecific split of *A. a. australis* and *A. a. gracilis* should remain, but should include within *A. a. australis* specimens from Punta del Diablo.
- (v) *Arctocephalus forsteri* should be considered a subspecies of *A. australis*, as *A. a. forsteri*.
- (vi) Arctocephalus galapagoensis appears to be a dwarf of the species A. australis, and should be considered subspecific with this group, as A. a. galapagoensis.
- (vii) Z. c. japonicus should be considered a separate species of Zalophus and not a subspecies of Z. californianus.

With this in mind, the recommended revised nomenclature for the family Otariidae, comprises:

Otaria Péron, 1816 byronia (de Blainville, 1820) Eumetopias Gill, 1866 jubatus (Schreber, 1776) Neophoca Gray, 1866 cinerea (Péron, 1816) Phocarctos Gray, 1844 hookeri (Gray, 1844) Zalophus Gill, 1866 californianus (Lesson, 1828) californianus (Lesson, 1828) wollebaeki (Sivertsen, 1953) japonicus (Peters, 1866) Callorhinus Gray, 1859 ursinus (Linnaeus, 1758) Arctocephalus Geoffroy Saint-Hilaire and Cuvier, 1824 gazella (Peters, 1875) tropicalis (Gray, 1872) pusillus (Schreber, 1775) pusillus (Schreber, 1776) doriferus (Wood Jones, 1925) australis (Zimmerman, 1783) australis (Zimmerman, 1783)

gracilis (Nehring, 1887)

forsteri (Lesson, 1828)

galapagoensis Heller, 1904

Arctophoca Peters, 1866

philippii (Peters, 1866) philippii (Peters, 1866) townsendi (Merriam, 1897)

Acknowledgements

I thank Michael Bryden and Peter Shaughnessy for their support during the study; also, Glenn Shea for assistance. Very special thanks to Gordon Jarrell and Joe Cook for allowing me to use UAM as a long-term temporary base, providing access to their collection, importing specimens from various national and international institutions, and for making me very welcome. I thank the following for permitting me to use their collections and for also making me very welcome during my visits: Denise Drinkrow, Vic Cockroft, Paula Jenkins, Richard Sabin, Daphne Hills, Adrian Friday, Liz Cruwys, Jacques Cuisin, Erwan Vappreau, Ulrich Zeller, Manfred Ade, Fiona Brady, James Mead, Linda Gordon, Criis Geer, Norah Cooper, Cath Kemper, Sandy Ingleby, Linda Gibson, Joan Dixon, Lina Frigo, Anton Van Helden, John Heyning, David Janiger, Philip Unitt, Susan Arter, Cheri Jones, Bob DeLong, Tetsuro Itoo, Ikuo Fujita, Toshihiro Nakatsuka, Takeomi Isono, Toyohiro Nishimoto, Tsumura Hiro-Omi, Yoshinaga Hirakawa, Takao Ikeda, Barbara Stein, Bob Jones, Douglas Long and Raymond Bandar. Also, thanks to Olavi Gröenwall and Michi Solomon for sending specimens to UAM. Thanks to Ted Miller, Cath Kemper and Michael Castellini who provided excellent recommendations; and to Debbie and Robin West, and Lisa Hadley for their help with proofreading data and working with photographs. This project was financed by Sea World Research and Rescue Foundation (QLD, Australia), CSIRO/Universities Collaborative Research Grants Scheme, The Australia Research Council, The Winifred Violet Scott Foundation, Asahi University grant-in-aid and the Australian Marine Mammal Research Centre.

References

- ALLEN, J.A. 1870. On the eared seals (Otariadae), with detailed descriptions of the North Pacific species (et seq.) Bulletin of the Museum of Comparative Zoology, Harvard University 2, 1–108.
- 1880. History of North American Pinnipeds, a Monograph of the Walruses, Sea-lions, Sea-bears and Seals of North America. U.S. Geological and Geographical Survey of the Territories. Miscellaneous Publications No. 12.
- ÁRNASON, U., BODIN, K., GULLBERG, A., LEDJE, C. & MOUCHATY, S. 1995. A molecular view of pinniped relationships with particular emphasis on the true seals. *Journal of Molecular Evolution* 40, 78–85.
- BERTA, A. & DEMÉRÉ, T.A. 1986. Callorhinus gilmorei n. sp. (Carnivora: Otariidae) from the San Diego Formation (Blancan) and its implications for otariid phylogeny. Transactions of the San Diego Society of Natural History 21, 111–126.
- BERTA, A. & SUMICH, J.L. 1999. Marine Mammals: Evolutionary Biology. Academic Press, New York.
- BERTA, A. & WYSS, A.R. 1994. Pinniped phylogeny. Proceedings of the San Diego Society of Natural History 29, 33–56.
- BESTER, M.N. & VAN JAARLSVELD, A.S. 1994. Sex-specific and latitudinal variance in postnatal growth of the Subantarctic fur

seal (Arctocephalus tropicalis). Canadian Journal of Zoology 72, 1126–1133.

- BICKHAM, J.W., PATTON, J.C. & LOUGHLIN, T.R. 1996. High variability for control-region sequences in a marine mammal: implications for conservation and biogeography of Steller sea lions (*Eumetopias jubatus*). Journal of Mammalogy **77**, 95–108.
- BICKHAM, J.W., LOUGHLIN, T.R., CALKINS, D.G., WICKLIFFE, J.K. & PATTON, J.C. 1998. Genetic variability and population decline in Steller sea lions from the Gulf of Alaska. *Journal of Mammalogy* 79, 1390–1395.
- BININDA-EMONDS, O.R.P., GITTLEMAN, J.L. & PURVIS, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). *Biological Reviews of the Cambridge Philosophical Society* 74, 143– 175.
- BONNER, W.N. 1968. The fur seal of South Georgia. 81 pp. Scientific Reports of the British Antarctic Survey No. 56.
- 1981. Southern fur seals Arctocephalus. In: RIDGWAY, S. H. & HARRISON, R. J., Eds., Handbook of Marine Mammals – Vol. I, The Walrus, Sea Lions, Fur Seals and Sea Otter. Academic Press, New York.
- 1994. Seals and Sea Lions of the World. Facts On File, Inc., New York.
- BONESS, D.J. 1996. *Reports from the International Workshop on Otariid Reproductive Strategies and Conservation*. National Zoological Park, Smithsonian Institution, Washington, DC.
- BRUNNER, S. 1998a. Skull development and growth in the southern fur seals Arctocephalus forsteri and A. pusillus doriferus (Carnivora: Otariidae). Australian Journal of Zoology 46, 43–66.
- 1998b. Cranial morphometrics of the southern fur seals Arctocephalus forsteri and A. pusillus (Carnivora: Otariidae). Australian Journal of Zoology 46, 67–108.
- 2000. Cranial morphometrics of fur seals and sea lions (family: Otariidae) – systematics, geographic variation and growth. Vols 1 and 2. Ph.D. thesis, Department of Veterinary Anatomy and Pathology, University of Sydney, NSW, Australia (http://curator.museum.uaf.edu/Brunner/).
- 2002. Geographic variation in skull morphology of adult Steller sea lions (*Eumetopias jubatus*). Marine Mammal Science 18(1), 206–222.
- BRUNNER, S., BRYDEN, M.M. & SHAUGHNESSY, P.D. (submitted). Cranial ontogeny of otariid seals. *Systematics and Biodiversity*.
- BRUNNER, S., SHAUGHNESSY, P.D. & BRYDEN, M.M. (2002). Geographic variation of skull morphology in fur seals and sea lions (family Otariidae). *Australian Journal of Zoology* 50, 415–438.
- CABRERA, A. 1940. El nombre específico del lobo marino de un pelo. Notas del Museo de La Plata, 5 (Zoología) 29, 17–22.
- CLARK, J.W. 1873. On the eared seals of the Auckland Islands. Proceedings of the Zoological Society, London 1873, 750–760.
- CRUWYS, E. & FRIDAY, A.E. 1995. A comparative review of condylobasal lengths and other craniometric characters in 30 species of pinniped. *Polar Biology* **31**, 45–62.
- DOUTT, J.K. 1942. A review of the genus *Phoca*. Annals of the Carnegie Museum **29**, 61–125.
- FIGUEROA, A.L. 1994. Early lactation and attendance behavior of Guadalupe fur seal females (*Arctocephalus townsendi*). M.Sc. thesis. University of California, Santa Cruz, CA.
- FRANCIS, J. & BONESS, D. 1998. A protracted foraging and attendance cycle in female Juan Fernandez fur seals. *Marine Mammal Science* 14, 552–574.
- GOLDSWORTHY, S.D., PEMBERTON, D. & WARNEKE, R.M. 1997. Field identification of Australian and New Zealand fur seals, *Arctocephalus* spp., based on external features. pp. 63–71. In: HINDELL, M. & KEMPER, K., Eds., *Marine Mammal Research in the Southern Hemisphere*. Surrey Beatty & Sons, Sydney, pp. 63–71.
- GOLDSWORTHY, S.D., BONESS, F.D. & FLEISCHER, R. 2000. Variation in the mitochondrial control region in the Juan Fernández fur seal (Arctocephalus philippii). Journal of Heredity 91, 371– 377.

- HUBBS, C.L. & NORRIS, K.S. 1971. Original teeming abundance, supposed extinction, and survival of the Juan Fernández fur seal. Antarctic Pinnipedia. *Antarctic Research Series* 18, 35– 52.
- ITOO, T. 1985. New cranial materials of the Japanese sea lion, Zalophus californianus japonicus (Peters, 1866). Journal of the Mammal Society of Japan 10, 135–148.
- JOLICOEUR, P. & MOSIMANN, J. E. 1960. Size and shape variation in the painted turtule, a principal component analysis. *Growth* 24, 339–354.
- KELLOGG, R. 1922. Pinnipeds from Miocene and Pleistocene deposits of California... and a resume of current theories regarding origin of Pinnipedia. *Bulletin of the Department of Geology, University* of California 13, 23–132.
- KERLEY, G.I.H. & ROBINSON, T.J. 1987. Skull morphometrics of male Antarctic and Subantarctic fur seals, *Arctocephalus gazella* and *A. tropicalis*, and their interspecific hybrids. NOAA technical Report, NMFS 51, 121–131.
- KIM, K.C., REPENNING, C.A. & MOREJOHN, G.V. 1975. Specific antiquity of the sucking lice and evolution of otariid seals. *Rapp. P.-v. Réun. cons. int. Explor. Mer* **169**, 544–549.
- KING, J.E. 1954. The otariid seals of the Pacific coast of America. British Museum (Natural History) Zoological Publication 2, 309– 337.
- 1959a. The northern and southern populations of Arctocephalus gazella. Mammalia 23, 19–40.
- 1959b. A note on the specific name of the Kerguelen fur seal. Mammalia 23, 381.
- 1968. On the identity of the fur seals of Australia. Nature (London) 219, 632–633.
- 1969. The identity of the fur seals of Australia. Australian Journal of Zoology 17, 841–853.
- 1978. On the specific name of the Southern sea lion (Pinnipedia: Otariidae). *Journal of Mammalogy* 59, 861–863.
- 1983. Seals of the World (2nd edition). Cornell University Press, New York.
- LENTO, G.M., HICKSON, R.E., CHAMBERS, G.K. & PENNY, D. 1995. Use of spectral analysis to test hypotheses on the origin of pinnipeds. *Molecular and Biological Evolution* **12**, 28–52.
- LENTO, G.M., HADDON, M., CHAMBERS, G.K. & BAKER, C.S. 1997. Genetic variation, population structure, and species identity of southern hemisphere fur seals, *Arctocephalus* spp. *Journal of Heredity* 88, 28–34.
- LING, J.K. & WALKER, G.E. 1978. An 18-month breeding cycle in the Australian sea lion? *Search* 9, 464–465.
- MALDONADO, J.E., ORTA, D.F., STEWART, B.S., & GEFFEN, E. 1995. Intraspecific genetic differentiation in California sea lions (*Zalophus californianus*) from southern California and the Gulf of California. *Marine Manmal Science* 11, 46–58.
- MARLOW, B.J. 1975. The comparative behaviour of the Australasian sea lions *Neophoca cinerea* and *Phocarctos hookeri*. *Mammalia* **39**, 159–230.
- MERRIAM, C.H. 1897. A new fur seal or sea-bear (*Arctocephalus townsendi*) from Guadalupe Island, off Lower California. *Proceedings of the Biological Society of Washington* **11**, 175–178.
- MILINKOVITCH, M.C., ORTI, G. & MEYER, A. 1993. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. *Nature* 361, 346–348.
- OLIVA, D. 1988. *Otaria byronia* (de Blainville, 1820), the valid scientific name for the southern sea lion (Carnivora: Otariidae). *Journal of Natural History* **22**, 767–772.
- PIMENTEL, R.A. 1979. Morphometrics The Multivariate Analysis of Biological Data. Kendall/Hunt Publishing Co.
- RAND, R.W. 1956. Notes on the Marion Island fur seal. *Proceedings* of the Zoological Society, London **126**, 65–82.

- REEVES, R.R., STEWART, B.S. & LEATHERWOOD, S. 1992. *The Sierra Club Handbook of Seals and Sirenians*. Sierra Club Books, San Francisco, CA.
- REPENNING, C.A., PETERSON, R.S. & HUBBS, C.L. 1971. Contributions to the systematics of the southern fur seals, with particular reference to the Juan Fernandez and Guadalupe species. *Antarctic Research Series* 18, 1–34.
- REPENNING, C.A. & TEDFORD, R.H. 1977. Otarioid seals of the Neogene. In: *Geological Survey Professional Paper 992*. US Govt. Printing Office, Washington, DC, pp. 1–93.
- RICE, D.W. 1998. *Marine Mammals of the World*. Special Publication No. 4. Society for Marine Mammalogy.
- RODRÍGUEZ, D.H. & BASTIDA, R.O. 1993. The southern sea lion, Otaria byronia or Otaria flavescens? Marine Mammal Science 9, 372–381.
- ROSS, G.J.B. 1984. The smaller cetaceans of the south east coast of southern Africa. Annals of the Cape Provincial Museums. *Natural History* 15, 173–410.
- ROSS, G.J.B & COCKROFT, V.G. 1990. Comments on Australian bottlenose dolphins and the taxonomic status of *Tursiops aduncas* (Ehrenberg, 1832). In: LEATHERWOOD, S. & REEVES, R.R., Eds., *The Bottlenose Dolphin*. Academic Press, London, pp. 101– 125.
- SCHEFFER, V.B. 1958. Seals, Sea Lions and Walruses A Review of the Pinnipedia. Stanford University Press, Stanford CA.
- SCOTT, H.H. & LORD, C. 1926. Studies in Tasmanian mammals, living and extinct. The eared seals of Tasmania. *Papers of the Royal Society of Tasmania* **1925**, 75–78.
- SHAUGHNESSY, P.D. 1982. The status of seals in South Africa and Namibia. In: *Mammals in the Seas, Vol. IV. FAO Fisheries Series* (5), 4: 383–410.
- SHAUGHNESSY, P.D., ADAMS, M. & GOLDSWORTHY, S.D. 1998. Hybridisation of southern fur seals (*Arctocephalus* spp.) at Macquarie Island based on allozyme analysis. VII SCAR International Biology Symposium. Abstracts Handbook. *New Zealand Natural Sciences* 23, 182.
- SHAW, G. 1800. Seals. 28: 1800–1826. In: General Zoology or Systematic Natural History. G. Kearsley, London.
- SIVERTSEN, E. 1953. A new species of sea lion, Zalophus wollebaeki, from the Galapagos Islands. K. Norske Vidensk. Selsk. Forh 26, 1–3.
- 1954. A survey of the eared seals (family *Otariidae*) with remarks on the Antarctic seals collected by M/K "Norvegia" in 1928–1929. Det Norske Videnskaps – Akademii Oslo. Scientific results of the Norwegian Antarctic expeditions 1927–1928 (et seq.).
- STIRLING, I. & WARNEKE, R.M. 1971. Implications of a comparison of the airborne vocalizations and some aspects of the behaviour of the two Australian fur seals, *Arctocephalus* spp., on the evolution and present taxonomy of the genus. *Australian Journal of Zoology* 19, 227–241.
- TRILLMICH, F. & MAJLUF, P. 1981. First observations on colony structure, behaviour, and vocal repertoire of the South American fur seal (*Arctocephalus australis* Zimmermann, 1783) in Peru. Zoologische Saugetierkunde 46, 310–322.
- TURNER, W. 1888. Report on the seals collected during the voyage of H.M.S. "Challenger" in the years 1873–76, vol. 26. Edinburgh, Challenger Office, 1880–95.
- WALBAUM, J.J. 1792. Petri Artedi sueci genera piscium (*et seq.*). Ichthyologiae pars III...723p. Impensis Ant. Ferdin., Grypeswaldiae.
- WARNEKE, R.M. 1982. The distribution and abundance of seals in the Australasian region, with summaries of biology and current research. In: *Mammals in the Seas, Vol. IV. FAO Fisheries Series* (5), 4, 431–475.
- WARNEKE, R.M. & SHAUGHNESSY, P.D. 1985. Arctocephalus pusillus, the South African and Australian fur seal: taxonomy, evolution, biogeography, and life history. In: LING, J.K. & BRYDEN, M.M., Eds., Studies of Sea Mammals in South Latitudes. South Australian Museum, Adelaide pp. 53–77.

WOOD JONES, F. 1925. The eared seals of South Australia. *Records of the South Australian Museum* **3**, 9–16.

WYNEN, L.P., GOLDSWORTHY, S.D., INSLEY, S., ADAMS, M., BICKHAM, J.W., FRANCIS, J., PABLO GALLO, J., HOELZEL, A.R., MAJLUF, P., WHITE, R.W.G. & SLADE, R. 2001. Phylogenetic relationships within the eared seals (Otariidae: Carnivora): implications for the historical biogeography of the family. *Molecular Phylogenetics and Evolution* **21**, 270–284.

Appendix I

Summary of adult specimens of otariid skulls used for this study.

Abbreviations for museums:

AM	Australian Museum, Sydney	MVZ	Museum of Vertebrate Zoology, Berkeley
AMNH	American Museum of Natural History, New York	NRM	Natural History Museum, Stockholm
ASD	Asahi School of Dentistry, Gifu	NMML	National Marine Mammal Laboratory, Seattle
BMNH	British Museum of Natural History, London	NMNH	National Museum of Natural History, Washington, DC
CAS	California Academy of Sciences, San Francisco	NMNZ	National Museum of New Zealand, Wellington
DNHM	Denver Natural History Museum, Colorado	PEM	Port Elizabeth Museum, Port Elizabeth
FMNH	Field Museum of Natural History, Chicago	SAM	South Australian Museum, Adelaide
HMH	Historical Museum of Hokkaido, Sapporo	SAM(2)	South African Museum, Cape Town
HMJH	Historical Museum of Japanese History, Tokyo	SDNHM	San Diego Natural History Museum, San Diego
HU	Hokkaido University, Hakodate	UAM	University of Alaska Museum, Fairbanks
LACM	Los Angeles County Museum, Los Angeles	UMZC	University Museum of Zoology, Cambridge
MNHN	Museum of Natural History, Paris	WAM	Western Australian Museum, Perth
MV	Museum of Victoria, Melbourne	ZMB	Zoolgical Museum of Berlin, Berlin

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.a	Peru	84.910	f	19	-	BMNH
A.a	Punta del Diablo	254567	f	19	31/01/74	AMNH
A.a	Punta del Diablo	504896	f	19	1971	NMNH
A.a	_	501067	f	19	_	NMNH
A.a	San Juan, Peru	84.965	f	22	1983	BMNH
A.a	San Juan, Peru	84.922	f	22	_	BMNH
A.a	Punta del Diablo	501120	f	23	4/01/73	NMNH
A.a	San Juan, Peru	84.916	f	26	22/03/83	BMNH
A.a	San Juan, Peru	1984.917	f	26	22/3/83	BMNH
A.a	San Juan, Peru	84.925	f	27	-	BMNH
A.a	San Juan, Peru	84.938	f	28	30476	BMNH
A.a	San Juan, Peru	84.974	f	28	_	BMNH
A.a	San Juan, Peru	84.968	f	28	-	BMNH
A.a	Punta del Diablo	484935	f	28	1971	NMNH
A.a	Punta del Diablo	484934	f	28	1971	NMNH
A.a	San Juan, Peru	84.937	f	29	-	BMNH
A.a	Peru	84.970	f	29	-	BMNH
A.a	Str of Magellan	1879.8.21.5	f	29	-	BMNH
A.a	San Juan, Peru	84.915	f	30	-	BMNH
A.a	San Juan, Peru	84.94	f	30	9/06/83	BMNH
A.a	San Juan, Peru	84.957	f	30	-	BMNH
A.a	Punta del Diablo	254568	f	30	30/01/74	AMNH
A.a	San Dernando, Peru	84.967	f	31	23/03/83	BMNH
A.a	Punta del Barco	254561	f	33	-	AMNH
A.a	San Juan, Peru	84.919	f	35	22/3/83	BMNH
A.a	San Juan, Peru	84.914	f	35	-	BMNH
A.a	Peru	84.911	m	24	-	BMNH
A.a	San Juan, Peru	1984.942	m	24	15/7/83	BMNH
A.a	Falkland Is	1949.3.17.17	m	24	_	BMNH
A.a	San Juan, Peru	84.926	m	25	-	BMNH
A.a	Cape Curbelo, Uruguay	205917	m	25	25/05/63	AMNH
A.a	Isla de Lobos, Uruguay	205918	m	25	12/11/58	AMNH
A.a	Falkland Is	1949.3.17.10	m	26		BMNH
A.a	Peru	84.918	m	26	-	BMNH
A.a	Punta del Diablo	504895	m	26	1971	NMNH

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.a	Falkland Is	1949.3.17.11	m	27	-	BMNH
A.a	Falkland Is	1949.3.17.8	m	28	-	BMNH
A.a	San Juan, Peru	84.930	m	28	1983	BMNH
A.a	San Juan, Peru	84.923	m	28	1983	BMNH
A.a	Falkland Is	1949.3.17.6	m	28	-	BMNH
A.a	-	36664	m	28	-	NMNH
A.a	Falkland Is	1949.3.17.7	m	29	-	BMNH
A.a	San Juan, Peru	84.931	m	29	-	BMNH
A.a	San Juan, Peru	1984.934	m	29	5/83	BMNH
A.a	San Juan, Peru	1984.92	m	29	22/3/83	BMNH
A.a	San Juan, Peru	1984.973	m	29	-	BMNH
A.a	Falkland Is	1949.3.17.5	m	30	-	BMNH
A.a	Falkland Is	1949.3.17.1	m	30	-	BMNH
A.a	Punta del Diablo	254562	m	30	20/01/73	AMNH
A.a	Punta del Diablo	254564	m	30	25/01/73	AMNH
A.a	Punta del Diablo	254565	m	30	25/01/73	AMNH
A.a	Paracas Penin, Peru	8228	m	30	20/07/70	DMNH
A.a	Falkland Is	1949.3.17.2	m	31	-	BMNH
A.a	Peru	84.933	m	31	-	BMNH
A.a	San Juan, Peru	1984.927	m	31	26/3/83	BMNH
A.a	Isla de Lobos, Uruguay	239140	m	31	-	NMNH
A.a	Falkland Is	1949.3.17.4	m	33	-	BMNH
A.a	San Juan, Peru	84.932	m	33	1983	BMNH
A.a	Cape Curbelo, Uruguay	205916	m	33	25/05/63	AMNH
A.a	Peru	84.924	m	35	_	BMNH
A.a	Falkland Is	1949.3.17.3	m	36	_	BMNH
A.a	Peru	84.978	m	36	_	BMNH
A.a	Isla la Vieia. Peru	23616	m	36	18/06/57	SDNHM
A.f	Constant Bay, N.7.	DM1/15	f	10	14/11/59	NMN7
A.f	Preservation Inlt. N.7.	MA62	f	10	_	NMN7
A.f	Recherche	m25810	f	20	_	WAM
A.f	Breaksea Sound	DM720	f	20	11/11/43	NMN7
A.f	South Neptune Is	M15480	f	22	11/01/63	SAM
A f	Waratah Bay, Vic	(07535	f	24	13/10/21	MV
A f	South Neptune Is	M15/80	f	-4	11/06/63	SAM
A f	Fast Franklin Is	M16330	f	-4	10/2/01	SAM
A f	Ohiro Bay N 7	MM1681	f	25	?/⊑/72	NMN7
A f		"1500"	f	25	100/	NMNZ
A f	South Neptune Is	M15482	f	27	11/02/63	SAM
A f	South Neptune Is	M15462 M15460	f	28	26/11/67	SAM
A f		DM1405	f	28	_	NMN7
A f	Kangaroo Is	M16520	f	30	?/1/80	SAM
A f	South Nentune Is	M16/20	f	30	?/11/67	SAM
Δ. f	Aldinga Bch S Aust	M154/7 M16248	f	30	21/7/00	SAM
Δ. f	Campbell Is N 7	DM1404	f)2 33		NMN7
Δ. f	Pukerua Bay N7	E04801	f)2 33	14/05/76	NMNH
A.J A.f	Cane Saunders N 7	504091 DM1445	m	33	21/07/58	NMN7
А.] Л f	Broaksoa Sound	DM1445	m	24	31/0//50	
л.] Л.f	Macquario Is	Maa684	m	24	15/12/4/	
A. [A. f	Macquarie is	M23004	m	24	1//2/09	
A. [A. f	N.Z. South Nontuna Is	10/9.200 Mar (86	m	25	-	CAM
A. [A. f	Boshorsho Arch WA	M15400	m	25	11/04/03	
A. [A. f	Cape Foulwind NZ	1908.9.20.0	m	20	-	
A. [A. f	S Nontuno Is S Aust	8222	m	20	-	
A. /	S. Neptune is, S. Aust.	0233 Ma(501		20	-	
A. /	Kaligaloo is	M10521	111	26	:/1/89	SAIVI
A. /	Island Bay, wellington	DIV1509	m	26	17/6/63	
A. [Pearson IS, S. Aust.	IVI16522	m	27	1/01/87	SAM
A.T	Red Rocks, Wellington	ININ1918	m	27	£/6/86	NMNZ
A.f	Aukland Is, N.Z.	DM1054	m	27	1/03/40	NMNZ
A.f	Snares Is	DM746	m	27	11/04/43	NMNZ
A.f	Macquarie Is	M17992	m	27	27/8/87	AM
A.f	Kecherche Arch. WA	1968.9.26.9	m	28	-	RWNH
A.f	Iasman Sea, NZ	396921	m	28	-	NMNH
A.†	Macquarie Is	L25816	m	28	<i>?</i> /3/68	MV

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.f	Macquarie Is	C06190	m	28	1/06/60	MV
A.f	Casuarina Islet	C01993	m	28	?/4/36	MV
A.f	South Neptune Is	M15481	m	28	11/01/63	SAM
A.f	Kangaroo Is	M16803	m	28	27/4/91	SAM
A.f	Cape Saunders, N.Z.	DM1443	m	28	31/07/58	NMNZ
A.f	Macquarie Is	M17991	m	28	21/10/87	AM
A.f	Macquarie Is	M18039	m	28	30/11/83	AM
A.f	Macquarie Is	M18034	m	28	27/8/87	AM
A.f	Macquarie Is	M12823	m	28	4/08/78	AM
A.f	South Neptune Is	M15475	m	29	29/11/67	SAM
A.f	Kangaroo Is	M16519	m	29	?/1/89	SAM
A.f	5 Fingers Penn.	DM731	m	29	11/11/43	NMNZ
A.f	Wellington, N.Z.	NM1724	m	29	1965	NMNZ
A.f	Macquarie Is	M18036	m	29	27/8/87	AM
A.f	Macquarie Is	M18035	m	29	28/10/87	AM
A.f	Str of Magellan	23331	m	30	-	NMNH
A.f	Daw Is, W.A.	C29733	m	30	1986	MV
A.f	Kangaroo Is	M16477	m	30	30/1/91	SAM
A.f	Macquarie Is	M15441	m	30	2/10/63	SAM
A.f	Kangaroo Is	M17675	m	30	11/12/89	SAM
A.f	Cape Saunders, N.Z.	DM1446	m	30	31/07/58	NMNZ
A.f	Sinclair Head, N.Z.	DM1326	m	30	19/5/58	NMNZ
A.f	South Is, NZ	8229	m	31	-	DMNH
A.f	Red Rocks, Wellington	MM1919	m	31	?/8/85	NMNZ
A.f	Chalky Inlet, N.Z.	DM1492	m	31	19/7/48	NMNZ
A.f	Macquarie Is	M17990	m	31	11/11/84	AM
A.f	Macquarie Is	M17994	m	31	27/8/87	AM
A.f	Kangaroo Is	M16398	m	32	16/4/88	SAM
A.f	Macquarie Is	M15448	m	32	2/04/64	SAM
A.f	UNKNOWN	MM2168	m	32	-	NMNZ
A.f	Palliser Bay, N.Z.	DM1416	m	32	24/1/60	NMNZ
A.f	Campbell Is, N.Z.	DM1345	m	32	28/8/44	NMNZ
A.f	South Neptune Is	M15485	m	33	11/03/63	SAM
A.f	Macquarie Is	M15444	m	33	7/10/62	SAM
A.f	Cape Turakirae, N.Z.	MM1793	m	33	?/8/76	NMNZ
A.f	Napies Beach, N.Z.	DM1617	m	33	1969	NMNZ
A.f	Kaikoura, N.Z.	NMNZ1929	m	33	-	NMNZ
A.f	Macquarie Is	M17993	m	33	22/10/87	AM
A.f	N.Z.	1879.261	m	34	-	MNHN
A.f	Enderby Is	SAB89.90	m	34	1990	NMNZ
A.f	South Neptune Is	M15483	m	34	11/02/63	SAM
A.f	South Neptune Is	M15468	m	34	26/11/67	SAM
A.f	Island Bay, Wellington	DM1580	m	34	5/12/59	NMNZ
A.f	Otaga Harbour, N.Z.	DM778	m	34	?/2/52 2//0-	NMNZ
A. [Macquarie is	MP.B7	m	34	?/11/83 =0/++/(=	AM
A. [South Neptune IS	M15473	m	35	28/11/67	SAM
A. [Macquarie is	M15445	m	35	7/10/62	SAM
A. [Red Rocks, wellington	MIN1934	m	35	?/6/86 2/11/05	IN /WINZ
A. [Macquarie Is	M18037	m	35	:/11/83	AM
A. [Comin Bay, S. Aust.	M15368	m	36	\sim 1974	SAIVI
A. [- Dacharsha	m12449	m	21	-	VV AIVI
A. [A. f	Two Doople Pay MA	m (1185		30	5/91	
A.]	Rochorsho	ma ⁸ 42	 m	32	-	
A.J	Recherche	1002/2	f III	30	14/02/60	
A.gulup	- Calanagos	100342	l f	19	-	
A.gulup	Galapagos	100319	l f	22	13/03/33	
A.gulup	Jalapagus Towarte Galapagas	1902.110	t	20	10/01	
A.gulup	Fornandina Calanagas	259832	t	31	22/09/35	
A.gulup	Towar Is, Galapagos	1991.2	l m	30	20/0//9	
A.gulup	Fornandina Calanagas Is	aciii31309	 m	24	15/03/5/	
A.gulup	Galapagos	1991.1	 m	2/	22/11///	
A.guiup A aalan	Galanagos	1002.115	m	20		
A.guiup A aalan	Galanagos	100341	m	20	10/61	
, i.guiup	Julupusus	19021123		54	10/01	TVIINITIN

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.galap	Fernandina, Galapagos. Is	1991.3	m	34	17/9/79	BMNH
A.galap	Galapagos	(Type) 20829	m	35	1899	CAS
A.gaz	Bird Is	1960.8.10.7	f	19	1/12/58	BMNH
A.gaz	Bird Is	1960.8.10.39	f	19	1960	BMNH
A.gaz	Bird Is	1960.8.10.14	f	19	13/12/58	BMNH
A.gaz	Bird Is	1960.8.10.19	f	19	-	BMNH
A.gaz	Bird Is	1960.8.10.32	f	19	1960	BMNH
A.gaz	Bird Is	1958.7.8.13	f	20	-	BMNH
A.gaz	Bird Is	1958.7.8.10	f	20	-	BMNH
A.gaz	Bird Is	1960.8.10.31	f	20	1960	BMNH
A.gaz	Bird Is	K7321A	f	20	15/02/93	UMZC
A.gaz	Bird Is	1960.8.10.41	f	21	-	BMNH
A.gaz	Bird Is	1960.8.10.13	f	21	-	BMNH
A.gaz	Bird Is	1960.8.10.33	f	21	1960	BMNH
A.gaz	Bird Is	K7321l	f	21	15/02/93	UMZC
A.gaz	Bird Is	1958.4.24.4	f	22	-	BMNH
A.gaz	Bird Is	K7321D	f	23	15/02/93	UMZC
A.gaz	Bird Is	K7321H	f	23	15/02/93	UMZC
A.gaz	Bird Is	K7321E	f	24	15/02/93	UMZC
A.gaz	Macquarie Is	M25464	f	25	?/12/91	AM
A.gaz	Bird Is	K7321J	f	25	15/02/93	UMZC
A.gaz	Bird Is	K7321F	f	25	15/02/93	UMZC
A.gaz	Bird Is	1960.8.10.5	f	26	1/12/58	BMNH
A.gaz	Bird Is	1960.8.10.34	f	26	1960	BMNH
A.gaz	Crozet Is	1972.643	f	26	10/08/71	MNHN
A.gaz	Bird Is	8234	f	26	-	DMNH
A.gaz	Bird Is	1960.8.10.29	f	27	1960	BMNH
A.gaz	Bird Is	1962.6.14.13	f	28	3/1/60	BMNH
A.gaz	Macquarie Is	m25464	f	29	12/91	AM
A.gaz	Bird Is	1960.8.20.36	f	30	1960	BMNH
A.gaz	Bird Is	1960.8.10.30	f	30	1960	BMNH
A.gaz	Marion Is	1955.3.14.5	f	30	22/4/52	BMNH
A.gaz	Bird Is	1960.8.10.38	f	32	1960	BMNH
A.gaz	Bird Is	1962.6.14.15	f	33	1960	BMNH
A.gaz	Bird Is	1962.6.14.14	f	34	1960	BMNH
A.gaz	Bird Is	1960.8.10.37	f	34	1960	BMNH
A.gaz	Heard Is	hs85/83	m	24	_	AM
A.gaz	Bird Is	1960.8.10.43	m	24	-	BMNH
A.gaz	Bird Is	1960.8.10.50	m	25	-	BMNH
A.gaz	Bouvet Id	1964.9.22.2	m	25	-	BMNH
A.gaz	Bird Is	1958.7.8.14	m	25	-	BMNH
A.gaz	Bird Is	1960.8.10.45	m	25	-	BMNH
A.gaz	Bird Is	K73210	m	25	15/02/93	UMZC
A.gaz	Heard Is	hs85/82	m	26	-	AM
A.gaz	Bird Is	1960.8.10.55	m	26	-	BMNH
A.gaz	Bird Is	1958.7.8.15	m	27	-	BMNH
A.gaz	Bird Is	1960.8.10.57	m	27	-	BMNH
A.gaz	Bird Is	1960.8.10.2	m	27	-	BMNH
A.gaz	Bird Is	1960.8.10.20	m	27	-	BMNH
A.gaz	S.Shetland Is	1960.8.4.3	m	28	-	BMNH
A.gaz	Bird Is	1960.8.10.51	m	29	-	BMNH
A.gaz	S. Georgia	1981.125	m	29	-	BMNH
A.gaz	Bird Is	1960.8.10.27	m	29	-	BMNH
A.gaz	Bird Is	1960.8.10.24	m	29	-	BMNH
A.gaz	Heard Is	hs85/85	m	30	-	AM
A.gaz	Bird Is	1962.6.14.5	m	30	-	BMNH
A.gaz	Bird Is	1960.8.10.48	m	30	-	BMNH
A.gaz	Bird Is	1960.8.10.49	m	30	-	BMNH
A.gaz	Heard Is	M28910	m	31	-	AM
A.gaz	Heard Is	M28912	m	31	4/03/88	AM
A.gaz	Heard Is	hs85/86	m	31	-	AM
A.gaz	Heard Is	hs85/73	m	31	-	AM
A.gaz	Heard Is	hs85/81	m	31	-	AM
A.gaz	Heard Is	hs85/39	m	31	_	AM

Apage Bird Is 1960.810.21 m 31	Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
Agaz Bird is 9608.80.08 m 31 19/12/58 BMNH Agaz Heard is hs85/46 m 32 - AM Agaz Heard is hs85/47 m 32 - AM Agaz Heard is hs85/77 m 32 - AM Agaz Heard is hs85/77 m 32 - AM Agaz Heard is M28913 m 33 10/12/48 AM Agaz Heard is M28909 m 33 10/12/48 AM Agaz Heard is M28901 m 33 10/12/48 AM Agaz Heard is M28901 m 33 10/12/48 AM Agaz Heard is M2902 m 34 4/03/88 AM Agaz Heard is M2917 m 34 - AM Agaz Heard is h88/51 m 34 - <td>A.gaz</td> <td>Bird Is</td> <td>1960.8.10.21</td> <td>m</td> <td>31</td> <td>-</td> <td>BMNH</td>	A.gaz	Bird Is	1960.8.10.21	m	31	-	BMNH
Agaz Heard is Msg/Ac m 32 $4/09/88$ AM Agaz Heard is htsg/Ac m 32 - AM Agaz Heard is htsg/Ac m 32 - AM Agaz Heard is htsg/Ac m 32 - AM Agaz Heard is htsg/Sy m 32 - AM Agaz Heard is htsg/Sy m 33 10/12/48 AM Agaz Heard is Mt/Sy m 33 10/12/48 AM Agaz Heard is Mt/Sy m 33 10/12/48 AM Agaz Heard is htsg/so m 33 10/12/48 AM Agaz Heard is htsg/so m 34 4/03/88 AM Agaz Heard is htsg/so m 34 4/03/88 AM Agaz Heard is htsg/so m 34 - AM Agaz Heard is htsg/so m 34 <	A.gaz	Bird Is	1960.8.10.18	m	31	19/12/58	BMNH
Agaz Heard is hs8p/A6 m j2 - AM Agaz Heard is hs8p/76 m j2 - AM Agaz Heard is hs8p/76 m j2 - AM Agaz Bird Is j260,810,53 m j2 - AM Agaz Heard is M28913 m j3 10/12/A8 AM Agaz Heard is M28909 m j3 10/12/A8 AM Agaz Heard is M28909 m j3 - AM Agaz Heard is M28901 m j3 - AM Agaz Heard is M2902 m j4 4/03/88 AM Agaz Heard is M3917 m j4 - AM Agaz Heard is hs8y/s1 m j4 - AM Agaz Heard is hs917 m j4 - AM Agaz Heard is hs917 m j4 - AM	A.gaz	Heard Is	M29113	m	32	4/09/88	AM
Agaz Heard Is htsBs/76 m 32 - AM Agaz Heard Is htsBs/76 m 32 - AM Agaz Heard Is htsBs/77 m 32 - AM Agaz Heard Is htsBs/17 m 33 1/11/92 AM Agaz Heard Is M28915 m 33 10/12/48 AM Agaz Heard Is M28910 m 33 4/03/85 AM Agaz Heard Is M28910 m 33 10/02/86 AM Agaz Heard Is M3912 m 34 4/03/85 AM Agaz Heard Is M2912 m 34 4/03/85 AM Agaz Heard Is M85/91 m 34 - AM Agaz Heard Is M85/92 m 34 - AM Agaz Heard Is M85/91 m 34 -	A.gaz	Heard Is	hs85/46	m	32	-	AM
Agar Heard is hs8p:/76 m 32 - AM Agar Heard is hs8p:/37 m 32 - AM Agar Heard is M28p:13 m 33 17:11/92 AM Agar Heard is M28p:15 m 33 10/12/48 AM Agar Heard is M28p:1 m 33 10/12/48 AM Agar Heard is M28p:0 m 33 10/12/48 AM Agar Heard is M28p:0 m 33 10/07/66 MMNH Agar Heard is M2917 m 34 9/07/88 AM Agar Heard is hs8f/13 m 34 - AM Agar Heard is hs8f/13 m 34 - AM Agar Heard is hs8f/13 m 34 - AM Agar Heard is hs8f/13 m 34	A.gaz	Heard Is	hs85/47	m	32	-	AM
Agaz Heard is h85/77 m 32 - AM Agaz Heard is M28913 m 32 7/11/2 AM Agaz Heard is M28913 m 33 10/12/48 AM Agaz Heard is M28913 m 33 10/12/48 AM Agaz Heard is M28903 m 33 10/12/48 AM Agaz Heard is M28904 m 33 - BMNH Agaz Heard is M28911 m 33 10/02/68 AM Agaz Heard is M29122 m 34 4/03/88 AM Agaz Heard is M2912 m 34 - AM Agaz Heard is h85/51 m 34 - AM Agaz Heard is h85/52 m 34 - AM Agaz Bird is D264.94.21 m 34 - AM Agaz Bird is D264.94.21 m 34 -	A.gaz	Heard Is	hs85/76	m	32	-	AM
Agaz Bird Is 1960 8.10.33 m 32 - DMMM Agaz Heard Is M28013 m 33 10/12/48 AM Agaz Heard Is M28013 m 33 18/192 AM Agaz Heard Is M28013 m 33 18/192 AM Agaz Heard Is M28013 m 33 10/12/48 AM Agaz Heard Is M2902 m 33 10/22/66 AM Agaz Heard Is M29122 m 34 4/03/88 AM Agaz Heard Is M29127 m 34 9/06/88 AM Agaz Heard Is h858/51 m 34 - AM Agaz Heard Is h858/61 m 34 - AM Agaz Heard Is h858/61 m 34 12/63 BMHH Agaz S.Sandwich Is 1966.922.1 m 34 <td>A.gaz</td> <td>Heard Is</td> <td>hs85/77</td> <td>m</td> <td>32</td> <td>-</td> <td>AM</td>	A.gaz	Heard Is	hs85/77	m	32	-	AM
Agaz Heard Is M28915 m 33 $7/11/g2$ AM Agaz Heard Is M28905 m 33 $10/12/48$ AM Agaz Heard Is M28905 m 33 $10/12/48$ AM Agaz Heard Is M28011 m 33 $4/03/88$ AM Agaz Bird Is M960.810.46 m 33 $10/02/68$ NMH Agaz Shi Orkney Is 392266 m 34 $4/03/88$ AM Agaz Heard Is M39122 m 34 $-/o$ AM Agaz Heard Is h98/f92 m 34 $-$ AM Agaz Heard Is h964/9.22.1 m 34 $-$ BMHH Agaz Heard Is h964/9.2.1 m 34 $-$ BMHH Agaz Heard Is h979.1 m 35 $10/02/81$ BMH Agaz Heard Is M3910 <	A.gaz	Bird Is	1960.8.10.53	m	32	-	BMNH
Agaz Heard is M28015 m 33 10/12/48 AM Agaz Heard is M28009 m 33 13/192 AM Agaz Heard is M2801 m 33 14/03/88 AM Agaz Bird is 1960.81.0.46 m 33 1- AM Agaz Heard is M39127 m 34 4/03/88 AM Agaz Heard is M39127 m 34 - AM Agaz Heard is h951/51 m 34 - AM Agaz Heard is h955/51 m 34 - AM Agaz Heard is h956/9.22.1 m 34 1-/65 BMNH Agaz Bird is D964.9.22.1 m 34 1/65 BMNH Agaz Bird is M29105 m 35 4/03/88 AM Agaz Bird is M29100 m 35	A.gaz	Heard Is	M28913	m	33	?/11/92	AM
AgazHeard IsMa8909m33 $4/s/s/28$ AMAgazHeard Ish88911m33 $-$ AMAgazBird Ish9608.to.46m33 $-$ AMAgazSth Orkney Is392266m33 $10/o2/66$ NMNHAgazHeard IsM99122m34 $4/o3/88$ AMAgazHeard IsM89127m34 $4/o2/388$ AMAgazHeard Ish88/s/90m34 $-$ AMAgazHeard Ish88/s/21m34 $-$ AMAgazHeard Ish88/s/21m34 $-$ AMAgazHeard Ish964.922.1m34 $-$ AMAgazBird Is1964.922.1m34 $-$ BMNHAgazBird IsN/sy32.1m34 $-$ BMNHAgazBird IsN/sy32.1m34 $-$ BMNHAgazBird IsN/sy32.1m35 $4/o9/88$ AMAgazHeard IsM39101m35 $4/o9/88$ AMAgazHeard IsM39102m35 $-$ AMAgazHeard Ish89120m35 $-$ AMAgazHeard Ish89120m35 $-$ AMAgazHeard Ish89120m35 $-$ AMAgazHeard Ish89120m35 $-$ AM<	A.gaz	Heard Is	M28915	m	33	10/12/48	AM
Agaz Heard Is Ma8911 m	A.gaz	Heard Is	M28909	m	33	18/3/92	AM
AgazHeard Ish85/ormmm <td>A.gaz</td> <td>Heard Is</td> <td>M28911</td> <td>m</td> <td>33</td> <td>4/03/88</td> <td>AM</td>	A.gaz	Heard Is	M28911	m	33	4/03/88	AM
AgazBird Is1960.8.10.46m33-BMNHAgazHeard IsM29122m344/03/88AMAgazHeard IsM29127m344/05/88AMAgazHeard Ish58/59m34-AMAgazHeard Ish58/54m34-AMAgazHeard Ish58/54m34-AMAgazHeard Ish58/54m34-BMNHAgazHeard Ish58/542m34-BMNHAgazS. Sandwich Is1966.42.21m34-BMNHAgazBird Is1962.63.44m34-BMNHAgazS. Orkney Is1960.84.4m34-BMNHAgazBird IsK732.1Nm3415/02/93UMZCAgazHeard IsM29111m354/09/88AMAgazHeard IsM29109m354/09/88AMAgazHeard IsM39109m35-AMAgazHeard Ish58/53m35-AMAgazHeard Ish58/53m35-AMAgazHeard Ish58/53m35-AMAgazHeard Ish58/53m36-AMAgazHeard Ish58/57m36-AMAgazHeard Ish58/57 </td <td>A.gaz</td> <td>Heard Is</td> <td>hs85/01</td> <td>m</td> <td>33</td> <td>-</td> <td>AM</td>	A.gaz	Heard Is	hs85/01	m	33	-	AM
AgazShin Okney is392266m33100/20/66NMNHAgazHeard IsM39122m34 $4/03/88$ AMAgazHeard Ish88/80m34-AMAgazHeard Ish88/80m34-AMAgazHeard Ish88/81m34-AMAgazHeard Ish88/12m34-AMAgazS. Sandwich Is1964.9.2.1m34-BMNHAgazBird IsDec. 1963'm34-BMNHAgazBird IsDec. 1963'm34-BMNHAgazBird IsDec. 1963'm34-BMNHAgazBird IsM29100m35 $4/09/88$ AMAgazHeard IsM39100m35 $4/09/88$ AMAgazHeard IsM39100m35 $1011/88$ AMAgazHeard IsM39100m35 $-1011/88$ AMAgazHeard Ish88/30m35-AMAgazHeard Ish88/63m35-AMAgazHeard Ish88/68m35-AMAgazHeard Ish88/73m35-AMAgazHeard Ish88/73m35-AMAgazHeard Ish88/73m36-AMAgazHeard Is<	A.gaz	Bird Is	1960.8.10.46	m	33	-	BMNH
AgazHeard IsM29122m34 $4/9/3/88$ AMAgazHeard Ishs8j/51m34-AMAgazHeard Ishs8j/51m34-AMAgazHeard Ishs8j/51m34-AMAgazHeard Ishs8j/51m34-BMNHAgazBird Is1964.9.22.1m34-BMNHAgazBird Is1964.9.2.1m34-BMNHAgazBird IsDec. 1963*m341/6/3BMNHAgazS. Orkney Is1960.8.4.4m341/2/6/3BMNHAgazHeard IsM29111m354/09/88AMAgazHeard IsM29110m354/09/88AMAgazHeard IsM29120m354/09/88AMAgazHeard IsM29120m35-AMAgazHeard Ishs8j/3m35-AMAgazHeard Ishs8j/31m35-AMAgazHeard Ishs8j/37m35-AMAgazHeard Ishs8j/37m36-AMAgazHeard Ishs8j/37m36-AMAgazHeard Ishs8j/37m36-AMAgazHeard Ishs8j/77m36-AMAgazHeard Ishs8j	A.gaz	Sth Orkney Is	392266	m	33	10/02/66	NMNH
AgazHeard IsM29117m349/6/88AMAgazHeard Ishs85/89m34-AAgazHeard Ishs85/41m34-AAgazS. Sandwich IS1964.0.22.1m34-BMNHAgazBird Is1962.6.14.6m34-BMNHAgazBird Is1962.6.14.6m34-BMNHAgazBird Is1962.6.14.6m34-BMNHAgazBird IsM29111m3415/02/93UMZAgazHeard IsM29109m354/03/88AMAgazHeard IsM29109m354/03/88AMAgazHeard IsM29120m354/09/88AMAgazHeard Ishs85/3m35-AMAgazHeard Ishs85/3m35-AMAgazHeard Ishs85/3m35-AMAgazHeard Ishs85/32m35-AMAgazHeard Ishs85/32m35-AMAgazHeard Ishs85/37m36-AMAgazHeard Ishs85/37m36-AMAgazHeard Ishs85/37m36-AMAgazHeard Ishs85/37m36-AMAgazHeard Ishs85/37	A.gaz	Heard Is	M29122	m	34	4/03/88	AM
A.gazHeard ishs85/51m34 $-$ AM $A.gaz$ Heard ishs85/51m34 $-$ AM $A.gaz$ Heard ishs85/51m34 $-$ BMNH $A.gaz$ Bird is1964.9.2.1m34 $-$ BMNH $A.gaz$ Bird is1964.9.2.1m34 $-$ BMNH $A.gaz$ Bird is1962.6.4.4m34 $-$ BMNH $A.gaz$ Bird isK7321Nm34 $15/02/93$ UM2C $A.gaz$ Heard isM29111m35 $4/09/88$ AM $A.gaz$ Heard isM29109m35 $4/09/88$ AM $A.gaz$ Heard isM29119m35 $4/09/88$ AM $A.gaz$ Heard isM29130m35 $-$ AM $A.gaz$ Heard ishs85/3m35 $-$ AM $A.gaz$ Heard ishs85/3m35 $-$ AM $A.gaz$ Heard ishs85/53m35 $-$ AM $A.gaz$ Heard ishs85/37m35 $-$ AM $A.gaz$ Heard ishs85/37m36 $1/2/93$ AM $A.gaz$ Heard isM28112m36 $1/2/93$ AM $A.gaz$ Heard ishs85/37m36 $-$ AM $A.gaz$ Heard ishs85/37m36 $-$ AM $A.gaz$ Heard ishs86/73	A.gaz	Heard Is	M29117	m	34	9/06/88	AM
AgazHeard Ishb85/s1m34-AMAgazS. Sandwich Is1964, 9, 22.1m34-BMNHAgazBird Is1962, 61, 46m34-BMNHAgazBird IsDec, 1963*m3412/63BMNHAgazS. Orkney Is1960, 84, 4m34-BMNHAgazBird IsKry32, Nm3415/02/93UUZCAgazHeard IsM29111m354/03/88AMAgazHeard IsM29119m354/03/88AMAgazHeard IsM29119m354/09/88AMAgazHeard IsM29119m354/09/88AMAgazHeard Ish885/3m35-AMAgazHeard Ish885/3m35-AMAgazHeard Ish885/3m35-AMAgazHeard Ish885/3m35-AMAgazHeard Ish88/8m35-AMAgazHeard Ish88/8m35-AMAgazHeard Ish88/8m35-AMAgazHeard Ish88/75m36-AMAgazHeard Ish88/87m36-AMAgazHeard Ish88/75m36-AMAgazHeard Ish88/8	A.gaz	Heard Is	hs85/89	m	34	-	AM
AgazHeard Ishbs/s/42m34-AMAgazS. Sandwich Is1964,9.2.2.1m34-BIMHHAgazBird Is1964,6.2.2.1m34-BIMHHAgazBird Is1960,8.4.4m34BIMHHAgazBird IsK7321Nm3412/63BIMHHAgazHeard IsK7321Nm354/09/88AMAgazHeard IsM29109m354/109/88AMAgazHeard IsM29109m354/109/88AMAgazHeard IsM29100m354/109/88AMAgazHeard Ishbs/s/am35-AMAgazHeard Ishbs/s/am35-AMAgazHeard Ishbs/s/am35-AMAgazHeard Ishbs/s/am35-AMAgazHeard Ishbs/s/am35-AMAgazHeard Ishbs/s/am35-AMAgazHeard Ishbs/s/am3621/7/92AMAgazHeard Ishbs/s/am36-AMAgazHeard Ishbs/s/am36-AMAgazHeard Ishbs/s/am36-AMAgazHeard Ishbs/s/am36-AMAgazHeard	A.gaz	Heard Is	hs85/51	m	34	-	AM
Agaz S. Sandwich is 1964, 9, 22.1 m 34 - BMMH Agaz Bird is Dec, 1963* m 34 1.2/63 BMMH Agaz Bird is Dec, 1963* m 34 - BMMH Agaz Bird is K7321N m 34 15/02/93 UMZC Agaz Heard is M29111 m 35 4/03/88 AM Agaz Heard is M29119 m 35 4/03/88 AM Agaz Heard is M29120 m 35 - AM Agaz Heard is h885/3 m 35 - AM Agaz Heard is h885/37 m 36 -<	A.gaz	Heard Is	hs85/42	m	34	-	AM
AgazBird is1962.614.6m34-BINMHAgazS. Orkney is1960.84.4m34-BINMHAgazBird isK7321Nm3415/a7/97BINMHAgazHeard isM29111m354/09/88AMAgazHeard isM29109m354/09/88AMAgazHeard isM29109m354/09/88AMAgazHeard isM29109m354/09/88AMAgazHeard ish885/3m35-AMAgazHeard ish885/3m35-AMAgazHeard ish885/3m35-AMAgazHeard ish885/3m35-AMAgazHeard ish885/3m35-AMAgazHeard ish885/3m35-AMAgazHeard ish885/3m35-AMAgazHeard ish885/3m36-AMAgazHeard isM29112m3621/f92AMAgazHeard ish885/75m36-AMAgazHeard ish885/75m36-AMAgazHeard ish885/75m36-AMAgazHeard ish885/75m36-AMAgazHeard ish885/75m <td>A.gaz</td> <td>S. Sandwich Is</td> <td>1964.9.22.1</td> <td>m</td> <td>34</td> <td>-</td> <td>BMNH</td>	A.gaz	S. Sandwich Is	1964.9.22.1	m	34	-	BMNH
AgazBrd IsDec. 1963'm34 $12/63$ BMNHAgazS. Orkney Is1960.8.4.4m34-BMNHAgazHeard IsM29111m3415/02/93UMZCA.gazHeard IsM29109m354/09/88AMA.gazHeard IsM29109m354/09/88AMA.gazHeard IsM29102m354/09/88AMA.gazHeard IsM39120m354/09/88AMA.gazHeard Ish58/3m35-AMA.gazHeard Ish58/33m35-AMA.gazHeard Ish58/33m35-AMA.gazHeard Ish58/33m357/12/81PEMA.gazHeard Ish58/37m3621/7/92AMA.gazHeard Ish58/37m36-AMA.gazHeard Ish58/37m36-AMA.gazHeard Ish58/37m36-AMA.gazHeard Ish58/37m36-AMA.gazHeard Ish58/37m36-AMA.gazHeard Ish58/37m36-AMA.gazHeard Ish58/37m36-AMA.gazHeard Ish58/37m36-AMA.gazHeard Is	A.gaz	Bird Is	1962.6.14.6	m	34	-	BMNH
AgazS. Orkney IS1960.8.4.4m34BMNHAgazBird ISK7321Nm3415/02/93UMZCA.gazHeard ISM29109m354/03/88AMA.gazHeard ISM29109m3510/11/88AMA.gazHeard ISM29109m354/09/88AMA.gazHeard ISM39120m35-AMA.gazHeard ISh585/3m35-AMA.gazHeard ISh585/3m35-AMA.gazHeard ISh585/3m35-AMA.gazHeard ISh585/3m35-AMA.gazHeard ISh585/3m35-AMA.gazHeard ISh585/3m35-AMA.gazHeard ISh585/3m36-AMA.gazHeard ISM29112m3621/7/92AMA.gazHeard ISh585/37m36-AMA.gazHeard ISh585/37m36-AMA.gazHeard ISh585/37m36-AMA.gazHeard ISh585/37m36-AMA.gazHeard ISh585/37m36-AMA.gazHeard ISh585/37m36-AMA.gazHeard ISh	A.gaz	Bird Is	Dec, 1963*	m	34	12/63	BMNH
AgazBird IsK7321Nm34 $15/02/93$ UMZCAgazHeard IsM29109m35 $4/03/88$ AMA.gazHeard IsM29109m35 $4/03/88$ AMA.gazHeard IsM29120m35 $4/09/88$ AMA.gazHeard Ish88/3m35 $-$ AMA.gazHeard Ish88/3m35 $-$ AMA.gazHeard Ish88/53m35 $-$ AMA.gazHeard Ish88/53m35 $-$ AMA.gazHeard Ish88/53m35 $-$ AMA.gazHeard Ish88/53m35 $-$ AMA.gazHeard Ism85/8m35 $-$ AMA.gazHeard Ism85/8m35 $-$ AMA.gazHeard IsM2912m36 $21/792$ AMA.gazHeard IsM2914m36 $21/793$ AMA.gazHeard Ish88/75m36 $-$ AMA.gazHeard Ish58/37m36 $-$ AMA.gazHeard I	A.gaz	S. Orkney Is	1960.8.4.4	m	34	-	BMNH
AgazHeard IsM29111mm35 $4/09/88$ AMAgazHeard IsM29109m35 $4/09/88$ AMAgazHeard IsM29120m35 $4/09/88$ AMAgazHeard IsM29120m35 $4/09/88$ AMAgazHeard Ish585/3m35 $-$ AMAgazHeard Ish585/3m35 $-$ AMAgazHeard Ish585/6m35 $-$ AMAgazHeard Ish585/73m35 $-$ AMAgazHeard Ish585/73m35 $-$ AMAgazHeard Ish585/73m35 $-$ AMAgazHeard IsM29112m36 $21/7/92$ AMAgazHeard Ish285/37m36 $-$ AMAgazHeard Ish585/75m36 $-$ BMAgazHeard Ish585/75m36 $-$ BMAgazHeard Ish585/75m36 $-$ BMA,p.dSeal RocksC29130f19 $8/09/78$ MVA,p.dSeal RocksC29132f19 $30/09/66$ MVA,p.dSeal RocksC29132f19 $31/01/69$ MVA,p.dSeal RocksC29144f19 $23/11/69$ MVA,p.dSeal RocksC29146f20 $18/8/70$ <td>A.gaz</td> <td>Bird Is</td> <td>K7321N</td> <td>m</td> <td>34</td> <td>15/02/93</td> <td>UMZC</td>	A.gaz	Bird Is	K7321N	m	34	15/02/93	UMZC
AgazHeard IsM29109m354/03/88AMAgazHeard IsM29120m354/09/88AMAgazHeard Ish885/3m35-AMAgazHeard Ish885/40m35-AMAgazHeard Ish885/53m35-AMAgazHeard Ish885/60m35-AMAgazHeard Ish885/73m35-AMAgazHeard Ish885/8m35-AMAgazHeard Ish885/8m35-AMAgazHeard Ish885/75m3621/7/92AMAgazHeard IsM2814m3621/7/92AMAgazHeard Ish885/75m36-AMAgazHeard Ish885/75m36-AMAgazHeard Ish885/75m36-AMAgazHeard Ish985/75m36-AMAgazBird Is1962.6.14.7m36-AMA.p.dSeal RocksC29130f1939/09/78MVA.p.dSeal RocksC29152f1919/8/70MVA.p.dSeal RocksC29130f1919/6/21AMA.p.dSeal RocksC29406f2018/8/70MVA.p.dSeal RocksC29	A.gaz	Heard Is	M29111	m	35	4/09/88	AM
AgazHeard IsM2919mm3510/11/88AMAgazHeard IsM29120m354/09/88AMAgazHeard Ish885/3m35-AMAgazHeard Ish885/40m35-AMAgazHeard Ish885/53m35-AMAgazHeard Ish885/8m35-AMAgazHeard Ish885/8m35-AMAgazMarion Ismfs117m357/12/81PEMAgazHeard IsM29112m3621/7/92AMAgazHeard IsM29112m36-AMAgazHeard IsM2912m36-AMAgazHeard Ish885/75m36-AMAgazHeard Ish985/75m36-AMAgazHeard Is1962.64.4.7m36-AMAgazBird Is1962.64.4.7m36-AMAgazBird Is1962.64.4.7m36-AMAgazBird Is1962.64.4.7m36-AMAgazBird Is1962.64.4.7m36-MWA.p.dSeal RocksC29132f1930/09/66MVA.p.dSeal RocksC29132f1921/6/21MVA.p.dSeal Rocks<	A.gaz	Heard Is	M29109	m	35	4/03/88	AM
AgazHeard 15M29120m35 $4/09/88$ AMAgazHeard 15hs85/3m35-AMA.gazHeard 15hs85/3m35-AMA.gazHeard 15hs85/53m35-AMA.gazHeard 15hs85/63m35-AMA.gazHeard 15hs85/8m35-AMA.gazHeard 15hs85/8m35-AMA.gazHeard 15hs85/37m35-AMA.gazHeard 15M29112m3621/7/92AMA.gazHeard 15M28914m36-AMA.gazHeard 15hs85/75m36-AMA.gazHeard 15hs85/75m36-AMA.gazHeard 15hs85/75m36-AMA.gazBird 151962.6.14.7m36-AMA.gazBird 151962.6.14.7m36-AMA.p.dSeal RocksC29130f1930/09/66MVA.p.dSeal RocksC29130f1930/09/66MVA.p.dSeal RocksC29124f1923/11/69MVA.p.dSeal RocksC29148f2018/8/70MVA.p.dSeal RocksC29271f2121/71/1MVA.p.dSeal R	A.gaz	Heard Is	M29119	m	35	10/11/88	AM
AgazHeard 15hS85/3m35-AMAgazHeard 1shS85/40m35-AMAgazHeard 1shS85/53m35-AMAgazHeard 1shS85/8m35-AMAgazMarion 1sm5117m357/12/81PEMAgazBird 1s1960.8.10.6m35-AMAgazHeard 1sM29112m3621/7/92AMAgazHeard 1sM29112m36-AMAgazHeard 1sM28914m36-AMAgazHeard 1sh885/75m36-AMAgazHeard 1s1962.614.7m36-AMAgazBird 1s1962.614.7m36-BMNHA.p.dSeal RocksC29130f1930/09/66MVA.p.dSeal RocksC29132f1930/169MVA.p.dSeal RocksC29132f1923/11/69MVA.p.dSeal RocksC29134f1923/11/69MVA.p.dSeal RocksC29137f1923/11/69MVA.p.dSeal RocksC29271f2121/7/1MVA.p.dSeal RocksC29271f2121/7/1MVA.p.dJulia Percy 1sM15505f2323/17/8MVA.p	A.gaz	Heard Is	M29120	m	35	4/09/88	AM
AgazHeard Ishs8/40m35-AMA.gazHeard Ishs8/5/3m35-AMA.gazHeard Ishs85/8m35-AMA.gazMarion Ismfs117m357/12/81PEMA.gazBird Is1960.810.6m35-AMA.gazHeard IsM29112m3621/7/92AMA.gazHeard IsM85/37m36-AMA.gazHeard Ishs85/37m36-AMA.gazHeard Ishs85/37m36-AMA.gazHeard Ishs85/37m36-AMA.gazBird Is1962.6.14.7m36-BMNHA.p.dSeal RocksC29130f193/09/66MVA.p.dSeal RocksC29124f1930/09/66MVA.p.dSeal RocksC29144f1923/11/69MVA.p.dSeal RocksC29406f2018/8/70MVA.p.dJulia Percy IsM15505f2016/01/64SAMA.p.dSeal RocksC29271f2121/7/1MVA.p.dSeal RocksC29275f2323/1/69MVA.p.dSeal RocksC29275f2323/7/71MVA.p.dSeal RocksC29275f2323/7/71MV </td <td>A.gaz</td> <td>Heard Is</td> <td>hs85/3</td> <td>m</td> <td>35</td> <td>-</td> <td>AM</td>	A.gaz	Heard Is	hs85/3	m	35	-	AM
AgazHeard Ish58/53m35-AMA.gazMarion Ish58/8m35-AMA.gazMarion Ism5117m35 $7/12/81$ PEMA.gazBird Is1960.8.10.6m35-BMNHA.gazHeard IsM29112m36 $21/7/92$ AMA.gazHeard IsM28914m36 $7/2/93$ AMA.gazHeard Ish585/37m36-AMA.gazHeard Ish585/75m36-AMA.gazHeard Ish585/75m36-AMA.gazBird Is1962.6.14.7m36-AMA.gazBird Is1962.6.14.7m36-AMA.p.dSeal RocksC29130f198/09/78MVA.p.dSeal RocksC29132f1919/8/70MVA.p.dSeal RocksC29124f1923/11/69MVA.p.dSeal RocksC29206f2018/4/72MVA.p.dJulia Percy IsM2973f192/6/21AMA.p.dSeal RocksC29214f2018/4/72MVA.p.dJulia Percy IsM15505f2016/01/64SAMA.p.dJulia Percy IsM15508f2121/7/11MVA.p.dSeal RocksC29275f23	A.gaz	Heard Is	hs85/40	m	35	-	AM
AgazHeard ISh585/8m35-AMAgazMarion Ismfs17m35-BMNHAgazBird Is1960.8.10.6m35-BMNHAgazHeard IsM29112m3621/7/92AMAgazHeard Ish885/37m36-AMAgazHeard Ish885/75m36-AMAgazHeard Ish885/75m36-AMAgazBird Is1962.6.14.7m36-AMAgazBird Is1962.6.14.7m36-AMA.p.dSeal RocksC29130f198/09/78MVA.p.dSeal RocksC29122f1919/8/70MVA.p.dSeal RocksC29124f1923/11/69MVA.p.dSeal RocksC29124f1923/11/69MVA.p.dSeal RocksC29148f2018/8/70MVA.p.dSeal RocksC29171f2122/7/71MVA.p.dSeal RocksC29271f2121/7/14MVA.p.dSeal RocksC29275f2323/0/78MVA.p.dSeal RocksC29275f2323/7/1MVA.p.dSeal RocksC29275f2323/7/1MVA.p.dSeal RocksC29140f2311/01/64SAM<	A.gaz	Heard Is	ns85/53	m	35	-	AM
AgazMarion ismisit?m35 $7/12/81$ PEMA.gazBird Is1960.8.10.6m35-BMNHA.gazHeard IsM29112m36 $21/7/92$ AMA.gazHeard IsM28914m36 $7/2/93$ AMA.gazHeard Ish585/37m36-AMA.gazHeard Ish585/37m36-AMA.gazHeard Ish585/37m36-AMA.gazBird Is1962.6.14.7m36-AMA.p.dSeal RocksC29130f19 $30/09/66$ MVA.p.dSeal RocksC29130f19 $30/09/66$ MVA.p.dSeal RocksC29132f19 $23/11/69$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29466f20 $18/4/72$ MVA.p.dSeal RocksC29214f20 $18/8/70$ MVA.p.dSeal RocksC29214f20 $18/8/70$ MVA.p.dSeal RocksC29214f20 $18/8/70$ MVA.p.dSeal RocksC29214f20 $18/8/70$ MVA.p.dJulia Percy IsM15505f21 $21/7/1$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal Rocks <td< td=""><td>A.gaz</td><td>Heard Is</td><td>ns85/8</td><td>m</td><td>35</td><td>-</td><td>AM</td></td<>	A.gaz	Heard Is	ns85/8	m	35	-	AM
AgazBird is1960.8.10.6m35-BMNHA.gazHeard isM29112m36 $21/7/92$ AMA.gazHeard ish885/37m36 -1 AMA.gazHeard ish885/37m36 $-$ AMA.gazHeard ish885/75m36 $-$ AMA.gazHeard ish962.6.14.7m36 $-$ BMNHA.p.dSeal RocksC29639f19 $8/09/78$ MVA.p.dSeal RocksC29152f19 $19/8/70$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29124f20 $18/8/70$ MVA.p.dSeal RocksC29148f20 $18/8/70$ MVA.p.dSeal RocksC29148f20 $18/8/70$ MVA.p.dSeal RocksC29275f21 $27/71$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC2940f23 $20/6/70$ MVA.p.dSeal Roc	A.gaz	Marion IS	mrs117	m	35	7/12/81	PEM
A.gazHeard isM29112m36 $21/7/92$ AMA.gazHeard isM28914m36 $7/2/93$ AMA.gazHeard ishs85/37m36-AMA.gazHeard ishs85/37m36-AMA.gazBird ish962.6.14.7m36-AMA.p.dSeal RocksC29639f198/09/78MVA.p.dSeal RocksC29130f1930/09/66MVA.p.dSeal RocksC29124f1919/8/70MVA.p.dSeal RocksC29124f1919/8/70MVA.p.dSeal RocksC29406f2018/4/72MVA.p.dSeal RocksC29271f2122/7/71MVA.p.dSeal RocksC29271f2122/7/71MVA.p.dSeal RocksC29271f2122/7/71MVA.p.dSeal RocksC29275f238/10/78MVA.p.dJulia Percy IsM15508f238/10/78MVA.p.dSeal RocksC29406f2323/7/71MVA.p.dJulia Percy IsM15508f238/10/78MVA.p.dSeal RocksC29635f238/10/78MVA.p.dSeal RocksC29406f2323/7/71MVA.p.dSeal RocksC29635	A.gaz	Bird IS	1960.8.10.6	m	35	_	BMNH
AgazHeard IsM28914In36 $1/2/93$ AWA.gazHeard Ishs85/37m36-AMA.gazBird Ishs85/37m36-AMA.gazBird Is1962.6.14.7m36-AMA.p.dSeal RocksC29639f19 $8/09/78$ MVA.p.dSeal RocksC29130f19 $30/09/66$ MVA.p.dSeal RocksC29152f19 $30/09/66$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29144f19 $23/11/69$ MVA.p.dSeal RocksC29148f2018/4/72MVA.p.dSeal RocksC29217f2016/01/64SAMA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dSeal RocksC29275f23 $8/10/78$ MVA.p.dLady Julia Percy IsM15508f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $23/7/71$ MVA.p.dSeal RocksC29161f23 $23/7/71$ MVA.p.dSeal RocksC29161f23 $23/7/71$ MVA.p.d <td< td=""><td>A.gaz</td><td>Heard Is</td><td>M29112</td><td>m</td><td>36</td><td>21/7/92</td><td>AM</td></td<>	A.gaz	Heard Is	M29112	m	36	21/7/92	AM
AgazHeard IsInsb() 3/2In36-AMA.gazHeard Ishsb() 3/2m36-AMA.gazBird Is1962.6.14.7m36-BMNHA.p.dSeal RocksC29639f19 $3/09/66$ MVA.p.dSeal RocksC29130f19 $3/09/66$ MVA.p.dSeal RocksC29130f19 $3/09/66$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29406f20 $18/4/72$ MVA.p.dSeal RocksC29406f20 $18/4/72$ MVA.p.dSeal RocksC29271f20 $16/01/64$ SAMA.p.dJulia Percy IsM15505f20 $16/01/64$ SAMA.p.dLady Julia Percy IsC1997f21 $21/7/11$ MVA.p.dLady Julia Percy IsM15508f22 $17/01/64$ SAMA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29205f23 $21/70$ MV <td>A.gaz</td> <td>Heard Is</td> <td>M28914</td> <td>m</td> <td>36</td> <td>:/2/93</td> <td>AM</td>	A.gaz	Heard Is	M28914	m	36	:/2/93	AM
AgazIneationsInss/75In30-AmA.gazBird Is1962.6.14.7m36-BMNHA.p.dSeal RocksC29639f19 $8/09/78$ MVA.p.dSeal RocksC29130f19 $30/09/66$ MVA.p.dSeal RocksC29152f19 $19/8/70$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dJulia Percy IsM2973f19 $?/6/21$ AMA.p.dSeal RocksC29148f20 $18/8/70$ MVA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dJulia Percy IsC01997f21 $?/734$ MVA.p.dJulia Percy IsC01997f21 $?/714$ MVA.p.dJulia Percy IsM15508f23 $8/10/78$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29161f23 $20/6/70$ MVA.p.dSeal RocksC29359f23 $11/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29031f25 $11/11/64$ SAM <td>A.yuz</td> <td></td> <td>11505/3/ hc8r/7r</td> <td></td> <td>30</td> <td>-</td> <td>AM</td>	A.yuz		11505/3/ hc8r/7r		30	-	AM
A.g.dzDiff of S1962.6.14, / 1962.6.14, / in30-Diff of MVA.p.dSeal RocksC29639f19 $8/09/78$ MVA.p.dSeal RocksC29130f19 $30/09/66$ MVA.p.dSeal RocksC29152f19 $19/8/70$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29124f19 $23/11/69$ MVA.p.dSeal RocksC29406f20 $18/8/70$ MVA.p.dSeal RocksC29148f20 $18/8/70$ MVA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dSeal RocksC29271f21 $21/7/34$ MVA.p.dSeal RocksC29271f21 $21/7/34$ MVA.p.dSeal RocksC29635f22 $24/09/68$ MVA.p.dPhillip Is, VicC28918f22 $17/01/64$ SAMA.p.dSeal RocksC29635f23 $8/10/78$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $20/6/70$ MVA.p.dSeal RocksC29399f24 $15/01/64$ SAMA.p.dJulia Percy IsM15491f23<	A.yuz	Red Lo	11505/75		30	-	
A. p.dSeal RocksC 290 39f196/09/78MVA. p.dSeal RocksC 29130f1930/09/66MVA. p.dSeal RocksC 29152f1919/8/70MVA. p.dSeal RocksC 29124f1923/11/69MVA. p.dJulia Percy IsM 2973f19?/6/21AMA. p.dSeal RocksC 29406f2018/4/72MVA. p.dSeal RocksC 29148f2018/8/70MVA. p.dSeal RocksC 29271f2122/7/71MVA. p.dSeal RocksC 29271f2122/7/71MVA. p.dSeal RocksC 29271f2121/7/34MVA. p.dLady Julia Percy IsC 28918f2224/09/68MVA. p.dPhillip Is, VicC 28918f2221/09/68MVA. p.dSeal RocksC 29635f238/10/78MVA. p.dSeal RocksC 29635f2323/7/71MVA. p.dSeal RocksC 29140f2320/6/70MVA. p.dSeal RocksC 29140f2323/7/71MVA. p.dSeal RocksC 29140f2311/01/64SAMA. p.dSeal RocksC 29140f2323/7/71MVA. p.dSeal RocksC 29359f2323/2/72 </td <td>A.yuz</td> <td>Diluis Sool Pocks</td> <td>1962.0.14.7</td> <td>f III</td> <td>30</td> <td>-</td> <td></td>	A.yuz	Diluis Sool Pocks	1962.0.14.7	f III	30	-	
A. p.dSeal RocksC29130I1930/09/00MVA. p.dSeal RocksC29152f1919/8/70MVA. p.dSeal RocksC29124f1923/11/69MVA. p.dSeal RocksC29124f19 $?/6/21$ AMA. p.dSeal RocksC29406f20 $18/4/72$ MVA. p.dSeal RocksC29406f20 $18/8/70$ MVA. p.dSeal RocksC29418f20 $18/8/70$ MVA. p.dSeal RocksC29271f21 $22/7/71$ MVA. p.dSeal RocksC29271f21 $21/7/14$ MVA. p.dLady Julia Percy IsC01997f21 $?/7/34$ MVA. p.dLady Julia Percy IsC01997f23 $23/7/71$ MVA. p.dJulia Percy IsM15508f22 $24/09/68$ MVA. p.dSeal RocksC29275f23 $23/7/71$ MVA. p.dSeal RocksC29275f23 $23/7/71$ MVA. p.dSeal RocksC29140f23 $14/9/70$ MVA. p.dSeal RocksC29161f23 $11/01/64$ SAMA. p.dSeal RocksC29161f23 $11/01/64$ SAMA. p.dSeal RocksC29359f25 $23/2/72$ MVA. p.dSeal RocksC29359f25 <td>A.p.u A.p.d</td> <td>Seal ROCKS</td> <td>(20120</td> <td>l f</td> <td>19</td> <td>0/09/70</td> <td></td>	A.p.u A.p.d	Seal ROCKS	(20120	l f	19	0/09/70	
A.p.dSeal NORSC2915211919/67/0MVA.p.dSeal RocksC29124f1923/11/69MVA.p.dJulia Percy IsM2973f19?/6/21AMA.p.dSeal RocksC29406f2018/4/72MVA.p.dSeal RocksC29148f2018/8/70MVA.p.dSeal RocksC2917f2122/7/71MVA.p.dSeal RocksC29271f2122/7/71MVA.p.dSeal RocksC29271f21?/?/34MVA.p.dLady Julia Percy IsC01997f21?/?/34MVA.p.dPhillip Is, VicC28018f2224/09/68MVA.p.dPhillip Is, VicC28018f2217/01/64SAMA.p.dSeal RocksC29635f238/10/78MVA.p.dSeal RocksC29140f2320/6/70MVA.p.dSeal RocksC29161f2311/01/64SAMA.p.dJulia Percy IsM15491f2311/01/64SAMA.p.dSeal RocksC29359f2523/2/72MVA.p.dSeal RocksC29081f2511/11/64MVA.p.dJulia Percy IsM15494f2511/11/64SAMA.p.dJulia Percy IsM15494f2514/01/64SAM	A.p.u A.p.d	Soal Pocks	(20152	f	19	30/09/00	
A.p.dSeal NotesC29124I19 $23/11/69$ MVA.p.dJulia Percy IsM2973f19 $?/6/21$ AMA.p.dSeal RocksC29406f20 $18/4/72$ MVA.p.dSeal RocksC29148f20 $18/8/70$ MVA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dLady Julia Percy IsC01997f21 $?/?/34$ MVA.p.dLady Julia Percy IsC1997f22 $24/09/68$ MVA.p.dPhillip Is, VicC28918f22 $24/09/68$ MVA.p.dJulia Percy IsM15508f23 $8/10/78$ MVA.p.dSeal RocksC29635f23 $23/7/11$ MVA.p.dSeal RocksC29140f23 $23/7/71$ MVA.p.dSeal RocksC29161f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/01/64$ SAMA.p.dSeal RocksC29081f25 $14/01/64$ SAMA.p.dJulia Percy IsM15494f <td< td=""><td>A.p.u A.p.d</td><td>Soal Pocks</td><td>(2012)</td><td>f</td><td>19</td><td>19/0//0</td><td></td></td<>	A.p.u A.p.d	Soal Pocks	(2012)	f	19	19/0//0	
A.p.dJula Percy ISM29/3I19 $1/0/21$ MWA.p.dSeal RocksC29406f20 $18/4/72$ MVA.p.dSeal RocksC29148f20 $18/8/70$ MVA.p.dJulia Percy ISM15505f20 $16/01/64$ SAMA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dSeal RocksC29271f21 $21/734$ MVA.p.dLady Julia Percy IsC01997f21 $?/?34$ MVA.p.dPhillip Is, VicC28918f22 $24/09/68$ MVA.p.dJulia Percy IsM15508f23 $81/0/78$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dJulia Percy IsM15491f23 $14/9/70$ MVA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dJulia Percy IsM15494f25 $11/11/64$ MVA.p.dSeal RocksC29081f25 $23/2/72$ MVA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dJulia Percy IsM15506f	A.p.d		M2072	f	19	23/11/09	
A. p.dSeal RocksC29400f20 $10/4/72$ MVA. p.dSeal RocksC29148f20 $18/8/70$ MVA. p.dJulia Percy IsM15505f20 $16/01/64$ SAMA. p.dSeal RocksC29271f21 $22/7/71$ MVA. p.dLady Julia Percy IsC01997f21 $?/?/34$ MVA. p.dLady Julia Percy IsC01997f21 $?/?/34$ MVA. p.dJulia Percy IsM15508f22 $24/09/68$ MVA. p.dSeal RocksC29635f23 $8/10/78$ MVA. p.dSeal RocksC29140f23 $20/6/70$ MVA. p.dSeal RocksC29140f23 $20/6/70$ MVA. p.dSeal RocksC29161f23 $14/9/70$ MVA. p.dSeal RocksC29359f24 $15/01/64$ SAMA. p.dJulia Percy IsM15499f25 $23/2/72$ MVA. p.dSeal RocksC29081f25 $11/11/64$ SAMA. p.dJulia Percy IsM15494f25 $14/01/64$ SAMA. p.dJulia Percy IsM15506f26 $16/01/64$ SAMA. p.dJulia Percy IsM15506f26 $16/01/64$ SAMA. p.dJulia Percy IsM15506f26 $16/01/64$ SAMA. p.dJulia Percy	A.p.d	Seal Pocks	M29/3	f	19	18/4/72	MV
A.p.dSeal RocksC29140f2016/01/0MVA.p.dJulia Percy IsM15505f2016/01/64SAMA.p.dSeal RocksC29271f21 $22/7/71$ MVA.p.dLady Julia Percy IsC01997f21 $?/?/34$ MVA.p.dPhillip Is, VicC28918f22 $24/09/68$ MVA.p.dJulia Percy IsM15508f23 $8/10/78$ MVA.p.dSeal RocksC29635f23 $8/10/78$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dSeal RocksC29359f23 $11/01/64$ SAMA.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/11/64$ MVA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dBass Strait 11487	A.p.d	Seal Pocks	(201/8	f	20	18/8/70	MV
A.p.dSeal RocksC29271f20 $10/01/04$ SAMA.p.dLady Julia Percy IsC01997f21 $22/7/71$ MVA.p.dLady Julia Percy IsC01997f21 $?/?/34$ MVA.p.dPhillip Is, VicC28918f22 $24/09/68$ MVA.p.dJulia Percy IsM15508f22 $17/01/64$ SAMA.p.dSeal RocksC29635f23 $8/10/78$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dSeal RocksC29359f23 $12/01/64$ SAMA.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/11/64$ MVA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15496f26 $16/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dBass Strait 11487 f27 $-$ UAMA.p.dSeal RocksC29103 <td>A.p.d</td> <td></td> <td>C29140 M15505</td> <td>f</td> <td>20</td> <td>16/01/64</td> <td>SAM</td>	A.p.d		C29140 M15505	f	20	16/01/64	SAM
A.p.dJeak NotesC29271I2122/1/11MVA.p.dLady Julia Percy IsC01997f21?/?/34MVA.p.dPhillip Is, VicC28918f2224/09/68MVA.p.dJulia Percy IsM15508f2217/01/64SAMA.p.dSeal RocksC29635f238/10/78MVA.p.dSeal RocksC29275f2323/7/71MVA.p.dSeal RocksC29140f2320/6/70MVA.p.dSeal RocksC29161f2314/9/70MVA.p.dSeal RocksC29161f2311/01/64SAMA.p.dJulia Percy IsM15499f2415/01/64SAMA.p.dJulia Percy IsM15499f2523/2/72MVA.p.dSeal RocksC29081f2511/11/64MVA.p.dJulia Percy IsM15494f2514/01/64SAMA.p.dJulia Percy IsM15506f2616/01/64SAMA.p.dJulia Percy IsM15506f2616/01/64SAMA.p.dBass Strait11487f27-UAMA.p.dSeal RocksC29103f2717/7/69MV	A.p.d	Seal Pocks	(20271	f	20	22/7/71	MV
A.p.dPaily full refersColgg/I21 $1/1/34$ MVA.p.dPhillip Is, VicC28918f22 $24/09/68$ MVA.p.dJulia Percy IsM15508f22 $17/01/64$ SAMA.p.dSeal RocksC29635f23 $8/10/78$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dSeal RocksC29161f23 $11/01/64$ SAMA.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dSeal RocksC29081f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $14/01/64$ SAMA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dBass Strait 11487 f27 $-$ UAMA.p.dSeal RocksC20103f27 $17/7/69$ MV	A.p.d	Lady Julia Percy Is	(01007	f	21	22///1	MV
A.p.dJulia Percy IsM15508f22 $24/09/00$ MVA.p.dSeal RocksC29635f23 $8/10/78$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dSeal RocksC29161f23 $11/01/64$ SAMA.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/11/64$ MVA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dBass Strait11487f27 $-$ UAMA.p.dSeal RocksC20103f27 $17/7/69$ MV	And	Phillin Is Vic	(28018	f	21	·/·/54 24/00/68	MV
A.p.dSeal RocksC29635f23 $8/10/78$ MVA.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dSeal RocksC29161f23 $11/01/64$ SAMA.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/11/64$ MVA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dJulia Percy IsM15506f27 $$ UAMA.p.dBass Strait11487f27 $-$ UAMA.p.dSeal RocksC29103f27 $17/7/69$ MV	And	Iulia Percy Is	M15508	f	22	17/01/64	SAM
A.p.dScal RocksC29033f23 $0101/0$ MV A.p.dSeal RocksC29275f23 $23/7/71$ MVA.p.dSeal RocksC29140f23 $20/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/11/64$ MVA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dBass Strait11487f27-UAMA.p.dSeal RocksC29103f27 $17/7/69$ MV	And	Seal Rocks	(20625	f	22	8/10/78	MV
A.p.dSeal RocksC29140f2325/1/1/1INVA.p.dSeal RocksC29140f2320/6/70MVA.p.dSeal RocksC29161f2314/9/70MVA.p.dJulia Percy IsM15491f2311/01/64SAMA.p.dJulia Percy IsM15499f2415/01/64SAMA.p.dSeal RocksC29359f2523/2/72MVA.p.dSeal RocksC29081f2511/11/64MVA.p.dJulia Percy IsM15494f2514/01/64SAMA.p.dJulia Percy IsM15506f2616/01/64SAMA.p.dBass Strait11487f27-UAMA.p.dSeal RocksC29103f2717/7/69MV	And	Seal Rocks	(20275	f	2)	22/7/71	MV
A.p.dSeal RocksC29140f23 $2/6/70$ MVA.p.dSeal RocksC29161f23 $14/9/70$ MVA.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/11/64$ MVA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dBass Strait11487f27 $-$ UAMA.p.dSeal RocksC29103f27 $17/7/69$ MV	And	Seal Rocks	(20140	f	2)	20/6/70	MV
A.p.dJulia Percy IsM15491f23 $11/01/64$ SAMA.p.dJulia Percy IsM15499f24 $15/01/64$ SAMA.p.dSeal RocksC29359f25 $23/2/72$ MVA.p.dSeal RocksC29081f25 $11/11/64$ MVA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15494f25 $14/01/64$ SAMA.p.dJulia Percy IsM15506f26 $16/01/64$ SAMA.p.dBass Strait11487f27-UAMA.p.dSeal RocksC29103f27 $17/7/69$ MV	And	Seal Rocks	(20161	f	~) 22	14/0/70	MV
A.p.dJulia Percy ISM15491I2511/01/04SAMA.p.dJulia Percy ISM15499f2415/01/64SAMA.p.dSeal RocksC29359f2523/2/72MVA.p.dSeal RocksC29081f2511/11/64MVA.p.dJulia Percy ISM15494f2514/01/64SAMA.p.dJulia Percy ISM15506f2616/01/64SAMA.p.dBass Strait11487f27-UAMA.p.dSeal RocksC29103f2717/7/69MV	And	Julia Percy Is	M15401	f	2)	11/01/64	SAM
A.p.d Seal Rocks C29359 f 25 23/2/72 MV A.p.d Seal Rocks C29081 f 25 11/11/64 MV A.p.d Julia Percy Is M15494 f 25 14/01/64 SAM A.p.d Julia Percy Is M15506 f 26 16/01/64 SAM A.p.d Bass Strait 11487 f 27 - UAM A.p.d Seal Rocks C29103 f 27 17/7/69 MV	And	Julia Percy Is	M15491	f	~) 24	15/01/64	SAM
A.p.d Seal Rocks C29081 f 25 25/2/72 MV A.p.d Seal Rocks C29081 f 25 11/11/64 MV A.p.d Julia Percy Is M15494 f 25 14/01/64 SAM A.p.d Julia Percy Is M15506 f 26 16/01/64 SAM A.p.d Bass Strait 11487 f 27 - UAM A.p.d Seal Rocks C29103 f 27 17/7/69 MV	And	Seal Rocks	(20350	f	24 25	22/2/22	MV
A.p.dJulia Percy IsM15494f2514/01/64SAMA.p.dJulia Percy IsM15506f2616/01/64SAMA.p.dBass Strait11487f27-UAMA.p.dSeal RocksC20103f2717/7/69MV	And	Seal Rocks	(20081	f	25	11/11/64	MV
A.p.dJulia Percy IsM15506f2616/01/64SAMA.p.dBass Strait11487f27-UAMA.p.dSeal RocksC29103f27 $17/7/69$ MV	And	Iulia Percy Is	M15/0/	f	25	14/01/64	SAM
A.p.d Bass Strait 11487 f 27 - UAM A.p.d Seal Rocks C29103 f 27 17/7/69 MV	A.p.d	Julia Percy Is	M15506	f	26	16/01/64	SAM
A.p.d Seal Rocks C29103 f 27 17/7/69 MV	A.p.d	Bass Strait	11487	f	27		UAM
	A.p.d	Seal Rocks	C29103	f	, 27	17/7/69	MV

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.p.d	Seal Rocks	C29358	f	28	23/2/72	MV
A.p.d	Seal Rocks	C29227	f	28	19/5/71	MV
A.p.d	Seal Rocks	C29129	f	29	30/09/66	MV
A.p.d	Seal Rocks	C29110	f	29	29/7/69	MV
A.p.d	Seal Rocks	C29076	f	30	21/11/68	MV
A.p.d	Tenth Is. Tas.	M15409	f	30	13/10/65	SAM
A.p.d	Seal Rocks	C29415	f	31	22/4/72	MV
A.p.d	Australia	8238	f	32	-	DMNH
A.p.d	Seal Rocks	C29352	f	32	15/1/72	MV
A.p.d	Julia Percy Is	M15504	f	32	16/01/64	SAM
A.p.d	Julia Percy Is	M15510	f	32	18/01/64	SAM
A.p.d	Lady Julia Percy Is	C25574	f	33	30/1/74	MV
A.p.d	Portland, Vic	C01990	f	33	?/4/36	MV
A.p.d	Seal Rocks	C29435	f	33	21/6/72	MV
A.p.d	Seal Rocks	C29268	t	34	22/7/71	MV
A.p.d	Seal Rocks	C29180	f	34	27/11/70	MV
A.p.d	lenth Is. las.	M15408	f	35	13/10/65	SAM
A.p.d	lenth Is. las.	M15406	t	35	13/10/65	SAM
A.p.d	Seal Rocks	C29177	m	25	18/11/70	MV
A.p.d	Rushcutters Bay, NSW	M17844	m	25	14/6/69	AM
A.p.d	Deal Is, Bass Strait	C14520	m	27	5/11/71	MV
A.p.a	Melbourne 200	C29647	m	27	19/3/76	
A.p.a	N. Casuarina islet	M15965	m	27	5/02/86	SAM
A.p.a	Tenth IS. Tas.	W15411	m	27	13/10/65	SAIVI
A.p.a	Seal Rocks	C29165	m	28	?/9/70	
A.p.a	Seal Rocks	C29342	m	28	16/12/71	
A.p.a	Seal ROCKS	C29126	m	29	?/12/69	
A.p.u	Julia Percy IS	M15502		29	15/01/64	SAN
A.p.u A.p.d	Julia Percy Is	M15513 Massa7	m	29	18/01/64	SAN
A.p.u A.p.d	Vic Aust	(8,028	m	29	21/01/04	
A.p.u And	Discovery Bay	404920	m	30	-	
A.p.d A.n.d	King Is	C25072	m	30	1026	MV
A.p.d A.n.d	Seal Rocks	(20122	m	30	1930	MV
And	Seal Rocks	(28052	m	20	14/11/67	MV
And	Julia Percy Is	M15512	m	20	18/01/64	SAM
And	Robe S Aust	M13312 M14040	m	30	15/1/86	SAM
And	Cape Jaffa, S. Aust.	M14040 M15297	m	30	28/02/85	SAM
A.p.d	Point Cook, Vic	C29027	m	31	22/5/68	MV
A.p.d	Seal Rocks	C29095	m	31	18/4/69	MV
A.p.d	Montague Is	S1656	m	31	1924	AM
A.p.d	Seal Rocks	C29334	m	32	22/10/71	MV
A.p.d	Lady Julia Percy Is	C25531	m	32	?/2/73	MV
A.p.d	Seal Rocks	C29179	m	32	26/11/70	MV
A.p.d	Seal Rocks	C29122	m	32	14/11/69	MV
A.p.d	Julia Percy Is	M15503	m	32	16/01/64	SAM
A.p.d	N. Casuarina Islet	M15966	m	32	1/02/86	SAM
A.p.d	Tenth Is. Tas.	M15410	m	32	13/10/65	SAM
A.p.d	Tenth Is, Tas	M15404	m	32	13/10/65	SAM
A.p.d	Montague Is	M3714	m	32	?/9/25	AM
A.p.d	Lady Julia Percy Is	C25537	m	33	30/1/74	MV
A.p.d	Portland, Vic	C07420	m	33	12/1895	MV
A.p.d	Lady Julia Percy Is	C01988	m	33	1936	MV
A.p.d	Skerries, Wingham Inl	C05731	m	34	?/5/50	MV
A.p.d	Julia Percy Is	M15514	m	34	18/01/64	SAM
A.p.d	N. Casuarina Islet	M15967	m	34	5/02/86	SAM
A.p.d	Julia Percy Is	M15493	m	34	12/01/64	SAM
A.p.d	Tenth Is. Tas.	M15407	m	34	13/10/65	SAM
A.p.d	Montague Is	M4750	m	34	22/9/29	AM
A.p.d	S. Aust.	M16246	m	35	?/12/79	SAM
A.p.d	Wilsons Prom, Vic	C10911	m	35	10/06/67	MV
A.p.d	Julia Percy Is	M15501	m	35	15/01/64	SAM
A.p.d	Julia Percy Is	M15511	m	35	18/01/64	SAM
A.p.p	Sinclairs Is	zm32724	t	19	20/01/48	SAM(2)

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.p.p	Sinclairs Is	zm34861	f	19	23/02/48	SAM(2)
A.p.p	Algoa Bay	32100	f	20	_	ZMB
A.p.p	S. Africa	100045	f	20	30/07/30	AMNH
A.p.p	Sinclairs Is	zm34860	f	21	23/02/48	SAM(2)
A.p.p	E. London Aquarium	pemn1898	f	21	5/08/92	PEM
A.p.p	Sinclair Is, sw Afr.	396063	f	21	1948	NMNH
A.p.p	Van Reenan Bay, Nam.	M10106	f	21	?/2/78	SAM
A.p.p	Sinclairs Is	zm34726	f	22	-	SAM(2)
A.p.p	-	zm34863	f	22	-	SAM(2)
A.p.p	Sinclairs Is	zm34862	f	23	-	SAM(2)
A.p.p	Sinclairs Is	zm34725	f	25	-	SAM(2)
A.p.p	Sinclairs Is	zm34740	f	26	18/09/47	SAM(2)
А.р.р	Sinclairs Is	zm35008	f	27	28/02/48	SAM(2)
А.р.р	Sinclairs Is	11485	f	28	12/09/47	UAM
А.р.р	Van Reenen Bay, Nam.	M10105	f	28	1/02/74	SAM
А.р.р	Cape of Good Hope	K7362	f	29	-	UMZC
А.р.р	Sinclairs Is	zm34857	f	30	24/03/48	SAM(2)
А.р.р	Sinclairs Is	zm34873	f	30	25/03/48	SAM(2)
А.р.р	Sinclairs Is	zm34872	f	31	9/02/49	SAM(2)
А.р.р	Sinclairs Is	zm34727	f	32	10/12/48	SAM(2)
А.р.р	Sinclairs Is	zm34874	f	32	-	SAM(2)
А.р.р	Sinclairs Is	zm34871	f	32	11/11/46	SAM(2)
А.р.р	Sinclairs Is	zm34870	f	32	2/11/46	SAM(2)
А.р.р	Sardinia Bay	pemn930	f	32	4/03/83	PEM
А.р.р	Sinclairs Is	zm34737	f	33	3/02/48	SAM(2)
А.р.р	Wilderness	pemn931	f	33	3/83	PEM
А.р.р	Walvis Bay	pemn632	f	33	12/70	PEM
А.р.р	PE Harbour	pemn596	f	33	3/09/70	PEM
А.р.р	Van Reenen Bay, Nam.	M10107	f	33	1/02/74	SAM
А.р.р	Van Reenen Bay, Nam.	M10108	f	33	1/02/74	SAM
А.р.р	Sinclairs Is	zm34741	f	34	-	SAM(2)
А.р.р	Cape Recife	pemn929	f	35	14/03/83	PEM
А.р.р	Sundays River Mouth	pemn819	f	35	8/03/82	PEM
А.р.р	Walvis Bay	pemn636	f	35	12/70	PEM
А.р.р	Woody Cape	pemn818	f	36	8/03/82	PEM
A.p.p	Goukamma	pemn821	f	36	16/03/82	PEM
A.p.p	Algoa Bay	pemn881	f	36	10/82	PEM
A.p.p	False Bay	zm34667	f	19	20/11/50	SAM(2)
A.p.p	False Bay	zm34664	f	20	14/11/50	SAM(2)
A.p.p	False Bay	zm34671	f	24	-	SAM(2)
A.p.p	False Bay	zm34672	f	24	-	SAM(2)
А.р.р	False Bay	zm34670	f	25	26/04/50	SAM(2)
А.р.р	Sinclairs Is	zm34702	m	24	19/11/48	SAM(2)
А.р.р	-	zm34704	m	24	-	SAM(2)
А.р.р	-	zm34705	m	24	-	SAM(2)
А.р.р	-	5175	m	25	-	ZMB
А.р.р	Sinclairs Is	zm34682	m	26	28/10/46	SAM(2)
А.р.р	Sinclairs is	zm34736	m	27	17/11/47	SAM(2)
А.р.р	Walvis Bay	pemn645	m	27	12/70	PEM
А.р.р	sw Africa	81701	m	27		AMNH
A.p.p	South Africa	N2004	m	27	25/7/92	PEM
A.p.p	Sinclairs Is	zm34681	m	28	18/11/47	SAM(2)
A.p.p	Sinclairs Is	zm34711	m	28	-	SAM(2)
A.p.p	Sinclairs Is	zm34660	m	28	12/11/47	SAM(2)
A.p.p	Sinclairs Is	zm34659	m	29	11/47	SAM(2)
A.p.p	Walvis Bay, Namibia	pemn633	m	29	17/12/80	PEM
A.p.p	Algoa Bay	pemn614	m	29	1/69	PEM
A.p.p	sw Africa	81705	m	31	- ,	AMNH
A.p.p	False Bay	zm39248	m	32	2/79	SAM(2)
A.p.p	Nortkhock Bay PE	pemn787	m	32	30/12/81	PEM
A.p.p	Pollock Bch, PE	pemn886	m	32	23/10/82	PEM
A.p.p	Woody Cape	pemn620	m	32	10/05/70	PEM
A.p.p	Oyster Bay	pemn618	m	32	15/11/68	PEM
А.р.р	Walvis Bay	pemn642	m	32	12/70	PEM

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.p.p	Algoa Bay	pemn691	m	32	4/03/81	PEM
A.p.p	Luderitz, Namibia	M10104	m	32	?/1/77	SAM
А.р.р	Walvis Bay	pemn648	m	33	12/70	PEM
A.p.p	Sinclairs Is	zm34706	m	34	8/11/46	SAM(2)
A.p.p	Sinclairs Is	zm34742	m	34	17/11/48	SAM(2)
A.p.p	Walvis Bay	pemn646	m	34	12/70	PEM
A.p.p	-	pemn601	m	34	-	PEM
A.p.p	Devils Isle	zm34834	m	35	2/11/46	SAM(2)
A.p.p	Walvis Bay	pemn635	m	35	12/70	PEM
A.p.p	Walvis Bay	pemn634	m	35	12/70	
А.р.р	Port Allred	pemn619	m	35	5/02/77	
А. <i>р.р</i> А.р.р	sw Africa	81709 81706	m	35	-	
А. <i>р.р</i> А.р.р	sw Africa	81700	m	35	-	
А. <i>р.р</i> А р р	Sinclaire le	11/86	m	35	-	
А.р.р Дрр	sw Africa	81708	m	35 26	-	
A nhil	Juan Fernandez	70670	f	34	1888	ZMR
A nhil	Juan Fernandes Is	21550	m	34	6/11/68	SDNHM
A town	Guadalune Is	407	f	54 17	10/07/76	NMMI
A.town	Ano Nuevo Is	26701	f	28	3/6/08	CAS
A.town	Guadalupe Is	76844	m	24	_	AMNH
A.town	Guadalupe Is	408	m	30	24/06/77	NMML
A.tr	Braemer Bay	-	m	35	2/09/87	WAM
A.tr	Marion Is	1968.4.4.2	f	20	15/3/52	BMNH
A.tr	Mutton Bird Bch, WA	m19129	f	24	_	WAM
A.tr	Marion Is	1955.3.14.8	f	25	24/3/52	BMNH
A.tr	Ile Amsterdam	1986.72	f	26	1986	MNHN
A.tr	Port Elizabeth	pemn1452	f	29	17/12/87	PEM
A.tr	Gough Is	zm41242	f	30	24/09/87	SAM(2)
A.tr	Marion Is	1968.4.4.1	f	30	22/04/52	BMNH
A.tr	Maitland River Mouth	pemn576	f	31	9/09/70	PEM
A.tr	Southern Natal	pemn2241	f	31	1994	PEM
A.tr	Marion Is	1955.3.14.7	f	32	15/2/52	BMNH
A.tr	Cape Recife	pemn1893	f	33	27/07/92	PEM
A.tr	Durban	pemn616	f	35	11/07/77	PEM
A.tr	Ile Amsterdam	1962.415	f	36	30/12/55	MNHN
A.tr	Marion Is	mfs125	m	24	-	PEM
A.tr	Gough Is	gfs8	m	25	21/11/77	PEM
A.tr	Gough Is	zm36964	m	26	10/73	SAM(2)
A.tr	-	zm40481	m	26	-	SAM(2)
A.tr	Marion Is	mfs136	m	26	-	PEM
A.tr	lle Amsterdam	1972.644	m	26	6/03/71	MNHN
A.tr	Guano Isds	zm39210	m	27	-	SAM(2)
A.tr	Gough Is	gfs219	m	27	21/08/78	PEM
A.tr	Gougn Is	grs196	m	27	21/08/78	
A.Lr	Marion Is	mis129	m	27	-	PEIM CAM(a)
A.U A.tr	Gougii is	211136959	111 m	29	10/73	
A.U A.tr	Gough Is	19/1.119 7m (0828	m	29	10/03/09	
A.U A tr	Gough Is	211140030 7m40820	m	30	16/10/89	SAM(2)
A.U A tr	Gough Is	afs140	m	30	6/05/78	DEM
A tr	Gough Is	ofs44	m	50 21	12/01/78	PFM
A tr	Marion Is	mfs106	m	31	8/01/81	PFM
A.tr	Sunset bch. Sea Pt	7m38753	m	32	20/12/7/	SAM(2)
A.tr	lle Amsterdam	1978.334	m	32	1/72	MNHN
A.tr	Gough Is	zm36961	m	33	8/11/73	SAM(2)
A.tr	Gough Is	zm41238	m	33	24/09/87	SAM(2)
A.tr	Lamberts Bay	zm40624	m	34	12/84	SAM(2)
A.tr	Buffalo Bay, Knysna	pemn887	m	34	1/11/82	PEM
A.tr	Gough Is	gfs141	m	34	6/05/78	PEM
A.tr	Marion Is	mfs133	m	34	-	PEM
A.tr	Marion Is	mfs110	m	34	21/01/81	PEM
A.tr	Marion Is	mfs104	m	34	18/12/80	PEM
A.tr	Amsterdam Is	1957.8.1.1	m	34	24/11/55	BMNH

A.tr Ile.Anstredam 197.118 m 34 12/02/70 MMNN A.tr Marion Is m511 m 35 3/02/81 PEM A.tr Marion Is m511 m 35 3/02/81 PEM A.tr HeAnstredam 1962.415 m 36 2.4/03/81 SMNH A.tr HeAnstredam 1966.70 m 36 PEM A.tr Marion Is m530 m 36 PEM A.tr Marion Is 1968.70 m 21 15/06/52 SAM A.tr Marion Is 1988.70 m 24 20/12/51 BMNH A.tr Marion Is 1986.70 m 24 50/12/51 SAM A.tr Marion Is 1938.85 m 34 14/01/52 SAM(2) A.tr Marion Is Issa 19/02/05 MMNH Atr Marion Is 19/02/05 MMR C.urs </th <th>Species</th> <th>Location collected</th> <th>Accession no.</th> <th>Sex</th> <th>SI</th> <th>Date collected</th> <th>Museum</th>	Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
A.tr Nih. Wollongong Mis.08 m 94 26/7/80 AM A.tr Ile Ansterdam 19/8.339 m 35 19/09/72 MNHN A.tr Ile Ansterdam 19/8.339 m 36 24/09/87 MNHN A.tr Gough Is 24/05/81 MNHN Antr Marion Is 1986.70 m 36 24/09/87 SAM(2) A.tr Marion Is 1986.4.7 m 24 20/17/51 BMNH A.tr Marion Is 1502.2 m 25 15/06/92 SAM(2) A.tr Marion Is 152.2 m 36 9/017/52 SAM(2) A.tr Marion Is 152.2 m 36	A.tr	Ile Amsterdam	1971.118	m	34	12/02/70	MNHN
Atr Marion Is m5111 m 35 3/o2/81 PEM Atr Ile Amsterdam 1962,445 m 35 23/12/55 MNHN Atr Gught Is 27/12/35 m 36 23/12/55 MNHN Atr Ile Amsterdam 1962,445 m 36 23/12/51 MNHN Atr Marion Is m5330 m 36 1960 MNHN Atr Marion Is 1986,70 m 24 20/12/51 BMNH Atr Marion Is 1986,70 m 26 11/04/52 SAM Atr Marion Is 1986,70 m 36 5/02/12 SAM Atr Marion Is 1938 m 34 4/07/57 PEM Atr Marion Is 1932 m10/04/52 SAM A A Atr Marion Is 1932 m10/04/50 NMHH A A A A A A A	A.tr	Nth. Wollongong	M18108	m	34	26/7/80	AM
Atr Ile Ansterdam 1978.339 m 35 19/09/72 MNHN Atr Gough Is 2014236 m 36 24/05/87 SAM(2) Atr Marion Is m15130 m 36 PEM Atr Ile Ansterdam 1986.70 m 36 24/05/81 BMNH Atr Marion Is 1986.44.7 m 24 201z/51 BMNH Atr Marion Is 152.2 SAM 25 15/06/92 SAM(2) Atr Marion Is 152.2 m 36 910/17.5 PEM Atr Marion Is 152.2 m 36 910/17.5 PEM Atr Marion Is 153.2 m 36 910/17.5 PEM Curs Myagl Perf 286261 f 19 910/04/50 MMHH Curs Myagl Perf 286240 f 19 27/04/50 MMHH Curs Marab Perf 28624	A.tr	Marion Is	mfs111	m	35	3/02/81	PEM
Atr Ile Ansterdam 195, 24,15 m 35 23/37/55 MMHN Atr Ile Ansterdam 1956, 70 m 36 - PEM Atr Ile Ansterdam 1956, 70 m 36 1966 MMHN Atr Ile Ansterdam 1956, 74, 72 m 24 20/37/51 BMNH Atr Marion Is 1598 m 26 11/04/52 SAMC Atr Marion Is 1598 m 36 12/04/52 SAMC Atr Marion Is 1598 m 36 12/04/52 SAMC Atr Marion Is 1592 m 36 12/04/54 SAM Atr Marion Is 1532 m 36 12/04/50 NMNH Curs Myagi Pref 286211 f 19 9/04/50 NMNH Curs Myagi Pref 286224 f 19 27/04/50 NMNH Curs Iwate Pref 28625	A.tr	Ile Amsterdam	1978.339	m	35	19/09/72	MNHN
Atr Gough is zn41236 m 36 za/log/ap/2 SAM(2) Atr Marion is 1986,70 m 36 PEM Atr Marion is 1986,70 m 36 PEM Atr Marion is 1986,4,7 m 24 20/la/51 BMNH Atr Marion is 17,02 m 25 15/o5/92 SAM(2) Atr Marion is 15,02 m 34 5/o2/74 PEM Atr Marion is 15,22 m 36 9/o1/75 PEM Curs Miyagi Pref 286211 f 19 9/o4/50 NMNH Curs Miyagi Pref 286231 f 19 27/o4/50 NMNH Curs Miyagi Pref 286246 f 19 27/o4/50 NMNH Curs Miyagi Pref 286246 f 19 27/o4/50 NMNH Curs Miyagi Pref 286246	A.tr	Ile Amsterdam	1962.415	m	35	23/12/55	MNHN
Atr Marion Is mfs130 m 36 PEM Atr Marion Is 1966.70 m 36 1966 MNHN Atr Marion Is 1968.44.47 m 24 20/12/51 BMNH Atr Marion Is 1979.2 m 25 15/06/92 SAM Atr Marion Is 638 m 34 14/01/75 PEM Atr Marion Is 652 m 34 5/02/74 PEM Atr Golvas, S. Aust. m18955 m 35 21/88/94 SAM Atr Marion Is 652 m 36 9/01/75 PEM Curs Miyagi Pref 286211 f 19 39/04/50 NMHH Curs Miyagi Pref 286223 f 19 28/04/50 NMHH Curs Miyagi Pref 286240 f 19 28/04/50 NMHH Curs Miyagi Pref 286242 f 19 28/04/50 NMHH Curs Mare Pref 2862	A.tr	Gough Is	zm41236	m	36	24/09/87	SAM(2)
Atr Ile Amsterdam 1966,70 m 36 1966 MNHH Atr Gape Reclife, S. Atrica m17672 m 24 20/12/51 BMNH Atr Marion Is m17672 m 25 15/06/92 SAM Atr Marion Is f538 m 34 14/02/75 PEM Atr Marion Is f532 m 34 5/02/74 PEM Atr Goolwa, S. Aust. m18995 m 36 9/04/50 NMHH Curs Miyagi Pref 286311 f 19 9/04/50 NMHH Curs Miyagi Pref 286251 f 19 28/04/50 NMHH Curs Miyagi Pref 286262 f 19 28/04/50 NMHH Curs Miyagi Pref 286248 f 19 28/04/50 NMHH Curs Miyagi Pref 286242 f 19 28/04/50 NMHH Curs Miyagi Pref	A.tr	Marion Is	mfs130	m	36	-	PEM
Atr Marion Is 1968.4.4.7 m 24 20/12/51 BMNH Atr Marion Is 279.4895 m 26 11/04/52 SAM Atr Marion Is 1538 m 34 14/01/75 PEM Atr Marion Is 1538 m 34 14/01/75 PEM Atr Marion Is 1532 m 36 9/01/75 PEM Atr Marion Is 1532 m 36 9/01/50 NMNH Curs Miyagi Pref 286:21 f 19 9/04/50 NMNH Curs Miyagi Pref 286:25 f 19 28/04/50 NMNH Curs Miyagi Pref 286:26 f 19 28/04/50 NMNH Curs Miyagi Pref 286:26 f 19 28/04/50 NMNH Curs Miyagi Pref 286:26 f 19 28/04/50 NMHH Curs Marie Pref 286:23 <td>A.tr</td> <td>Ile Amsterdam</td> <td>1986.70</td> <td>m</td> <td>36</td> <td>1986</td> <td>MNHN</td>	A.tr	Ile Amsterdam	1986.70	m	36	1986	MNHN
Atr Cape Reclife, S. Africa m m 7672 m 25 15/06/92 SAM Atr Marion Is 538 m 34 14/01/52 SAM Atr Marion Is 552 m 34 5/02/74 PEM Atr Goolwa, S. Aust. m18995 m 35 21/08/94 SAM Atr Marion Is 532 m 36 9/01/75 PEM Curs Miyagi Pref 286211 f 19 9/04/50 NMNH Curs Miyagi Pref 286220 f 19 28/04/50 NMNH Curs Miyagi Pref 286240 f 19 28/04/50 NMNH Curs Miyagi Pref 286240 f 19 28/04/50 NMNH Curs Miyagi Pref 286230 f 19 28/04/50 NMNH Curs Wate Pref 286322 f 19 29/05/50 NMHH Curs Wate Pref	A.tr	Marion Is	1968.4.4.7	m	24	20/12/51	BMNH
Atr Marion is Zm34895 m 26 11/0/1/52 SAM(2) Atr Marion is f538 m 34 f3/027/4 PEM Atr Marion is f532 m 36 g1/03/50 PEM Atr Marion is f532 m 36 g1/03/50 NMNH Curs Miyagi Pref 286126 f 19 g1/04/50 NMNH Curs Miyagi Pref 286225 f 19 g1/04/50 NMNH Curs Miyagi Pref 286226 f 19 g2/04/50 NMNH Curs Iwate Pref 286226 f 19 g2/04/50 NMNH Curs Iwate Pref 286220 f 19 g1/05/50 NMNH Curs Iwate Pref 286320 f 19 g1/05/50 NMNH Curs Iwate Pref 286320 f 19 g1/05/50 NMNH Curs Iwate Pref 28	A.tr	Cape Reclife, S. Africa	m17672	m	25	15/06/92	SAM
Atr Marion is f538 m 34 L2/01/75 PEM Atr Marion is f502 m 35 21/08/94 SAM Atr Marion is f532 m 35 21/08/94 SAM Atr Marion is f532 m 36 21/08/94 SAM Curs Miyagi Pref 286211 f 19 30/04/50 NMNH Curs Miyagi Pref 286221 f 19 27/04/50 NMNH Curs Miyagi Pref 286236 f 19 27/04/50 NMNH Curs Wate Pref 286248 f 19 27/04/50 NMHH Curs Wate Pref 286320 f 19 27/04/50 NMHH Curs Wate Pref 286320 f 19 27/04/50 NMHH Curs Wate Pref 286320 f 19 27/05/50 NMHH Curs Wate Pref 286323	A.tr	Marion Is	zm34895	m	26	11/04/52	SAM(2)
Atr Maron is Iso2 m 34 5/02/74 PEM Atr Maron is fs32 m 36 9/01/75 PEM Curs Miyagi Pref 286186 f 19 9/04/50 NMMH Curs Miyagi Pref 286221 f 19 9/04/50 NMMH Curs Miyagi Pref 286221 f 19 9/04/50 NMMH Curs Miyagi Pref 286226 f 19 27/04/50 NMMH Curs Iwate Pref 286236 f 19 27/04/50 NMMH Curs Iwate Pref 286230 f 19 29/04/50 NMMH Curs Iwate Pref 286320 f 19 29/05/50 NMMH Curs Iwate Pref 286320 f 19 12/05/50 NMMH Curs Iwate Pref 286320 f 19 12/05/50 NMMH Curs Iwate Pref 286323	A.tr	Marion Is	fs38	m	34	14/01/75	PEM
Atr Golva, S. Aust. m1395 m 35 21/08/94 SAM Atr Marion is fs32 m 36 91/75 PEM Curs Miyagi Pref 286211 f 19 30/03/50 NMNH Curs Miyagi Pref 286211 f 19 19/04/50 NMNH Curs Miyagi Pref 286226 f 19 27/04/50 NMNH Curs Iwate Pref 286236 f 19 28/04/50 NMNH Curs Iwate Pref 286236 f 19 28/04/50 NMNH Curs Iwate Pref 286236 f 19 21/05/50 NMNH Curs Iwate Pref 286302 f 19 21/05/50 NMNH Curs Iwate Pref 286342 f 19 12/05/50 NMNH Curs Iwate Pref 286342 f 19 12/05/50 NMNH Curs Iwate Pref	A.tr	Marion Is	tso2	m	34	5/02/74	PEM
A.tr Maton 15 1532 m 36 9/01/75 PEM Currs Miyagi Pref 2860186 f 19 9/0a/50 NMNH Currs Miyagi Pref 286221 f 19 9/0a/50 NMNH Currs Miyagi Pref 286225 f 19 9/0a/50 NMNH Currs Miyagi Pref 286240 f 19 27/0a/50 NMNH Currs Iwate Pref 286256 f 19 28/0a/50 NMNH Currs Iwate Pref 286248 f 19 27/0a/50 NMNH Currs Iwate Pref 286320 f 19 21/05/50 NMNH Currs Iwate Pref 286346 f 19 12/05/50 NMNH Currs Iwate Pref 286346 f 19 12/05/50 NMNH Currs Iwate Pref 286346 f 19 12/05/50 NMNH Currs Iwate Pref <td>A.tr</td> <td>Goolwa, S. Aust.</td> <td>m18395</td> <td>m</td> <td>35</td> <td>21/08/94</td> <td>SAM</td>	A.tr	Goolwa, S. Aust.	m18395	m	35	21/08/94	SAM
Curis Miyagi Pref 286/08/6 F 19 30/03/50 NMMH Curis Miyagi Pref 286/211 f 19 19/04/50 NMMH Curis Miyagi Pref 286/225 f 19 19/04/50 NMMH Curis Miyagi Pref 286/26 f 19 27/04/50 NMMH Curis Iwate Pref 286/26 f 19 28/04/50 NMMH Curis Iwate Pref 286/24 f 19 28/04/50 NMMH Curis Iwate Pref 286/20 f 19 28/04/50 NMMH Curis Iwate Pref 286/30 f 19 12/05/50 NMMH Curis Iwate Pref 286/342 f 19 12/05/50 NMMH Curis Iwate Pref 286/32 f 19 13/05/50 NMMH Curis Iwate Pref 286/32 f 20 12/05/50 NMMH Curis <tdi< td=""><td>A.tr</td><td>Marion Is</td><td>TS32</td><td>m</td><td>36</td><td>9/01/75</td><td>PEM</td></tdi<>	A.tr	Marion Is	TS32	m	36	9/01/75	PEM
Lurs Miyagi Pref 286211 f 19 9/64/50 NMMH Curs Miyagi Pref 286225 f 19 9/64/50 NMMH Curs Miyagi Pref 286240 f 19 27/64/50 NMMH Curs Iwate Pref 286254 f 19 28/64/50 NMMH Curs Iwate Pref 286248 f 19 27/64/50 NMMH Curs Iwate Pref 286242 f 19 9/65/50 NMMH Curs Iwate Pref 286342 f 19 12/05/50 NMMH Curs Iwate Pref 286346 f 19 12/05/50 NMMH Curs Iwate Pref 286346 f 19 13/05/50 NMMH Curs Iwate Pref 286346 f 19 13/05/50 NMMH Curs Iwate Pref 286332 f 20 24/05/50 NMMH Curs Iwate Pref	C.urs	Miyagi Pref	286186	ſ	19	30/03/50	NMNH
Curs Miyagi Pref 286215 I 19 19/04/50 NMMH Curs Miyagi Pref 286211 f 19 27/04/50 NMMH Curs Wate Pref 286256 f 19 28/04/50 NMMH Curs Iwate Pref 286254 f 19 28/04/50 NMMH Curs Iwate Pref 286290 f 19 9/05/50 NMMH Curs Iwate Pref 286300 f 19 12/05/50 NMMH Curs Iwate Pref 286342 f 19 12/05/50 NMMH Curs Iwate Pref 286342 f 19 13/05/50 NMMH Curs Iwate Pref 286342 f 19 13/05/50 NMMH Curs Iwate Pref 286323 f 20 24/05/50 NMMH Curs Iwate Pref 28633 f 20 21/05/50 NMMH Curs Miyagi Pref	C.urs	Miyagi Pref	286211	T E	19	9/04/50	NMNH
Curs Miyagi Pref 286240 f 19 27/04/50 NMNH Curs Iwate Pref 286256 f 19 28/04/50 NMNH Curs Iwate Pref 286248 f 19 28/04/50 NMNH Curs Iwate Pref 286248 f 19 28/04/50 NMNH Curs Iwate Pref 286300 f 19 9/05/50 NMNH Curs Iwate Pref 286342 f 19 12/05/50 NMNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286352 f 19 13/05/50 NMNH Curs Iwate Pref 286373 f 20 1/05/50 NMNH Curs Iwate Pref 286373 f 20 1/05/50 NMNH Curs Iwate Pref	C.urs	Miyagi Pref	286225	ا د	19	19/04/50	
Lurs Invate Pref 286256 f 19 28/04/50 NMNH Curs Iwate Pref 286254 f 19 28/04/50 NMNH Curs Iwate Pref 286290 f 19 27/04/50 NMNH Curs Iwate Pref 286290 f 19 9/05/50 NMNH Curs Iwate Pref 286300 f 19 9/05/50 NMNH Curs Iwate Pref 286342 f 19 12/05/50 NMNH Curs Iwate Pref 286346 f 19 12/05/50 NMNH Curs Iwate Pref 286345 f 20 24/03/50 NMNH Curs Iwate Pref 286335 f 20 21/05/50 NMNH Curs Iwate Pref 286337 f 20 12/05/50 NMNH Curs Iwate Pref 286337 f 20 12/05/50 NMNH Curs Iwate Pref	C.urs	Miyagi Prei Miyagi Drof	286211	ſ	19	9/04/50	
Lufus Invate Pref 286/250 1 19 28/04/50 NMNH Curs Iwate Pref 286/24 f 19 28/04/50 NMNH Curs Iwate Pref 286/28 f 19 9/05/50 NMNH Curs Iwate Pref 286/30 f 19 12/05/50 NMNH Curs Iwate Pref 286/30 f 19 12/05/50 NMNH Curs Iwate Pref 286/342 f 19 12/05/50 NMNH Curs Iwate Pref 286/349 f 19 13/05/50 NMNH Curs Iwate Pref 286/349 f 20 24/03/50 NMNH Curs Miyagi Pref 286/33 f 20 21/03/50 NMNH Curs Miyagi Pref 286/32 f 20 1/05/50 NMNH Curs Iwate Pref 286/33 f 20 1/05/50 NMNH Curs Iwate Pref<	C.urs	Miyagi Prei	286240	ſ	19	27/04/50	
Curs Iwate Pref 286234 I 19 27/04/50 NMNH Curs Iwate Pref 286299 f 19 9/05/50 NMNH Curs Iwate Pref 286390 f 19 9/05/50 NMNH Curs Iwate Pref 286322 f 19 12/05/50 NMNH Curs Iwate Pref 286342 f 19 12/05/50 NMNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286323 f 20 19/04/50 NMNH Curs Iwate Pref 286274 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref	C.urs	Iwate Pref	286256	l f	19	28/04/50	
Curs Iwate Pref 286390 f 19 2//04/90 NMMH Curs Iwate Pref 286300 f 19 9/05/50 NMMH Curs Iwate Pref 286300 f 19 12/05/50 NMMH Curs Iwate Pref 286342 f 19 13/05/50 NMMH Curs Iwate Pref 286349 f 19 13/05/50 NMMH Curs Iwate Pref 286352 f 19 13/05/50 NMMH Curs Iwate Pref 286353 f 20 24/03/50 NMMH Curs Miyagi Pref 286233 f 20 1/05/50 NMMH Curs Iwate Pref 286237 f 20 1/05/50 NMMH Curs Iwate Pref 286327 f 20 1/205/50 NMMH Curs Iwate Pref 286323 f 20 12/05/50 NMMH Curs Iwate Pref	C.urs	Iwate Pref	200254	l f	19	20/04/50	
Curs Iwate Pref 286329 I 19 9/05/50 NMMH Curs Iwate Pref 286320 f 19 12/05/50 NMNH Curs Iwate Pref 286320 f 19 12/05/50 NMNH Curs Iwate Pref 286342 f 19 13/05/50 NMNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286532 f 19 13/05/50 NMNH Curs Miyagi Pref 286233 f 20 19/04/50 NMNH Curs Iwate Pref 286274 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286323 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref	C.urs	Iwate Pref	200240	l f	19	2//04/50	
Curs Iwate Pref 280300 f 19 12/05/50 NMNH Curs Iwate Pref 286342 f 19 12/05/50 NMNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286352 f 19 13/05/50 NMNH Curs Miyagi Pref 286353 f 20 24/03/50 NMNH Curs Miyagi Pref 286233 f 20 13/05/50 NMNH Curs Miyagi Pref 286323 f 20 13/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286330 f 20 12/05/50 NMNH Curs Iwate Pref 286337 f 20 12/05/50 NMNH Curs Iwate Pref 286337 f 20 12/05/50 NMNH Curs Sitka, Alaska	C.urs	Iwate Pref	280299	f	19	9/05/50	
Curs India Fref 280342 f 19 12/05/50 NMNH Curs Iwate Pref 286342 f 19 12/05/50 NMNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286352 f 19 13/05/50 NMNH Curs Miyagi Pref 286233 f 20 19/04/50 NMNH Curs Miyagi Pref 286233 f 20 12/05/50 NMNH Curs Iwate Pref 286233 f 20 12/05/50 NMNH Curs Iwate Pref 28630 f 20 12/05/50 NMNH Curs Iwate Pref 28630 f 20 12/05/50 NMNH Curs Sitka, Alaska 286051 f 20 12/05/50 NMNH Curs Sitka, Alaska 286051 f 20 25/01/51 NMNH Curs Sitka, Alaska </td <td>C.urs</td> <td>Iwate Pref</td> <td>280300</td> <td>f</td> <td>19</td> <td>9/05/50</td> <td></td>	C.urs	Iwate Pref	280300	f	19	9/05/50	
Curs Inde Fref 280342 F 19 12/05/50 IMNNH Curs Iwate Pref 286346 f 19 13/05/50 NMNH Curs Iwate Pref 286352 f 19 13/05/50 NMNH Curs Miyagi Pref 286352 f 19 13/05/50 NMNH Curs Miyagi Pref 286353 f 20 24/03/50 NMNH Curs Miyagi Pref 286233 f 20 1/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Sitka, Alaska 28609 f 20 12/05/50 NMNH Curs Sitka, Alaska 28609 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alask	Curs	Iwate Pref	200320	f	19	12/05/50	NMNH
Curs Iwate Pref 266340 f 19 13/05/50 NMNH Curs Iwate Pref 286352 f 19 13/05/50 NMNH Curs Miyagi Pref 286158 f 20 24/03/50 NMNH Curs Miyagi Pref 286233 f 20 27/04/50 NMNH Curs Miyagi Pref 286238 f 20 27/04/50 NMNH Curs Iwate Pref 286232 f 20 12/05/50 NMNH Curs Iwate Pref 286330 f 20 12/05/50 NMNH Curs Iwate Pref 286330 f 20 12/05/50 NMNH Curs Sitka, Alaska 286061 f 20 12/05/50 NMNH Curs Sitka, Alaska 286093 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Al	Curs	lwate Pref	200342	f	19	12/05/50	NMNH
Curs India Pref 266352 f 19 13/05/50 NMNH Curs Miyagi Pref 286158 f 20 24/03/50 NMNH Curs Miyagi Pref 286233 f 20 19/04/50 NMNH Curs Miyagi Pref 286233 f 20 1/05/50 NMNH Curs Iwate Pref 286234 f 20 1/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286323 f 20 12/05/50 NMNH Curs Iwate Pref 286323 f 20 12/05/50 NMNH Curs Sitka, Alaska 286093 f 20 12/05/50 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alas	Curs	lwate Pref	286240	f	19	12/05/50	NMNH
CursMiyagi Pref26632f2924/03/50MMNHCursMiyagi Pref286233f20 $24/03/50$ NMNHCursMiyagi Pref286238f20 $27/04/50$ NMNHCursIwate Pref286274f20 $1/05/50$ NMNHCursIwate Pref286323f20 $1/05/50$ NMNHCursIwate Pref286327f20 $12/05/50$ NMNHCursIwate Pref286330f20 $12/05/50$ NMNHCursSitka, Alaska286093f20 $25/01/51$ NMNHCursSitka, Alaska286093f20 $25/01/51$ NMNHCursSitka, Alaska286097f20 $25/01/51$ NMNHCursSitka, Alaska286097f20 $-$ UAMCursSitka, Alaska286097f20 $-$ UAMCursSitka, Alaska286097f21 $29/03/50$ NMNHCursMiyagi Pref286173f21 $29/03/50$ NMNHCursMiyagi Pref286173f21 $29/03/50$ NMNHCursMiyagi Pref28619f21 $27/04/50$ NMNHCursMiyagi Pref286239f21 $27/04/50$ NMNHCursMiyagi Pref286319f21 $28/03/50$ NMNHCursSitka, Alaska286055f21<	Curs	Iwate Pref	286252	f	19	12/05/50	NMNH
Lass Lass <thlass< th=""> Lass Lass <thl< td=""><td>Curs</td><td>Miyagi Pref</td><td>286158</td><td>f</td><td>20</td><td>24/03/50</td><td>NMNH</td></thl<></thlass<>	Curs	Miyagi Pref	286158	f	20	24/03/50	NMNH
Curs Miyagi Pref 286238 f 22 27/04/50 NMNH Curs Iwate Pref 286274 f 20 1/05/50 NMNH Curs Iwate Pref 286323 f 20 12/05/50 NMNH Curs Iwate Pref 286323 f 20 12/05/50 NMNH Curs Iwate Pref 286330 f 20 12/05/50 NMNH Curs Sitka, Alaska 286093 f 20 20/01/51 NMNH Curs Sitka, Alaska 286095 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 - UAM Curs Sitka, Alaska 286097 f 20 - UAM Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286239 f 21 27/04/50 NMNH Curs Miyagi Pref	C.urs	Miyagi Pref	286233	f	20	19/04/50	NMNH
Curs Wate Pref 286274 f 20 1/05/50 NMNH Curs Iwate Pref 286323 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Sitka, Alaska 286061 f 20 12/05/50 NMNH Curs Sitka, Alaska 286093 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 2/03/50 NMNH Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286239 f 21 23/03/50 NMNH Curs Miyagi	C.urs	Miyagi Pref	286238	f	20	27/04/50	NMNH
Curs Iwate Pref 286323 f 20 12/05/50 NMNH Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286330 f 20 12/05/50 NMNH Curs Sitka, Alaska 286061 f 20 20/01/51 NMNH Curs Sitka, Alaska 286093 f 20 25/01/51 NMNH Curs Sitka, Alaska 286095 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 2/03/50 NMNH Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286239 f 21 20/03/50 NMNH Curs Miyagi Pref 286239 f 21 20/03/50 NMNH Curs Wate	C.urs	Iwate Pref	286274	f	20	1/05/50	NMNH
Curs Iwate Pref 286327 f 20 12/05/50 NMNH Curs Iwate Pref 286330 f 20 12/05/50 NMNH Curs Sitka, Alaska 286091 f 20 20/01/51 NMNH Curs Sitka, Alaska 286093 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286239 f 21 29/03/50 NMNH Curs Miyagi Pref 286238 f 21 29/04/50 NMNH Curs Iwate Pref 286319 f 21 18/01/51 NMNH Curs Sit	C.urs	Iwate Pref	286323	f	20	12/05/50	NMNH
Curs Iwate Pref 28630 f 20 12/05/50 NMNH Curs Sitka, Alaska 286061 f 20 20/01/51 NMNH Curs Sitka, Alaska 286093 f 20 25/01/51 NMNH Curs Sitka, Alaska 286095 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs St Paul Is 11492 f 20 - UAM Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286239 f 21 27/04/50 NMNH Curs Iwate Pref 286258 f 21 12/05/50 NMNH Curs Sitka, Alaska 286052 f 21 18/01/51 NMNH Curs Sitka, Alaska 286055 f 21 19/01/51 NMNH Curs Sitka, Alas	C.urs	Iwate Pref	286327	f	20	12/05/50	NMNH
C.ursSitka, Alaska28601f20 $20/01/51$ NMNH $C.urs$ Sitka, Alaska286093f20 $25/01/51$ NMNH $C.urs$ Sitka, Alaska286095f20 $25/01/51$ NMNH $C.urs$ Sitka, Alaska286097f20 $25/01/51$ NMNH $C.urs$ Sitka, Alaska286097f20 $25/01/51$ NMNH $C.urs$ Sitka, Alaska286097f20 $$ UAM $C.urs$ Miyagi Pref286173f21 $29/03/50$ NMNH $C.urs$ Miyagi Pref286299f21 $27/04/50$ NMNH $C.urs$ Iwate Pref286239f21 $28/04/50$ NMNH $C.urs$ Iwate Pref286319f21 $12/05/50$ NMNH $C.urs$ Sitka, Alaska286047f21 $18/01/51$ NMNH $C.urs$ Sitka, Alaska286052f21 $19/01/51$ NMNH $C.urs$ Sitka, Alaska286056f21 $25/01/51$ NMNH $C.urs$ Sitka, Alaska286079f21 $24/01/51$ NMNH $C.urs$ Sitka, Alaska286056f21 $25/01/51$ NMNH $C.urs$ Sitka, Alaska286079f21 $24/01/51$ NMNH $C.urs$ Sitka, Alaska286076f21 $25/01/51$ NMNH $C.urs$ Sitka, Alaska286079f21 $25/01/51$ <td< td=""><td>C.urs</td><td>Iwate Pref</td><td>286330</td><td>f</td><td>20</td><td>12/05/50</td><td>NMNH</td></td<>	C.urs	Iwate Pref	286330	f	20	12/05/50	NMNH
Curs Sitka, Alaska 286093 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs Sitka, Alaska 286097 f 20 - UAM Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286239 f 21 27/04/50 NMNH Curs Iwate Pref 286238 f 21 12/05/50 NMNH Curs Iwate Pref 286319 f 21 12/05/50 NMNH Curs Sitka, Alaska 286052 f 21 18/01/51 NMNH Curs Sitka, Alaska 286055 f 21 19/01/51 NMNH Curs Sitka, A	C.urs	Sitka, Alaska	286061	f	20	20/01/51	NMNH
C.ursSitka, Alaska 286095 f 20 $25/01/51$ NMNHC.ursSitka, Alaska 286097 f 20 $25/01/51$ NMNHC.ursSit Paul Is 11492 f 20 $-$ UAMC.ursMiyagi Pref 286173 f 21 $29/03/50$ NMNHC.ursMiyagi Pref 286194 f 21 $30/03/50$ NMNHC.ursMiyagi Pref 286239 f 21 $27/04/50$ NMNHC.ursIwate Pref 286238 f 21 $28/04/50$ NMNHC.ursIwate Pref 286319 f 21 $12/05/50$ NMNHC.ursSitka, Alaska 286047 f 21 $18/01/51$ NMNHC.ursSitka, Alaska 286055 f 21 $19/01/51$ NMNHC.ursSitka, Alaska 286056 f 21 $19/01/51$ NMNHC.ursSitka, Alaska 286079 f 21 $22/01/51$ NMNHC.ursSitka, Alaska 286094 f 21 $25/01/51$ NMNHC.ursMiyagi Pref 286143 f 2	C.urs	Sitka, Alaska	286093	f	20	25/01/51	NMNH
Curs Sitka, Alaska 286097 f 20 25/01/51 NMNH Curs St Paul Is 11492 f 20 - UAM Curs Miyagi Pref 286173 f 21 29/03/50 NMNH Curs Miyagi Pref 286194 f 21 30/03/50 NMNH Curs Miyagi Pref 286239 f 21 27/04/50 NMNH Curs Iwate Pref 286258 f 21 12/05/50 NMNH Curs Iwate Pref 286039 f 21 18/01/51 NMNH Curs Sitka, Alaska 286052 f 21 18/01/51 NMNH Curs Sitka, Alaska 286055 f 21 19/01/51 NMNH Curs Sitka, Alaska 286056 f 21 19/01/51 NMNH Curs Sitka, Alaska 286079 f 21 25/01/51 NMNH Curs Sitka, Alask	C.urs	Sitka, Alaska	286095	f	20	25/01/51	NMNH
C.urs St Paul Is 11492 f 20 UAM C.urs Miyagi Pref 286173 f 21 29/03/50 NMNH C.urs Miyagi Pref 286194 f 21 30/03/50 NMNH C.urs Miyagi Pref 286239 f 21 27/04/50 NMNH C.urs Iwate Pref 286258 f 21 28/04/50 NMNH C.urs Iwate Pref 286258 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286052 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286055 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs <td< td=""><td>C.urs</td><td>Sitka, Alaska</td><td>286097</td><td>f</td><td>20</td><td>25/01/51</td><td>NMNH</td></td<>	C.urs	Sitka, Alaska	286097	f	20	25/01/51	NMNH
C.urs Miyagi Pref 286173 f 21 29/03/50 NMNH C.urs Miyagi Pref 286194 f 21 30/03/50 NMNH C.urs Miyagi Pref 286239 f 21 27/04/50 NMNH C.urs Iwate Pref 286238 f 21 28/04/50 NMNH C.urs Iwate Pref 286319 f 21 12/05/50 NMNH C.urs Sitka, Alaska 286047 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286052 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 2/01/51 NMNH C.urs	C.urs	St Paul Is	11492	f	20	-	UAM
C.urs Miyagi Pref 286194 f 21 30/03/50 NMNH C.urs Miyagi Pref 286239 f 21 27/04/50 NMNH C.urs Iwate Pref 286258 f 21 28/04/50 NMNH C.urs Iwate Pref 286319 f 21 12/05/50 NMNH C.urs Sitka, Alaska 286047 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286052 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286055 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 22/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 22 - ZMB C.urs	C.urs	Miyagi Pref	286173	f	21	29/03/50	NMNH
C.urs Miyagi Pref 286239 f 21 27/04/50 NMNH C.urs Iwate Pref 286258 f 21 28/04/50 NMNH C.urs Iwate Pref 286319 f 21 12/05/50 NMNH C.urs Sitka, Alaska 286047 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286052 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286055 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 2/01/51 NMNH C.urs <td>C.urs</td> <td>Miyagi Pref</td> <td>286194</td> <td>f</td> <td>21</td> <td>30/03/50</td> <td>NMNH</td>	C.urs	Miyagi Pref	286194	f	21	30/03/50	NMNH
C.urs Iwate Pref 286258 f 21 28/04/50 NMNH C.urs Iwate Pref 286319 f 21 12/05/50 NMNH C.urs Sitka, Alaska 286047 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286052 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286055 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Niyagi Pref 286143 f 22 - ZMB C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH	C.urs	Miyagi Pref	286239	f	21	27/04/50	NMNH
C.urs Iwate Pref 286319 f 21 12/05/50 NMNH C.urs Sitka, Alaska 286047 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286052 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286055 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 22 - ZMB C.urs	C.urs	Iwate Pref	286258	f	21	28/04/50	NMNH
C.urs Sitka, Alaska 286047 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286052 f 21 18/01/51 NMNH C.urs Sitka, Alaska 286055 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Miyagi Pref 286143 f 22 24/03/50 NMNH </td <td>C.urs</td> <td>Iwate Pref</td> <td>286319</td> <td>f</td> <td>21</td> <td>12/05/50</td> <td>NMNH</td>	C.urs	Iwate Pref	286319	f	21	12/05/50	NMNH
Curs Sitka, Alaska 286052 f 21 18/01/51 NMNH Curs Sitka, Alaska 286055 f 21 19/01/51 NMNH Curs Sitka, Alaska 286056 f 21 19/01/51 NMNH Curs Sitka, Alaska 286079 f 21 24/01/51 NMNH Curs Sitka, Alaska 286079 f 21 25/01/51 NMNH Curs Sitka, Alaska 286086 f 21 25/01/51 NMNH Curs Sitka, Alaska 286094 f 21 25/01/51 NMNH Curs Sitka, Alaska 286094 f 21 25/01/51 NMNH Curs Sitka, Alaska 286094 f 21 - UAM Curs Sitka, Alaska 286094 f 21 - ZMB Curs Miyagi Pref 286143 f 22 - ZMB Curs Miyagi Pref 286207 f 22 9/04/50 NMNH Curs	C.urs	Sitka, Alaska	286047	f	21	18/01/51	NMNH
C.urs Sitka, Alaska 286055 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 - UAM C.urs St Paul Is 11493 f 21 - UAM C.urs Pribilof Is 5648 f 22 - ZMB C.urs Miyagi Pref 286143 f 22 9/04/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs	C.urs	Sitka, Alaska	286052	f	21	18/01/51	NMNH
C.urs Sitka, Alaska 286056 f 21 19/01/51 NMNH C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs St Paul Is 11493 f 21 - UAM C.urs Pribilof Is 5648 f 22 - ZMB C.urs Miyagi Pref 286143 f 22 9/04/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Miyagi Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs	C.urs	Sitka, Alaska	286055	f	21	19/01/51	NMNH
C.urs Sitka, Alaska 286079 f 21 24/01/51 NMNH C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs St Paul Is 11493 f 21 - UAM C.urs Pribilof Is 5648 f 22 - ZMB C.urs Miyagi Pref 286143 f 22 24/03/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Miyagi Pref 286212 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 28/05/50 NMNH C.urs	C.urs	Sitka, Alaska	286056	f	21	19/01/51	NMNH
C.urs Sitka, Alaska 286086 f 21 25/01/51 NMNH C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs St Paul Is 11493 f 21 - UAM C.urs Pribilof Is 5648 f 22 - ZMB C.urs Miyagi Pref 286143 f 22 9/04/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Miyagi Pref 286212 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 28/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Iwate Pref 286041 f 22 16/01/51 NMNH	C.urs	Sitka, Alaska	286079	f	21	24/01/51	NMNH
C.urs Sitka, Alaska 286094 f 21 25/01/51 NMNH C.urs St Paul Is 11493 f 21 - UAM C.urs Pribilof Is 5648 f 22 - ZMB C.urs Miyagi Pref 286143 f 22 24/03/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Miyagi Pref 286212 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 28/04/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH <td>C.urs</td> <td>Sitka, Alaska</td> <td>286086</td> <td>f</td> <td>21</td> <td>25/01/51</td> <td>NMNH</td>	C.urs	Sitka, Alaska	286086	f	21	25/01/51	NMNH
C.urs St Paul IS 11493 F 21 - UAM C.urs Pribilof Is 5648 f 22 - ZMB C.urs Miyagi Pref 286143 f 22 24/03/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Miyagi Pref 286212 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 28/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH	C.urs	Sitka, Alaska	286094	ſ	21	25/01/51	NMNH
C.urs Miyagi Pref 286143 f 22 - ZMB C.urs Miyagi Pref 286143 f 22 24/03/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Miyagi Pref 286212 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 8/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Iwate Pref 286337 f 22 16/01/51 NMNH	c.urs	St Pdul 15 Dribilof Ic	11493	l f	21	-	
C.urs Miyagi Pref 286207 f 22 24/03/50 NMNH C.urs Miyagi Pref 286207 f 22 9/04/50 NMNH C.urs Miyagi Pref 286212 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 8/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH	c.urs	PTIDITULIS Miyagi Drof	5040	l f	22	-	
C.urs Miyagi Pref 286207 I 22 9/04/50 NMNH C.urs Miyagi Pref 286212 f 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 8/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH	c.urs	wiyagi Prel Miyagi Drof	200143	l f	22	24/03/50	
C.urs Iwate Pref 280212 I 22 9/04/50 NMNH C.urs Iwate Pref 286264 f 22 28/04/50 NMNH C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs Iwate Pref 286284 f 22 8/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH	c.uis Curc	Miyagi Piel Miyagi Prof	200207	I F	22	9/04/50	
C.urs Iwate Pref 286266 f 22 28/04/50 NMNH C.urs Miyagi Pref 286284 f 22 8/05/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH	c.uis Curs	lwata Drof	200212	I F	22	9/04/50	
C.urs Miyagi Pref 286284 f 22 26/04/50 NMNH C.urs Iwate Pref 286337 f 22 12/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH	Curs	lwate Prof	200204	ı f	22	20/04/50	
C.urs Iwate Pref 286337 f 22 10/05/50 NMNH C.urs Sitka, Alaska 286041 f 22 16/01/51 NMNH	Curs	Miyagi Pref	286284	f	22	20/04/50 8/05/50	NMNH
<i>C.urs</i> Sitka, Alaska 286041 f 22 16/01/51 NMNH	Curs	Iwate Pref	286337	f	22	12/05/50	NMNH
	C.urs	Sitka, Alaska	286041	f	22	16/01/51	NMNH

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
C.urs	lwate Pref	286351	f	22	13/05/50	NMNH
C.urs	Sitka, Alaska	286070	f	22	23/01/51	NMNH
C.urs	Sitka, Alaska	286081	f	22	24/01/51	NMNH
C.urs	Miyagi Pref	286152	f	23	24/03/50	NMNH
C.urs	Miyagi Pref	286190	f	23	30/03/50	NMNH
C.urs	Miyagi Pref	286226	f	23	19/04/50	NMNH
C.urs	Miyagi Pref	286212	f	23	9/04/50	NMNH
C.urs	Miyagi Pref	286237	f	23	24/04/50	NMNH
C.urs	lwate Pref	286247	f	23	27/04/50	NMNH
C.urs	Iwate Pref	286269	f	23	28/04/50	NMNH
C.urs	lwate Pref	286273	f	23	1/05/50	NMNH
C.urs	Miyagi Pref	286291	f	23	8/05/50	NMNH
C.urs	Miyagi Pref	286298	f	23	8/05/50	NMNH
C.urs	Iwate Pref	286303	f	23	9/05/50	NMNH
C.urs	Iwate Pref	286306	f	23	9/05/50	NMNH
C.urs	Sitka, Alaska	286046	f	23	18/01/51	NMNH
C.urs	Sitka, Alaska	286054	f	23	18/01/51	NMNH
C.urs	Sitka, Alaska	286071	f	23	23/01/51	NMNH
C.urs	Sitka, Alaska	286074	f	23	23/01/51	NMNH
C.urs	Sitka, Alaska	286083	f	23	24/01/51	NMNH
C.urs	Iwate Pref	286259	f	24	28/04/50	NMNH
C.urs	Iwate Pref	286261	f	24	28/04/50	NMNH
C.urs	Iwate Pref	286309	f	24	9/05/50	NMNH
C.urs	Iwate Pref	286314	f	24	9/05/50	NMNH
C.urs	Iwate Pref	286321	f	24	12/05/50	NMNH
C.urs	lwate Pref	286324	f	24	12/05/50	NMNH
C.urs	lwate Pref	286331	f	24	12/05/50	NMNH
C.urs	Iwate Pref	286341	f	24	12/05/50	NMNH
C.urs	Iwate Pref	286340	f	24	12/05/50	NMNH
C.urs	Sitka, Alaska	286044	f	24	17/01/51	NMNH
C.urs	Sitka, Alaska	286053	f	24	18/01/51	NMNH
C.urs	Sitka, Alaska	286050	f	24	18/01/51	NMNH
C.urs	Sitka, Alaska	286060	f	24	20/01/51	NMNH
C.urs	Sitka, Alaska	286072	f	24	23/01/51	NMNH
C.urs	Sitka, Alaska	286075	f	24	23/01/51	NMNH
C.urs	Sitka, Alaska	286077	f	24	24/01/51	NMNH
C.urs	Sitka, Alaska	286082	f	24	24/01/51	NMNH
C.urs	Sitka, Alaska	286080	f	24	24/01/51	NMNH
C.urs	Sitka, Alaska	286105	f	24	26/01/51	NMNH
C.urs	Miyagi Pref	286171	f	25	29/03/50	NMNH
C.urs	Iwate Pref	286253	f	25	28/04/50	NMNH
C.urs	Iwate Pref	286307	f	25	9/05/50	NMNH
C.urs	Sitka, Alaska	286039	f	25	16/01/51	NMNH
C.urs	Sitka, Alaska	286048	f	25	18/01/51	NMNH
C.urs	Sitka, Alaska	286064	f	25	23/01/51	NMNH
C.urs	Sitka, Alaska	286063	f	25	23/01/51	NMNH
C.urs	Sitka, Alaska	286073	f	25	23/01/51	NMNH
C.urs	Sitka, Alaska	286087	f	25	25/01/51	NMNH
C.urs	Sitka, Alaska	286089	f	25	25/01/51	NMNH
C.urs	Portage Bay, Alaska	11497	f	25	5/54	UAM
C.urs	St Paul Is	1891.12.18.10	f	26		BMNH
C.urs	Miyagi Pref	286244	f	26	27/04/50	NMNH
C.urs	Miyagi Pref	286283	f	26	8/05/50	NMNH
C.urs	Iwate Pref	286310	f	26	9/05/50	NMNH
C.urs	Iwate Pref	286334	f	26	12/05/50	NMNH
C.urs	Sitka, Alaska	286059	t	26	19/01/51	NMNH
C.urs	Sitka, Alaska	286068	t	26	23/01/51	NMNH
C.urs	Miyagi Pref	286162	t	27	25/03/50	NMNH
C.urs	Miyagi Pref	286193	t	27	30/03/50	NMNH
C.urs	Iwate Pref	286279	t	27	2/05/50	NMNH
C.urs	Iwate Pref	286335	t	27	12/05/50	NMNH
C.urs	Sitka, Alaska	286049	t	27	18/01/51	NMNH
C.urs	Sitka, Alaska	286057	t	27	19/01/51	NMNH
C.urs	Miyagi Pret	286217	T	28	11/04/50	NMNH

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
C.urs	Miyagi Pref	286215	f	28	11/04/50	NMNH
C.urs	Miyagi Pref	286220	f	28	19/04/50	NMNH
C.urs	Miyagi Pref	286215	f	28	11/04/50	NMNH
C.urs	Miyagi Pref	286217	f	28	11/04/50	NMNH
C.urs	Iwate Pref	286312	f	28	9/05/50	NMNH
C.urs	Sitka, Alaska	286040	f	28	16/01/51	NMNH
C.urs	Sitka, Alaska	286065	f	28	23/01/51	NMNH
C.urs	Sitka, Alaska	286078	f	28	24/01/51	NMNH
C.urs	Commander Is	1928.4.21.63	f	29	-	BMNH
C.urs	-	74328	f	29	-	ZMB
C.urs	Miyagi Pref	286209	f	29	9/04/50	NMNH
C.urs	Miyagi Pref	286282	f	29	8/05/50	NMNH
C.urs	Iwate Pref	286302	f	29	9/05/50	NMNH
C.urs	Iwate Pref	286313	f	29	9/05/50	NMNH
C.urs	Sitka, Alaska	286062	f	29	22/01/51	NMNH
C.urs	Sitka, Alaska	286066	t	29	23/01/51	NMNH
C.urs	Sitka, Alaska	286069	t	30	23/01/51	NMNH
C.urs	Yedo, Japan	F5942	t	10	1880	ZMB
C.urs	Fukishima	286130	t	29	16/03/50	NMNH
C.urs	Pribilot Is	1878.5.10.2	m	24	-	BMNH
C.urs	Bering Is	21328	m	24	1883	NMNH
C.urs	Bering Is	47102	m	24	3/6/1892	NMNH
C.urs	St Paul Is	285656	m	24	16/07/48	NMNH
C.urs	St Paul Is	285716	m	25	31/08/49	NMNH
C.urs	St Paul Is	285720	m	25	8/07/46	NMNH
C.urs	St Paul Is	285724	m	25	31/07/48	NMNH
C.urs	St Paul Is	285723	m	25	29/07/46	NMNH
C.urs	St Paul Is	285690	m	25	5/08/49	NMNH
C.urs	St Paul Is	285652	m	25	8/07/48	NMNH
C.urs	St Paul Is	285664	m	25	3/08/48	N/MNH
C.urs	St Paul IS	285634	m	25	14/07/47	
C.urs	Bering is	1928.4.21.60	m	26	-	BININH
C.urs	St Paul Is	285/10		26	13/08/49	
C.urs	St Paul Is	205/2/	m	20	2/00/40	
C.urs	St Paul Is	285699	m	20	13/00/49	
C.urs	St Paul Is	205051	m	20	0/0//40	
C.urs	St Paul Is	205032	m	20	11/0//4/	
Curs	St Paul Is	K7228	m	27		
Curs	Bering Is	K7220	m	27	2/6/1802	NMNH
Curs	Bering Is	21225	m	27	5/0/1092	NMNH
Curs	St Paul Is	21525	m	28	13/08/40	NMNH
Curs	St Paul Is	210836	m	28	1017	NMNH
Curs	St Paul Is	285640	m	28	30/06/48	NMNH
Curs	St Paul Is	285653	m	28	9/07/48	NMNH
Curs	St Paul Is	11/10/	m	28	17/08/52	UAM
Curs	_	10/11/1800	m	20	11/1800	ZMB
Curs	St Paul Is	285700	m	20	13/08/40	NMNH
Curs	St Paul Is	285666	m	20	a/08/48	NMNH
Curs	St Paul Is	285658	m	20	18/07/48	NMNH
Curs	St Paul Is	285665	m	30	3/08/48	NMNH
C.urs	St Paul Is	285677	m	30	28/06/49	NMNH
C.urs	St Paul Is	285684	m	31	31/07/49	NMNH
C.urs	Bering Is	1928.4.21.61	m	32	-	BMNH
C.urs	St Paul Is	285685	m	32	1/08/49	NMNH
C.urs	St Paul Is	285663	m	32	30/07/48	NMNH
C.urs	St Paul Is	285709	m	32	13/08/49	NMNH
C.urs	St Paul Is	285706	m	33	13/08/49	NMNH
C.urs	St Paul Is	285715	m	33	9/07/40	NMNH
C.urs	St Paul Is	285726	m	33	2/08/46	NMNH
C.urs	St Paul Is	285667	m	33	11/08/48	NMNH
C.urs	St Paul Is	285657	m	33	18/07/48	NMNH
C.urs	St Paul Is	285644	m	33	7/47	NMNH
C.urs	St Paul Is	285695	m	34	6/08/49	NMNH

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
C.urs	St Paul Is	285687	m	34	1/08/49	NMNH
C.urs	St Paul Is	285660	m	34	27/07/48	NMNH
C.urs	St Paul Is	285640	m	34	7/47	NMNH
C.urs	Bering Is	1928.4.21.59	m	35	-	BMNH
C.urs	St Paul Is	285650	m	35	4/07/48	NMNH
E.jub	Barren Is, AK	18552	f	19	12/04/78	UAM
E.jub	Galena Bay	31904	f	19	1995	UAM
E.jub	Ano Nuevo Is, CA	lacm52313	f	19	27/06/15	LACM
E.jub	-	lacm51173	f	19	-	LACM
E.jub	Rausu, east Hokkaido	97012	f	19	1997	HU
E.jub	Rausu, east Hokkaido	95014	f	19	1995	HU
E.jub	St George Is	1897.1.18.7	f	20	-	BMNH
E.jub	Ano Nuevo Is, CA	1950.7.21.5	f	20	-	BMNH
E.jub	-	lacm52316	f	20	-	LACM
E.jub	Rausu, east Hokkaido	99013	f	20	1999	HU
E.jub	Rausu, east Hokkaido	94023	f	20	1994	HU
E.jub	Bering Is	47104	f	21	3/6/1892	NMNH
E.jub	Ano Nuevo Is, CA	lacm620	f	21	3/07/21	LACM
E.jub	Rausu, east Hokkaido	99008	f	21	1999	HU
E.jub	Rausu, east Hokkaido	98011	f	21	1998	HU
E.jub	Rausu, east Hokkaido	95015	f	21	1995	HU
E.jub	Tuleni Is, Okhotsk Sea	21302	f	22	1883	NMNH
E.jub	Tuleni Is, Okhotsk Sea	21309	f	22	-	NMNH
E.jub	Rausu, east Hokkaido	95016	f	22	1995	HU
E.jub	Rausu, east Hokkaido	98022	f	23	1998	HU
E.iub	Rausu, east Hokkaido	95019	f	23	1995	HU
E.iub	St Paul Is	31916	f	24	23/05/94	UAM
E.iub	St George Is	8162	f	25	_	NMNH
E.iub	Bering Str	8163	f	25	1840	NMNH
E.iub	_	267995	f	-5 25	_	NMNH
E.iub	Rausu, east Hokkaido	94017	f	-5 25	1994	HU
E.iub	Ano Nuevo Is. CA	1950.7.21.6	f	26	-	BMNH
E.iub	Tuleni Is. Okhotsk Sea	38220	f	26	1883	NMNH
E.iub	St Paul Is	188982	f	26	8/1892	NMNH
E.iub	Ano Nuevo Is. CA	lacm52311	f	26	27/06/15	LACM
E.iub	Kodiak Is	256492	f	27	1930	NMNH
E.iub	Rausu, east Hokkaido	94026	f	27	1994	HU
E.iub	Bering Sea	5210	f	28		UAM
E.iub	Hokkaido	97305	f	28	1007	HU
E.iub	Hokkaido	97309	f	28	1007	HU
E iub	Hokkaido	07307	f	28	1007	HU
E.iub	Rausu, east Hokkaido	95011	f	28	1005	HU
E.iub	Ano Nuevo Is. CA	27//	f	20	6/24	DMNH
E.iub	Hokkaido	-/ 1/i	f	20	?	HU
E.iub	Unalaska Is	15861	f	30	1876	NMNH
E.iub	Tuleni Is, Okhotsk Sea	38228	f	30	1883	NMNH
E iub	Hokkaido	08NT1	f	30	1008	HU
E iub	Rausu east Hokkaido	9/020	f	30	1004	HU
E iub	Rebun Island	99204	f	30	1000	HU
E iub	Rausu east Hokkaido	95018	f	30	1005	HU
E iub	Rausu, east Hokkaido	9/022	f	30	100/	HU
E jub	Point Pinos CA	15006/	f	31	22/06/00	NMNH
E jub	Chehalis County Washington	188080	f	31	10/1885	NMNH
E jub	St Paul Is	276200	f	31	12/07/48	NMNH
E jub	Rausu east Hokkaido	2/0209	f	31	100/	HU
E.iub	Rebun Island	08201	f	21	1008	HU
E.jub	Rausu east Hokkaido	08000	f	21	1008	HU
E.jub F iub	Rausu, east Hokkaido	90009	f	۲ 21	1990	HII
E.jub E jub	Hokkaido	92021	f	31 21	1008	ни
E.jub E jub	Rehun Island	90301	f	<u>ار</u>	1990	ни
E.jub E jub	Rausu past Hokkaido	9/203	f	5∠ 22	1997 1007	ни
E.jub E jub	Farallones le CA	94021 22457	r f	33 24		
E.jub E jub	Farallones le CA	43437 21522	f	∠4 21	0/1881	
E.jub E jub	Farallones le CA	21523 21527	f	<u>ار</u>	0/188%	
L.JUU	raiallones is, ch	2103/	I.	55	9/ 1004	INTALIAL

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
E.jub	St George Is	32733	m	24	5/05/94	UAM
E.jub	Rebun Island	1325	m	24	1968	ASD
E.jub	Tuleni Is, Okhotsk Sea	21303	m	25	1883	NMNH
E.jub	Bering Is	22072	m	26	-	NMNH
E.jub	Bering Is	22071	m	26	-	NMNH
E.jub	St Paul Is	83887	m	26	1897	NMNH
E.jub	Pribilof Is	114830	m	26	?/7/1902	NMNH
E.jub	Ano Nuevo Is, CA	lacm616	m	26	4/07/21	LACM
E.jub	Rebun Island	1033	m	26	?/02/1969	ASD
E.jub	Rebun Island	75K6	m	26	30/12/1975	ASD
E.jub	Rebun Island	75K20	m	26	1976	ASD
E.jub	Hokkaido	97302	m	26	1997	HU
E.JUD	Shakotan, Hokkaido	98105	m	26	1998	HU
E.JUD	Shakotan, Hokkaido	99104	m	26	1999	HU
E.JUD	HOKKAIDO	94	m	26	1994	HU
E.JUD		929/29	m	26	1992	
E.JUD F.iub	St Paul Is	/2815		27	18/2	
E.JUD E.jub	Ottor la Paring Saa	/140	m	27	-	
E.jub	Pobun Island	7540	m	27	10/0///4	
E.jub	Hokaido	/5N3 870524	m	27	1975	HU ASD
E.jub F.iub	_	1002 272	m	27	-	RMNH
E.jub	Farallone Is CA	13217	m	28	-	NMNH
E.jub	Aleutian Is	261220	m	28	1036	NMNH
E.iub	St George Is	43370	m	28	16/05/96	UAM
E.iub	Bristol Bay, Bering Sea	5216	m	28	_	UAM
E.jub	St Paul Is	AF19493	m	28	1997	UAM
E.jub	Rebun Island	75K16	m	28	1976	ASD
E.jub	Hokkaido	98CHo2	m	28	1998	HU
E.jub	St Paul Is	188981	m	29	4/8/1891	NMNH
E.jub	Bristol Bay, Bering Sea	5217	m	29	-	UAM
E.jub	St Paul Is	43367	m	29	25/02/96	UAM
E.jub	St Paul Is	43367	m	29	25/02/96	UAM
E.jub	_	lacm52314	m	29	-	LACM
E.jub	Rebun Island	75K1	m	29	1975	ASD
E.jub	Hokkaido	97304	m	29	1997	HU
E.jub	Shakotan, Hokkaido	99105	m	29	1999	HU
E.JUD	St Paul Is	1950.3.29.12	m	30	-	BWNH
E.JUD	St Paul Is	49730	m	30	-	NMNH
E.JUD Fiub	- St Double	152135	m	30	:/8/08 =/o=//C	
E.JUD E.jub	St Paul Is	2/6031	m	30	7/07/40	
E.jub		270354	m	30	//0//40	
E.jub	- Shakatan Hakkaida	-	m	30	-	HII
E.jub	Rausu east Hokkaido	08020	m	30	1999	ни
E.jub F.iub	Hokkaido	985T01	m	20	1990	HU
E.jub	St George Is	1050 3 20 11	m	31	-	BMNH
E.jub	Aleutian Is	267526	m	31	1037	NMNH
E.iub	Lynn Canal. AK	246499	m	31	6/02/25	NMNH
E.iub	Tahola, Washington	276032	m	31	13/06/42	NMNH
E.iub	Rebun Island	75K13	m	31	1976	ASD
E.jub	San Francisco Bay	4702	m	32	7/1834	NMNH
E.jub	St Paul Is	285509	m	32	22/06/49	NMNH
E.jub	St Paul Is	43365	m	32	22/04/96	UAM
E.jub	Rishiri Island	1323	m	32	14/04/69	ASD
E.jub	Rebun Island	75K24	m	32	1976	ASD
E.jub	Farralones Is, CA	4701	m	33	7/1856	NMNH
E.jub	Unalaska Is	15359	m	33	-	NMNH
E.jub	Dall Is, AK	8655	m	33	1960	DMNH
E.jub	Monterey, CA	6906	m	28	-	NMNH
E.jub	Massett, BC	21108	m	31	7/1883	NMNH
E.jub	Monterey, CA	3631	m	32	-	NMNH
N.cin	Australia	A3568	f	20	1839	MNHN
N.cin	Olive Is, S. Aust.	m11964	t	20	7/07/78	SAM

N.cin Cape Levis, S. Aust. mr/68: f 20 $7/cs/g2$ SAM N.cin Marguert Cove, WA mic383 f 21 $zg/s/s/g3$ WAM N.cin Micro Habor, S. Aust. mig788 f 21 $zg/s/s/g3$ SAM N.cin Port Lincolin, S. Aust. mig787 f 22 $s/s/g7$ SAM N.cin West coast, S. Aust. mig204 f 23 $ig/s/g7$ WAM N.cin Bouthful Isles, WA mig204 f 23 $ig/s/g7$ WAM N.cin Doubtful Isles, WA mig366 f 24 $3/77$ WAM N.cin Doubtful Isles, WA mig366 f 24 $3/77$ WAM N.cin Doubtful Isles, WA mig263 f 24 $3/77$ WAM N.cin Dogradous Keel S. Aust. mig275 f 26 $-9/75$ SAM N.cin Dogradous Keel S. Aust. mig271 f 29 <	Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
N.cin Israelite Bay, WA m:2975 f 21 25/01/85 WAM N.cin Port Lincols, 5. Aust. m:9788 f 21 28/07/82 WAM N.cin Victor Harbor, S. Aust. m:9790 f 22 28/03/96 SAM N.cin Kest cost, S. Aust. m:9797 f 22 9/11/97 SAM N.cin Sussex MIII, WA m:9227 f 22 4/197 WAM N.cin Sussex MIII, WA m:9266 f 24 3/77 WAM N.cin Deubful Isles, WA m:32672 f 25 28/11/36 BMNH N.cin Dangerous Reef, S. Aust. m:1275 f 26 - SAM N.cin Dangerous Reef, S. Aust. m:1277 f 28 136/05/6 SAM N.cin Dangerous Reef, S. Aust. m:1277 f 29 - SAM N.cin Bald Is, WA m:21977 SAM N.cin Sam	N.cin	Cape Jervis, S. Aust.	m17681	f	20	7/02/92	SAM
N.cin Margare Cove, WA mis288 f 21 $10/07/82$ WM N.cin Port Lincoln, S. Aust. mis7980 f 21 $28/03/96$ SAM N.cin Port Lincoln, S. Aust. mis7970 f 22 $9/11/97$ SAM N.cin West coals, S. Aust. mis220, f 23 $15/05/78$ WAM N.cin Recherche m7678 f 24 $39/77$ WAM N.cin Green Islets, WA mis366 f 24 $31/77$ WAM N.cin Green Islets, WA mis366 f 24 $31/77$ WAM N.cin Green Islets, WA mis366 f 24 $31/77$ WAM N.cin Coffin bay, S. Aust. mis3297 f 25 $28/05/64$ WAM N.cin Port Lincoln, S. Aust. mis297 f 28 $29/05/65$ SAM N.cin Port Lincoln, S. Aust. mis296 f 29 $5/08/65$	N.cin	Israelite Bay, WA	m23975	f	21	25/01/85	WAM
N.cin Victor Harbor, S. Aust. may78 f 21 23/10/95 SAM N.cin Kangaroo Is, S. Aust. may77 f 22 -1994 SAM N.cin Rest coast. S. Aust. mis227 f 22 -1994 SAM N.cin Sussex MIII, WA mis227 f 23 15/05/78 WAM N.cin Doubtil Isles, WA mis266 f 24 3/77 WAM N.cin Doubtil Isles, WA mis272 f 26 IsBo's SAM N.cin Dangerous Reef, S. Aust. mis727 f 26 usBo's SAM N.cin Polit Lincin, S. Aust. mis777 f 29 - WAM N.cin Bald Is, WA mis793 f 28 18/03/96 SAM N.cin Spencer Gulf, S. Aust. mis793 f 29 - WAM N.cin Spencer Gulf, S. Aust. mis793 f 30 5/08/85 SAM	N.cin	Margaret Cove, WA	m16288	f	21	10/07/82	WAM
N.cin Port Lincoln, S. Aust, maypa f 21 28/03/96 SAM N.cin West coast, S. Aust, mi6227 f 22 4:19/97 SAM N.cin West coast, S. Aust, mi6227 f 22 4:19/97 WAM N.cin Doubful Isles, WA mi9204 f 23 15/05/78 WAM N.cin Doubful Isles, WA mi9204 f 23 15/05/78 WAM N.cin Green Isles, WA mi9267. f 26 - SAM N.cin Doubful Isles, WA mi929. f 27 28/05/64 WAM N.cin Coffin Bay, S. Aust. mi2197 f 28 28/03/36 SAM N.cin Port Lincoln, S. Aust. mi297 f 29 - WAM N.cin Spencer Gulf, S. Aust. mi2922 f 30 28/03/36 SAM N.cin Spencer Gulf, S. Aust. mi2927 f 30 28/03/39	N.cin	Victor Harbor, S. Aust.	m19788	f	21	23/10/95	SAM
N.cin Kangaroo Is, S. Aust. mp77 f 22 $9 1/97$ SAM N.cin Sussex MII, WA mp207 f 22 -1991 SAM N.cin Sussex MII, WA mp207 f 23 $19/06/78$ WAM N.cin Doubful Isles, WA mp368 f 24 $3/77$ WAM N.cin Doubful Isles, WA mp369 f 26 -1980^{15} SAM N.cin Dangerous Reef, S. Aust. m1705 f 26 -980^{15} SAM N.cin Dangerous Reef, S. Aust. m1707 f 28 $28/03/96$ SAM N.cin Bald Is, WA m2197 f 28 $28/03/96$ SAM N.cin Soperer Gulf, S. Aust. m3973 f 29 $-$ WAM N.cin Soperer Gulf, S. Aust. m3973 f 30 $-5/08/85$ SAM N.cin Sole Jay, KI m968, 26.27 f 30 $-5/08/85$	N.cin	Port Lincoln, S. Aust.	m19790	f	21	28/03/96	SAM
N.cin West coast, S. Aust. m16227 f 22 <1905/78 MAM N.cin Recherche m7578 f 24 1905/78 WAM N.cin Doubthul Isles, WA 1953, 26.29 f 25 28/11/56 BMNH N.cin Doubthul Isles, WA 1963, 26.29 f 26 1980'5 SAM N.cin Houtman Abrolbs m6224 f 27 180/05/64 WAM N.cin Houtman Abrolbs m6224 f 27 1977 SAM N.cin Coffin Bay, S. Aust. m12971 f 28 180/05/64 WAM N.cin Port Lincoln, S. Aust. m12971 f 28 180/05/6 SAM N.cin Sector Gult, S. Aust. m12971 f 28 180/05/6 SAM N.cin Sector Gult, S. Aust. m12972 f 30 18/03/98 SAM N.cin Sector Gult, S. Aust. m12971 f 30 19/05	N.cin	Kangaroo Is, S. Aust.	m19787	f	22	9/11/97	SAM
N.cin Sussex Mill, WA ms204 f 23 tyle MAM N.cin Doubthi Isles, WA ms7678 f 24 3/77 WAM N.cin Doubthi Isles, WA ms7678 f 25 28/11/56 BMNH N.cin Dangerous Reef, S. Aust. ms272 f 26 - SAM N.cin Houtman Abrolhos m6224, f 27 28/06/64, WAM N.cin Doffn bay, S. Aust. ms299 f 27 1977 SAM N.cin Bald Is, WA ms2971 f 28 1976 SAM N.cin Spencer Gulf, S. Aust. ms777 f 29 - WAM N.cin Spencer Gulf, S. Aust. ms2963 f 30 5/08/85 SAM N.cin Seena Say, KI 1968, 9, 26.27 f 30 2/08/36 SAM N.cin Port Lincoln, S. Aust. ms2963 f 31 11/19 WAM	N.cin	West coast, S. Aust.	m16227	f	22	<1991	SAM
N.cin Doubthul Isles, WA mp7678 f 24 j577 WAM N.cin Doubthul Isles, WA 1968.p.26.29 f 25 28/11/56 BMNH N.cin Dangerous, Rec15, S. Aust. m13705 f 26 SAM N.cin Coffin Bay, S. Aust. m13705 f 27 19707 SAM N.cin Coffin Day, S. Aust. m12197 f 28 18/10/66 SAM N.cin Doutthul Isles, WA m2197 f 28 18/10/66 SAM N.cin Port Lincoln, S. Aust. m1701 f 29 - WAM N.cin Spencer Gulf, S. Aust. m1701 f 29 - WAM N.cin Spencer Gulf, S. Aust. m13701 f 29 - WAM N.cin Port Lincoln, S. Aust. m13702 f 30 19/16/5 SAM N.cin Port Lincoln, S. Aust. m13702 f 31 11/179	N.cin	Sussex Mill, WA	m19204	f	23	19/05/78	WAM
N.cin Doubtiful Isles, WA m15366 f 24, 3/77 WAM N.cin Dangerous Reef, S. Aust. m11705 f 26 SAM N.cin Coffin Bay, S. Aust. m1272 f 26 1980's SAM N.cin Houtman Abrohos m6224 f 27 1977 SAM N.cin Bald Is, WA m2393 f 27 1977 SAM N.cin Port Lincoln, S. Aust. m1701 f 28 1976 WAM N.cin Spencer Gulf, S. Aust. m1701 f 29 -0/3/96 SAM N.cin Spencer Gulf, S. Aust. m1979 f 28 19/06 SAM N.cin Seal Bay, KI 1968-9.26.27 f 30 2/08/98 SAM N.cin Gabot Seh, S. Aust. m1272 f 31 11/70 WAM N.cin Beagle Is, WA m16837 f 30 19/05 SAM	N.cin	Recherche	m7678	f	24	1967	WAM
N.cin Green Islets, WA 1968, 26.29 f 25 28/11/56 BMNH N.cin Coffn Bay, S. Aust. m1272 f 26 1980's SAM N.cin Houtman Abrolhos m5224 f 27 18/06/64 WAM N.cin Bald Is, WA m2197 f 28 18/06/64 WAM N.cin Port Lincoln, S. Aust. m12997 f 28 28/03/66 SAM N.cin Spencer Gulf, S. Aust. m11701 f 29 -9 WAM N.cin Spencer Gulf, S. Aust. m12701 f 28 28/03/96 SAM N.cin Port Lincoln, S. Aust. m12702 f 30 -9 BMNH N.cin Cabo's Bch, S. Aust. m12663 f 30 19/76 SAM N.cin Greenty Is, S. Aust. m1272 f 31 11/79 WAM N.cin Goompana Tan, S. Aust. m1297 f 31 11/79 S	N.cin	Doubtful Isles, WA	m15366	f	24	3/77	WAM
N.c.in Dangerous Reef, S. Aust. m1775 f 26 - SAM N.c.in Houtman Abrohhos m522,4 f 27 28/60/64, WAM N.c.in Coffin Bay, S. Aust. m12959 f 27 1977 SAM N.c.in Bald Is, WA m2197 f 28 1976 WAM N.c.in Port Lincoln, S. Aust. m19701 f 28 28/03/96 SAM N.cin Spencer Gulf, S. Aust. m12963 f 30 5/08/85 SAM N.cin Spencer Gulf, S. Aust. m12963 f 30 28/03/98 SAM N.cin Greenty Is, S. Aust. m12957 f 31 11/79 WAM N.cin Greenty Is, S. Aust. m11295 f 31 11/79 WAM N.cin Parson's Bch, S. Aust. m11292 f 31 11/708/82 SAM N.cin Pardel Is, S. Aust. m11952 f 32 14/05/78	N.cin	Green Islets, WA	1968.9.26.29	f	25	28/11/56	BMNH
N.cin Coffin Bay, S. Aust. mis272 f 26 198's SAM N.cin Houtman Abrohlos mis224 f 27 1977 SAM N.cin Bald Is, WA mi2197 f 28 1976 WAM N.cin Port Lincoln, S. Aust. mi7977 f 28 28/03/96 SAM N.cin Spencer Gulf, S. Aust. mi777 f 30 - WAM N.cin Seal Bay, KI 1968.926.27 f 30 - S/08/85 SAM N.cin Cabot's Bch, S. Aust. mi2972 f 30 28/03/96 SAM N.cin Port Lincoln, S. Aust. mi2972 f 30 28/03/96 SAM N.cin Port Bins, S. Aust. mi2972 f 31 18/179 WAM N.cin Deapsin's Bch, S. Aust. mi1215 f 31 18/116's SAM N.cin Deapsin's Bch, S. Aust. mi1922 f 31 18/10	N.cin	Dangerous Reef, S. Aust.	m11705	f	26	-	SAM
N.c.in Houtman Abrohhos m6224 f 27 28/66/64 WAM N.c.in Bald Is, WA m12999 f 28 1976 WAM N.c.in Bald Is, WA m12997 f 28 1976 WAM N.c.in Bald Is, WA m19791 f 28 28/03/96 SAM N.c.in Spencer Gulf, S. Aust. m19792 f 30 - WAM N.c.in Cabot's Bch, S. Aust. m19792 f 30 28/03/98 SAM N.c.in Greenly Is, S. Aust. m19792 f 31 11/79 WAM N.c.in Greenly Is, S. Aust. m1125 f 31 11/08/82 SAM N.c.in Parson's Bch, S. Aust. m12954 f 31 21/05/78 SAM N.c.in Compana Tan, S. Aust. m1394 f 31 21/05/78 SAM N.c.in Thistle Is, S. Aust. m11700 f 32 4/01/76 SAM	N.cin	Coffin Bay, S. Aust.	m19272	f	26	1980's	SAM
N.cin Coffin bay, S. Aust. m12959 f 27 1977 SAM N.cin Port Lincoln, S. Aust. m12971 f 28 28/03/96 SAM N.cin - m7877 f 29 - WAM N.cin Spencer Gult, S. Aust. m1701 f 29 1975 SAM N.cin Gael Bay, K1 1968, 2.6.27 f 30 5/08/85 SAM N.cin Cabot'S Bch, S. Aust. m12979 f 31 11/79 WAM N.cin Beagel IS, MA m16977 f 31 11/79 WAM N.cin Beagel IS, MA m16977 f 31 11/165 SAM N.cin Derason's Bch, S. Aust. m1215 f 31 121/05/82 SAM N.cin Derason's Bch, S. Aust. m1362 f 32 14/05/78 SAM N.cin Port Lincoln, S. Aust. m13639 f 30 21/02/95 SAM	N.cin	Houtman Abrolhos	m6224	f	27	28/06/64	WAM
N.cin Baid Is, WA m2197 f 28 1976 WAM N.cin - m7877 f 29 - WAM N.cin Spencer Culf, S. Aust. m1701 f 29 - WAM N.cin Seal Bay, KI 1968.9.26.27 f 30 - BMNH N.cin Gabot's Bch, S. Aust. m19792 f 30 28/03/98 SAM N.cin Greenty Is, S. Aust. m18665 f 30 1976 SAM N.cin Beagle Is, WA m16837 f 31 11/99 WAM N.cin Parson's Bch, S. Aust. m18924 f 31 12/08/22 SAM N.cin Compana Tan, S. Aust. m1900 f 32 4/05/74 SAM N.cin Thittle Is, S. Aust. m1700 f 32 4/05/76 SAM N.cin Thistle Is, S. Aust. m1700 f 32 4/07/76 SAM N.ci	N.cin	Coffin bay, S. Aust.	m12959	f	27	1977	SAM
N.cin Port Lincoln, S. Aust. mig791 f 28 28/03/36 SAM N.cin Spencer Gulf, S. Aust. mit701 f 29 - WAM N.cin Spencer Gulf, S. Aust. mit265 f 30 - BMNH N.cin Cabot's Bch, S. Aust. mit265 f 30 50/03/98 SAM N.cin Greenly IS, S. Aust. mit265 f 30 1976 SAM N.cin Bergele IS, WA mit6837 f 31 11/79 WAM N.cin Compana Tan, S. Aust. mit371 f 31 12/10/3/4 SAM N.cin Purdie IS, S. Aust. mit392 f 31 12/10/3/4 SAM N.cin Port Lincoln, S. Aust. mit3924 f 32 30/05/94 SAM N.cin Port Lincoln, S. Aust. mit3924 f 32 30/05/95 SAM N.cin Fanklin S. S. Aust. mit695 f 30 11/179 <td>N.cin</td> <td>Bald Is, WA</td> <td>m21197</td> <td>f</td> <td>28</td> <td>1976</td> <td>WAM</td>	N.cin	Bald Is, WA	m21197	f	28	1976	WAM
N.cin - my877 f 29 - WAM N.cin Senete Gulf, S. Aust. m11701 f 29 1975 SAM N.cin Gabot's Bch, S. Aust. m12963 f 30 -/ BMNH N.cin Greenly Is, S. Aust. m18665 f 30 28/03/98 SAM N.cin Greenly Is, S. Aust. m18665 f 30 17/08/82 SAM N.cin Parson's Bch, S. Aust. m1215 f 31 12/09/94 SAM N.cin Parson's Bch, S. Aust. m18394 f 31 21/05/78 SAM N.cin Compana Tan, S. Aust. m18394 f 32 4/01/76 SAM N.cin Port Lincoln, S. Aust. m11700 f 32 4/01/76 SAM N.cin Flatemanis, S. Aust. m17660 f 33 27/12/93 SAM N.cin Flatemanis, S. Aust. m1695 f 30 4/179 WAM <td>N.cin</td> <td>Port Lincoln, S. Aust.</td> <td>m19791</td> <td>f</td> <td>28</td> <td>28/03/96</td> <td>SAM</td>	N.cin	Port Lincoln, S. Aust.	m19791	f	28	28/03/96	SAM
N.cin Spenter Gull, S. Aust. m1701 f 29 1975 SAM N.cin Cabot's Bch, S. Aust. m12963 f 30 -0 BMNH N.cin Got's Bch, S. Aust. m12963 f 30 $28/03/98$ SAM N.cin Greenly Is, S. Aust. m18655 f 30 1976 SAM N.cin Parson's Ech, S. Aust. m1215 f 31 $11/79$ WAM N.cin Compana Tan, S. Aust. m1235 f 31 $21/05/94$ SAM N.cin Dutice Ingish is, S. Aust. m1235 f 31 $21/05/78$ SAM N.cin Dutice In, S. Aust. m1362 f 32 $4/01/76$ SAM N.cin Port Ellioti, S. Aust. m13634 f 32 $30/03/94$ SAM N.cin Port Ellioti, S. Aust. m16639 f 30 $11/79$ WAM N.cin Firaklin Is, S. Aust. m1659 f 30	N.cin	-	m7877	f	29	-	WAM
N.c.in Seal Bay, Kl 1968.9-26.27 1 30 - BMNH N.c.in Port Lincoln, S. Aust. m19792 f 30 5/08/85 SAM N.c.in Greenly IS, S. Aust. m19792 f 30 1976 SAM N.c.in Beagle IS, WA m16837 f 31 11/79 WAM N.c.in Parson's Bch, S. Aust. m1213 f 31 18/11/65 SAM N.c.in Portelins, S. Aust. m1213 f 31 18/11/65 SAM N.c.in Portelincoln, S. Aust. m18394 f 31 21/05/94 SAM N.c.in Thistle Is, S. Aust. m18061 f 32 14/05/78 SAM N.c.in Kangarools, S. Aust. m18041 f 32 18/02/95 SAM N.c.in Fisherman Is, WA m16895 f 30 11/79 WAM N.c.in Fisherman Is, SA m11695 f 30 11/79	N.cin	Spencer Gulf, S. Aust.	m11701	f	29	1975	SAM
N.cin Cabol's Bch, S. Aust. m12963 t 30 $28/03/98$ SAM N.cin Greenly Is, S. Aust. m18665 f 30 1976 SAM N.cin Beagle Is, WA m16837 f 31 11/79 WAM N.cin Parson's Bch, S. Aust. m1213 f 31 11/76 SAM N.cin Coompant Tan, S. Aust. m13934 f 31 21/09/94 SAM N.cin Purdie Is, S. Aust. m1962 f 32 4/01/76 SAM N.cin Purdie Is, S. Aust. m1962 f 32 4/02/78 SAM N.cin Port Lincoln, S. Aust. m18234 f 32 20/09/94 SAM N.cin Kagaroo Is, S. Aust. m16805 f 33 2/12/93 SAM N.cin Franklin Is, S. Aust. m16839 f 30 4/82 SAM N.cin Franklin Is, S. Aust. m1682 m 20 - <t< td=""><td>N.cin</td><td>Seal Bay, Kl</td><td>1968.9.26.27</td><td>f</td><td>30</td><td>-</td><td>BMNH</td></t<>	N.cin	Seal Bay, Kl	1968.9.26.27	f	30	-	BMNH
N.c.in Port Lincoln, S. Aust. mig792 r 30 28/03/98 SAM N.c.in Beagle Is, WA mi6837 f 31 11/79 WAM N.c.in Beagle Is, WA mi6837 f 31 11/78/82 SAM N.c.in Little English Is, S. Aust. m7471 f 31 12/05/94 SAM N.c.in Compana Tan, S. Aust. m13994 f 31 12/05/94 SAM N.c.in Thistle Is, S. Aust. m11700 f 32 14/05/78 SAM N.c.in Port Lincoln, S. Aust. m18234 f 32 30/09/94 SAM N.c.in Fort Lincoln, S. Aust. m17680 f 33 27/12/93 SAM N.c.in Frahkin Is, S. Aust. m17695 f 30 11/79 WAM N.c.in S Neptune Is, S. Aust. m1682 m 25 1970 UAM N.c.in S Neptune Is, S. Aust. m1682 m 26	N.cin	Cabot's Bch, S. Aust.	m12963	f	30	5/08/85	SAM
N.c.in Greenly Is, S. Aust. mi8665 r 30 1976 SAM N.c.in Parson's Bch, S. Aust. mi1215 f 31 11/79 WAM N.c.in Little English Is, S. Aust. mi1215 f 31 12/108/82 SAM N.c.in Coompana Tan, S. Aust. mi1894 f 31 21/09/94 SAM N.c.in Purdle Is, S. Aust. mi1962 f 32 4/01/76 SAM N.c.in Purdle Is, S. Aust. mi1962 f 32 18/02/95 SAM N.c.in Port Elliott, S. Aust. mi18063 f 33 27/12/93 SAM N.c.in Faraklin Is, S. Aust. mi17680 f 30 4/82 SAM N.c.in Firaklin Is, S. Aust. mi1695 f 30 4/82 SAM N.c.in S Neptune Is, S. Aust. mi6957 m 30 - DMNH N.c.in S Neptune Is, S. Aust. mi6963 m 20	N.cin	Port Lincoln, S. Aust.	m19792	f	30	28/03/98	SAM
N.cin Beage Is, WA mtb837 r 31 11/79 WAM N.cin Little English Is, S. Aust. m1215 f 31 11/79/8/82 SAM N.cin Coompana Tan, S. Aust. m1394 f 31 21/09/94 SAM N.cin Purdie Is, S. Aust. m13962 f 32 14/05/78 SAM N.cin Port Lincoln, S. Aust. m13962 f 32 30/09/94 SAM N.cin Port Lincoln, S. Aust. m18964 f 32 30/09/94 SAM N.cin Fisherman Is, WA m16839 f 30 11/79 WAM N.cin Fisherman Is, SA m1695 f 30 11/79 WAM N.cin S Neptune Is, S. Aust. 11/82 m 25 1970 UAM N.cin S Neptune Is, S. Aust. 1968.9-26.25 m 31 - BMNH N.cin Spence foulf, S. Aust. 1969.9-26.25 m 31 - <td>N.cin</td> <td>Greenly Is, S. Aust.</td> <td>m18665</td> <td>f</td> <td>30</td> <td>1976</td> <td>SAM</td>	N.cin	Greenly Is, S. Aust.	m18665	f	30	1976	SAM
N.c.in Parson's Bch, S. Aust. m11215 r 31 17/08/82 SAM N.c.in Little English Is, S. Aust. m13924 f 31 18/11/65 SAM N.c.in Pourdie Is, S. Aust. m13924 f 32 14/05/78 SAM N.c.in Thistle Is, S. Aust. m1700 f 32 4/01/76 SAM N.c.in Port Lincoln, S. Aust. m18234 f 32 18/02/95 SAM N.c.in Port Lilotol, S. Aust. m1800 f 32 12/12/93 SAM N.c.in Port Lilotol, S. Aust. m16839 f 30 1/79 WAM N.c.in S Neptune Is, S. Aust. m1695 f 30 4/82 SAM N.c.in S Neptune Is, S. Aust. 1368-92.6.25 m 31 - BMNH N.c.in Neptune Is, S. Aust. 1367.4 m 24 2/08/65 SAM N.c.in Neptune Is, S. Aust. 1367.4 m 2	N.cin	Beagle Is, WA	m16837	f	31	11/79	WAM
N.cinLittle English IS, S. Aust. $m7/471$ T31 $18/11/65$ SAMN.cinPurdie IS, S. Aust. $m13924$ f31 $21/09/94$ SAMN.cinPort Lincoln, S. Aust. $m13924$ f32 $4/02/78$ SAMN.cinPort Lincoln, S. Aust. $m13234$ f32 $30/09/94$ SAMN.cinPort Elincoln, S. Aust. $m13234$ f32 $30/09/94$ SAMN.cinPort Elincoln, S. Aust. $m13623$ f30 $11/79$ WAMN.cinFranklin IS, S. Aust. $m17680$ f30 $4/82$ SAMN.cinFranklin IS, S. Aust. $m1695$ f30 $4/82$ SAMN.cinS Neptune IS, S. Aust. 11482 m25 1970 UAMN.cinS Neptune IS, S. Aust. 571463 m29 $6/70$ NMMHN.cinS Neptune IS, S. Aust. $1968,9.26.25$ m30-BMNHN.cinNeptune IS, S. Aust. $1897,10.10.5$ m 32 -BMNHN.cinKangaroo IS, S. Aust. $m2477$ m 24 $2/08/69$ SAMN.cinKangaroo IS, S. Aust. $m9041$ m 24 $2/08/69$ SAMN.cinRecherche $m8331$ m 25 $27/10/70$ WAMN.cinRecherche $m8331$ m 25 $27/10/70$ SAMN.cinRecherche $m8331$ m 25 $27/10/70$ SAM <th< td=""><td>N.cin</td><td>Parson's Bch, S. Aust.</td><td>m11215</td><td>f</td><td>31</td><td>17/08/82</td><td>SAM</td></th<>	N.cin	Parson's Bch, S. Aust.	m11215	f	31	17/08/82	SAM
N.c.in Compana 1an, S. Aust. m13394 T 31 21/09/94 SAM N.c.in Purdie IS, S. Aust. m1700 f 32 14/05/78 SAM N.c.in Port Lincoln, S. Aust. m18234 f 32 30/09/94 SAM N.c.in Port Elliott, S. Aust. m18401 f 32 30/09/94 SAM N.c.in Fisherman IS, WA m17680 f 33 27/12/93 SAM N.c.in Franklin IS, S. Aust. m1695 f 30 11/79 WAM N.c.in S Neptune IS, S. Aust. m1695 f 30 4/82 SAM N.c.in S Neptune IS, S. Aust. 1482 m 25 1970 NMH N.c.in S Neptune IS, S. Aust. 1968.9.26.25 m 31 - BMNH N.c.in Kangaroo IS, S. Aust. 1974.01.05 m 32 - BMNH N.c.in Kangaroo IS, S. Aust. m2480 m 24 <	N.cin	Little English Is, S. Aust.	m7471	f	31	18/11/65	SAM
N.c.in Purdoe Is, S. Aust. m11902 F 32 14/05/78 SAM N.c.in Port Lincoln, S. Aust. m1200 f 32 30/09/94 SAM N.c.in Port Lincoln, S. Aust. m18234 f 32 30/09/94 SAM N.c.in Kangaroo Is, S. Aust. m17680 f 32 14/05/75 SAM N.c.in Fisherman Is, WA m1695 f 30 11/79 WAM N.c.in S Neptune Is, S. Aust. m14695 f 30 11/79 WAM N.c.in S Neptune Is, S. Aust. m14695 f 30 1/79 WAM N.c.in S Neptune Is, S. Aust. 571463 m 29 6/70 NMHH N.c.in Spencer Gulf, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in Kangaroo Is, S. Aust. m8674 m 24 15/08/70 SAM N.c.in Kangaroo Is, S. Aust. m270 m 25	N.cin	Coompana Tan, S. Aust.	m18394	f	31	21/09/94	SAM
N.chnInititle IS, S. Aust.Inititia IDInititia IDIDIDSAMN.chnPort Lincoln, S. Aust.Initia IDf3230/09/94SAMN.chnPort Elliott, S. Aust.Inita IDf3218/02/95SAMN.chnPort Elliott, S. Aust.Inita IDf3327/12/93SAMN.chnFranklin IS, S. Aust.Inita IDgWAMN.chnFranklin IS, S. Aust.Inita IDgGMAMN.chnS Neptune IS, S. Aust.11482m251970UAMN.chnS. Neptune IS, S. Aust.1968.9.26.25m31-BMNHN.chnNeptune IS, S. Aust.1969.9.26.25m32-BMNHN.chnNeptune IS, S. Aust.1969.9.26.25m32-BMNHN.chnNeptune IS, S. Aust.1969.9.26.25m32-BMNHN.chnNeptune IS, S. Aust.1969.9.26.25m32BMNHN.chnNeptune IS, S. Aust.1969.9.26.25m32BMNHN.chnKangaroo IS, S. Aust.1969.9.26.25m32BMNHN.chnKangaroo IS, S. Aust.1969.9.26.25m32BMNHN.chnKangaroo IS, S. Aust.1969.9.26.25m32SAMN.chnKangaroo IS, S. Aust.1969.9.26.25m24-SAMN.chn	N.CIN	Purdie Is, S. Aust.	m11962	f	32	14/05/78	SAM
N.c.inPort Lincoln, S. Aust.m18234T3230/09/94SAMN.c.inRangaroo Is, S. Aust.m17680f3327/12/93SAMN.c.inFisherman Is, WAm16839f3011/79WAMN.c.inFisherman Is, S. Aust.m11695f304/82SAMN.c.inS Neptune Is, S. Aust.m11695f304/82SAMN.c.inS Neptune Is, S. Aust.571463m296/70NMNHN.c.inS. Neptune Is, S. Aust.574463m30-DMNHN.c.inS. Neptune Is, S. Aust.1968.9.26.25m31-BMNHN.c.inNeptune Is, S. Aust.1997.10.10.5m32-BMNHN.c.inKangaroo Is, S. Aust.m304.1m242/08/69SAMN.c.inKangaroo Is, S. Aust.m304.1m24-SAMN.c.inKangaroo Is, S. Aust.m304.1m24-SAMN.c.inRangaroo Is, S. Aust.m304.1m2527/10/70WAMN.c.inRecherchem8331m25-SAMN.c.inKangaroo Is, S. Aust.m19786m25-SAMN.c.inKangaroo Is, S. Aust.m19786m261967SAMN.c.inS Neptune Is, S. Aust.m19780m261967SAMN.c.inRecherchem3800m2819/02	N.CIN	Inistie Is, S. Aust.	m11700	T C	32	4/01/76	SAM
N.cin Nangaroo Is, S. Aust. m18401 F 32 18/02/95 SAM N.cin Port Elliott, S. Aust. m17680 f 33 27/12/93 SAM N.cin Franklin Is, S. Aust. m16955 f 30 4/82 SAM N.cin S Neptune Is, S. Aust. 11482 m 25 1970 UAM N.cin S Neptune Is, S. Aust. 11482 m 29 6/70 NMNH N.cin S. Neptune Is, S. Aust. 1968.9.26.25 m 31 - BMNH N.cin Nepture Is, S. Aust. 1897.10.0.5 m 32 - BMNH N.cin Nedural Is, S. Aust. 1897.10.0.5 m 32 - BMNH N.cin Kangaroo Is, S. Aust. 18674 m 24 2/08/69 SAM N.cin Kangaroo Is, S. Aust. m9041 m 24 - SAM N.cin Kangaroo Is, S. Aust. m2407 m 25 -	N.CIN	Port Lincoln, S. Aust.	m18234	T C	32	30/09/94	SAM
N.c.in Point Ellion, J. AUSL. Imi/Reso I 33 2/12/93 SAM N.c.in Fisherman Is, WA mi6839 f 30 11/79 WAM N.c.in S Neptune Is, S. Aust. 11482 m 25 1970 UAM N.c.in S Neptune Is, S. Aust. 11482 m 29 6/70 NMNH N.c.in S Neptune Is, S. Aust. 1968, 26.25 m 31 - BMNH N.c.in Neptune Is, S. Aust. 1968, 26.25 m 32 - BMNH N.c.in Neptune Is, S. Aust. 1968, 26.25 m 31 - BMNH N.c.in Neptune Is, S. Aust. 1397.0 m 36 - BMNH N.c.in Kangaroo Is, S. Aust. m9041 m 24 2/08/69 SAM N.c.in Kangaroo Is, S. Aust. m9041 m 24 - SAM N.c.in Kangaroo Is, S. Aust. m331 m 25 -	N.CIN	Kangaroo Is, S. Aust.	m18401	f c	32	18/02/95	SAM
N.c.in Franklin Is, S. Aust. Intog 39 I 30 11/79 WAM N.c.in Franklin Is, S. Aust. m1695 f 30 4/82 SAM N.c.in S Neptune Is, S. Aust. 571463 m 25 1970 UAM N.c.in S Neptune Is, S. Aust. 571463 m 29 6/70 NMNH N.c.in S Neptune Is, S. Aust. 1968.9.26.25 m 31 - BMNH N.c.in Neptune Is, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in Kangaroo Is, S. Aust. 1867.4 m 24 2/08/69 SAM N.c.in Rivoli Bay, S. Aust. m3041 m 25 27/10/70 WAM N.c.in Recherche m8331 m 25 2 SAM N.c.in Rearoo Is, S. Aust. m19786 m 25 16/04/97 SAM N.c.in Kangaroo Is, S. Aust. m19786 m 25 16/04/97	N.CIN N.cin	Fisherman Is, WA	m17680	۲ ۲	33	27/12/93	
N.c.in Frankmins, S. Aust. Intropy I 30 4/62 SAW N.c.in S. Neptune Is, S. Aust. 11482 m 25 1970 UAM N.c.in S. Neptune Is, S. Aust. 571463 m 29 6/70 NMNH N.c.in S. Neptune Is, S. Aust. 1897.10.0.5 m 32 - BMNH N.c.in Netpune Is, S. Aust. 1989.26.25 m 36 - BMNH N.c.in Netpune Is, S. Aust. 1987.10.10.5 m 32 - BMNH N.c.in Kangaroo Is, S. Aust. m9041 m 24 15/08/70 SAM N.c.in Kangaroo Is, S. Aust. m9041 m 24 - SAM N.c.in Recherche m8331 m 25 27/10/70 WAM N.c.in Pearson Is, S. Aust. m2477 m 25 - SAM N.c.in Kangaroo Is, S. Aust. m19786 m 26 1967 <t< td=""><td>N.CIN N.cin</td><td>Fisherman Is, WA</td><td>m16839</td><td>۲ ۲</td><td>30</td><td>11/79</td><td>WANI</td></t<>	N.CIN N.cin	Fisherman Is, WA	m16839	۲ ۲	30	11/79	WANI
N.c.in S Neptune 1s, S. Aust. 11402 m 25 1970 DAW N.c.in S Neptune 1s, S. Aust. 571463 m 29 6/70 NMNH N.c.in S pencer Gulf, S. Aust. 1968.9.26.25 m 31 - BMNH N.c.in Neptune 1s, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in Neptune 1s, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in Neptune 1s, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in Kangaroo 1s, S. Aust. m867.4 m 24 2/08/69 SAM N.c.in Kangaroo 1s, S. Aust. m2480 m 24 - SAM N.c.in Recherche m8331 m 25 - SAM N.c.in Recherche m8331 m 25 - SAM N.c.in Kangaroo Is, S. Aust. m19786 m 25 16/04/97 SAM <td>N.CIII N.cin</td> <td>Fidikiiii is, S. Aust.</td> <td>1111095</td> <td>1 m</td> <td>30</td> <td>4/82</td> <td></td>	N.CIII N.cin	Fidikiiii is, S. Aust.	1111095	1 m	30	4/82	
N.c.in S. Neptune 1s, S. Aust. S. / 1463 III 29 6/70 NMMH N.c.in Spencer Gulf, S. Aust. 1968.9.26.25 m 30 - BMNH N.c.in Neptune 1s, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in NW Aust. 337.e m 36 - BMNH N.c.in Kangaroo 1s, S. Aust. m867.4 m 24 2/08/69 SAM N.c.in Kangaroo 1s, S. Aust. m9041 m 24 - SAM N.c.in Rivoli Bay, S. Aust. m2480 m 24 - SAM N.c.in Recherche m8331 m 25 - SAM N.c.in Pearson Is, S. Aust. m19786 m 25 - SAM N.c.in Cape Bouger, S. Aust. m1963 m 26 6/66/77 SAM N.c.in Sheptune Is, S. Aust. m19786 m 27 27/02/58 WAM </td <td>N.CIII N.cin</td> <td>S Neptune Is, S. Aust.</td> <td>11482</td> <td>111 m</td> <td>25</td> <td>1970</td> <td></td>	N.CIII N.cin	S Neptune Is, S. Aust.	11482	111 m	25	1970	
N.c.in S. Neptune is, S. Aust. 9249 in 30 - Dimini N.c.in Spencer Gulf, S. Aust. 1968.9.26.25 m 31 - BMNH N.c.in Neptune Is, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in Kangaroo Is, S. Aust. 1897.10.10.5 m 32 - BMNH N.c.in Kangaroo Is, S. Aust. m8674 m 24 2/08/69 SAM N.c.in Kangaroo Is, S. Aust. m9041 m 24 - SAM N.c.in Recherche m8331 m 25 27/10/70 WAM N.c.in Pearson Is, S. Aust. m2477 m 25 - SAM N.c.in Kangaroo Is, S. Aust. m19786 m 25 16/04/97 SAM N.c.in Sheptune Is, S. Aust. m1963 m 27 27/02/58 WAM N.c.in Sheptune Is, S. Aust. m1963 m 27 6/11/74	N.cm N.cin	S Noptupo Is S Aust	5/1403 8240	m	29	0/70	
N.c.in Spencer Guit, S. Aust. 1908.9;20.25; m 31 - DMMNH N.c.in Neprotene Is, S. Aust. 1897;10:10:5 m 32 - BMNH N.c.in Kangaroo Is, S. Aust. 337.e m 36 - BMNH N.c.in Kangaroo Is, S. Aust. m8674 m 24 2/08/69 SAM N.c.in Rivoli Bay, S. Aust. m2440 m 24 15/08/70 SAM N.c.in Recherche m8331 m 25 - SAM N.c.in Recherche m8331 m 25 - SAM N.c.in Pearson Is, S. Aust. m19786 m 25 - SAM N.c.in Cape Bouger, S. Aust. m19786 m 26 1967 SAM N.c.in Lake Preston, WA m3323 m 27 27/02/58 WAM N.c.in Greenhead, WA m25807 m 28 1967 WAM N	N.cm N.cin	S. Neptune is, S. Aust.	0249 1068 0 26 25	m	30	-	
Nacin Replane is, S. Aust. 199/10/10/5 m 32 - BMNH N.cin NW aust. 337.e m 36 - BMNH N.cin Kangaroo Is, S. Aust. m8674 m 24 2/08/69 SAM N.cin Kangaroo Is, S. Aust. m9041 m 24 - SAM N.cin Rivoli Bay, S. Aust. m2480 m 24 - SAM N.cin Recherche m8331 m 25 27/10/70 WAM N.cin Pearson Is, S. Aust. m19786 m 25 16/04/97 SAM N.cin Kangaroo Is, S. Aust. m19786 m 25 16/04/97 SAM N.cin Cape Bouger, S. Aust. m19786 m 26 1967 SAM N.cin Lake Preston, WA m3323 m 27 27/02/58 WAM N.cin Greenhead, WA m25807 m 28 1967 WAM <td< td=""><td>N.cm N.cin</td><td>Neptupe Is S Aust</td><td>1900.9.20.25 1807 10 10 F</td><td>m</td><td>31</td><td>_</td><td>BMNH</td></td<>	N.cm N.cin	Neptupe Is S Aust	1900.9.20.25 1807 10 10 F	m	31	_	BMNH
Nation Nation Solid Main Solid Data Nation Kangaroo Is, S. Aust. m8041 m 24 2/08/69 SAM Nation Rivoli Bay, S. Aust. m2480 m 24 - SAM Nation Rivoli Bay, S. Aust. m2480 m 24 - SAM Nation Recherche m8331 m 25 27/10/70 WAM Nation Pearson Is, S. Aust. m2477 m 25 - SAM Nation Pearson Is, S. Aust. m19786 m 25 16/04/97 SAM Nation Cape Bouger, S. Aust. m19786 m 26 1967 SAM Nation Gape Bouger, S. Aust. m1963 m 27 27/02/58 WAM Nation Greenhead, WA m3323 m 27 27/02/58 WAM Nation Greenhead, WA m25807 m 28 15/02/60 WAM Nation	N cin	NW Aust	227 0	m	32 26	_	BMNH
N.cin Kangaroo Is, S. Aust. Into /4 Into /4 <thinto 4<="" th=""> <thinto< td=""><td>N cin</td><td>Kangarools S Aust</td><td>m8674</td><td>m</td><td>24</td><td>2/08/60</td><td>SAM</td></thinto<></thinto>	N cin	Kangarools S Aust	m8674	m	24	2/08/60	SAM
N.cin Rivgito by S. Aust. myoqr m 24 - SAM N.cin Recherche m8331 m 25 27/10/70 WAM N.cin Recherche m8331 m 25 - SAM N.cin Pearson Is, S. Aust. m2477 m 25 - SAM N.cin Pearson Is, S. Aust. m19786 m 25 16/04/97 SAM N.cin Cape Bouger, S. Aust. m19786 m 26 6/06/77 SAM N.cin Cape Bouger, S. Aust. m19633 m 26 1967 SAM N.cin Greenhead, WA m3233 m 27 27/02/58 WAM N.cin Greenhead, WA m2807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 19/02/60 WAM N.cin Recherche m3810 m 28 19/02/60 WAM N.cin Spencer Gulf, S. Aust. m11700 m 28 3/02/78 SAM	N cin	Kangaroo Is S Aust	moo/4 moo/1	m	24	2/00/09 15/08/70	SAM
N.cin Recherche mB331 m 25 27/10/70 WAM N.cin - m6163 m 25 - SAM N.cin Pearson Is, S. Aust. m2477 m 25 - SAM N.cin Kangaroo Is, S. Aust. m19786 m 25 16/04/97 SAM N.cin Cape Bouger, S. Aust. m1963 m 26 6/06/77 SAM N.cin Cape Bouger, S. Aust. m1963 m 26 1967 SAM N.cin Lake Preston, WA m3323 m 27 27/02/58 WAM N.cin Greenhead, WA m32507 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 4/12/83 SAM N.cin Spencer Gulf, S. Aust. m13379 m 28 - SAM	N cin	Rivoli Bay S Aust	m2480	m	24	-	SAM
N.cin - m6163 m 25 - SAM N.cin Pearson Is, S. Aust. m2477 m 25 - SAM N.cin Kangaroo Is, S. Aust. m19786 m 25 16/04/97 SAM N.cin Cape Bouger, S. Aust. m1963 m 26 6/06/77 SAM N.cin Cape Bouger, S. Aust. m1963 m 26 1967 SAM N.cin Lake Preston, WA m3323 m 27 27/02/58 WAM N.cin Greenhead, WA m25807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Spencer Gulf, S. Aust. m11710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m1170 m 28 4/12/83 SAM N.cin Spencer Gulf, S. Aust. m11702 m 29 1967 WAM	N.cin	Recherche	m8331	m	25	27/10/70	WAM
N.cin Pearson Is, S. Aust. m2477 m 25 - SAM N.cin Kangaroo Is, S. Aust. m19786 m 25 16/04/97 SAM N.cin Cape Bouger, S. Aust. m1963 m 26 6/06/77 SAM N.cin Cape Bouger, S. Aust. m1963 m 26 1967 SAM N.cin Lake Preston, WA m3323 m 27 27/02/58 WAM N.cin Greenhead, WA m25807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Kangaroo Is, S. Aust. m11710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 -/12/83 SAM N.cin Recherche m7676 m 29 1967 WAM N	N.cin	_	m6163	m	25	_	SAM
N.cin Kangaroo Is, S. Aust. m19786 m 25 16/04/97 SAM N.cin Cape Bouger, S. Aust. m11963 m 26 6/06/77 SAM N.cin S Neptune Is, S. Aust. m15459 m 26 1967 SAM N.cin Lake Preston, WA m3323 m 27 27/02/58 WAM N.cin Greenhead, WA m25807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Kangaroo Is, S. Aust. m11710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 3/07/89 SAM N.cin	N.cin	Pearson Is, S. Aust.	m2477	m	25	-	SAM
N.cin Cape Bouger, S. Aust. m1963 m 26 6/06/77 SAM N.cin S Neptune Is, S. Aust. m15459 m 26 1967 SAM N.cin Lake Preston, WA m3223 m 27 27/02/58 WAM N.cin Greenhead, WA m25807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Kangaroo Is, S. Aust. m11710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 4/12/83 SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin <	N.cin	Kangaroo Is, S. Aust.	m19786	m	25	16/04/97	SAM
N.cin S Neptune Is, S. Aust. m15459 m 26 1967 SAM N.cin Lake Preston, WA m3323 m 27 27/02/58 WAM N.cin Greenhead, WA m25807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Recherche m3810 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11700 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 4/12/83 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 - SAM N.cin Precherche m7676 m 29 1967 WAM N.cin Recherche m7676 m 29 3/07/89 SAM N.cin Dlive Is, S. Aust. m15964 m 29 3/07/89 SAM	N.cin	Cape Bouger, S. Aust.	m11963	m	26	6/06/77	SAM
N.cin Lake Preston, WA m3323 m 27 27/02/58 WAM N.cin Greenhead, WA m25807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Recherche m3810 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11710 m 28 4/12/83 SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Dlive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077	N.cin	S Neptune Is, S. Aust.	m15459	m	26	1967	SAM
N.cin Greenhead, WA m25807 m 27 6/11/74 WAM N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Kangaroo Is, S. Aust. m11710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 4/12/83 SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Shake Park, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 1922 SAM N.cin S. Aust. coast	N.cin	Lake Preston, WA	m3323	m	27	27/02/58	WAM
N.cin Recherche m7677 m 28 1967 WAM N.cin Recherche m3810 m 28 15/02/60 WAM N.cin Kangaroo Is, S. Aust. m11710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11703 m 28 4/12/83 SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Olive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust.	N.cin	Greenhead, WA	m25807	m	, 27	6/11/74	WAM
N.cin Recherche m.810 m 28 15/02/60 WAM N.cin Kangaroo Is, S. Aust. m11710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11703 m 28 4/12/83 SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Olive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust.	N.cin	Recherche	m7677	m	28	1967	WAM
N.cin Kangaroo Is, S. Aust. m1710 m 28 3/02/78 SAM N.cin Spencer Gulf, S. Aust. m11203 m 28 4/12/83 SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Olive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin <t< td=""><td>N.cin</td><td>Recherche</td><td>m3810</td><td>m</td><td>28</td><td>15/02/60</td><td>WAM</td></t<>	N.cin	Recherche	m3810	m	28	15/02/60	WAM
N.cin Spencer Gulf, S. Aust. m1203 m 28 4/12/83 SAM N.cin - m13379 m 28 - SAM N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Olive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM <td>N.cin</td> <td>Kangaroo Is, S. Aust.</td> <td>m11710</td> <td>m</td> <td>28</td> <td>3/02/78</td> <td>SAM</td>	N.cin	Kangaroo Is, S. Aust.	m11710	m	28	3/02/78	SAM
N.cin - m13379 m 28 - SAM N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Olive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	Spencer Gulf, S. Aust.	m11203	m	28	4/12/83	SAM
N.cin Recherche m7676 m 29 1967 WAM N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Olive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	_	m13379	m	28	_	SAM
N.cin Pt Turton, S. Aust. m15964 m 29 3/07/89 SAM N.cin Olive Is, S. Aust. m1702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	Recherche	m7676	m	29	1967	WAM
N.cin Olive Is, S. Aust. m11702 m 30 7/07/78 SAM N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	Pt Turton, S. Aust.	m15964	m	29	3/07/89	SAM
N.cin Snake Park, S. Aust. m5077 m 30 24/02/41 SAM N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	Olive Is, S. Aust.	m11702	m	30	7/07/78	SAM
N.cin S. Aust. coast m1263 m 30 1922 SAM N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	Snake Park, S. Aust.	m5077	m	30	24/02/41	SAM
N.cin Victor Harbor, S. Aust. m19789 m 30 8/10/95 SAM N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	S. Aust. coast	m1263	m	30	1922	SAM
N.cin Greenly Is, S. Aust. m18648 m 30 1976 SAM N.cin Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	Victor Harbor, S. Aust.	m19789	m	30	8/10/95	SAM
<i>N.cin</i> Wirrina Resort, S. Aust. m16395 m 30 22/02/91 SAM	N.cin	Greenly Is, S. Aust.	m18648	m	30	1976	SAM
	N.cin	Wirrina Resort, S. Aust.	m16395	m	30	22/02/91	SAM

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
N.cin	recherche	m3811	m	31	12/02/60	WAM
N.cin	Doubtful Isles, WA	m15367	m	31	3/77	WAM
N.cin	Hopetown/Braemer Bay, WA	m6090	m	31	16/02/64	WAM
N.cin	Yanchep, WA	m7866	m	31	27/07/68	WAM
N.cin	Recherche	m3809	m	31	14/02/60	WAM
N.cin	Western Aust.	m25809	m	31	- , ,	WAM
N.cin	Kangaroo Is, S. Aust.	m11711	m	31	14/01/75	SAM
N.cin	Marino Rocks, S. Aust.	m11223	m	31	2/05/83	SAM
N.cin	Victor Harbor, S. Aust.	m6263	m	31	10/08/57	SAM
N.CIN	Pearson Is, S. Aust.	m2003	m	31	1923	SAM
N.CIN N.cin	Goolwa, S. Aust	m3219	m	31	1931	SAM
N.CIII N.cin	Raligation is, S. Aust.	m16981	m	31	12/08/91	SAM
N.cm N.cin	Large Bay S. Aust	m10592	m	31	1/02/91	SAM
N.cm N.cin	Laigs Day, J. Aust.	mor (r	m	32	2/74	SAM
N.cm N.cin	Victor Harbor S Aust	m16080	m	32 22	2//4	SAM
N.cin	Coffin Bay S Aust	m10900	m	32 22	1080's	SAM
N.cin	Kangaroo Is S Aust	m19270	m)2 22	25/01/02	SAM
N cin	S Nentune Is S Aust	m19705 m15462	m)2 22	1067	SAM
N cin	Kangaroo Is S Aust	m13402 m11708	m	22 22	24/06/75	SAM
N cin	Kangaroo Is S Aust	m11706	m	22	24/00/75	SAM
N.cin	Nuvts Archin, S. Aust.	m11703	m	22	28/10/77	SAM
N.cin	Evre Peninsula, S. Aust.	mq0/0	m	33	1022	SAM
N.cin	Israelite Bay, WA	m2307/	m	3/1	25/01/85	WAM
N.cin	Hummocks, S. Aust.	m4942	m	34	1939	SAM
N.cin	Port Willunga, S. Aust.	m15963	m	34	11/04/90	SAM
N.cin	Kangaroo Is. S. Aust.	m11636	m	35	14/07/84	SAM
N.cin	S Neptune Is, S. Aust.	m15748	m	35	12/06/90	SAM
0.byro	Chancay, Peru	1900.5.7.10	f	19	-	BMNH
O.byro	_	<i>y y</i> ,	f	22	-	ZMB
O.byro	Santa Cruz, Argentina	2382	f	24	31/03/26	DMNH
O.byro	Peru	84.983	f	26	8/5/83	BMNH
O.byro	Chincha Is, Peru	77800	f	26	1919	AMNH
O.byro	Sta Cruz, Argentina	73122	f	27	25/03/26	AMNH
O.byro	-	1959.12.4.7	f	27	-	BMNH
O.byro	Peru	84.985	f	27	8/05/83	BMNH
O.byro	Peru	84.991	f	27	8/05/83	BMNH
O.byro	San Juan, Peru	84.984	f	27	4/83	BMNH
0.byro	Lobos Is, Uruguay	239138	f	27	1923	NMNH
O.byro	San Juan, Peru	84.980	f	28	9/6/83	BMNH
O.byro	Peru	84.981	f	28	-	BMNH
O.byro	Isla Chiloe, Chile	23360	f	28	2/06/70	SDNHM
O.byro	San Juan, Peru	285141	f	30	15/01/49	NMNH
O.byro	Falkland Is	1939.1.21.112	f	19	-	BWNH
O.byro	Falkland IS	1939.1.21.83	l c	20	-	BIMINH
O.byro	Falkland IS	1939.1.21.77	l c	20	-	BIMINH
O.byro	Falkland IS	1939.1.21.98	l c	20	-	BIMINH
O.Dyro	Falkland Is	1949.3.17.83	۲ ا	24	-	
O.byro	Falkland Is	1939.1.21.100	l f	24	-	
O.byro	Falkland Is	1939.1.21.119	l f	24	-	
0.byro	Falkland Is	1939.1.21.117	l f	25 25	_	
0.byro	Falkland Is	1939.1.21.115	f	2) 25	_	BMNH
0.byro	Falkland Is	1939.1.21.113	f	25 26	_	BMNH
0.bvro	Falkland Is	1939.1.21.121	f	26	_	BMNH
O.bvro	Falkland Is	1939.1.21.106	f	26	_	BMNH
0.bvro	Falkland Is	1939.1.21.120	f	27	_	BMNH
0.bvro	Falkland Is	1939.1.21.104	f	_, 27	_	BMNH
O.byro	Falkland Is	1939.1.21.107	f	27	_	BMNH
O.byro	Falkland Is	1939.1.21.110	f	27	-	BMNH
O.byro	Falkland Is	1939.1.21.101	f	27	-	BMNH
O.byro	Falkland Is	1939.1.21.114	f	28	-	BMNH
O.byro	Falkland Is	1939.1.21.109	f	28	-	BMNH
O.byro	Falkland Is	1939.1.21.118	f	29	-	BMNH

O.bywo Falkland is 1939.1.2.1.05 f 30 BMNII O.bywo Falkland is 1939.1.2.1.05 m 2.4 -0 BMNII O.bywo Lobos de Tierra, Peru 1335.66 m 2.4 2/0.5/70 MNNII O.bywo Falkland is 573.3 m 2.4 - BMNII O.bywo Falkland is 1339.1.2.1.65 m 2.5 - BMNII O.bywo Falkland is 1339.1.2.1.72 m 2.6 - BMNII O.bywo Falkland is 1339.1.2.1.66 m 2.5 - BMNII O.bywo Falkland is 1339.1.2.1.66 m 2.6 - BMNII O.bywo Falkland is 1339.1.2.1.66 m 2.6 - BMNII O.bywo Falkland is 139.1.2.1.66 m 2.6 - BMNII O.bywo Falkland is 195.1.2.6.6 m 2.7 - BMNII	Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
O.byw Fakkand is 1951.3.6.1 m 24 - BMNIH O.byw Lobos of Firera, Peru 153566 m 24 2/0a/07 NINH O.byw Fakkand is 8253 m 24 2/05/0 SDNIH O.byw Fakkand is 8253 m 24 2/05 DMNIH O.byw Fakkand is 1939.12.17.65 m 25 - BMNIH O.byw Fakkand is 1939.12.17.65 m 25 - BMNIH O.byw Fakkand is 1939.12.17.67 m 26 - BMNIH O.byw Fakkand is 1939.12.16.4 m 26 - BMNIH O.byw Fakkand is 1939.12.16.4 m 26 - BMNIH O.byw Fakkand is 1939.12.4.6 m 26 - MMIZ O.byw Fakkand is 1939.12.4.7 m 26 - EMNIH O.byw Fakkand i	0.byro	Falkland Is	1939.1.21.105	f	30	-	BMNH
O.byw Fakkand is 939.5.2.17.9 m 24 - BMNNH O.byw Isla Lobos de Tierra, Peru \$3356 m 24 21/05/70 SDNMNH O.byw Fakkand is \$393.5.2.167 m 24 21/05/70 SDNMNH O.byw Fakkand is \$393.5.2.167 m 25 - BMNNH O.byw Tierra del Fuego, Argentina 482356 m 25 - BMNNH O.byw Fiakkand is \$393.1.2.167 m 26 - BMNH O.byw Fiakkand is \$393.1.2.167 m 26 - BMNH O.byw Fiakkand is \$393.1.2.164 m 26 - BMNH O.byw Fiakkand is \$393.1.2.1.61 m 26 - BMNH O.byw Fiakkand is \$393.1.2.1.61 m 27 - BMNH O.byw Fiakkand is \$393.1.2.1.61 m 27 - BMNH	O.byro	Falkland Is	1951.3.6.1	m	24	-	BMNH
O.byro Lobos de Tierra, Peru 53366 m 24 21/02/70 NINNI O.byro Falkland Is 8233 m 24 2/65 DMNIN O.byro Falkland Is 939.1.2.1.65 m 24 2/65 DMNIN O.byro Falkland Is 1939.1.2.1.65 m 25 - BMNIN O.byro Falkland Is 1939.1.2.1.66 m 25 - BMNIN O.byro Falkland Is 1939.1.2.1.66 m 26 - BMNIN O.byro Falkland Is 1939.1.2.1.64 m 26 - BMNIN O.byro Falkland Is 1939.1.2.46 m 26 - BMNIN O.byro Falkland Is 1939.1.2.46 m 26 - BMNIN O.byro Falkland Is 1959.1.2.6.4 m 26 - BMNIN O.byro Falkland Is 1959.1.2.6.4 m 27 - BMNIN	O.byro	Falkland Is	1939.1.21.179	m	24	-	BMNH
Ö.bya Iskl.abos, Chile 24,07 m 24,2 21/05/70 SDNMIN Ö.bya Fakkand is 939,3.2.1.37 m 24,2 - BMNNI Ö.bya Fakkand is 939,3.2.1.37 m 25,2 - BMNNI Ö.bya Tierra del Fuego, Argentina 482156 m 25,2 - BMNNI Ö.bya Fakkand is 939,3.2.1.376 m 26,0 - BMNNI Ö.bya Fakkand is 939,3.2.1.36,4 m 26,0 - BMNNI Ö.bya Fakkand is 939,3.2.1.46,4 m 26,0 - BMNNI Ö.bya - B m 26,0 - BMNNI Ö.bya - B m 27,0 - BMNNI Ö.bya - BAK B 27,0 - BMNNI Ö.bya - BAK B B B B B B B B B	O.byro	Lobos de Tierra, Peru	153566	m	24	2/04/07	NMNH
O.byw Falkland is 8253 m 24 2/65 DMNNH O.byw Falkland is 1939.3.21.165 m 25 - BMNNH O.byw Falkland is 1939.3.21.165 m 25 - BMNNH O.byw Falkland is 1939.3.21.764 m 25 - BMNNH O.byw Falkland is 1939.3.21.764 m 26 - BMNNH O.byw Falkland is 1939.3.21.764 m 26 - BMNNH O.byw Falkland is 1959.3.2.4.6 m 26 - BMNNH O.byw Falkland is 1959.3.2.4.6 m 26 - BMNNH O.byw Falkland is 1959.3.2.4.6 m 27 - BMNNH O.byw Falkland is 1950.3.2.6.6 m 27 - BMNNH O.byw Falkland is 1950.3.2.6.3 m 27 - BMNNH O.byw <t< td=""><td>O.byro</td><td>Isla Lobos, Chile</td><td>22407</td><td>m</td><td>24</td><td>21/05/70</td><td>SDNHM</td></t<>	O.byro	Isla Lobos, Chile	22407	m	24	21/05/70	SDNHM
O.byw Falkland is 1939.1.2.1.72 m 24 - BMNH O.byw Tilera del Fuego, Argentina 482156 m 25 20/04/71 NMNH O.byw Falkland is 1939.1.2.1.76 m 25 - BMNH O.byw Falkland is 1939.1.2.1.76 m 25 - BMNH O.byw Falkland is 1939.1.2.1.76 m 26 - BMNH O.byw Falkland is 1939.1.2.1.64 m 27 - BMNH O.byw Falkland is 1934.7.4.1 m 27 - BMNH O.byw Falkland is 1934.7.4.1 m 27 20/04/7.1 NMNH O.b	O.byro	Falkland Is	8253	m	24	2/65	DMNH
O.bya Fakkand is 1939.121.165 m 25 - BMNN O.bya Larend el Fuego, Argentina A82156 m 25 - LACM O.bya Fakkand is waya m 25 - BMNN O.bya Fakkand is waya m 26 - BMNN O.bya Fakkand is 1939.1.21.164 m 26 - BMNN O.bya Fakkand is 1939.1.21.464 m 26 - BMNN O.bya Fakkand is 1950.12.46 m 26 - BMNN O.bya Fakkand is 1950.12.46 m 26 - BMNN O.bya Fakkand is 1950.12.46 m 27 - BMNN O.bya Fakkand is 1950.12.46 m 27 - BMNN O.bya Fakkand is 1950.12.45 m 27 - BMNN O.bya Fakkand is 1950.1	0.byro	Falkland Is	1939.1.21.172	m	24	-	BMNH
O.byro Tierta del Fuego, Argentina 482:56 m z5 z0/a/j1 MMNN O.byro Falkland Is 1930.31:376 m 25 - BMNN O.byro Falkland Is 1930.31:376 m 26 - BMNN O.byro Sth America 335.d m 26 - BMNN O.byro Falkland Is 1930.32:4.6 m 26 - BMNN O.byro - B m 26 - BMNN O.byro - B m 26 - BMNN O.byro Falkland Is 1950.12.6.6 m 26 - BMNN O.byro Falkland Is 1950.12.6.6 m 27 - BMNN O.byro Falkland Is 1950.7.2.6.6 m 27 - BMNN O.byro Falkland Is 1960.7.2.6.3 m 28 - BMNN O.byro Falkland Is 1930.1	0.byro	Falkland Is	1939.1.21.165	m	25	-	BMNH
Obyro La Gunlla, Peru lam, Partialand is lam, Pariand is lam, Partialand is	0.byro	Tierra del Fuego, Argentina	482156	m	25	20/04/71	NMNH
O.byro Falkland Is 1939.12.13/6 m 25 BMNNH O.byro Sth America 335,d m 26 BMNNH O.byro Falkland Is 1939.12.13.6 m 26 BMNNH O.byro Falkland Is Krozp m 26 ZMB O.byro Falkland Is 1959.12.4.6 m 26 BMNNH O.byro Falkland Is 1950.13.6.1 m 27 BMNNH O.byro Falkland Is 1954.7.4.1 m 27 BMNNH O.byro Falkland Is 1954.7.4.1 m 27 BMNNH O.byro Falkland Is 1954.7.4.1 m 27 BMNH O.byro Falkland Is 1947.7.1 m 27 2/04/71 NMNH O.byro Falkland Is 1947.7.1 m 28 - BMNH O.byro Panta	O.byro	La Gunilla, Peru	lacm72456	m	25	-	LACM
O.bya Fakkand is ws/yp m 26 - BMNH O.bya Fakkand is 135.4 m 26 - BMNH O.bya Fakkand is 135.9 m 26 - BMNH O.bya - Bakand is 195.912.4.6 m 26 - BMNH O.bya Fakkand is 195.912.4.6 m 27 - BMNH O.bya Fakkand is 195.912.4.6 m 27 - BMNH O.bya Fakkand is 195.912.4.6 m 27 - BMNH O.bya Fakkand is 195.4.7.4.1 m 27 - Oak/11 MMNH O.bya Fakkand is 1924.7.4.1 m 28 - BMNH Obya Fakkand is 193.91.21.63 m 28 - BMNH Obya Fakkand is 193.91.21.73 m 28 - BMNH Obya Fakkand is 193.93.121.77 m	0.byro	Falkland Is	1939.1.21.176	m	25	-	BMNH
O.byro Sth America 335.d. m 26 - BMNH1 O.byro Falkland Is 1939.12.1.64 m 26 - UMZC O.byro - B m 26 - UMZC O.byro - B 1959.12.4.6 m 26 - BMNH1 O.byro Falkand Is 1950.12.4.6 m 27 - BMNH1 O.byro Falkand Is 194.7.4.1 m 27 - BMNH1 O.byro Falkand Is 1950.11.6.1 m 27 - BMNH1 O.byro Falkand Is 1880.7.28.6 m 27 20/oa//1 NMNH O.byro Falkand Is 189.7.18.2 m 28 - BMNH1 O.byro Falkand Is 1939.1.2.1.73 m 28 - BMNH1 O.byro Falkand Is 1939.1.2.1.75 m 29 - BMNH1 O.byro Falkand Is <td>O.byro</td> <td>Falkland Is</td> <td>WS479</td> <td>m</td> <td>26</td> <td>-</td> <td>BMNH</td>	O.byro	Falkland Is	WS479	m	26	-	BMNH
Ö.byro Fakkand is 1939.12.1.64 m 26 - BMNH O.byro - B m 26 - UM2C O.byro - B m 26 - BMNH O.byro Fakkand is 1950.11.6.1 m 27 - BMNH O.byro Fakkand is 1940.7.4.1 m 27 - BMNH O.byro Fakkand is 1940.7.4.1 m 27 - BMNH O.byro Tiera del Fuego, Argentina 484912 m 28 - BMNH O.byro Tiera del Fuego, Argentina 484912 m 28 - BMNH O.byro Torres 33881 m 28 - BMNH O.byro Fakkand is 1939.12.1.73 m 28 - BMNH O.byro Fakkand is 1939.12.1.77 m 29 - BMNH O.byro Fakkand is 1939.12.1.77 <td>O.byro</td> <td>Sth America</td> <td>335.d</td> <td>m</td> <td>26</td> <td>-</td> <td>BMNH</td>	O.byro	Sth America	335.d	m	26	-	BMNH
Ö.byra Falkland Is Kro2p m 26 - UMZC O.byra - B m 26 - ZMB O.byra Falkland Is 1850,810.1 m 27 - BMNH O.byra Falkland Is 1950,11.6.1 m 27 - BMNH O.byra Falkland Is 1950,72.8.6 m 27 - BMNH O.byra Falkland Is 12° m 27 20/o4/71 NMNH O.byra Falkland Is 18° m 28 - BMNH O.byra Falkland Is 18' m 28 - BMNH O.byra Falkland Is 1939,12.1.63 m 28 - BMNH O.byra Falkland Is 1939,1.2.1.82 m 29 - BMNH O.byra Falkland Is 1939,1.2.1.82 m 29 - BMNH O.byra Falkland Is 1939,1.2.1.82<	O.byro	Falkland Is	1939.1.21.164	m	26	-	BMNH
0.byro - B m 26 - ZMB 0.byro Falkland Is 1950.12.4.6 m 27 - BMNH 0.byro Falkland Is 1950.11.6.1 m 27 - BMNH 0.byro Falkland Is 194.7.4.1 m 27 - BMNH 0.byro Falkland Is b2* m 27 - BMNH 0.byro Terra del Fuego, Argentina 480.157 m 27 2.004/71 NMNH 0.byro Falkland Is 18* m 28 - BMNH 0.byro Falkland Is 1939.1.21.473 m 28 - BMNH 0.byro Falkland Is 1939.1.21.473 m 28 - BMNH 0.byro Falkland Is 1939.1.21.477 m 28 - BMNH 0.byro Falkland Is 1939.1.21.477 m 29 - BMNH 0.byro Falkland Is	O.byro	Falkland Is	K7029	m	26	-	UMZC
0.byro - 1959.12.4.6 m 26 - BMNH 0.byro Falkland Is 1959.11.6.1 m 27 - BMNH 0.byro Falkland Is 1950.11.6.1 m 27 - BMNH 0.byro Falkland Is 194.7.4.1 m 27 - BMNH 0.byro Falkland Is b2* m 27 2.0/04/71 NMNH 0.byro Falkland Is b2* m 27 2.0/04/71 NMNH 0.byro Falkland Is 18* m 28 - BMNH 0.byro Falkland Is 1959.1.21.63 m 28 - BMNH 0.byro Falkland Is 1959.1.21.77 m 28 - BMNH 0.byro Falkland Is 1959.1.21.77 m 28 - BMNH 0.byro Falkland Is 1959.1.21.77 m 29 - BMNH 0.byro Falkland Is	0.byro	_	В	m	26	-	ZMB
O.byro Falkland is 1869,8.10.1 m 27 - BMNH O.byro Falkland is 1950,11.6.1 m 27 - BMNH O.byro Str of Magellan 1880,7.28.6 m 27 - BMNH O.byro Terra del Fuego, Argentina 482157 m 27 2/04/171 NMNH O.byro Falkland is 88 m 27 31/01/73 NMNH O.byro Falkland is 189,7.6.82 m 28 - BMNH O.byro Falkland is 1939,1.21.73 m 28 - BMNH O.byro Falkland is 1939,1.21.77 m 28 - BMNH O.byro Falkland is 1939,1.21.77 m 29 - BMNH O.byro Falkland is 1939,1.21.77 m 29 - BMNH O.byro Falkland is 1939,1.21.77 m 29 - MMH O.byro <td>0.byro</td> <td>_</td> <td>1959.12.4.6</td> <td>m</td> <td>26</td> <td>-</td> <td>BMNH</td>	0.byro	_	1959.12.4.6	m	26	-	BMNH
O.byro Falkland is 199.0.1.6.1 m 27 - BMNH O.byro Str of Magellan 188.0.7.28.6 m 27 - BMNH O.byro Falkland Is b2* m 27 - BMNH O.byro Falkland Is b2* m 27 2.0/04/71 NMNH O.byro Falkland Is 18* m 28 - BMNH O.byro Caulimbo Bay, Chile 1887.6.18.2 m 28 - BMNH O.byro Falkland Is 193.0.12.1.73 m 28 - BMNH O.byro Falkland Is 193.0.1.1.73 m 29 - BMNH O.byro Falkl	0.byro	Falkland Is	1869.8.10.1	m	27	-	BMNH
O.byro Falkland is 1914,7.4.1 m 27 - BMNH O.byro Str of Magellan 180,7.2.6. m 27 - BMNH O.byro Tierra del Fuego, Argentina 482157 m 27 21/01/73 NMNH O.byro Tierra del Fuego, Argentina 482127 m 27 31/01/73 NMNH O.byro Falkland Is 18* m 28 - BMNH O.byro Falkland Is 1939.1.21.163 m 28 - BMNH O.byro Falkland Is 1939.1.21.177 m 28 - BMNH O.byro Falkland Is 1939.1.21.177 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is 1939.1.21.162 m 29 - MMH O.byro Falkland Is 1939.1.21.162 m 29 - MMH	O.byro	Falkland Is	1950.11.6.1	m	27	-	BMNH
O.byro Str.of Magellan 1880,7.28.6 m 27 - BMNH O.byro Tierra del Fuego, Argentina 482157 m 27 20/04/71 NMNH O.byro Punta Piramides, Argentina 484912 m 27 31/01/73 NMNH O.byro Patkland Is 1887,6.18.2 m 28 - BMNH O.byro Coguinbo Bay, Chile 1887,6.18.2 m 28 - BMNH O.byro Falkland Is 1939,1.21.173 m 28 - BMNH O.byro Falkland Is 1939,1.21.173 m 28 - BMNH O.byro Falkland Is 1939,1.21.177 m 29 - BMNH O.byro Falkland Is 1939,1.21.162 m 29 - BMNH O.byro Falkland Is 1939,1.21.67 m 29 - BMNH O.byro Falkland Is 1939,1.21.67 m 29 - BMNH </td <td>O.byro</td> <td>Falkland Is</td> <td>1914.7.4.1</td> <td>m</td> <td>27</td> <td>-</td> <td>BMNH</td>	O.byro	Falkland Is	1914.7.4.1	m	27	-	BMNH
0.byro Fakkand is bz* m 27 - BMNH 0.byro Tierra del Fuego, Argentina 482157 m 27 31/01/73 NMNH 0.byro Faikland Is 18" m 27 31/01/73 NMNH 0.byro Faikland Is 18" m 28 - BMNH 0.byro Faikland Is 1939.1.21.163 m 28 - BMNH 0.byro Faikland Is 1939.1.21.173 m 28 - BMNH 0.byro Faikland Is 1939.1.21.177 m 29 - BMNH 0.byro Faikland Is 1939.1.21.182 m 29 - MMH 0.byro Faikland Is 1939.1.21.182 m 29 - MMH 0.byro Faikland Is 1939.1.21.182 m 29 - MMH 0.byro Faikland Is 1939.1.21.163 m 29 - MMH 0.byro <t< td=""><td>O.byro</td><td>Str of Magellan</td><td>1880.7.28.6</td><td>m</td><td>27</td><td>-</td><td>BMNH</td></t<>	O.byro	Str of Magellan	1880.7.28.6	m	27	-	BMNH
D.byro Tiera del Fuego, Argentina 482157 m 27 20/04/71 NMNH 0.byro Punta Piramides, Argentina 484912 m 27 31/01/73 NMNH 0.byro Falkland Is 187 m 28 - BMNH 0.byro Coquimbo Bay, Chile 1887.61.8.2 m 28 - BMNH 0.byro Falkland Is 1939.1.21.163 m 28 - BMNH 0.byro Falkland Is 1939.1.21.173 m 29 - BMNH 0.byro Falkland Is 1939.1.21.182 m 29 - BMNH 0.byro Falkland Is 1939.1.21.182 m 29 - BMNH 0.byro Falkland Is 1939.1.21.163 m 29 - MMC2 0.byro Santa Cruz, Argentina 185.0.5.1 m 29 - MMH 0.byro Santa Cruz, Argentina 185.0.5.1 m 29 - MMH <	O.byro	Falkland Is	b2*	m	27	-	BMNH
<i>D.byro</i> Punta Piramides, Argentina 48/4912 m 27 31/01/73 NMNH <i>O.byro</i> Falkland is 18" m 28 - BMNH <i>O.byro</i> Falkland is 1939.1.21.173 m 28 - BMNH <i>O.byro</i> Falkland is 1939.1.21.173 m 28 - BMNH <i>O.byro</i> Falkland is 1939.1.21.173 m 28 - BMNH <i>O.byro</i> Falkland is 1939.1.21.177 m 29 - BMNH <i>O.byro</i> Falkland is 1939.1.21.177 m 29 - BMNH <i>O.byro</i> Falkland is 1939.1.21.172 m 29 - BMNH <i>O.byro</i> Falkland is 1939.1.21.176 m 29 - ZMB <i>O.byro</i> Falkland is 1939.1.21.176 m 29 - MMH <i>O.byro</i> Falkland is 1939.1.21.176 m 29 - MMH <t< td=""><td>O.byro</td><td>Tierra del Fuego, Argentina</td><td>482157</td><td>m</td><td>27</td><td>20/04/71</td><td>NMNH</td></t<>	O.byro	Tierra del Fuego, Argentina	482157	m	27	20/04/71	NMNH
C.byro Falkland Is 18" m 28 - BMNH O.byro Coquimbo Bay, Chile 1887.6.18.2 m 28 - BMNH O.byro Torres 3381 m 28 - BMNH O.byro Torres 3381 m 28 - BMNH O.byro Falkland Is 335.0 m 29 - BMNH O.byro Falkland Is 1939.1.21.177 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - MMXC O.byro Falkland Is 1939.1.21.182 m 29 - ZMB O.byro Falkland Is 1939.1.21.182 m 29 - MMH O.byro Santa Cruz, Argentina 2360 m 29 - ZMB O.byro Santa Cruz, Argentina	O.byro	Punta Piramides, Argentina	484912	m	27	31/01/73	NMNH
0.byro Coquimbo Bay, Chile 1887, 6.18.2 m 28 - BMNH 0.byro Falkland Is 1339.1.21.163 m 28 - ZMB 0.byro Falkland Is 1339.1.21.173 m 28 - BMNH 0.byro Falkland Is 1339.1.21.177 m 29 - BMNH 0.byro Falkland Is 1339.1.21.182 m 29 - BMNH 0.byro Falkland Is K7024 m 29 12/1875 UMZC 0.byro Falkland Is K7024 m 29 - MMNH 0.byro Peru 78817 m 29 - ZMB 0.byro Stata Cruz, Argentina 2360 m 29 - BMNH 0.byro Falkland Is 1391.2.12.16 m 30 - ZMB 0.byro Falkland Is 1391.2.12.16 m 30 - ZMB 0.byro Falkland	O.byro	Falkland Is	1B*	m	28	_	BMNH
O.byro Falkland is 1939.1.21.163 m 28 - BMNH O.byro Torres 3381 m 28 - BMNH O.byro Falkland is 1939.1.21.73 m 28 - BMNH O.byro Falkland is 1939.1.21.77 m 29 - BMNH O.byro Falkland is 1939.1.21.72 m 29 - BMNH O.byro Falkland is 1939.1.21.72 m 29 - BMNH O.byro Falkland is 1939.1.21.77 m 29 - ZMS O.byro Chile Kroz4 m 29 12/1875 UMZC O.byro Sata Cruz, Argentina 2800 m 29 29/03/26 DMNH O.byro Sth America 1851.5.5.1 m 30 - ZMB O.byro Ils St Maria C m 31 - BMNH O.byro Ils St Maria	O.byro	Coquimbo Bay, Chile	1887.6.18.2	m	28	-	BMNH
O.byro Torres 3381 m 28 - ZMB O.byro Falkland Is 1939-1.21.173 m 28 - BMNH O.byro Falkland Is 133.0 m 29 - BMNH O.byro Falkland Is 133.0 m 29 - BMNH O.byro Falkland Is 133.0.1.21.182 m 29 - BMNH O.byro Falkland Is 177.7 m 29 - MMNT O.byro Falkland Is 179.0.1.21.182 m 29 12/1875 UMZC O.byro Falkland Is 179.0.2.1.82 m 29 - NMNH O.byro Stata Cruz, Argentina 2380 m 29 - BMNH O.byro Sth America 185.1.5.5.1 m 30 - ZMB O.byro Isla de Ios Viejas, Peru 504394 m 30 27/08/66 NMNH O.byro Falklan	O.byro	Falkland Is	1939.1.21.163	m	28	-	BMNH
O.byro Falkland Is 1939.1.21.173 m 28 - BMNH O.byro Falkland Is 335.0 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is 177.24 m 29 - MMH O.byro Chile Kroz8 m 29 - NMH O.byro Sata Cruz, Argentina 2380 m 29 - BMNH O.byro Sata Cruz, Argentina 2380 m 30 - BMNH O.byro Sth America 1935.12.166 m 30 - ZMB O.byro Its St Maria C m 30 - ZMB O.byro falkland Is 193	O.byro	Torres	33881	m	28	-	ZMB
O.byro Falkland Is 33.0 m 29 - BMNH O.byro Falkland Is 1939.1.21.177 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 1/1875 UMZC O.byro Falkland Is 1939.1.21.166 m 29 - NMMH O.byro Santa Cruz, Argentina 2380 m 29 29/03/26 DMNH O.byro Stata Cruz, Argentina 2380 m 29 - BMNH O.byro Stata Bels Stata 1851.5.5.1 m 30 - ZMB O.byro Isla de los Viejas, Peru 504394 m 30 2/108/66 NMMH O.byro Falkland Is 189.2.2.4.1 m 31 - BMH	O.byro	Falkland Is	1939.1.21.173	m	28	-	BMNH
O.byro Falkland Is 1939.1.21.177 m 29 - BMNH O.byro Falkland Is 1939.1.21.182 m 29 - BMNH O.byro Falkland Is Kyro24 m 29 12/1875 UMZC O.byro Chile Kyro24 m 29 1876 UMZC O.byro Chile Kyro24 m 29 - ZMB O.byro Chile Kyro24 m 29 - ZMB O.byro Santa Cruz, Argentina 2380 m 29 - BMNH O.byro Santa Kruz, Argentina 1939.1.21.166 m 29 - BMNH O.byro Sth America 1851.5.1 m 30 - ZMB O.byro Ils St Maria C m 30 - ZMB O.byro of Ost Cat? 939.4.21.183 m 31 - BMNH O.byro Falkland Is 1869	O.byro	Falkland Is	335.0	m	29	-	BMNH
O.byro Falkland Is 1999.1.21.182 m 29 BMNH O.byro Falkland Is K7024 m 29 12/1875 UMZC O.byro Peru 72817 m 29 - NMNH O.byro Peru 72817 m 29 - NMNH O.byro Santa Cruz, Argentina 2380 m 29 29/03/26 DMNH O.byro Santa Cruz, Argentina 2380 m 29 - MNH O.byro Sth America 1851.5.5.1 m 30 - BMNH O.byro Ils St Maria C m 30 - BMNH O.byro Ils Ade los Viejas, Peru 504394 m 30 27/08/66 NMH O.byro fold Cat? 335.m m 31 - BMNH O.byro Falkland Is 1869.2.24.1 m 31 - MMH O.byro Falkland Is	O.byro	Falkland Is	1939.1.21.177	m	29	-	BMNH
O.byro Falkland Is K7024 m 29 12/1875 UMZC O.byro Chile K7028 m 29 1876 UMZC O.byro Peru 72817 m 29 - ZMB O.byro Santa Cruz, Argentina 2380 m 29 29/03/26 DMNH O.byro Falkland Is 1939.1.21.166 m 29 - BMNH O.byro Sth America 1851.5.5.1 m 30 - ZMB O.byro Ista de los Viejas, Peru 504394 m 30 - ZMB O.byro Ista de los Viejas, Peru 504394 m 31 - BMNH O.byro falkland Is 1869.2.2.4.1 m 31 - BMNH O.byro Falkland Is 1869.2.2.4.1 m 31 - BMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro	O.byro	Falkland Is	1939.1.21.182	m	29	-	BMNH
O.byro Chile K7028 m 29 1876 UMZC O.byro Peru 72817 m 29 - ZMB O.byro - 550227 m 29 - NMNH O.byro Santa Cruz, Argentina 2380 m 29 29/03/26 DMNH O.byro Falkland Is 1939.1.21.166 m 29 - BMNH O.byro Flakland Is 1939.1.21.166 m 29 - BMNH O.byro Ils St Maria C m 30 - ZMB O.byro Ils de los Viejas, Peru 504394 m 30 27/08/66 NMNH O.byro Falkland Is 1869.2.2.4.1 m 31 - BMNH O.byro Falkland Is 1991.2.1.183 m 31 24/7/35 BMNH O.byro Falkland Is 1991.2.1.183 m 32 - BMNH O.byro Falkland Is	O.byro	Falkland Is	K7024	m	29	12/1875	UMZC
O.byro Peru 72817 m 29 - ZMB O.byro - 550227 m 29 - NMNH O.byro Santa Cruz, Argentina 2380 m 29 29/03/26 DMNH O.byro Sth America 1831.5.5.1 m 29 - BMNH O.byro Ils St Maria C m 30 - ZMB O.byro Ils Ade los Viejas, Peru 504394 m 30 27/08/66 NMNH O.byro Isla de los Viejas, Peru 504394 m 31 1902 ZMB O.byro of Ost Cat? 335.m m 31 1902 ZMB O.byro - 550142 m 31 1902 ZMB O.byro Falkland Is 1393.1.21.183 m 32 - BMNH O.byro Falkland Is 1395.67 m 32 1010 NMNH O.byro Lobos de Tierra, Peru	O.byro	Chile	K7028	m	29	1876	UMZC
O.byro - 55027 m 29 - NMNH O.byro Santa Cruz, Argentina 2380 m 29 29/03/26 DMNH O.byro Falkland Is 1939.1.21.166 m 29 - BMNH O.byro Sth America 1851.5.5.1 m 30 - BMNH O.byro Ils St Maria C m 30 - ZMB O.byro of Ot Cat? 335,m m 31 - BMNH O.byro of Ot Cat? 335,m m 31 - BMNH O.byro ralkland Is 1869.2.24.1 m 31 - BMNH O.byro - 72822 m 31 24/7/35 BMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Burnos Aires, Argentina 172782 m 32 1910 NMNH O.byro Burens Aires, Argentina	O.byro	Peru	72817	m	29	-	ZMB
O.byro Santa Cruz, Argentina 2380 m 29 29/03/26 DMNH O.byro Falkland Is 1939.1.21.166 m 29 - BMNH O.byro Sth America 1851.5.1 m 30 - BMNH O.byro Ills St Maria C m 30 - BMNH O.byro Ills de los Viejas, Peru 504394 m 30 27/08/66 NMNH O.byro of Ost Cat? 335.m m 31 - BMNH O.byro - 72822 m 31 1902 ZMB O.byro - 72822 m 31 24/7/35 BMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Falkland Is 1939.1.21.33 m 32 2/04/07 NMNH O.byro Falkland Is 1939.1.21.37 m 32 2/04/07 NMNH O.byro	O.byro	-	550227	m	29	-	NMNH
O.byro Falkland Is 1939.1.21.166 m 29 - BMNH O.byro Sth America 1851.5.5.1 m 30 - BMNH O.byro IIs St Maria C m 30 - ZMB O.byro IIs St Maria C m 30 - ZMB O.byro Isla de los Viejas, Peru 504394 m 30 - BMNH O.byro of Ost Cat? 335.m m 31 - BMNH O.byro - 72822 m 31 1902 ZMB O.byro - 7 Sto142 m 31 - MMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Falkland Is 1939.1.21.183 m 32 - ZMB O.byro Balknad Is 1939.1.21.173.1 m 32 2/04/07 NMNH O.byro Balkland Is	O.byro	Santa Cruz, Argentina	2380	m	29	29/03/26	DMNH
O.byro Sth America 1851.5.1. m 30 - BMNH O.byro Ils St Maria C m 30 - ZMB O.byro Isla de los Viejas, Peru 504394 m 30 27/08/66 NMNH O.byro of Ost Cat? 35.m m 31 - BMNH O.byro Falkland Is 1869.2.24.1 m 31 - BMNH O.byro - 72822 m 31 1902 ZMB O.byro - 550142 m 31 24/7/35 BMNH O.byro Falkland Is 1939.1.21.18 m 32 - ZMB O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Buenos Aires, Argentina 1925.12.17.1 m 34 - BMNH O.byro Falkland Is 1925.12.17.1 m 34 19/12/82 NMNH O.byro Cp F	O.byro	Falkland Is	1939.1.21.166	m	29	_	BMNH
O.byro IIIs St Maria C m 30 - ZMB O.byro Isla de los Viejas, Peru 504394 m 30 27/08/66 NMNH O.byro of Ost Cat? 335.m m 31 - BMNH O.byro Falkland Is 1869.2.24.1 m 31 1902 ZMB O.byro - 72822 m 31 1902 ZMB O.byro - 72822 m 31 1902 ZMB O.byro - 72822 m 31 1902 ZMB O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Buenos Aires, Argentina 172782 m 32 1910 MMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Cp Fairweather, Patagonia 95063 m 34 19/12/82 NMNH O.byro Cp F	O.byro	Sth America	1851.5.5.1	m	30	-	BMNH
O.byro Isla de los Viejas, Peru 504394 m 30 27/08/66 NMNH O.byro of Ost Cat? 335.m m 31 - BMNH O.byro Falkland Is 1869.2.24.1 m 31 - BMNH O.byro - 550142 m 31 1902 ZMB O.byro - 550142 m 31 - MMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Falkland Is 1886.12.13.1 m 32 - ZMB O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Buenos Aires, Argentina 172782 m 32 2/04/07 NMNH O.byro Falkland Is 1925.12.17.1 m 34 19/12/82 NMNH O.byro Ceras de Illesces 550307 m 34 2/06/70 SDHMN O.by	O.byro	Ils St Maria	C	m	30	-	ZMB
O.byro of Ost Cat? 335.m m 31 - BMNH O.byro Falkland Is 1869.2.24.1 m 31 - BMNH O.byro - 72822 m 31 1902 ZMB O.byro - 550142 m 31 - NMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Falkland Is 1939.1.21.183 m 32 - BMNH O.byro Sth America 46494 m 32 - ZMB O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Cp Fairweather, Patagonia 9563 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro	O.byro	Isla de los Viejas, Peru	504394	m	30	27/08/66	NMNH
O.byro Falkland Is 1869.2.24.1 m 31 - BMNH O.byro - 72822 m 31 1902 ZMB O.byro - 550142 m 31 - NMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Falkland Is 1886.12.13.1 m 32 - BMNH O.byro Sth America 46494 m 32 - ZMB O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Failkland Is 1925.12.17.1 m 34 1896 NMNH O.byro Cerios de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro	O.byro	of Ost Cat?	335 . m	m	31	_	BMNH
O.byro - 72822 m 31 1902 ZMB O.byro - 550142 m 31 - NMNH O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Falkland Is 1886.12.13.1 m 32 - BMNH O.byro Sth America 46494 m 32 - BMNH O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Falkland Is 1925.12.17.1 m 34 - BMNH O.byro Cp Fairweather, Patagonia 95063 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 2345 m 34 2/06/70 SDNHM O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.b	O.byro	Falkland Is	1869.2.24.1	m	31	-	BMNH
0.byro $-$ 550142m31 $-$ NMNH $0.byro$ Falkland Is1939.1.21.183m3124/7/35BMNH $0.byro$ Falkland Is1886.12.13.1m32 $-$ BMNH $0.byro$ Sth America46494m32 $-$ ZMB $0.byro$ Buenos Aires, Argentina172782m321910NMNH $0.byro$ Lobos de Tierra, Peru153567m322/04/07NMNH $0.byro$ Falkland Is1925.12.17.1m34 $-$ BMNH $0.byro$ Cp Fairweather, Patagonia95063m341896NMNH $0.byro$ Cerros de Illesces550307m3419/12/82NMNH $0.byro$ Isla Chiloe, Chile23345m342/06/70SDNHM $0.byro$ Montevideo70695m27 $-$ ZMB $0.byro$ Mar del Plata, Argentina172781m301910NMNH $0.byro?$ Falkland Is1939.1.21.99f19 $-$ MMNZ $P.hook$ Enderby Is310/39f19 $-$ AM $P.hook$ Enderby Is88/8182f201981NMNZ $P.hook$ Enderby Is89/14f211989NMNZ $P.hook$ Enderby Is61/882f201981NMNZ $P.hook$ Enderby Is61/882f211981NMNZ $P.hook$ <td>O.byro</td> <td>_</td> <td>72822</td> <td>m</td> <td>31</td> <td>1902</td> <td>ZMB</td>	O.byro	_	72822	m	31	1902	ZMB
O.byro Falkland Is 1939.1.21.183 m 31 24/7/35 BMNH O.byro Falkland Is 1886.12.13.1 m 32 - BMNH O.byro Sth America 46494 m 32 - ZMB O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Falkland Is 1925.12.17.1 m 34 - BMNH O.byro Cerros de Illesces 550307 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Montevideo 70695 m 37 - ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - MMNZ	O.byro	_	550142	m	31	_	NMNH
O.byro Falkland Is 1886.12.13.1 m 32 - BMNH O.byro Sth America 46494 m 32 - ZMB O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Falkland Is 1925.12.17.1 m 34 - BMNH O.byro Cp Fairweather, Patagonia 95063 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 19/12/82 NMNH O.byro Montevideo 70695 m 27 - ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - NMNZ	O.byro	Falkland Is	1939.1.21.183	m	31	24/7/35	BMNH
O.byro Sth America 46494 m 32 - ZMB O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Falkland Is 1925.12.17.1 m 34 - BMNH O.byro Cp Fairweather, Patagonia 95063 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro Montevideo 70695 m 27 - ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - MMZ P.hook Enderby Is 310/39 f 19 - MMZ	O.byro	Falkland Is	1886.12.13.1	m	32	-	BMNH
O.byro Buenos Aires, Argentina 172782 m 32 1910 NMNH O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Falkland Is 1925.12.17.1 m 34 - BMNH O.byro Cp Fairweather, Patagonia 95063 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro Montevideo 70695 m 27 - ZMB O.byro? Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - BMNH P.hook Enderby Is 310/39 f 19 - MMNZ P.hook Enderby Is 88/8182 f 20 1981 MMNZ <	O.byro	Sth America	46494	m	32	-	ZMB
O.byro Lobos de Tierra, Peru 153567 m 32 2/04/07 NMNH O.byro Falkland Is 1925.12.17.1 m 34 - BMNH O.byro Cp Fairweather, Patagonia 95063 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro Montevideo 70695 m 27 - ZMB O.byro? Mar del Plata, Argentina 172781 m 30 1910 NMNZ P.hook Enderby Is 310/39 f 19 - MMNZ P.hook Enderby Is 810/39 f 19 - AM P.hook Enderby Is 88/8182 f 19 - AM	O.byro	Buenos Aires, Argentina	172782	m	32	1910	NMNH
O.byro Falkland Is 1925.12.17.1 m 34 - BMNH O.byro Cp Fairweather, Patagonia 95063 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro Montevideo 70695 m 27 - ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - BMNH P.hook Enderby Is 310/39 f 19 - NMNZ P.hook Enderby Is 810/39 f 19 - AM P.hook Enderby Is 88/8182 f 19 - AM P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook <td< td=""><td>O.byro</td><td>Lobos de Tierra, Peru</td><td>153567</td><td>m</td><td>32</td><td>2/04/07</td><td>NMNH</td></td<>	O.byro	Lobos de Tierra, Peru	153567	m	32	2/04/07	NMNH
O.byro Cp Fairweather, Patagonia 95063 m 34 1896 NMNH O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro Montevideo 70695 m 37 - ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - BMNH P.hook Enderby Is 310/39 f 19 - MMNZ P.hook Enderby Is 910/39 f 19 - MMNZ P.hook Enderby Is 810/39 f 19 - MMZ P.hook Enderby Is 88/8182 f 19 - AM P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Ender	O.byro	Falkland Is	1925.12.17.1	m	34	-	BMNH
O.byro Cerros de Illesces 550307 m 34 19/12/82 NMNH O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro Montevideo 70695 m 27 - ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - BMNH P.hook Enderby Is 310/39 f 19 - MMNZ P.hook Enderby Is 910/39 f 19 - MMZ P.hook Enderby Is 810/39 f 19 - MMZ P.hook Enderby Is 810/39 f 19 - AM P.hook Enderby Is 89/14 f 19 - AM P.hook Enderby Is 89/14 f 21 1989 MMNZ P.hook Enderby Is <td< td=""><td>O.byro</td><td>Cp Fairweather, Patagonia</td><td>95063</td><td>m</td><td>34</td><td>1896</td><td>NMNH</td></td<>	O.byro	Cp Fairweather, Patagonia	95063	m	34	1896	NMNH
O.byro Isla Chiloe, Chile 23345 m 34 2/06/70 SDNHM O.byro Montevideo 70695 m 27 - ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - BMNH P.hook Enderby Is 310/39 f 19 - NMNZ P.hook Enderby Is 910/39 f 19 - MMNZ P.hook Enderby Is 910/39 f 19 - MMZ P.hook Enderby Is 810/39 f 19 - MMZ P.hook Enderby Is 810/39 f 19 - AM P.hook Enderby Is 88/8182 f 19 - AM P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is 46/8182	O.byro	Cerros de Illesces	550307	m	34	19/12/82	NMNH
O.byro Montevideo 70695 m 27 – ZMB O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 – BMNH P.hook Enderby Is 310/39 f 19 – NMNZ P.hook Enderby Is e17/8081 f 19 – AM P.hook Enderby Is e17/8081 f 19 – AM P.hook Enderby Is 88/8182 f 20 1982 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	O.byro	Isla Chiloe, Chile	23345	m	34	2/06/70	SDNHM
O.byro Mar del Plata, Argentina 172781 m 30 1910 NMNH O.byro? Falkland Is 1939.1.21.99 f 19 - BMNH P.hook Enderby Is 310/39 f 19 - NMNZ P.hook Enderby Is 910/39 f 19 - NMNZ P.hook Enderby Is 910/39 f 19 - NMNZ P.hook Enderby Is 910/39 f 19 - NMNZ P.hook Enderby Is 917/8081 f 19 - AM P.hook - m17822 f 19 - AM P.hook Enderby Is 88/8182 f 20 1982 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182	O.byro	Montevideo	70695	m	27	-	ZMB
O.byro? Falkland Is 1939.1.21.99 f 19 – BMNH P.hook Enderby Is 310/39 f 19 – NMNZ P.hook Enderby Is 910/39 f 19 – NMNZ P.hook Enderby Is e17/8081 f 19 1981 NMNZ P.hook – m17822 f 19 – AM P.hook Enderby Is 88/8182 f 20 1982 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	O.byro	Mar del Plata, Argentina	172781	m	30	1910	NMNH
P.hook Enderby Is 310/39 f 19 - NMNZ P.hook Enderby Is e17/8081 f 19 1981 NMNZ P.hook - m17822 f 19 - AM P.hook Enderby Is 88/8182 f 20 1982 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	O.byro?	Falkland Is	1939.1.21.99	f	19	-	BMNH
P.hook Enderby Is e17/8081 f 19 1981 NMNZ P.hook - m17822 f 19 - AM P.hook Enderby Is 88/8182 f 20 1982 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	P.hook	Enderby Is	310/39	f	19	-	NMNZ
P.hook - m17822 f 19 - AM P.hook Enderby Is 88/8182 f 20 1982 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is 91/4 f 22 1981 NMNZ P.hook Enderby Is 91/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	P.hook	Enderby Is	e17/8081	f	19	1981	NMNZ
P.hook Enderby Is 88/8182 f 20 1982 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	P.hook	_	m17822	f	19	-	AM
P.hook Enderby Is 89/14 f 21 1989 NMNZ P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	P.hook	Enderby Is	88/8182	f	20	1982	NMNZ
P.hook Enderby Is e15/8081 f 22 1981 NMNZ P.hook Enderby Is 46/8182 f 22 1982 NMNZ	P.hook	Enderby Is	89/14	f	21	1989	NMNZ
<i>P.hook</i> Enderby Is 46/8182 f 22 1982 NMNZ	P.hook	Enderby Is	e15/8081	f	22	1981	NMNZ
	P.hook	Enderby Is	46/8182	f	22	1982	NMNZ

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
P.hook	Enderby Is	89/13	f	22	1989	NMNZ
P.hook	Enderby Is	May-82	f	23	1982	NMNZ
P.hook	Auckland Is	m12606	f	23	14/02/73	AM
P.hook	Auckland Is	1926.389	f	24	1926	MNHN
P.hook	Auckland Is	344983	f	24	18/01/67	NMNH
P.hook	Enderby Is	e10/80.81	f	24	1981	NMNZ
P.hook	Enderby Is	e17/8081	f	24	1981	NMNZ
P.hook	Enderby Is	13/8182	f	24	1982	NMNZ
P.hook	Enderby Is	03FFV	f	24	-	NMNZ
P.hook	Enderby Is	e4/86	f	25	1986	NMNZ
P.hook	Enderby Is	e2/8081	f	25	1981	NMNZ
P.NOOK	Enderby IS	8485/0007MC	r F	25	1985	
P.HOOK	Eliderby is	2	۱ ۲	25	-	
P.HOOK D.hook	- Auckland Is	111/824	l f	25	-	
P.hook	Endorby Is	344900	f	20	10/01/04	NMN7
P hook	Enderby Is	69/15 r	f	20	1990	NMNZ
P hook) m17822	f	20	_	
P hook	Enderby Is	210/28	f	20	_	NMN7
P hook	Enderby Is	91/80	f	27	1080	NMNZ
P hook	Enderby Is	e1/8c86	f	27	1986	NMNZ
P hook	Enderby Is	80/16	f	28	1080	NMNZ
P.hook	Auckland Is	m178/8	f	20	-	AM
P.hook	Enderby Is	8/85/0005MC	f	30	1085	NMN7
P.hook	Enderby Is	FFV02/82	f	23	1082	NMNZ
P.hook	_	NMNZ1663	m	24	-	NMNZ
P.hook	Auckland Is	NMNZ2297	m	25	_	NMNZ
P.hook	Enderby Is	8485/0002MC	m	25	1985	NMNZ
P.hook	_	NMNZ1034	m	26	_	NMNZ
P.hook	Auckland Is	344982	m	27	18/01/64	NMNH
P.hook	Enderby Is	8485/0012MC	m	27	1985	NMNZ
P.hook	Enderby Is	Jul-82	m	27	1982	NMNZ
P.hook	Enderby Is	e5/8081	m	27	1981	NMNZ
P.hook	-	NMNZ1033	m	27	-	NMNZ
P.hook	Snares Is, N.Z.	8256	m	28	5/02/71	DMNH
P.hook	Enderby Is	Apr-81	m	29	1981	NMNZ
P.hook	Enderby Is	NMNZ1644	m	31	-	NMNZ
P.hook	N.Z.	8254	m	31	-	DMNH
P.hook	Campbell Is	1875.509	m	32	-	MNHN
P.hook	Snares Is, N.Z.	344981	m	33	13/01/64	NMNH
P.hook	Auckland Is	m33573	m	24	-	AM
P.hook	Auckland Is	m17849	m	25	-,	AM
P.hook	Auckland Is	m11816	m	26	1/73	AM
P.hook	Auckland Is	m11813	m	27	1/73	AM
P.hook		m11811	m	27	1/73	AM
P.NOOK		m11812	m	29	1/73	AM
P.NOOK		m11815	m	29	1/73	AM
P.HOOK		m11819		29	1/73	AM
P.HOOK D.hook	N.Z. Endorby Is	02/86	m	32	-	
P.hook	Auckland Is	E2/00 m11818	m	33	1980	
7.00K	Baia Calif ME	21241	f	33	1//3	SDNHM
Z.c.c	San Benito Is MF	21241	f	20	_	NMNH
7	North Bch 11	16888	f	24	5/07/01	AMNH
7.0.0	Baia Calif. MF	lacm22000	f	25	13/00/53	LACM
Z.c.c	Isla Natividad. ME	396915	f	26	4/69	NMNH
Z.c.c	Baja Calif. ME	22983	f	26	27/02/74	SDNHM
Z.c.c	Baja Calif. ME	19393	f	27	19/04/63	SDNHM
Z.c.c	Baja Calif. ME	21240	f	27	20/11/53	SDNHM
Z.c.c	San Martin, CA	180457	f	, 28	8/03/57	AMNH
Z.c.c	Baja Calif, ME	lacm51195	f	28	1/07/64	LACM
Z.c.c	Baja Calif, ME	lacm51188	f	28	2/11/63	LACM
Z.c.c	San Martin Is, ME	180452	f	29	8/03/57	AMNH
Z.c.c	San Martin Is, ME	180453	f	29	8/03/57	AMNH

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
Z.c.c	San Martin Is, ME	180454	f	29	8/03/57	AMNH
Z.c.c	San Benitas Is, ME	27135	f	29	-	NMNH
Z.c.c	Benita Is, ME	21737	f	29	-	NMNH
Z.c.c	Isla Natividad, ME	395725	f	29	24/04/68	NMNH
Z.c.c	San Miguel Is, CA	11489	f	29	8/69	UAM
Z.c.c	N. Pacific	lacm91761	f	29	23/09/92	LACM
Z.c.c	San Jorge Is, ME	lacm8584	f	29	20/01/50	LACM
Z.c.c	San Nicolas Is, CA	lacm51228	f	29	10/09/60	LACM
Z.c.c	N. Pacific	lacm91326	f	29	21/04/93	LACM
Z.c.c	Baja Calif, ME	22979	f	29	1/71	SDNHM
Z.c.c	Baja Calif, ME	23340	f	29	28/02/75	SDNHM
Z.c.c	Baja Calif, ME	22863	f	29	9/02/73	SDNHM
Z.c.c	Baja Calif	22825	f	29	25/01/72	SDNHM
Z.c.c	Baja Calif, ME	22823	f	29	25/01/72	SDNHM
Z.c.c	San Clemente Is, CA	2365	f	29	27/06/28	DMNH
Z.c.c	San Martin Is, CA	180461	f	30	8/03/57	AMNH
Z.c.c	San Martin Is, CA	180459	f	30	8/03/57	AMNH
Z.c.c	Benita Is, ME	21736	f	30	11/1884	NMNH
Z.c.c	La Jolla, CA	276052	f	30	23/10/43	NMNH
Z.c.c	San Pedro, CA	276054	f	30	5/12/46	NMNH
Z.c.c	_	504203	f	30	_	NMNH
Z.c.c	N. Pacific	lacm91889	f	30	30/09/94	LACM
Z.c.c	Baja Calif, ME	lacm23000	f	30	13/09/53	LACM
Z.c.c	Bluff Cove, CA	lacm86035	f	30	26/11/82	LACM
Z.c.c	Baja Calif, ME	22984	f	30	28/02/74	SDNHM
Z.c.c	Baja Calif, ME	19397	f	30	16/04/63	SDNHM
Z.c.c	N. Pacific	lacm91334	f	31	18/06/93	LACM
Z.c.c	Santa Barbara coast, CA	lacm51184	f	31	3/03/69	LACM
Z.c.c	San Miguel Is, CA	8267	f	31	_	DMNH
Z.c.c	Sonora, ME	514663	m	24	1969	NMNH
Z.c.c	Huntington Bch, CA	lacm51171	m	24	1/12/59	LACM
Z.c.c	Baja Calif, ME	23342	m	24	27/02/77	SDNHM
Z.c.c	Baja Calif, ME	21248	m	24	17/06/56	SDNHM
Z.c.c	Baja Calif, ME	19396	m	24	19/04/63	SDNHM
Z.c.c	San Miguel Is, CA	21245	m	24	18/09/54	SDNHM
Z.c.c	San Martin Is, CA	180458	m	25	8/03/57	AMNH
Z.c.c	Santa Cruz Is, CA	131897	m	25	_	NMNH
Z.c.c	San Benito Is, ME	259651	m	25	5/35	NMNH
Z.c.c	San Nicolas Is, CA	lacm51175	m	25	13/04/60	LACM
Z.c.c	Coronado Is, CA	260216	m	26	21/03/36	NMNH
Z.c.c	San Benito Is, ME	259654	m	26	5/35	NMNH
Z.c.c	San Benito Is, ME	259653	m	26	5/35	NMNH
Z.c.c	Baja Calif, ME	19155	m	26	7/04/62	SDNHM
Z.c.c	Ano Nuevo Is, CA	8265	m	26	-	DMNH
Z.c.c	Baja Calif, ME	21249	m	27	17/06/56	SDNHM
Z.c.c	Puerto Refugia, ME	19152	m	27	16/03/62	SDNHM
Z.c.c	Puerto Refugio, ME	19153	m	27	16/03/62	SDNHM
Z.c.c	Georges Is, Sonora, ME	261318	m	28	25/03/37	NMNH
Z.c.c	Sonora, ME	514664	m	28	1969	NMNH
Z.c.c	San Nicolas Is, CA	lacm9337	m	28	19/05/51	LACM
Z.c.c	San Nicholas Is	15254	m	30	_	NMNH
Z.c.c	S. vincente River, ME	504928	m	31	7/12/54	NMNH
Z.c.c	Ano Nuevo Is, CA	11474	m	31	9/67	UAM
Z.c.c	San Miguel Is, CA	lacm51192	m	31	7/09/60	LACM
Z.c.c	Baja Calif, ME	lacm43456	m	31	25/04/73	LACM
Z.c.c	Baja Calif, ME	19156	m	31	18/04/62	SDNHM
Z.c.c	Puerto Refugio, ME	18663	m	31	26/04/53	SDNHM
Z.c.c	San Miguel Is, CA	21244	m	31	18/09/54	SDNHM
Z.c.c	Baja Calif, ME	22859	m	31	9/02/73	SDNHM
Z.c.c	Torrey Pines Cliffs, CA	21246	m	31	28/12/55	SDNHM
Z.c.c	Baja Calif, ME	, 19158	m	31	21/04/62	SDNHM
Z.c.c	Baja Calif, ME	2594	m	31	-	SDNHM
Z.c.c	San Benito Is, ME	259655	m	32	5/35	NMNH
Z.c.c	CA	11490	m	32	_	UAM

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
Z.c.c	Baja Calif, ME	lacm43482	m	32	26/06/73	LACM
Z.c.c	San Diego Co, CA	lacm85974	m	32	16/08/90	LACM
Z.c.c	Baja Calif, ME	10586	m	32	-	SDNHM
Z.c.c	Coronados Is	180667	m	33	7/05/57	AMNH
Z.c.c	Sta Margarita Is	180515	m	33	19/03/57	AMNH
Z.c.c	Isla Tiburon	514030	m	33	8/10/76	NMNH
Z.c.c	Anoo Nuevo Is, CA	35200	m	33	10/68	UAM
Z.c.c	Baja Calif, ME	lacm43455	m	33	25/04/73	LACM
Z.c.c	Santa Cruz, CA	lacm39665	m	33	14/03/70	LACM
Z.c.c	San Pedro, CA	lacm54590	m	33	29/09/78	LACM
Z.c.c	Isla San Pedro Martir, ME	19154	m	33	21/05/62	SDNHM
Z.c.c	Ano Nuevo Is, CA	8263	m	33	-	DMNH
Z.c.c	Baja Calif, ME		m	34	-	UAM
Z.c.c	La Jolla, CA	11404	m	34	-	SDNHM
Z.c.c	San Clemente Is, CA	2364	m	34	27/06/28	DMNH
Z.c.c	San Benito Is, ME	259652	m	35	5/35	NMNH
Z.c.c	Isla Natividad, ME	395724	m	35	24/04/68	NMNH
Z.c.c	Ano Nuevo Point, CA	lacm39666	m	35	24/03/70	LACM
Z.C.C	San Nicolas Is, CA	lacm31360	m	35	9/04/60	LACM
Z.C.C	Baja Calif, ME	2589	m	35	-	SDNHM
Z.C.C	Baja Calif, ME	20686	m	35	26/04/66	SDNHM
Z.C.C	Isla de la Guarda, ME	8268	m	35	-	DMNH
Z.C.C	Coast of CA	14410	m	36	-	NMNH
Z.C.C	San Miguel IS, CA	11491	m	36	8/69	UAM
Z.C.C Z.c.c	San Nicolas Is, CA	lacm51164	m	36	11/04/60	LACM
Z.C.C Z.c.c	Marineland Pier, CA	lacm54624	m	29	6/07/70	LACM
Z.C.C	Moss Landing, CA	lacm39663	m	30	19/10/69	
Z.L.L Z.c.c		180502		32	14/03/5/	
Z.L.L Z.c.c	Allo Nuevo Is, CA	lacini 39655		33	20/05/08	
Z.C.C Z.c.i	MOSS Lanung, CA	laciii 39662	111 F	33	19/10/62	
Z.C.J Z.c.i	Japan	1872 2 12 1	I m	27	-	
Z.C.J Z.c.i	Japan Robun Island	1073.3.12.1 "ID#a"	m	33	28-8/08	HMIH
Z.c.j. Z.c.i	Rebun Island	"l-001"	m	20	4-6/08	нмін
Z.c.j. Z.c.i	Rebun Island	"ID#1226"	m	20	4 0/90 8-8/80	нмін
Z.c.j. Z.c.i	Rebun Island	"ID#1"	m	21	-	нмін
Z.c.j.	Aonae Okushiri Island	2	m	33	1050	нмн
Z.c.i.	Aonae, Okushiri Island	7	m	33	1950	НМН
Z.c.i.	Aonae, Okushiri Island	6	m	33	1950	НМН
Z.c.i.	Aonae, Okushiri Island	4	m	35	1950	НМН
Z.c.i.	Aonae, Okushiri Island	1	m	35	1950	НМН
Z.c.j.	Aonae, Okushiri Island	3	m	36	1950	НМН
Ź.c.j.	Aonae, Okushiri Island	5	m	36	1950	НМН
Z.c.j.	Rebun Island	"ID#60000"	m	36	1-8/97	HMJH
Z.c.j.	Rebun Island	132	m	24+	29-7/93	HMJH
Z.c.j.	Rebun Island	142	m	26+	29-8/90	HMJH
Z.c.j.	Rebun Island	136	m	28+	26-7/93	НМЈН
Z.c.j.	Rebun Island	1248	m	28+	4-9/90	НМЈН
Z.c.j.	Rebun Island	"24"	m	29+	14-8/90	НМЈН
Z.c.j.	Rebun Island	"ID#23"	m	30+	11-8/90	НМЈН
Z.c.j.	Rebun Island	"l-002"	m	30+	9-9/98	HMJH
Z.c.j.	Rebun Island	"I-003"	m	30+	21-10/98	HMJH
Z.c.w	Hood Is, Galapagos	22869	f	22	2/06/73	SDNHM
Z.c.w	Galapagos	1962.116	f	30	1/62	MNHN
Z.c.w	Hood Is, Galapagos	51748	f	32	11/02/41	FMNH
Z.c.w	Hood Is, Galapagos	23278	f	33	7/4/1888	NMNH
Z.c.w	Galapagos	1962.116	f	34	6/60	MNHN
Z.c.w	Galapagos	3761	m	26	1853	NRM
Z.c.w	Santiago Is, Galapagos	214780	m	27	12/03/71	AMNH
Z.c.w	Str of Magellan	23332	m	27	1/1888	NMNH
Z.c.w	Floreana Is, Galapagos	214781	m	28	17/03/71	AMNH
Z.c.w	Seymor Is, Galapagos	99462	m	28	14/03/35	AMNH
Z.c.w	Hood Is, Galapagos	23277	m	28	7/4/1888	NMNH
Z.c.w	Hood Is, Galapagos	23279	m	28	7/4/1888	NMNH

Species	Location collected	Accession no.	Sex	SI	Date collected	Museum
Z.c.w	Galapagos	1962.115	m	29	6/60	MNHN
Z.c.w	Seymor Is, Galapagos	99463	m	30	14/03/35	AMNH
Z.c.w	Galapagos	51758	m	30	31/01/41	FMNH
Z.c.w	Galapagos	3760	m	31	1853	NRM
Z.c.w	Galapagos	63946	m	32	4/23	AMNH
Z.c.w	Hood Is, Galapagos	23280	m	32	7/4/1888	NMNH
Z.c.w	Hood Is, Galapagos	23281	m	32	7/4/1888	NMNH
Z.c.w	Isbela Is, Galapagos	396917	m	32	_	NMNH
Z.c.w	Santa Cruz	1962.114	m	34	1962	MNHN
Z.c.w	Santiago, Galapagos	1973.293	m	35	1968	MNHN
Z.c.w	Galapagos	3758	m	35	1853	NRM
Z.c.w	Galapagos	3766	m	35	1853	NRM
Z.c.w	Santa Cruz	1962.114	m	36	1/01/62	MNHN
Z.c.w	Galapagos	1962.115	m	36	2/60	MNHN
Z.c.w	Galapagos	1962.115	m	36	2/60	MNHN
Z.c.w	Galapagos	1962.115	m	36	2/62	MNHN
Z.c.w	Galapagos	1962.114	m	36	10/61	MNHN
Z.c.w	Seymor Is, Galapagos	99461	m	36	14/03/98	AMNH
Z.c.w	Hood Is, Galapagos	23276	m	36	7/4/1888	NMNH
Z.c.w	Galapagos	3762	m	36	1853	NRM
Z.c.w	Galapagos	3763	m	36	1853	NRM
Z.c.w	Galapagos	3765	m	36	1853	NRM
Z.c.w	Galapagos	51759	m	36	3/02/41	FMNH
Z.c.w	Charles Id, Galapagos	51760	m	36	3/02/41	FMNH

Appendix II Summary statistics for adult male and female otariids.

TABLE 1	Eumetopias jubatus	406
TABLE 2	Otaria byronia	408
TABLE 3	Neophoca cinerea	410
TABLE 4	Phocarctos hookeri	412
TABLE 5	Zalophus californianus californianus	414
TABLE 6	Z. c. wollebaeki	416
TABLE 7	Z. c. japonicus	418
TABLE 8	Callorhinus ursinus	420
TABLE 9	Arctocephalus gazella	422
TABLE 10	A. tropicalis	424
TABLE 11	A. forsteri	426
TABLE 12	A. pusillus pusillus	428
TABLE 13	A. p. doriferus	430
TABLE 14	A. townsendi	432
TABLE 15	A. galapagoensis	434
TABLE 16	A. australis	436
TABLE 17	A. philippii	438

Table 1 Eumetopias jubatus

	Sex		Mean		SD		Range		CV		Р	
Variable		n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Length of skull												
Condylobasal length (CBL)	f	56	313.60	1.00	0.22	_	203.55-330.85	_	0.03	_	0.000	0.000
condytosusurtength (cb2)	m	71	385 82	1.00	10.01	_	258 83-413 31	_	0.03	_	0.000	0.000
Gnathion – mid-occipital crest	f	56	273 73	0.87	8 5 3	0.01	257 88-201 00	0.84-0.01	0.03	0.02	0.000	0.000
	m	71	346.67	0.01	16 51	0.02	253 27-382 51	0.86-0.91	0.05	0.02	0.000	0.000
Gnathion – posterior end of pasals	f	71	100.82	0.91	т.51 г.56	0.02	04 75-121 06	0.00 0.90	0.05	0.02	0.000	0.000
Glatilon posterior end or hasais	m	22 71	169.05	0.35	5.50	0.01	120 42-158 58	0.32 0.37	0.05	0.04	0.000	0.000
Longth of pasals	f	71	47.70	0.57	6.50	0.01	27.45 150.50	0.33 0.41	0.04	0.04	0.000	0.055
	m	53 68	47.70	0.15	4.00	0.01	37.07-50.39 48 c6-60 oc	0.12-0.17	0.10	0.09	0.000	0.055
Palatal notch incisors	f	-6	1,86,	0.10	4.89	0.01	40.50-09.35	0.13-0.18	0.08	0.00	0.000	0.000
	I m	50	146.04	0.47	5.71	0.01	135.17-159.71	0.45-0.50	0.04	0.02	0.000	0.000
Creathian restariar of mavilla (relatel)	۲. ۱۱۱	/1	194.92	0.51	1.37	0.01	1/9.82-214.84	0.40-0.53	0.04	0.02		
Ghathion – posterior of maxilia (palatal)	1	50	153.57	0.49	6.42	0.01	130.10-164./1	0.44-0.52	0.04	0.03	0.000	0.002
	m	71	191.05	0.50	7.30	0.01	174.30-214.76	0.47-0.52	0.04	0.02		
Basion – zygomatic root	r	54	211.83	0.68	7.82	0.01	195.78-227.67	0.65-0.70	0.04	0.02	0.000	0.077
	m	71	262.77	0.69	14.22	0.01	176.81-283.68	0.66-0.72	0.05	0.02		
Basion – bend of pterygold	t	54	90.56	0.29	5.38	0.02	80.80-116.74	0.26–0.38	0.06	0.06	0.000	0.086
	m	68	109.06	0.28	5.18	0.01	91.99–123.63	0.23–0.31	0.05	0.04		
Gnathion – caudal border postglenoid process	f	56	241.19	0.77	7.48	0.01	223.87–254.85	0.75-0.79	0.03	0.01	0.000	0.000
	m	71	302.05	0.78	10.11	0.01	279.01-330.10	0.76–0.80	0.03	0.01		
Gnathion – foramen infraorbitale	f	54	105.16	0.33	4.85	0.01	90.00–113.68	0.29-0.35	0.05	0.04	0.000	0.000
	m	66	134.90	0.35	6.70	0.02	115.36–152.27	0.30-0.39	0.05	0.05		
Gnathion – caudal border of preorbital process	f	56	107.30	0.34	4.11	0.01	98.08–115.50	0.32–0.36	0.04	0.03	0.000	0.000
	m	70	136.97	0.36	4.91	0.01	124.99–151.02	0.33-0.37	0.04	0.03		
Breadth of skull												
Breadth of nares	f	55	40.71	0.13	2.64	0.01	35.07-47.79	0.11-0.15	0.07	0.07	0.000	0.000
	m	71	57 37	0.15	3 5 7	0.01	47 05-67 47	0.13-0.17	0.06	0.07	0.000	0.000
Breadth at preorbital processes	f	7-	57.57	0.20	5.37	0.01	82 22-108 06	0.27-0.24	0.00	0.05	0.000	0.000
breadth at preorbitat processes	m	22 70	95.24	0.30	5.50	0.01	116 02-151 60	0.27 0.34	0.00	0.05	0.000	0.000
Interorbital constriction	f	70	134.70 61.8r	0.35	/.19	0.02	F1 27-74 72	0.30 0.39	0.05	0.05	0.000	0.000
	m	50	01.05	0.20	4.91	0.01	51.2/-/4./3	0.17-0.24	0.08	0.07	0.000	0.000
Proadth at supraorbital processos	f	/1	93.92	0.25	5.42	0.02	79.05-104.03	0.21-0.29	0.00	0.00	0.000	0.000
bleadth at supraorbitat processes	I m	55	120.95	0.28	0.02	0.02	/5.03-105.52	0.25-0.33	0.08	0.07	0.000	0.000
Prodth of hraincasa	f III	70	130.37	0.34	0.34	0.02	102.55-149.00	0.27-0.39	0.00	0.00		
Breadth of braincase	1	50	88.86	0.28	2.69	0.01	80.26-93.94	0.26-0.31	0.03	0.04	0.000	0.000
	m	67	93.29	0.24	3.54	0.01	85.98-99.64	0.22-0.27	0.04	0.05		
Occipital crest – mastold	r	56	126.30	0.40	5.17	0.01	116.16-138.99	0.38-0.43	0.04	0.03	0.000	0.000
- · · · · · · · · · · · · · · · · · · ·	m	70	176.61	0.46	8.45	0.02	161.23-196.22	0.41-0.50	0.05	0.04		
Rostral width	t	54	61.87	0.20	3.57	0.01	54.10-69.32	0.18-0.22	0.06	0.05	0.000	0.000
	m	68	100.79	0.26	5.47	0.01	89.21–115.68	0.24–0.29	0.05	0.05		
Breadth of zygomatic root of maxilla	f	56	22.88	0.07	2.06	0.01	19.21–28.39	0.06–0.09	0.09	0.09	0.000	0.000
	m	71	32.35	0.08	3.25	0.01	25.91–39.61	0.07-0.10	0.10	0.09		
Zygomatic breadth	f	55	175.55	0.56	8.34	0.02	159.37–194.63	0.51–0.61	0.05	0.04	0.000	0.000
	m	68	237.71	0.62	9.82	0.02	215.59–256.00	0.57–0.65	0.04	0.03		

Auditory breadth	f	55	131.83	0.42	4.75	0.02	123.49–142.91	0.39-0.45	0.04	0.04	0.000	0.000
	m	68	189.03	0.49	9.78	0.02	166.42–206.35	0.44-0.53	0.05	0.04		
Mastoid breadth	f	50	154.12	0.49	7.30	0.02	139.38–169.37	0.46–0.52	0.05	0.03	0.000	0.000
	m	66	223.65	0.58	10.39	0.02	203.22–246.63	0.54–0.64	0.05	0.04		
Height of skull at supraorbital processes	f	56	80.78	0.26	4.66	0.01	70.12–90.64	0.23-0.29	0.06	0.05	0.000	0.000
	m	71	117.84	0.31	6.89	0.02	95.28–131.59	0.26-0.34	0.06	0.06		
Height of skull at ventral margin of mastoid	f	56	113.46	0.36	6.44	0.02	96.64–130.16	0.32-0.41	0.06	0.06	0.000	0.043
	m	71	142.65	0.37	8.13	0.02	121.50–161.24	0.32-0.41	0.06	0.05		
Height of sagittal crest	f	54	5.48	0.02	3.06	0.01	0.00–11.56	0.00-0.04	0.56	0.57	0.000	0.000
	m	68	28.07	0.07	5.83	0.02	8.35-43.45	0.02-0.11	0.21	0.22		
Breadth of palate at postcanines 3–4	f	56	46.80	0.15	3.20	0.01	39.33-53.60	0.13-0.17	0.07	0.06	0.000	0.000
	m	70	64.85	0.17	4.87	0.01	53.94-77.84	0.14-0.20	0.08	0.07		
Breadth of palate at postcanines 4–5	f	55	48.51	0.16	3.36	0.01	40.76-58.13	0.14-0.18	0.07	0.06	0.000	0.000
	m	70	62.17	0.16	4.67	0.01	53.01-74.08	0.14-0.19	0.08	0.07		
Breadth of palate at postcanine 5	f	, 54	42.12	0.13	2.40	0.01	36.80-47.82	0.12-0.15	0.06	0.06	0.000	0.000
	m	69	55.97	0.15	4.21	0.01	47.89-66.29	0.12-0.17	0.08	0.07		
Length of orbit	f	56	65.40	0.21	2.37	0.01	61.03-71.72	0.19-0.22	0.04	0.04	0.000	0.000
	m	71	73.75	0.19	2.74	0.01	68.44-79.35	0.18-0.21	0.04	0.04		
Breadth of orbit	f	56	58.08	0.19	2.26	0.01	53.13-65.78	0.17-0.21	0.04	0.04	0.000	0.168
	m	71	70.68	0.18	2.76	0.01	65.95-77.06	0.17-0.20	0.04	0.05		
Mandible and teath		, -	,		, -			,				
Longth of mandible	f	5.2	222.01	0.71	6.61	0.01	211 17 226 65	068 071	0.02	0.02	0.000	0.000
	ı m	52	222.91	0.71	0.04	0.01	211.1/-230.05	0.00-0.74	0.03	0.02	0.000	0.000
Longth of mondibular to oth row	f 111	63	289.30	0.75	9.60	0.02	2/2.30-309.41	0.72-0.79	0.03	0.02		
	1	52	94.93	0.30	4.01	0.01	81.04-104.41	0.25-0.33	0.04	0.04	0.000	0.000
Maniadiatal diamatay of laway anying	E E	63	121.99	0.32	4.69	0.01	111.82-131.05	0.29-0.34	0.04	0.03		
Mesiodistal diameter of lower canines	1	51	15.62	0.05	1.40	0.01	12.40-18.54	0.04-0.06	0.09	0.11	0.000	0.000
Distance have della subscriptions	m	58	30.84	0.08	2.08	0.01	25.65-34.95	0.07-0.09	0.07	0.07		
Distance becaudal border of upper canines	г	55	94.88	0.30	13.31	0.01	81.99–187.45	0.27-0.32	0.14	0.04	0.000	0.000
	m	71	108.51	0.28	9.46	0.02	69.46-121.91	0.18-0.30	0.09	0.06		
Height of upper canines above alveolus	f	53	32.13	0.10	4.09	0.01	24.62-43.88	0.08–0.14	0.13	0.13	0.000	0.000
	m	64	43.22	0.11	4.99	0.01	31.67-65.29	0.08–0.17	0.12	0.11		
Mesiodistal diameter of postcanines	f	30	10.53	-	0.47	-	9.21–11.78	-	0.05	-	0.000	0.000
	m	34	12.15	-	0.78	-	10.90–14.77	-	0.07	-		
Length of lower postcanine row	f	51	66.28	0.21	4.31	0.01	50.07-75.30	0.16-0.23	0.07	0.06	0.000	0.000
	m	63	77.08	0.20	3.65	0.01	66.44–84.16	0.17-0.22	0.05	0.05		
Height of mandible at meatus	f	52	67.91	0.22	3.78	0.01	62.37-77.35	0.20-0.25	0.06	0.05	0.000	0.000
	m	63	100.64	0.26	5.10	0.01	90.22–114.24	0.23–0.28	0.05	0.05		
Angularis–coronoideus	f	52	69.12	0.22	4.49	0.01	59.68–78.66	0.19-0.25	0.07	0.06	0.000	0.000
	m	63	96.47	0.25	4.86	0.01	85.98–109.98	0.23–0.28	0.05	0.04		
Length of masseteric fossa	f	52	72.60	0.23	5.04	0.02	62.76-83.85	0.20-0.27	0.07	0.07	0.000	0.000
	m	63	99.37	0.26	6.71	0.02	87.62–117.60	0.22-0.30	0.07	0.06		
Breadth of masseteric fossa	f	52	45.72	0.15	3.36	0.01	38.15-52.07	0.12-0.17	0.07	0.07	0.000	0.601
	m	63	55.38	0.14	5.33	0.01	44.19–66.94	0.12-0.17	0.10	0.10		
SD = standard deviation, $CV =$ coefficient of	variation, P	= probabi	ility values de	rived from st	udents <i>t-</i> test.							

Table 1 Summary statistics for skull measurements – adult male and female *Eumetopias jubatus*.

Table 2 Otaria byronia

			Mean		SD		Range		CV		Р	
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	37	263.05	_	8.82	_	246.27-282.72	_	0.03	_	0.000	0.000
condytosusurtength (cb2)	m	55	342 33	_	17 17	_	312 82-303 30	_	0.05	_	0.000	0.000
Gnathion – mid-occipital crest	f	37	223.02	0.85	10.40	0.02	107.54-245.72	0.80-0.90	0.05	0.03	0.000	0.000
	m	55	303.76	0.89	21.26	0.05	214.73-345.79	0.60-0.95	0.07	0.05	0.000	0.000
Gnathion – posterior end of nasals	f	37	92.84	0.35	5.87	0.02	82.63-103.71	0.32-0.39	0.06	0.05	0.000	0.000
	m	55	120.20	0.38	8.94	0.02	11/.33-153.80	0.34-0.42	0.07	0.05		
Length of nasals	f	33	43.17	0.17	4.78	0.02	33.17-51.92	0.13-0.20	0.11	0.10	0.000	0.925
	m	48	56.26	0.17	5.46	0.02	44.75-69.85	0.13-0.21	0.10	0.10		
Palatal notch – incisors	f	37	152.10	0.58	6.37	0.01	1/0.77-163.81	0.56-0.60	0.04	0.02	0.000	0.000
	m	5/	212.44	0.62	14.33	0.02	170.62-267.07	0.57-0.68	0.07	0.03	01000	0.000
Gnathion – posterior of maxilla (palatal)	f	37	138 44	0.53	5 60	0.01	127 01-151 71	0.50-0.56	0.04	0.02	0.000	0.000
	m	55	187.40	0.55	11 73	0.02	161 00-231 03	0.40-0.50	0.04	0.03	0.000	0.000
Basion – zvgomatic root	f	22	181 80	0.55	7.26	0.02	165 60-201 66	0.49 0.59	0.00	0.03	0.000	0.000
Dasion Zygomatic root	m	57	241 55	0.09	12.20	0.01	218 51-267 52	0.68-0.72	0.04	0.02	0.000	0.000
Basion – hand of ptervgoid	f	22 27	241.55 82.62	0.71	15.20	0.01	68 7 (0.00 0.75	0.00	0.02	0.000	0.001
Basion – bena or prerygola	m	57	102 81	0.32	5.47	0.02	00.74-92.20	0.27-0.34	0.07	0.00	0.000	0.001
Creathian and all harder nestalensid presses	f	55	103.01	0.30	0.45 8.26	0.02	190.02-114.34	0.2/-0.35	0.00	0.00	0.000	0.000
Gilatilion – caudai border postglenolu process	1 m	37	190.09	0.70	0.20	0.01	181.97-221.77	0.74-0.78	0.04	0.02	0.000	0.000
	۲ ۱۱۱	55	2/0.88	0.79	17.92	0.04	225.32-304.90	0.59-0.82	0.07	0.05		
Ghathion – foramen infraorbitale	T	37	92.58	0.35	6.40	0.02	78.25-107.93	0.30-0.39	0.07	0.06	0.000	0.000
	m	55	134.23	0.39	12.09	0.02	110.77-182.91	0.35-0.47	0.09	0.06		
Ghathion – caudal border of preorbital process	r	37	87.15	0.33	4.27	0.01	78.34–96.17	0.30-0.36	0.05	0.03	0.000	0.000
	m	55	120.40	0.35	9.39	0.02	102.34–155.24	0.32–0.39	0.08	0.05		
Breadth of skull												
Breadth of nares	f	36	33.10	0.13	2.48	0.01	28.36-39.13	0.11-0.14	0.08	0.07	0.000	0.000
	m	55	47.52	0.14	5.16	0.01	37.43-60.72	0.10-0.18	0.11	0.09		
Breadth at preorbital processes	f	36	76.80	0.29	5.70	0.02	63.08-87.19	0.24-0.34	0.07	0.06	0.000	0.000
	m	53	119.05	0.34	9.63	0.05	95.16-144.14	0.07-0.42	0.08	0.13		
Interorbital constriction	f	37	49.08	0.19	5.29	0.02	37.82-59.26	0.15-0.22	0.11	0.10	0.000	0.000
	m	55	76.87	0.23	8.79	0.02	58.03-98.49	0.18-0.28	0.11	0.10		
Breadth at supraorbital processes	f	37	72.32	0.28	7.48	0.03	57.86-91.23	0.22-0.34	0.10	0.09	0.000	0.000
	m	48	116.50	0.34	12.75	0.03	94.56-151.36	0.27-0.42	0.11	0.10		
Breadth of braincase	f	34	80.23	0.31	2.49	0.01	74.69-84.49	0.28-0.34	0.03	0.05	0.000	0.000
	m	52	84.97	0.25	4.75	0.02	74.77-95.28	0.20-0.28	0.06	0.08		
Occipital crest – mastoid	f	37	109.40	0.42	4.46	0.01	07.77-110./0	0.30-0.44	0.04	0.03	0.000	0.000
	m	55	173.56	0.51	15.63	0.03	1/15.0/-211.37	0.45-0.56	0.09	0.06	01000	0.000
Rostral width	f	27	£7.78	0.22	4.68	0.01	47.10-67.06	0.10-0.25	0.09	0.06	0.000	0.000
	m	57	101.15	0.22	10.14	0.02	82 12-125 01	0.19 0.25	0.00	0.00	0.000	0.000
Breadth of zygomatic root of maxilla	f	27	10 20	0.07	1 02	0.02	15 56-22 16	0.20 0.34	0.10	0.07	0.000	0.000
	m	57	19.20	0.07	2.90	0.01	13.30 23.10 21 48-28 6r	0.00 0.09	0.10	0.10	0.000	0.000
Zygomatic breadth	f	55 27	27.50	0.00	3.23 7.01	0.01	21.40-30.05 125 28-172 50	0.700-0.10	0.13	0.10	0.000	0.000
Lysomatic bicauti	ı m	57	150.59	0.57	/.91	0.02	135.20-1/3.59	0.53-0.01	0.05	0.04	0.000	0.000
	111	55	210.22	0.04	14./0	0.03	105.14-249.49	0.50-0.70	0.07	0.05		

Auditory breadth	f	37	114.29	0.44	4.94	0.02	104.10–129.82	0.40-0.46	0.04	0.03	0.000	0.001
	m	52	155.61	0.46	21.83	0.05	70.30–185.32	0.18–0.55	0.14	0.11		
Mastoid breadth	f	37	127.49	0.49	5.69	0.02	114.63–141.86	0.45-0.52	0.05	0.03	0.000	0.000
	m	54	194.91	0.57	18.17	0.04	164.70-240.30	0.49–0.64	0.09	0.06		
Height of skull at supraorbital processes	f	37	77.82	0.30	4.23	0.01	69.14–89.85	0.27-0.32	0.05	0.04	0.000	0.016
	m	55	104.06	0.30	7.88	0.02	86.00-122.50	0.26-0.34	0.08	0.06		
Height of skull at ventral margin of mastoid	f	37	96.68	0.37	3.86	0.02	89.78–104.83	0.34-0.39	0.04	0.04	0.000	0.016
	m	55	121.80	0.36	14.29	0.03	94.64–151.55	0.28-0.42	0.12	0.09		
Height of sagittal crest	f	36	3.42	0.01	2.87	0.01	0.00–9.54	0.00-0.04	0.84	0.86	0.000	0.000
	m	55	28.89	0.08	8.93	0.02	11.20-52.75	0.03-0.15	0.31	0.29		
Breadth of palate at postcanines 3–4	f	37	39.21	0.15	3.42	0.01	31.81–48.31	0.13–0.18	0.09	0.08	0.000	0.000
	m	54	60.29	0.18	6.40	0.02	48.93-77.22	0.14-0.23	0.11	0.10		
Breadth of palate at postcanines 4–5	f	37	41.94	0.16	3.52	0.01	34.50-51.23	0.13-0.19	0.08	0.07	0.000	0.000
	m	55	62.64	0.18	5.90	0.02	50.15-77.71	0.15-0.23	0.09	0.09		
Breadth of palate at postcanine 5	f	37	42.52	0.16	3.58	0.01	34.49-51.74	0.13-0.19	0.08	0.07	0.000	0.000
	m	55	62.16	0.18	5.71	0.02	48.40-75.49	0.14-0.22	0.09	0.09		
Length of orbit	f	37	56.11	0.21	2.53	0.01	52.23-60.52	0.20-0.23	0.05	0.04	0.000	0.000
	m	54	65.56	0.19	3.64	0.01	59.44-74.64	0.17-0.21	0.06	0.05		
Breadth of orbit	f	37	54.89	0.21	2.46	0.01	50.76–60.71	0.19-0.23	0.05	0.04	0.000	0.012
	m	54	69.00	0.20	4.88	0.01	59.47-79.45	0.17-0.24	0.07	0.07		
Mandible and teeth												
Length of mandible	f	31	184.62	0.70	9.60	0.03	170.36–209.83	0.66–0.77	0.05	0.04	0.000	0.000
	m	37	261.30	0.76	22.30	0.04	218.46–302.87	0.66–0.84	0.09	0.05		
Length of mandibular tooth row	f	31	72.52	0.28	4.17	0.01	62.95-80.66	0.25-0.30	0.06	0.05	0.000	0.001
	m	38	98.10	0.29	5.86	0.01	86.12–109.00	0.27-0.32	0.06	0.41		
Mesiodistal diameter of lower canines	f	31	12.15	0.05	1.37	0.01	9.80–15.61	0.04–0.06	0.11	0.11	0.000	0.000
	m	38	28.82	0.09	2.60	0.01	23.55-34.29	0.07-0.10	0.09	0.10		
Distance becaudal border of upper canines	f	37	68.16	0.26	3.70	0.01	62.50–78.11	0.24-0.29	0.05	0.05	0.000	0.000
	m	55	84.10	0.25	5.03	0.01	71.37–96.42	0.22-0.27	0.06	0.05		
Height of upper canines above alveolus	f	32	27.31	0.10	3.99	0.02	16.17-36.55	0.06–0.14	0.15	0.15	0.000	0.000
	m	35	41.45	0.12	4.83	0.01	32.33-51.03	0.10-0.15	0.12	0.11		
Mesiodistal diameter of postcanines	f	32	7.87	-	0.42	-	7.19-8.73	-	0.05	-	0.000	-
	m	32	9.00	-	0.59	-	7.29–10.60	-	0.07	-		
Length of lower postcanine row	f	31	51.47	0.20	3.54	0.01	42.84–59.69	0.17-0.22	0.07	0.06	0.000	0.000
	m	38	63.48	0.19	3.19	0.01	57.05-70.02	0.17-0.20	0.05	0.04		
Height of mandible at meatus	f	31	64.14	0.24	3.99	0.01	55.44-72.18	0.22-0.27	0.06	0.04	0.000	0.000
	m	37	104.05	0.30	10.11	0.02	85.21-122.61	0.26-0.35	0.10	0.08		
Angularis – coronoideus	f	31	68.23	0.26	4.03	0.01	59.04–79.84	0.24-0.28	0.06	0.04	0.000	0.000
	m	37	101.71	0.30	9.12	0.02	85.54–120.94	0.27-0.34	0.09	0.06		
Length of masseteric fossa	f	31	68.80	0.26	8.09	0.03	53.48-83.17	0.21-0.31	0.12	0.11	0.000	0.000
	m	38	117.92	0.34	12.46	0.03	89.73–141.82	0.28-0.40	0.11	0.08		
Breadth of masseteric fossa	f	31	43.37	0.16	3.88	0.01	33.47-48.32	0.13–0.18	0.09	0.09	0.000	0.008
	m	38	59.13	0.17	5.90	0.02	46.75-75.87	0.14-0.22	0.10	0.09		

SD = standard deviation, CV = coefficient of variation, P = probability values derived from students *t*-test.

Table 2 Summary statistics for skull measurements – adult male and female Otaria byronia.

Table 3 Neophoca cinerea

			Mean		SD		Range		CV		Р	
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	36	2/13.51	1.00	8.43	_	228.55-264.51	_	0.04	_	0.000	0.000
condytosusur tength (cb2)	m	58	293.44	1.00	8.85	_	277.70-315.38	_	0.03	_	0.000	0.000
Gnathion – mid-occipital crest	f	36	217.04	0.90	7.80	0.02	195.45-238.66	0.84-0.93	0.04	0.02	0.000	0.000
	m	58	275.10	0.94	8.08	0.02	257.42-201.41	0.00-1.00	0.03	0.02	0.000	0.000
Gnathion – posterior end of nasals	f	36	85.86	0.35	3.98	0.01	77.80-07.43	0.33-0.37	0.05	0.03	0.000	0.000
	m	58	114.48	0.30	5.18	0.01	10/.31-125.32	0.36-0.42	0.05	0.03	0.000	0.000
Length of nasals	f	30	40.80	0.17	2.43	0.01	36.30-45.87	0.15-0.18	0.06	0.05	0.000	0.000
201301 01 100000	m.	45	53.00	0.18	3 68	0.01	45 40-60 43	0.16-0.20	0.07	0.06	0.000	0.000
Palatal notch – incisors	f	36	114 56	0.47	6 21	0.01	10/ 32-127.08	0.44-0.49	0.05	0.03	0.000	0.000
	m	50 E 8	142.50	0.47	6.77	0.02	121 55-150 40	0.44 0.49	0.05	0.03	0.000	0.000
Gnathion – posterior of maxilla (nalatal)	f	26	114.20	0.49	6.77	0.02	106 20-124 08	0.44 0.51	0.03	0.03	0.000	0.000
	m	50	14.59	0.47	4.30 6.21	0.01	100.20 124.90	0.45 0.40	0.04	0.02	0.000	0.000
Pasion zugomatic root	f	50	140.50	0.40	6.21	0.02	122.49-150.75	0.42-0.52	0.04	0.03	0.000	0 766
Basion – zygomatic root	I m	30	150.97	0.05	6.40	0.01	140.03-1/2./3	0.03-0.07	0.04	0.02	0.000	0.700
Design hand of starward	۲. ۲	50	191.57	0.05	6.69	0.01	1/8.08-206.84	0.03-0.00	0.04	0.02		a a((
Basion – bend of plerygold	I	36	69.04	0.28	4.08	0.01	62.42-/8.44	0.26-0.32	0.06	0.05	0.000	0.266
	m	58	82.18	0.28	4.78	0.01	71.27-95.56	0.25-0.31	0.06	0.05		
Gnathion – caudal border postglenoid process	Ť	36	182.39	0.75	6.73	0.01	169.56–197.42	0.73-0.76	0.04	0.01	0.000	0.000
	m	58	226.10	0.77	7.62	0.01	208.64-245.70	0.74-0.79	0.03	0.02		
Gnathion – foramen infraorbitale	f	36	82.56	0.34	6.70	0.03	51.46–91.39	0.21–0.38	0.08	0.08	0.000	0.000
	m	58	105.29	0.36	5.86	0.02	92.45–116.27	0.31-0.40	0.06	0.05		
Gnathion – caudal border of preorbital process	f	36	86.21	0.35	3.38	0.01	80.35–96.29	0.34-0.37	0.04	0.02	0.000	0.000
	m	58	112.36	0.38	4.91	0.01	101.52–123.97	0.35-0.41	0.04	0.03		
Breadth of skull												
Breadth of nares	f	36	31.43	0.13	2.38	0.01	25.84-36.32	0.11-0.15	0.08	0.07	0.000	0.000
	m	57	61 37	0.14	3 01	0.01	31 04-51 16	0 11-0 17	0.10	0.10		
Breadth at preorbital processes	f	36	65 57	0.27	4.66	0.02	55 77-75 24	0.24-0.20	0.07	0.06	0.000	0.000
Breadth at preorbitat processes	m	50	00.38	0.27	6 21	0.02	76 71-108 10	0.24 0.29	0.07	0.06	0.000	0.000
Interorbital constriction	f	26	42.20	0.51	2.02	0.02	27.08-40.28	0.27 0.30	0.07	0.00	0.000	0.000
	m	50	43.39	0.10	5.02 r 78	0.02	49.30	0.13 0.19	0.07	0.00	0.000	0.000
Breadth at supraorbital processes	f	2/	72.22	0.21	5.70	0.02	49.70 79.55	0.10 0.20	0.09	0.00	0.000	0.000
	m	54	100.60	0.30	4.94	0.02	57.05-121.60	0.27 0.33	0.07	0.00	0.000	0.000
Prodth of hraincasa	£	53	70.40	0.34	10.30	0.03	57.95-131.00	0.19-0.43	0.10	0.10		0.000
bleauth of brailicase	1 m	35	/9.0/	0.33	2.53	0.01	72.09-03.71	0.30-0.35	0.03	0.04	0.000	0.000
	۱۱۱ د	50	04.25	0.29	2.79	0.01	//.90-91.40	0.26-0.31	0.03	0.04		
Occipital crest – mastola	T	36	101.11	0.42	4.34	0.01	91.73–111.40	0.38-0.44	0.04	0.03	0.000	0.000
	m	58	131.10	0.45	5.86	0.02	119.81–145.36	0.42–0.49	0.05	0.04		
Rostral width	Ť	36	48.63	0.20	3.54	0.01	40.33-54.75	0.17-0.23	0.07	0.07	0.000	0.000
	m	57	74.87	0.25	4.97	0.02	62.64-85.98	0.22-0.29	0.07	0.06		
Breadth of zygomatic root of maxilla	f	36	13.12	0.05	1.43	0.01	10.31–16.08	0.04–0.06	0.11	0.11	0.000	0.000
	m	58	18.19	0.06	1.27	0.01	14.97–21.41	0.05-0.70	0.07	0.08		
Zygomatic breadth	f	36	129.96	0.53	5.25	0.02	115.52–144.98	0.50–0.56	0.04	0.03	0.000	0.000
	m	58	167.92	0.57	7.16	0.02	152.99–186.07	0.52–0.62	0.04	0.03		
Auditory breadth	f	36	97.55	0.40	4.00	0.01	88.83–107.91	0.38-0.43	0.04	0.03	0.000	0.000
--	---	----	------------	------	------	------	---------------	-----------	-----------	------	-------	-------
	m	18	125.12	0.43	6.09	0.02	113.80–141.59	0.38-0.48	0.05	0.05		
Mastoid breadth	f	36	117.43	0.48	4.87	0.02	106.74–130.33	0.45-0.51	0.04	0.03	0.000	0.000
	m	57	155.56	0.53	7.64	0.02	142.32–180.69	0.49-0.59	0.05	0.04		
Height of skull at supraorbital processes	f	36	69.06	0.28	3.64	0.01	63.46-79.75	0.27-0.31	0.05	0.04	0.000	0.000
	m	58	87.32	0.30	5.66	0.02	76.56–100.75	0.26-0.33	0.07	0.06		
Height of skull at ventral margin of mastoid	f	36	89.56	0.37	4.12	0.01	80.51-101.52	0.35-0.39	0.05	0.03	0.000	0.150
	m	58	106.80	0.36	4.90	0.02	93.42–118.55	0.33-0.40	0.05	0.05		
Height of sagittal crest	f	36	4.15	0.02	2.02	0.01	0.00-8.61	0.00-0.04	0.49	0.52	0.000	0.000
	m	57	15.46	0.05	4.11	0.01	8.43-27.90	0.03-0.09	0.27	0.27		
Breadth of palate at postcanines 3–4	f	36	30.75	0.13	2.43	0.01	25.14-35.43	0.11-0.14	0.08	0.07	0.000	0.000
	m	58	41.85	0.14	3.11	0.01	34.74–48.78	0.12-0.16	0.07	0.07		
Breadth of palate at postcanines 4–5	f	36	32.76	0.13	2.48	0.01	26.25-37.19	0.11-0.15	0.08	0.07	0.000	0.000
	m	58	43.40	0.15	3.32	0.01	36.16–51.81	0.13-0.17	0.08	0.07		
Breadth of palate at postcanine 5	f	36	31.62	0.13	2.24	0.01	26.91-36.25	0.11-0.14	0.07	0.06	0.000	0.000
	m	58	41.78	0.14	3.48	0.01	35.07–51.64	0.12-0.17	0.08	0.07		
Length of orbit	f	36	52.01	0.21	2.31	0.01	47.17-57.44	0.20-0.23	0.04	0.04	0.000	0.000
	m	57	58.01	0.20	3.44	0.01	52.48-74.33	0.18-0.26	0.06	0.07		
Breadth of orbit	f	36	49.42	0.20	1.96	0.01	46.11–53.66	0.19-0.22	0.04	0.04	0.000	0.004
	m	58	57.89	0.20	2.43	0.01	53.76-65.29	0.18-0.22	0.04	0.04		
Mandible and teeth												
Length of mandible	f	23	167.25	0.68	9.55	0.03	139.68-184.91	0.57-0.71	0.06	0.04	0.000	0.000
	m	41	209.05	0.71	7.54	0.02	194.52-229.03	0.68-0.74	0.04	0.02		
Length of mandibular tooth row	f	23	75.23	0.31	4.23	0.01	66.98-84.32	0.27-0.32	0.06	0.04	0.000	0.069
	m	41	92.03	0.31	4.85	0.01	81.48-105.26	0.27-0.34	0.05	0.05		
Mesiodistal diameter of lower canines	f	23	10.79	0.04	1.10	0.01	8.70-12.81	0.04-0.05	0.10	0.11	0.000	0.000
	m	39	20.50	0.07	1.40	0.01	17.65-23.12	0.06-0.08	0.07	0.09		
Distance becaudal border of upper canines	f	36	62.56	0.26	5.57	0.02	55.34-73.19	0.23-0.30	0.09	0.09	0.000	0.000
	m	58	69.22	0.24	5.61	0.02	61.27-80.69	0.21-0.29	0.08	0.09		
Height of upper canines above alveolus	f	32	19.58	0.08	4.62	0.02	8.58-28.60	0.03-0.12	0.24	0.24	0.000	0.000
5 11	m	43	29.56	0.10	3.47	0.01	22.17-38.80	0.07-0.13	0.12	0.12		
Mesiodistal diameter of postcanines	f	21	9.44	-	0.75	_	7.87-10.70	-	0.08	-	0.000	-
·	m	33	10.99	_	0.70	-	9.93-12.35	_	0.06	-		
Length of lower postcanine row	f	23	55.54	0.23	3.07	0.01	49.87-61.71	0.20-0.24	0.06	0.04	0.000	0.000
.	m	41	62.95	0.21	3.38	0.01	55.94-71.28	0.19-0.24	0.05	0.05		
Height of mandible at meatus	f	23	53.49	0.22	5.28	0.02	45.19-64.09	0.19-0.24	0.10	0.07	0.000	0.000
5	m	41	79.51	0.27	4.76	0.02	69.51-91.18	0.24-0.30	0.06	0.06		
Angularis – coronoideus	f	23	62.07	0.25	4.38	0.01	54.25-72.93	0.24-0.28	0.07	0.04	0.000	0.000
5	m	41	, 81.16	0.28	4.20	0.01	72.67-93.93	0.25-0.31	0.05	0.05		
Length of masseteric fossa	f	23	53.12	0.22	4.68	0.01	46.60-64.11	0.20-0.25	0.09	0.07	0.000	0.000
5	m	41	69.39	0.24	5.06	0.01	58.89-81.85	0.20-0.26	0.07	0.06		
Breadth of masseteric fossa	f	23	37.17	0.15	3.65	0.01	28.80-46.34	0.12-0.18	, 0.10	0.09	0.000	0.000
	m	41	49.19	0.17	4.69	0.02	38.90-59.77	0.14-0.20	0.10	0.10		
			12.2				5-7- 5711					

 Table 3
 Summary statistics for skull measurements – adult male and female Neophoca cinerea.

Table 4 Phocarctos hookeri

			Μ	ean		SD	Rang	e		CV	ŀ	0
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	32	261.66	_	6.24	_	251.86-275.07	_	0.02	_	0.000	0.000
condytosusurtength (cb2)	m	26	201.00	_	12.16	_	200 62-245 00	_	0.02	_	0.000	0.000
Gnathion – mid-occipital crest	f	32	232.45	0.80	5 82	0.02	290.05 545.90	0.84-0.02	0.04	0.02	0.000	0.000
	m	26	208.02	0.04	12 78	0.02	276 52-328 16	0.88-0.07	0.04	0.03	0.000	0.000
Gnathion – posterior end of pasals	f	20	290.02	0.94	2.70	0.02	87 62-102 05	0.00 0.97	0.04	0.03	0.000	0.000
Shathon posterior end of hasais	m	26	121 21	0.30	3.00 8.18	0.02	108 42-146 70	0.35 0.50	0.04	0.05	0.000	0.000
Length of pasals	f	20	40.05	0.41	2.18	0.02	42 50-56 21	0.30 0.44	0.00	0.04	0.000	0.000
	m	20	49.05 68.24	0.19	5.10	0.01	43.39 50.31	0.17 0.22	0.07	0.00	0.000	0.000
Palatal notch - incisors	f	20	122.42	0.22	6.50	0.02	115 77-122 82	0.10 0.20	0.10	0.09	0.000	0.000
	m	32 26	123.42	0.47	4.39	0.01	115.77-133.02	0.45-0.48	0.04	0.02	0.000	0.000
Cnathion – posterior of maxilla (nalatal)	f	20	120.37	0.49	0.02	0.01	135.94-175.20	0.4/-0.52	0.00	0.03	0.000	
Gliatilion – posterior of maxilia (palatal)	1 m	32	120.80	0.40	3.00	0.01	114.01-127.07	0.44-0.49	0.03	0.02	0.000	0.055
Design aurometic rest	۲ ۱۱۱	25	148.20	0.4/	6.4/	0.01	131.3/-161.44	0.45-0.48	0.04	0.02		
Basion – Zygomatic root	1	32	1/7.26	0.68	5.16	0.01	166.55-189.56	0.65-0.69	0.03	0.01	0.000	0.001
	m	26	218.34	0.69	11.56	0.01	198.08–239.99	0.66-0.71	0.05	0.02		0.6
Basion – bend of pterygold	r	32	67.65	0.26	3.25	0.01	62.23-79.35	0.24-0.29	0.05	0.04	0.000	0.386
	m	25	81.31	0.26	4.81	0.01	71.20-89.76	0.24-0.28	0.06	0.05		
Gnathion – caudal border postglenoid process	t	32	200.33	0.77	5.66	0.01	190.47-212.65	0.75-0.78	0.03	0.01	0.000	0.000
	m	26	249.91	0.79	11.23	0.01	224.94–277.80	0.77–0.80	0.05	0.01		
Gnathion – foramen infraorbitale	f	32	90.41	0.35	5.73	0.02	80.23–100.93	0.31–0.38	0.06	0.06	0.000	0.001
	m	26	114.63	0.36	7.20	0.02	99.03–129.50	0.32–0.38	0.06	0.05		
Gnathion – caudal border of preorbital process	f	32	88.64	0.34	3.21	0.01	82.72-97.70	0.32–0.36	0.04	0.03	0.000	0.000
	m	26	118.72	0.38	6.31	0.01	109.07–137.01	0.35-0.40	0.05	0.04		
Breadth of skull												
Breadth of nares	f	32	30.24	0.12	1.64	0.01	26.53-33.37	0.10-0.13	0.05	0.07	0.000	0.023
	m	26	38.10	0.12	3.11	0.01	34.13-46.09	0.11-0.14	0.08	0.07		
Breadth at preorbital processes	f	32	73.01	0.28	5.70	0.02	6/1./15-00.36	0.25-0.39	0.08	0.09	0.000	0.000
	m	26	100.03	0.32	8.80	0.03	82.52-122.71	0.27-0.37	0.09	0.08		
Interorbital constriction	f	32	30.81	0.15	2.40	0.01	36.22-46.90	0.1/-0.18	0.06	0.07	0.000	0.000
	m	26	57.31	0.18	4.15	0.02	48.62-65.52	0.15-0.21	0.07	0.08	0.000	01000
Breadth at supraorbital processes	f	30	57.64	0.22	4.25	0.02	51 23-60 13	0.20-0.27	0.08	0.08	0.000	0.000
Breadth at Supraorbitat processes	m	25	85.05	0.27	8 71	0.03	72 55-103 45	0.23-0.33	0.00	0.00	0.000	0.000
Breadth of braincase	f	20	77 57	0.27	2.51	0.05	72.55 105.45	0.25 0.55	0.10	0.11	0.000	0.000
Dicaditi of Dialicase	m	24 26	//·ጋ/ 82.18	0.30	2.51	0.01	72.01 02.00	0.20 0.32	0.05	0.04	0.000	0.000
Occipital crost mactoid	f	20	02.10	0.20	2.09	0.01	/0.10-00.55	0.23-0.29	0.04	0.05	0.000	0.000
occipital crest – mastola	m	32	102.10	0.39	2.73	0.01	97.05-107.70	0.37-0.41	0.03	0.03	0.000	0.000
Postrol width	f III	20	132./2	0.42	6.93	0.02	121.43-14/./1	0.39-0.45	0.05	0.04		
RUSLIAL WILLII	1	31	49.82	0.19	2.94	0.01	44.94-54.07	0.1/-0.22	0.06	0.06	0.000	0.000
Dreadth of suspensitions of moville	m £	26	82.55	0.26	7.15	0.02	72.50-95.20	0.23-0.30	0.09	0.07		
Breadth of Zygomatic root of maxilia	T	32	14.44	0.06	1.51	0.01	11.44–18.01	0.04-0.07	0.10	0.11	0.000	0.000
7	m	26	20.33	0.06	2.02	0.01	16.17-23.17	0.05-0.08	0.10	0.11		
Zygomatic breadth	t	32	135.52	0.52	4.89	0.02	123.76-144.00	0.47-0.56	0.04	0.04	0.000	0.000
	m	26	180.23	0.57	9.63	0.03	167.13–200.62	0.53-0.62	0.05	0.04		

Auditory breadth	f	32	104.38	0.40	2.87	0.01	100.84–110.57	0.38-0.43	0.03	0.03	0.000	0.000
	m	26	135.74	0.43	6.74	0.02	124.27–149.81	0.39–0.46	0.05	0.04		
Mastoid breadth	f	32	114.34	0.44	3.61	0.01	106.70-121.68	0.42-0.47	0.03	0.03	0.000	0.000
	m	25	154.21	0.49	8.62	0.02	142.23-172.91	0.43-0.53	0.06	0.05		
Height of skull at supraorbital processes	f	32	71.62	0.27	2.74	0.01	66.78-77.66	0.25-0.31	0.04	0.04	0.000	0.000
	m	25	97.83	0.31	4.39	0.01	90.01-107.19	0.29-0.33	0.05	0.04		
Height of skull at ventral margin of mastoid	f	32	89.04	0.34	2.77	0.01	82.94-94.30	0.32-0.36	0.03	0.03	0.000	0.870
	m	26	107.80	0.34	4.83	0.02	96.28-115.01	0.31-0.38	0.05	0.05		
Height of sagittal crest	f	32	4.39	0.02	1.93	0.01	0.00-8.80	0.00-0.03	0.44	0.48	0.000	0.000
0 0	m	26	17.42	0.06	3.65	0.01	11.90-25.18	0.04-0.08	0.21	0.20		
Breadth of palate at postcanines 3–4	f	32	37.90	0.15	2.03	0.01	34.25-41.16	0.13-0.16	0.05	0.06	0.000	0.000
	m	25	52.64	0.17	4.78	0.01	43.28-60.71	0.13-0.19	0.09	0.08		
Breadth of palate at postcanines $4-5$	f	32	38.56	0.15	1.71	0.01	35.33-42.22	0.14-0.16	0.04	0.05	0.000	0.000
	m	25	51.85	0.16	4.68	0.01	43.01-60.15	0.14-0.19	0.09	0.08		
Breadth of palate at postcanine 5	f	32	36.04	0.14	1.76	0.01	33.04-39.51	0.12-0.15	0.05	0.05	0.000	0.003
	m	25	47.61	0.15	4.72	0.02	40.43-56.20	0.12-0.18	0.10	0.11		
Length of orbit	f	22	60.28	0.23	174	0.01	57 63-64 07	0.22-0.25	0.03	0.03	0.000	0 000
	m	25	65.04	0.21	4 20	0.01	57 38-72 56	0.18-0.23	0.07	0.06	0.000	0.000
Breadth of orbit	f	20	52 53	0.21	4.29	0.01	40.84-56.07	0.10 0.23	0.07	0.04	0.000	0 301
	m	25	52.55	0.20	2.21	0.01	49.04 30.07 E7.07-72.26	0.19 0.22	0.05	0.04	0.000	0.501
Mandible and teeth		25	04.90	0.20	5.21	0.01	57.97 72.20	0.10 0.22	0.05	0.05		
Longth of mandible	f	26	182.80	0.70	г 6г	0.02	172 24-102 87	0 67-0 72	0.02	0.02	0.000	0.000
	ı m	20	102.00	0.70	5.05	0.02	1/3.24-193.07	0.07-0.73	0.03	0.02	0.000	0.000
Longth of mandibular tooth row	f	15	230.42	0.75	12.00	0.02	214.22-201.15	0.71-0.78	0.05	0.02	0.000	0.126
	1	20	/7.95	0.30	3.10	0.01	/1.14=03.//	0.20-0.32	0.04	0.04	0.000	0.130
Mania diatal diamatan af lawan anninan	۲ ۱۱۱	15	97.17	0.31	5.45	0.02	87.82-108.50	0.2/-0.33	0.06	0.05		
Mesiodistal diameter of lower canines	1	23	9.79	0.04	0.84	0.01	8.47-11.51	0.03-0.04	0.09	0.13	0.000	0.000
Distance housed at house of unner series	ffi F	13	23.42	0.07	3.19	0.01	18.19-27.83	0.06-0.09	0.14	0.15		
Distance becaudal border of upper canines	T	32	72.64	0.28	3.61	0.01	62.37-79.27	0.24-0.30	0.05	0.02	0.000	0.000
	m	26	83.46	0.26	4.41	0.01	72.77-91.86	0.24-0.29	0.05	0.05		
Height of upper canines above alveolus	t	23	24.61	0.09	2.64	0.01	20.82-32.96	0.08-0.12	0.11	0.11	0.000	0.287
	m	13	31.97	0.10	5.38	0.02	20.67–40.11	0.07-0.13	0.17	0.17		
Mesiodistal diameter of postcanines	t	25	8.99	-	0.57	-	7.55-9.99	-	0.06	-	0.001	-
	m	6	9.87	-	0.36	-	9.37-10.37	-	0.04	-		
Length of lower postcanine row	f	26	60.92	0.23	2.04	0.01	57.32–64.07	0.21-0.25	0.03	0.04	0.000	0.000
	m	15	66.49	0.21	3.59	0.02	61.68–74.76	0.18–0.23	0.05	0.07		
Height of mandible at meatus	f	26	52.57	0.20	2.79	0.01	48.50–57.62	0.19-0.22	0.05	0.05	0.000	0.000
	m	15	82.49	0.26	5.70	0.02	70.56–91.70	0.22-0.28	0.07	0.07		
Angularis – coronoideus	f	26	61.34	0.24	3.33	0.01	53.69–66.48	0.20-0.25	0.05	0.06	0.000	0.000
	m	15	87.30	0.27	6.64	0.02	76.64–97.47	0.24-0.30	0.08	0.06		
Length of masseteric fossa	f	26	62.30	0.24	5.85	0.02	48.89–69.61	0.19-0.27	0.09	0.09	0.000	0.000
	m	15	90.46	0.28	7.79	0.02	68.01–101.07	0.23-0.31	0.09	0.06		
Breadth of masseteric fossa	f	26	36.02	0.14	3.88	0.01	26.77-41.28	0.10-0.16	0.11	0.10	0.000	0.000
	m	15	50.71	0.16	5.46	0.01	40.07-60.43	0.13–0.18	0.11	0.09		
SD = standard deviation, $CV =$ coefficient of	variation, P	= probabili	ty values deriv	ed from stud	ents <i>t</i> -test.							

 Table 4
 Summary statistics for skull measurements – adult male and female Phocarctos hookeri.

Table 5 Zalophus californianus californianus

			Ν	lean		SD	Rang	e		CV	ŀ	0
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Length of skull												
Condylobasal length (CBL)	f	42	231.//1	1.00	6.00	_	221.30-247.77	_	0.03	_	0.000	0.000
	m.	65	283.01	1.00	11.00	_	253 01-303 05	_	0.04	_	01000	0.000
Gnathion – mid-occinital crest	f	42	203.91	0.88	5 40	0.01	10/ 05-217 52	0 85-0 01	0.03	0.02	0.000	0.000
	m	65	256.97	0.01	12.40	0.02	223.55-280.81	0.85-0.94	0.05	0.02	0.000	0.000
Gnathion – posterior end of nasals	f	42	78.07	0.34	3.17	0.01	70.25-82.82	0.31-0.36	0.04	0.03	0.000	0.000
	m	64	103.35	0.37	5.60	0.05	90.95-114.61	0.34-0.72	0.05	0.13	0.000	0.000
Length of nasals	f	34	43.01	0.10	2.64	0.01	38.06-47.05	0.17-0.21	0.06	0.06	0.000	0.000
	m	62	55.08	0.19	4.69	0.02	40.00-65.31	0.15-0.23	0.00	0.08	0.000	0.000
Palatal notch – incisors	f	42	05.78	0.41	4.50	0.02	82 02-104 58	0.37-0.45	0.05	0.04	0.000	0.000
	m	42 65	122 42	0.41	4.59	0.02	104.05-144.82	0.37 0.43	0.05	0.04	0.000	0.000
Gnathion – posterior of maxilla (palatal)	f	42	106 50	0.45	2 48	0.02	07.00-114.24	0.59 0.49	0.00	0.02	0.000	0.000
	m	42 6r	120.50	0.46	5.40	0.01	115 78-142 76	0.44 0.40	0.05	0.02	0.000	0.000
Basion – zvgomatic root	f	42	150.95	0.40	6.54	0.05	141 51-150 62	0.45 0.50	0.05	0.12	0.000	0.766
Dasion – zygomatic root	m	42 65	150.07	0.05	4.27	0.01	141.51-159.02	0.04-0.07	0.03	0.01	0.000	0.700
Pasion band of ptorygoid	f	65	67.10	0.00	0.52	0.05	62.50-207.04	0.40-0.74	0.05	0.07	0.000	0.266
Basion – bend of pterygold	ı m	42	07.42	0.29	2.52	0.01	02.50-73.00	0.27-0.32	0.04	0.03	0.000	0.200
Crathian and all harder nestalensid presses	۲. ۲	05	01.24	0.28	4.00	0.03	/3.54-09.05	0.20-0.32	0.05	0.09		
Ghathion – caudal border postglenoid process	I	42	1/0.25	0.74	4.72	0.01	162.87-184.99	0./2-0./5	0.03	0.01	0.000	0.000
Curathian farmers information	۲ ۱۱۱	65	214.07	0.75	12.79	0.04	149.43-234.31	0.50-0.81	0.06	0.05		
Ghathion – foramen infraorbitale	r	40	73.65	0.31	3.27	0.04	66.93-80.74	0.28-0.34	0.04	0.13	0.000	0.000
	m	62	93.35	0.33	7.13	0.02	76.15-106.08	0.28-0.37	0.08	0.06		
Gnathion – caudal border of preorbital process	f	42	77.38	0.34	2.67	0.01	71.74-83.53	0.32-0.36	0.04	0.03	0.000	0.000
	m	65	98.92	0.35	4.44	0.01	88.98–107.69	0.28–0.38	0.05	0.04		
Breadth of skull												
Breadth of nares	f	41	22.46	0.10	1.02	0.01	20.69–25.02	0.09-0.11	0.05	0.06	0.000	0.000
	m	64	29.66	0.10	2.14	0.01	21.49-33.82	0.08-0.12	0.07	0.07		
Breadth at preorbital processes	f	42	58.67	0.25	2.74	0.01	53.07-66.52	0.23-0.30	0.05	0.05	0.000	0.000
	m	65	82.62	0.29	5.24	0.02	70.63-93.26	0.26-0.33	0.06	0.06		
Interorbital constriction	f	42	33.09	0.14	1.77	0.01	29.59-37.57	0.13-0.17	0.05	0.06	0.000	0.000
	m	65	45.96	0.16	3.22	0.01	38.51-52.49	0.13-0.18	0.07	0.07		
Breadth at supraorbital processes	f	40	49.66	0.22	3.75	0.02	40.75-61.03	0.18-0.25	0.08	0.07	0.000	0.000
	m	64	68.87	0.24	7.10	0.02	52.14-87.08	0.20-0.29	0.10	0.09		
Breadth of braincase	f	41	78.13	0.34	, 1.90	0.01	74.55-82.87	0.30-0.36	0.02	0.04	0.000	0.000
	m	65	81.71	0.29	2.80	0.01	75.90-88.56	0.26-0.32	0.03	0.05		
Occipital crest – mastoid	f	42	92.91	0.40	3.47	0.01	86.68-100.97	0.37-0.43	0.04	0.03	0.000	0.000
	m	65	130.16	0.46	0.21	0.03	104.70-148.61	0.30-0.51	0.07	0.05		
Rostral width	f	40	36.76	0.16	1.48	0.02	32.84-39.56	0.04-0.17	0.04	0.13	0.000	0.000
	m	62	50.70	0.21	4.04	0.04	40 60-68 71	0.18-0.47	0.07	0.16	01000	0.000
Breadth of zygomatic root of maxilla	f	42	11 72	0.21	4.04	0.04	8 OE-14 28	0.04-0.06	0.07	0.10	0.000	0.000
Breadth of Zygomatic root of maxina	m	42 65	11./2	0.05	1.21	0.01	12 07-20 15	0.04 0.00	0.10	0.22	0.000	0.000
Zygomatic breadth	f	61	110 00	0.00	2 21	0.02	112 27-128 20	0.65 0.20	0.02	0.02	0.000	0.000
Zygomatic breadin	m	41 6r	119.09	0.52	2.21	0.02	122 1/-177 56	0.40 0.55	0.05	0.05	0.000	0.000
		05	120.02	0.50	10.13	0.03	132.14-1//.50	0.40-0.05	0.00	0.05		

Auditory breadth	f	42	91.50	0.40	2.21	0.01	85.81–96.27	0.37-0.42	0.02	0.03	0.000	0.000
	m	65	123.21	0.44	8.01	0.02	104.78–141.58	0.39-0.53	0.07	0.05		
Mastoid breadth	f	42	101.55	0.44	2.78	0.01	96.29–106.42	0.41–0.46	0.03	0.03	0.000	0.000
	m	64	142.83	0.50	9.71	0.04	115.59–163.77	0.29–0.56	0.07	0.08		
Height of skull at supraorbital processes	f	42	58.75	0.26	2.67	0.01	54.00-64.53	0.23-0.28	0.05	0.05	0.000	0.000
	m	65	77.11	0.27	4.33	0.02	67.91–86.89	0.25-0.41	0.06	0.08		
Height of skull at ventral margin of mastoid	f	42	82.28	0.36	3.05	0.01	76.91–88.62	0.32–0.38	0.04	0.04	0.000	0.150
	m	65	106.62	0.37	7.11	0.04	90.84–121.90	0.14-0.43	0.07	0.10		
Height of sagittal crest	f	42	3.18	0.01	2.01	0.01	0.00–6.69	0.00-0.03	0.63	0.65	0.000	0.000
	m	63	27.58	0.10	8.26	0.03	5.66-47.93	0.02–0.16	0.30	0.30		
Breadth of palate at postcanines 3–4	f	42	30.34	0.13	1.63	0.01	25.88–33.24	0.11-0.14	0.05	0.06	0.000	0.000
	m	65	41.32	0.15	3.04	0.01	34.76-50.49	0.13-0.17	0.07	0.07		
Breadth of palate at postcanines 4–5	f	42	34.01	0.15	1.85	0.01	30.39-37.75	0.13–0.16	0.05	0.06	0.000	0.000
	m	65	45.77	0.16	3.23	0.01	38.61–54.21	0.14–0.18	0.07	0.06		
Breadth of palate at postcanine 5	f	42	33.99	0.15	1.96	0.01	29.59–38.34	0.13-0.17	0.06	0.06	0.000	0.000
	m	65	44.97	0.16	3.44	0.01	38.69–52.85	0.13-0.19	0.08	0.07		
Length of orbit	f	41	51.86	0.23	1.74	0.01	48.40-55.82	0.21-0.24	0.03	0.03	0.000	0.000
	m	65	57.47	0.20	2.40	0.01	52.15-62.88	0.18-0.22	0.04	0.04		
Breadth of orbit	f	42	46.94	0.20	1.15	0.01	44.22-49.22	0.19-0.22	0.03	0.04	0.000	0.004
	m	65	55.20	0.20	2.51	0.07	46.80–61.43	0.18–0.76	0.05	0.35		
Mandible and teeth												
Length of mandible	f	33	152.03	0.66	3.97	0.01	140.36-161.30	0.62-0.68	0.03	0.02	0.000	0.000
	m	44	197.31	0.70	9.92	0.02	171.55-213.50	0.64-0.73	0.05	0.03		
Length of mandibular tooth row	f	33	66.02	0.29	1.75	0.01	61.10-69.67	0.27-0.31	0.03	0.04	0.000	0.069
	m	43	82.47	0.29	6.31	0.04	51.42-90.60	0.07-0.32	0.08	0.14		
Mesiodistal diameter of lower canines	f	32	8.51	0.04	0.57	0.00	6.68-9.82	0.03-0.04	0.07	0.10	0.000	0.000
	m	43	18.83	0.07	1.42	0.01	15.87-22.00	0.05-0.08	0.08	0.09		
Distance becaudal border of upper canines	f	42	55.09	0.24	4.04	0.02	48.63-64.19	0.21-0.28	0.07	0.08	0.000	0.000
	m	65	62.20	0.22	5.21	0.02	52.70-77.28	0.19-0.26	0.08	0.07		
Height of upper canines above alveolus	f	34	19.51	0.08	2.02	0.01	15.33-23.62	0.07-0.10	0.10	0.10	0.000	0.000
0 11	m	47	28.58	0.10	3.39	0.01	22.00-36.13	0.08-0.13	0.12	0.12		
Mesiodistal diameter of postcanines	f	36	8.32	_	0.41	-	7.64-9.06	-	0.05	_	0.000	-
·	m	38	9.42	_	0.47	-	8.60-10.52	_	0.05	-		
Length of lower postcanine row	f	34	48.62	0.21	1.55	0.01	44.95-51.82	0.20-0.23	0.03	0.04	0.000	0.000
<u> </u>	m	44	54.82	0.19	3.44	0.01	44.29-61.56	0.16-0.22	0.06	0.06		
Height of mandible at meatus	f	34	42.18	0.18	2.09	0.01	36.71-46.25	0.16-0.20	0.05	0.06	0.000	0.000
0	m	44	66.59	0.23	6.86	0.02	53.12-83.47	0.19-0.28	0.10	0.09		
Angularis – coronoideus	f	34	46.18	0.20	2.71	0.01	39.85-52.81	0.18-0.22	0.06	0.05	0.000	0.000
	m	44	66.87	0.24	6.90	0.02	54.86-84.64	0.20-0.28	0.10	0.08		
Length of masseteric fossa	f	34	45.51	0.20	4.97	0.02	31.87-56.12	0.14-0.24	0.11	0.11	0.000	0.000
-	m	43	65.16	0.23	6.01	0.04	45.87-74.26	0.02-0.25	0.09	0.16		
Breadth of masseteric fossa	f	34	28.45	0.12	2.93	0.01	22.11-34.90	0.10-0.15	0.10	0.10	0.000	0.000
	m	44	40.66	0.14	5.06	0.02	27.16-51.32	0.10-0.18	0.12	0.11		
		••	•		-		, , , ,					

 Table 5
 Summary statistics for skull measurements – adult male and female Zalophus californianus californianus.

Table 6 Z. c. wollebaeki

			Μ	ean		SD	Rang	e		CV	ŀ	D
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	5	231.77	1.00	6.47	_	223.73-230.17	_	0.03	_	0.000	0.000
	m	31	264.64	1.00	6.75	_	250.59-277.77	_	0.03	_	0.000	01000
Gnathion – mid-occipital crest	f	5	204.35	0.88	4.08	0.02	200.11-208.65	0.86-0.91	0.02	0.02	0.000	0.000
	m	31	238.78	0.90	7.68	0.02	210.7/-255.00	0.87-0.96	0.03	0.02	0.000	01000
Gnathion – posterior end of pasals	f	5	75 24	0.32	3 00	0.02	68 48-78 40	0.30-0.34	0.05	0.05	0.000	0.000
	m	30	01.08	0.35	5.90	0.02	81 48-00 85	0.31-0.38	0.05	0.05	0.000	0.000
Length of nasals	f	٦	20.18	0.17	2 60	0.02	24.04-42.40	0.15-0.10	0.00	0.01	0.000	0.000
Length of husuis	m	24	48 70	0.10	3.00	0.02	/1 70-57 20	0.15 0.19	0.09	0.11	0.000	0.000
Palatal notch – incisors	f	24 F	40.75	0.19	2.05	0.01	80.20-06.84	0.10 0.21	0.00	0.00	0.000	0.000
	m	21	92.01	0.40	2.00	0.01	102 21-120 72	0.39 0.41	0.05	0.02	0.000	0.000
Gnathion – posterior of maxilla (nalatal)	f	51	104.28	0.43	4.33	0.01	103.21-120.72	0.40-0.45	0.04	0.03	0.000	0.000
Ghatmon – posterior of maxilia (palatal)	1 m	5	104.38	0.45	1.97	0.01	102.20-107.25	0.44-0.40	0.02	0.02	0.000	0.000
Pasion augomatic root	f III	31	121.92	0.46	5.53	0.02	109.66-132.43	0.40-0.49	0.05	0.04		0 766
Basion – zygomatic toot	1	5	151.10	0.65	6.19	0.01	142.32-150.32	0.64-0.66	0.04	0.01	0.000	0.766
	m	31	173.48	0.66	4.91	0.01	164.43-184.00	0.64–0.68	0.03	0.02		
Basion – bend of pterygold	r	5	71.25	0.31	6.53	0.02	64.05-81.56	0.29–0.34	0.09	0.07	0.000	0.266
	m	31	78.87	0.30	4.61	0.02	70.97-93.26	0.27-0.34	0.06	0.05		
Gnathion – caudal border postglenoid process	t	5	170.13	0.73	4.77	0.01	163.99–176.31	0.72-0.75	0.03	0.02	0.000	0.000
	m	31	198.60	0.75	6.11	0.01	186.06–208.61	0.74–0.78	0.03	0.01		
Gnathion – foramen infraorbitale	f	4	72.26	0.31	3.71	0.02	68.14–75.77	0.29–0.33	0.05	0.06	0.000	0.000
	m	26	86.56	0.33	4.70	0.01	74.81–93.90	0.30-0.35	0.05	0.04		
Gnathion – caudal border of preorbital process	f	5	74.55	0.32	1.98	0.01	72.38–77.61	0.31-0.33	0.03	0.03	0.000	0.000
	m	30	88.17	0.33	3.69	0.01	83.00–95.93	0.31-0.35	0.04	0.03		
Breadth of skull												
Breadth of nares	f	5	22.95	0.10	2.09	0.01	20.14-25.04	0.09-0.11	0.09	0.09	0.000	0.000
	m	30	28.58	0.11	1.82	0.01	25.71-33.01	0.10-0.12	0.06	0.06		
Breadth at preorbital processes	f	5	54.40	0.23	1.06	0.01	52 00-57 47	0.23-0.24	0.04	0.02	0.000	0.000
Breadth at preorbital processes	m	26	60.01	0.26	3.74	0.01	62 50-78 27	0.23-0.20	0.04	0.05	0.000	0.000
Interorbital constriction	f	0 	20.62	0.12	2 71	0.01	26 85-24 24	0.11-0.15	0.00	0.11	0.000	0.000
	m	20	40.74	0.15	2.71	0.01	24.01-48.80	0.14-0.10	0.03	0.07	0.000	0.000
Breadth at supraorbital processes	f	-9	40.74 F2.00	0.22	2.79	0.02	47.78-58.50	0.20-0.25	0.07	0.10	0.000	0.000
breadth at supravibilat processes	m	4	52.99 68 24	0.25	4.92 r 78	0.02	60.27-81.28	0.20 0.23	0.09	0.10	0.000	0.000
Broadth of braincase	f	20	78 11	0.20	5.70	0.02	72 18-80 82	0.22-0.31	0.09	0.09	0.000	0.000
bleauth of blaincase	1 m	5	70.11	0.34	3.01	0.02	72.10-00.02	0.31-0.30	0.05	0.05	0.000	0.000
Occipital croct mactaid	f III	31	/9./0	0.30	2.39	0.01	74.00-04.43	0.26-0.32	0.03	0.03		0.000
occipital crest – mastola	1	5	91.83	0.40	3.45	0.01	87.94-96.04	0.39-0.40	0.04	0.01	0.000	0.000
	m	31	117.31	0.44	8.62	0.03	95.28-138.13	0.38-0.51	0.07	0.06		
Rostral width	r	5	38.23	0.17	2.21	0.01	35.90-40.98	0.16-0.18	0.06	0.05	0.000	0.000
	m	30	54.38	0.21	3.48	0.01	48.37–61.66	0.19-0.23	0.06	0.06		
Breadth of zygomatic root of maxilla	f	5	11.69	0.05	1.09	0.00	10.70-13.45	0.05–0.06	0.09	0.09	0.000	0.000
	m	31	14.40	0.06	1.42	0.01	11.78–17.31	0.04–0.07	0.10	0.11		
Zygomatic breadth	f	5	121.72	0.53	4.67	0.01	116.50–128.71	0.51–0.54	0.04	0.02	0.000	0.000
	m	29	147.97	0.56	7.70	0.02	129.22–160.23	0.51-0.59	0.05	0.04		

Auditory breadth	f	5	89.66	0.39	2.38	0.01	87.26–93.46	0.38–0.40	0.03	0.02	0.000	0.000
	m	31	110.89	0.42	6.00	0.02	98.88–124.26	0.38–0.47	0.05	0.04		
Mastoid breadth	f	5	98.45	0.42	4.32	0.01	93.39–104.88	0.41-0.44	0.04	0.03	0.000	0.000
	m	30	127.04	0.48	7.95	0.02	111.55–142.32	0.43-0.53	0.06	0.05		
Height of skull at supraorbital processes	f	5	58.43	0.25	1.43	0.01	56.60–59.84	0.24–0.26	0.02	0.03	0.000	0.000
	m	30	69.61	0.26	4.12	0.01	61.68-80.23	0.24-0.29	0.06	0.04		
Height of skull at ventral margin of mastoid	f	5	81.98	0.35	3.58	0.02	78.16–85.96	0.33–0.38	0.04	0.06	0.000	0.150
	m	31	97.01	0.37	5.67	0.02	84.33-110.93	0.33-0.41	0.06	0.05		
Height of sagittal crest	f	5	1.50	0.01	0.50	0.01	0.00-3.27	0.00-0.01	1.00	0.91	0.000	0.000
	m	30	21.92	0.08	7.26	0.03	6.87-35.19	0.03-0.13	0.33	0.32		
Breadth of palate at postcanines 3–4	f	5	31.27	0.14	1.96	0.01	28.85-34.01	0.13-0.14	0.06	0.04	0.000	0.000
	m	30	35.35	0.13	2.52	0.01	30.25-39.39	0.11-0.16	0.07	0.08		
Breadth of palate at postcanines 4–5	f	5	35.99	0.16	1.32	0.01	34.81-37.52	0.15-0.16	0.04	0.04	0.000	0.000
	m	30	39.77	0.15	2.06	0.01	34.94-44.17	0.13-0.16	0.05	0.05		
Breadth of palate at postcanine 5	f	5	35.96	0.15	1.62	0.01	33.62-37.46	0.15-0.16	0.05	0.04	0.000	0.000
	m	30	39.96	0.15	2.17	0.01	35.06-46.23	0.14-0.17	0.05	0.05		
Length of orbit	f	5	53.52	0.23	, 1.57	0.01	51.45-55.53	0.22-0.24	0.03	0.03	0.000	0.000
5	m	31	56.76	0.22	1.71	0.01	53.04-60.04	0.20-0.23	0.03	0.03		
Breadth of orbit	f	5	45.94	0.20	, 0.83	0.01	44.82-46.85	0.19-0.21	0.02	0.04	0.000	0.004
	m	30	49.72	0.19	1.96	0.01	46.03-53.49	0.17-0.20	0.04	0.04		
Mandible and teath		J -	12-17					,				
Manappie and leelin	£	-	456.00	o (7	(22	0.04	450 07 4(0.80	0 ((0 (7	0.00	0.01		
Length of mandible	1	3	156.03	0.67	4.39	0.01	152.37-160.89	0.66-0.67	0.03	0.01	0.000	0.000
Louistly of more difficulty to other stress	m	11	182.88	0.69	6.56	0.01	173.68–191.54	0.67-0.71	0.04	0.02		
Length of mandibular tooth row	T	3	65.70	0.28	1.65	0.01	64.33-67.53	0.28-0.29	0.03	0.02	0.000	0.069
	m	11	77.19	0.29	3.87	0.01	70.28-83.20	0.27-0.30	0.05	0.04		
Mesiodistal diameter of lower canines	r	3	7.95	0.03	0.22	0.01	7.70-8.08	0.03–0.04	0.03	0.17	0.000	0.000
	m	11	16.93	0.07	1.68	0.01	13.35-18.73	0.05-0.07	0.10	0.11		
Distance becaudal border of upper canines	t	5	59.36	0.26	4.42	0.02	51.56-62.36	0.23-0.27	0.07	0.06	0.000	0.000
	m	31	64.05	0.24	4.87	0.02	56.27-72.06	0.21-0.27	0.08	0.08		
Height of upper canines above alveolus	t	4	17.64	0.08	1.16	0.01	16.40–19.19	0.07-0.08	0.07	0.08	0.000	0.000
	m	24	24.05	0.09	1.43	0.01	21.33-27.09	0.08–0.11	0.06	0.08		
Mesiodistal diameter of postcanines	t	4	7.97	-	0.61	-	7.30-8.69	-	0.08	-	0.000	-
	m	18	8.75	-	0.70	-	6.78–9.91	-	0.08	-		
Length of lower postcanine row	f	3	48.52	0.21	0.61	0.01	47.83–48.96	0.20-0.22	0.01	0.06	0.000	0.000
	m	11	53.42	0.20	2.01	0.00	49.59–56.01	0.19-0.21	0.04	0.02		
Height of mandible at meatus	f	3	41.17	0.17	1.84	0.01	39.61–43.20	0.17–0.18	0.05	0.03	0.000	0.000
	m	11	58.63	0.22	4.00	0.01	53.32–66.41	0.20-0.25	0.07	0.06		
Angularis – coronoideus	f	3	46.81	0.20	1.30	0.01	45.48–48.08	0.20-0.21	0.03	0.03	0.000	0.000
	m	11	61.00	0.23	4.59	0.01	54.68–66.77	0.21-0.25	0.08	0.06		
Length of masseteric fossa	f	3	45.74	0.20	7.42	0.03	37.48–51.86	0.17-0.22	0.16	0.13	0.000	0.000
	m	11	59.72	0.23	4.95	0.02	50.46-67.38	0.19-0.25	0.08	0.07		
Breadth of masseteric fossa	f	3	30.91	0.13	2.81	0.01	27.69–32.86	0.12-0.14	0.09	0.09	0.000	0.000
	m	11	39.22	0.15	4.53	0.02	32.06-46.50	0.12-0.17	0.12	0.11		

Table 6 Summary statistics for skull measurements – adult male and female Zalophus californianus wollebaeki.

Table 7 Z. c. japonicus

			Μ	ean		SD	Rang	e		CV	ŀ	0
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Length of skull												
Condylobasal length (CBL)	f	1	2/12.00	1.00	_	_	_	_	_	_	_	_
condytobasartength (cb2)	m	12	312.02	1.00	8.17	_	200.51-323.44	_	0.03	_		
Gnathion – mid-occipital crest	f	1	213.38	0.88	_	_	-	_	-	_	_	_
	m	12	288.00	0.92	10.30	0.03	265.87-307.20	0.88-0.98	0.04	0.04		
Gnathion – posterior end of nasals	f	1	82.28	0.34	_		_		_		_	_
	m	11	116.89	0.37	3.69	0.01	112.07-125.07	0.35-0.40	0.03	0.04		
Length of nasals	f	1	44.36	0.18	_		_		_		_	_
	m	11	59.96	0.19	1.69	0.01	57.73-63.34	0.18-0.20	0.03	0.04		
Palatal notch – incisors	f	1	99.48	0.41	-		-		-	•	-	_
	m	12	138.68	0.45	6.53	0.01	129.55-148.58	0.42-0.46	0.05	0.03		
Gnathion – posterior of maxilla (palatal)	f	1	113.03	0.47	-		-		-	2	-	_
	m	12	148.42	0.48	7.27	0.01	137.13–160.84	0.46-0.50	0.05	0.03		
Basion – zygomatic root	f	1	160.19	0.66	_		-		-	-	-	_
	m	13	208.70	0.67	8.47	0.02	192.87-220.77	0.64–0.69	0.04	0.03		
Basion – bend of pterygoid	f	1	, 78.79	0.33	- "		-			2	-	_
	m	19	91.10	0.30	5.89	0.02	84.76-108.49	0.26-0.34	0.07	0.07		
Gnathion – caudal border postglenoid process	f	1	182.36	0.75	-		-	51	- '	,	-	_
	m	12	239.57	0.77	8.94	0.01	222.37-249.85	0.74–0.78	0.04	0.02		
Gnathion – foramen infraorbitale	f	1	79.92	0.33	-		-				-	_
	m	14	106.08	0.34	4.88	0.01	93.55-113.26	0.31-0.35	0.05	0.04		
Gnathion – caudal border of preorbital process	f	1	81.28	0.34	_		-	2 22	-		-	_
	m	14	111.39	0.35	5.61	0.02	97.10–116.81	0.32-0.37	0.05	0.05		
Broadth of skull					-				-	-		
Breadth of nares	f	1	27.00	0.11	_	_	_	_	_	_	_	_
Dicadition nares	m	1	27.00	0.11	2 75	0.01	28 77-41 01	0 11-0 12	0.08	0.06		
Breadth at preorbital processes	f	10	66.40	0.12	2.75	-		_	-	-	_	_
breadth at preorbitat processes	m	11	00.49	0.27	4.07	0.02	85 06-102 88	0.28-0.24	0.05	0.05		
Interorbital constriction	f	1	95.94	0.51	4.97	-	-	-	-	-	_	_
	m	10	59.50	0.10	2.86	0.01	46 06-60 82	0 16-0 10	0.07	0.06		
Breadth at supraorbital processes	f	19	54.07	0.17		-	-	-	-	-	_	_
breadth at supraorbitat processes	m	17	80.54	0.25	5 02	0.02	70 22-86 03	0 23-0 20	0.06	0.07		
Breadth of braincase	f	-/	82 15	0.20	_	_	-	-	-	-	_	_
breadth of braincase	m	18	80.57	0.20	3 10	0.01	84 05-04 58	0 26-0 30	0.04	0.04		
Occipital crest – mastoid	f	10	100.44	0.42	_	_	-	-	-	-	_	_
	m	10	143.48	0.42	8 31	0.03	126 44-158 03	0 43-0 53	0.06	0.06		
Rostral width	f	19	42.08	0.40	-	-	-	-	-	-	_	_
	m	12	70.72	0.23	5.38	0.02	50.86-77.73	0.20-0.25	0.08	0.07		
Breadth of zygomatic root of maxilla	f	1	1/.70	0.06	_	_	_	-	_	_	_	_
2. cast. c. 2950 and root of maxima	m	17	-4•79 20.45	0.07	2.11	0.01	15.61-23.48	0.05-0.07	0.10	0.11		
Zygomatic breadth	f	-/ 1	132.82	0.55	_	_	-	-	_	_	_	_
,	m	13	183.10	0.58	8.34	0.03	162.03-103.00	0.54-0.64	0.05	0.05		
)		··) - · · · · · · · · · · · · · · · · ·	,)		

Auditory breadth	f	1	102.80	0.42	-	-	-	-	-	-	-	-
	m	19	147.97	0.47	8.29	0.03	132.92–162.61	0.44-0.52	0.06	0.06		
Mastoid breadth	f	1	114.24	0.47	-	-	-	-	-	-	_	-
	m	17	170.80	0.55	8.52	0.03	154.27–186.38	0.51–0.61	0.05	0.05		
Height of skull at supraorbital processes	f	1	67.07	0.28	-	-	-	-	-	-	-	-
	m	13	93.72	0.30	5.47	0.02	83.02–100.67	0.28-0.33	0.06	0.06		
Height of skull at ventral margin of mastoid	f	1	85.89	0.35	-	-	-	-	-	-	-	-
	m	19	118.39	0.38	6.77	0.03	108.51–134.32	0.35-0.45	0.06	0.07		
Height of sagittal crest	f	1	3.69	0.02	-	-	-	-	-	-	-	-
	m	17	38.70	0.13	8.48	0.03	20.11–48.67	0.07–0.16	0.22	0.24		
Breadth of palate at postcanines 3-4	f	1	31.97	0.13	-	-	-	-	-	-	_	-
	m	16	45.33	0.15	3.18	0.01	38.34-49.44	0.13–0.16	0.07	0.06		
Breadth of palate at postcanines 4-5	f	1	37.12	0.15	-	-	-	-	-	-	-	-
	m	16	49.00	0.16	2.88	0.01	41.15-53.15	0.15-0.17	0.06	0.05		
Breadth of palate at postcanine 5	f	1	35.43	0.15	-	-	-	-	-	-	-	-
	m	16	47.04	0.15	3.21	0.01	38.96-53.12	0.13-0.17	0.07	0.08		
Length of orbit	f	1	56.80	0.23	-	-	-	-	-	-	-	-
	m	9	60.97	0.19	2.71	0.01	57.24–65.89	0.18-0.21	0.04	0.05		
Breadth of orbit	f	1	50.67	0.21	-	-	-	-	-	-	-	-
	m	11	59.19	0.19	2.50	0.01	52.98–62.44	0.18-0.20	0.04	0.04		
Mandible and teeth												
Length of mandible	f	1	164.99	0.68	-	_	-	_	_	_	_	_
5	m	2	218.14	0.73	21.84	_	202.69-233.58	0.73-0.73	0.10	1.00		
Length of mandibular tooth row	f	1	70.78	0.29		_	-	-	-	_	_	_
	m	2	94.80	0.32	12.53	-	85.94–103.66	0.32-0.32	0.13	1.00		
Mesiodistal diameter of lower canines	f	1	9.47	0.04	-	_	-	-	-	_	_	_
	m	2	21.73	0.08	3.96	-	18.93-24.53	0.08-0.08	0.18	1.00		
Distance becaudal border of upper canines	f	1	66.92	0.28	_	_	-	-	_	-	-	-
	m	15	76.09	0.25	7.72	0.02	59.52-89.17	0.22-0.28	0.10	0.08		
Height of upper canines above alveolus	f	1	21.07	0.09	_	-	_	-	-	-	_	-
	m	4	31.00	0.10	4.51	0.02	27.97-37.58	0.09-0.12	0.15	0.15		
Mesiodistal diameter of postcanines	f	1	9.50	-	-	-	-	_	-	-	-	-
	m	4	10.74	-	1.38	-	9.23-12.52	-	0.13	-		
Length of lower postcanine row	f	1	52.17	0.22	-	_	-	-	-	-	-	-
	m	2	63.03	0.21	7.45	-	57.76-68.30	0.21-0.21	0.12	1.00		
Height of mandible at meatus	f	1	51.17	0.21	-	-	-	-	-	-	-	-
	m	2	78.88	0.28	13.17	-	69.57-88.19	0.28-0.28	0.17	1.00		
Angularis – coronoideus	f	1	52.86	0.22	-	-	-	-	-	-	-	-
	m	2	80.02	0.27	9.66	-	73.19–86.85	0.27-0.27	0.12	1.00		
Length of masseteric fossa	f	1	50.09	0.21	-	-	-	-	-	-	-	-
	m	2	66.67	0.22	5.94	-	62.47-70.87	0.22-0.22	0.09	1.00		
Breadth of masseteric fossa	f	1	37.07	0.15	-	-	-	-	-	-	-	-
	m	2	48.35	0.17	6.39	-	43.83–52.86	0.17-0.17	0.13	1.00		

 Table 7
 Summary statistics for skull measurements – adult male and female Zalophus californianus Japonicus.

Table 8 Callorhinus ursinus

			Μ	lean		SD	Rang	e		CV	ŀ	0
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Length of skull												
Condylobasal length (CBL)	f	121	185 00	1.00	4.02	_	175 20-108 83	_	0.03	_	0.000	0.000
condytobasar tength (cbb)	m	50	240 53	1.00	4.92	_	220 73-262 65	_	0.05	_	0.000	0.000
Gnathion – mid-occinital crest	f	131	158 52	0.85	5.22	0.02	146 70-177 74	0.81-0.00	0.03	0.02	0.000	0.000
	m	50	216.25	0.00	0.50	0.02	100.17-2/0.32	0.86-0.94	0.04	0.02	0.000	0.000
Gnathion – posterior end of pasals	f	131	55.00	0.30	2.86	0.01	40 10-63 03	0.27-0.33	0.05	0.04	0.000	0.000
	m	50	80.47	0.33	4.94	0.02	71 05-04 12	0.27 0.35	0.06	0.04	0.000	0.000
Length of nasals	f	120	28.88	0.15	4·94 2 71	0.01	21 82-25 80	0.12-0.10	0.00	0.00	0.000	0.000
Length of habits	m	48	40.61	0.17	2.71	0.01	34 32-51 40	0.14-0.20	0.09	0.09	0.000	0.000
Palatal notch – incisors	f	121	70.02	0.17	3.71	0.01	61 64-80 56	0.33-0.41	0.09	0.00	0.000	0 160
	m	50	01.75	0.28	5.71	0.02	70 42-102 00	0.24-0.42	0.05	0.05	0.000	0.109
Gnathion – posterior of maxilla (palatal)	f	121	91.75 70 F8	0.50	2.01	0.02	79.45 105.99	0.34 0.42	0.00	0.05	0.000	0.016
	m	151	102.06	0.45	2.91	0.01	71.50 00.52	0.40 0.40	0.04	0.05	0.000	0.010
Pasion Jugomatic root	f III	50	103.90	0.43	3.74	0.01	92.00-114.02	0.40-0.47	0.04	0.03		0.000
Basion – zygomatic root	I	131	132.21	0.71	3.99	0.01	122.16-143.93	0.66-0.74	0.03	0.01	0.000	0.329
Desire hand after the second	۲ (()	50	1/1.29	0./1	7.15	0.01	159.14-188.99	0.69-0.74	0.04	0.02		
Basion – bend of pterygold	T	131	61.54	0.33	2.57	0.01	55.65-70.67	0.30-0.37	0.04	0.04	0.000	0.000
	m	50	72.70	0.30	4.45	0.02	63.34-85.43	0.28-0.35	0.06	0.06		
Gnathion – caudal border postglenoid process	t	131	134.52	0.72	3.87	0.01	124.32-143.83	0.70-0.74	0.03	0.01	0.000	0.000
	m	50	179.45	0.75	6.56	0.01	164.80–194.50	0.73-0.77	0.04	0.01		
Gnathion – foramen infraorbitale	f	126	51.74	0.28	3.44	0.02	42.14–60.27	0.23-0.32	0.07	0.06	0.000	0.160
	m	45	68.59	0.29	8.13	0.03	36.76–81.09	0.15-0.32	0.12	0.11		
Gnathion – caudal border of preorbital process	f	131	52.38	0.28	2.20	0.01	47.39-59.71	0.26–0.31	0.04	0.03	0.000	0.000
	m	50	75.89	0.32	4.10	0.01	65.94–86.43	0.29-0.34	0.05	0.04		
Breadth of skull												
Breadth of nares	f	120	24.08	0.13	1 5 1	0.01	10 73-28 13	0 11 -0 15	0.06	0.06	0.000	0.000
	m	50	33.16	0.14	2 / 3	0.01	27 50-37 76	0.12-0.16	0.07	0.07	0.000	01000
Breadth at preorbital processes	f	128	46.28	0.25	2.45	0.01	27.50 57.70	0.22-0.27	0.07	0.05	0.000	0.000
breadth at preorbitat processes	m	40	40.20 68.14	0.25	2.35	0.01	59.00 55.10 r6 02-70 01	0.22 0.27	0.05	0.05	0.000	0.000
Interorbital constriction	f	49	24.02	0.20	4.95	0.02	20.42-20.51	0.25 0.52	0.07	0.00	0.000	0.000
	m	131	24.02	0.13	1.90	0.01	20.42-29.51	0.11 -0.10	0.08	0.08	0.000	0.000
Proadth at supraorbital processos	f	120	40.42	0.17	4.20	0.01	32.51-49.95	0.14-0.20	0.10	0.09	0.000	0.000
bleadth at supraorbitat processes	1 m	129	39.33	0.21	3.42	0.02	30.79-47.53	0.17-0.20	0.09	0.08	0.000	0.000
Dreadth of brainces	۲ (()	49	59.53	0.25	5.51	0.02	49.16-75.76	0.21-0.29	0.09	0.08		
Breadth of braincase	1	127	74.92	0.40	2.33	0.02	69.00-80.42	0.36-0.44	0.03	0.04	0.000	0.000
	m	49	77.08	0.32	2.95	0.01	70.72-84.72	0.29-0.35	0.04	0.04		
Occipital crest – mastoid	t	131	81.76	0.44	2.32	0.01	76.05-87.56	0.41–0.48	0.03	0.03	0.000	0.000
	m	50	115.41	0.48	5.40	0.02	104.12-125.25	0.44–0.51	0.05	0.04		
Rostral width	f	130	33.69	0.18	1.92	0.01	28.84–41.27	0.15-0.21	0.06	0.06	0.000	0.000
	m	50	52.78	0.22	3.13	0.01	45.93–60.57	0.19-0.24	0.06	0.05		
Breadth of zygomatic root of maxilla	f	131	10.97	0.06	1.11	0.01	8.41–14.41	0.05–0.08	0.10	0.12	0.000	0.000
	m	50	16.72	0.07	1.71	0.01	12.28–21.96	0.05–0.09	0.10	0.11		
Zygomatic breadth	f	128	108.34	0.58	3.56	0.02	99.41–119.64	0.54–0.62	0.03	0.03	0.000	0.000
	m	49	146.12	0.61	5.93	0.02	133.77–160.02	0.56–0.65	0.04	0.03		

Auditory breadth	f	130	84.31	0.45	2.29	0.01	79.38-89.34	0.42-0.49	0.03	0.03	0.000	0.000
	m	50	111.95	0.47	5.01	0.01	102.98–122.22	0.44-0.50	0.05	0.03		
Mastoid breadth	f	130	90.26	0.49	3.15	0.02	82.58–98.96	0.45-0.53	0.04	0.04	0.000	0.000
	m	50	126.88	0.53	7.23	0.02	112.97–141.54	0.48–0.58	0.06	0.04		
Height of skull at supraorbital processes	f	131	56.78	0.31	2.25	0.01	52.37-63.49	0.28-0.33	0.04	0.04	0.000	0.000
	m	50	78.96	0.33	5.55	0.02	70.06–94.21	0.29-0.37	0.07	0.05		
Height of skull at ventral margin of mastoid	f	131	71.93	0.39	2.19	0.01	66.87–79.89	0.36-0.43	0.03	0.04	0.000	0.000
	m	50	105.32	0.44	6.73	0.02	88.47–116.81	0.39-0.47	0.06	0.05		
Height of sagittal crest	f	131	0.00	0.00	0.00	0.00	0.00-0.00	0.00-0.00	-	-	0.000	-
	m	50	6.10	0.03	2.33	0.01	1.99–14.04	0.01–0.06	0.38	0.39		
Breadth of palate at postcanines 3–4	f	131	21.97	0.12	1.57	0.01	18.20-25.49	0.10-0.14	0.07	0.08	0.000	0.000
	m	50	32.14	0.13	2.00	0.01	27.31-37.19	0.11-0.15	0.06	0.07		
Breadth of palate at postcanines 4–5	f	131	23.53	0.13	1.74	0.01	20.19-27.41	0.10-0.15	0.07	0.07	0.000	0.000
	m	50	33.66	0.14	2.08	0.01	28.86-37.68	0.12-0.16	0.06	0.06		
Breadth of palate at postcanine 5	f	131	23.82	0.13	1.72	0.01	20.67–29.06	0.11-0.15	0.07	0.07	0.000	0.000
	m	50	33.86	0.14	2.20	0.01	28.63-37.89	0.12-0.16	0.07	0.07		
Length of orbit	f	126	50.91	0.27	1.38	0.01	47.21-54.14	0.25-0.29	0.03	0.03	0.000	0.000
	m	50	55.28	0.23	1.88	0.01	51.89–60.06	0.21-0.26	0.03	0.04		
Breadth of orbit	f	131	47.90	0.26	1.29	0.01	44.62–51.39	0.23-0.28	0.03	0.03	0.000	0.000
	m	50	55.22	0.23	2.08	0.01	50.77-60.88	0.21-0.25	0.04	0.04		
Mandible and teeth												
Length of mandible	f	129	122.49	0.66	3.94	0.01	111.54-134.04	0.61-0.69	0.03	0.02	0.000	0.000
	m	48	164.73	0.68	6.45	0.01	149.77-179.65	0.65-0.72	0.04	0.02		
Length of mandibular tooth row	f	129	47.87	0.26	1.82	0.01	42.74-53.23	0.22-0.28	0.04	0.03	0.000	0.000
5	m	48	63.68	0.27	3.09	0.01	58.07-72.50	0.24-0.29	0.05	0.04		
Mesiodistal diameter of lower canines	f	103	6.68	0.04	0.48	0.01	5.59-8.63	0.03-0.04	0.07	0.13	0.000	0.000
	m	43	15.44	0.06	1.60	0.01	12.52-22.30	0.05-0.09	0.10	0.11		
Distance becaudal border of upper canines	f	131	44.43	0.24	2.16	0.01	36.05-49.52	0.20-0.26	0.05	0.05	0.000	0.000
	m	50	53.98	0.23	2.79	0.01	44.42-59.02	0.19-0.25	0.05	0.05		
Height of upper canines above alveolus	f	95	17.07	0.09	1.56	0.01	12.20-22.11	0.07-0.11	0.09	0.09	0.000	0.000
5 11	m	44	25.65	0.11	3.33	0.01	16.95-33.25	, 0.07–0.14	0.13	0.12		
Mesiodistal diameter of postcanines	f	87	5.62	0.03	0.23	0.00	5.05-6.26	0.03-0.03	0.04	0.00	0.002	_
•	m	18	5.95	0.02	0.39	0.01	5.19-6.63	0.02-0.03	0.07	0.21		
Length of lower postcanine row	f	129	35.32	0.19	2.31	0.01	31.29-51.02	0.17-0.27	0.07	0.06	0.000	0.000
. .	m	48	42.49	0.18	2.53	0.01	34.53-47.87	0.15-0.20	0.06	0.05		
Height of mandible at meatus	f	129	34.03	0.18	2.02	0.01	29.13-39.13	0.16-0.21	0.06	0.06	0.000	0.000
-	m	48	58.93	0.25	3.92	0.01	50.40-72.28	0.22-0.28	0.07	0.06		
Angularis – coronoideus	f	129	37.95	0.20	2.23	0.01	32.76-43.88	0.18-0.23	0.06	0.05	0.000	0.000
	m	48	61.06	0.25	3.67	0.01	52.94-72.72	0.23-0.29	0.06	0.05		
Length of masseteric fossa	f	129	35.90	0.19	3.02	0.02	27.78-43.24	0.15-0.23	0.08	0.08	0.000	0.000
	m	48	56.93	0.24	4.76	0.02	46.38-66.26	0.20-0.28	0.08	0.08		
Breadth of masseteric fossa	f	129	20.73	0.11	2.16	0.01	15.88–26.80	0.09-0.14	0.10	0.10	0.000	0.000
	m	48	32.69	0.14	3.20	0.01	24.83-39.24	0.11-0.17	0.10	0.09		
					-			,		-		

Table 8 Summary statistics for skull measurements – adult male and female *Callorhinus ursinus*.

Table 9Arctocephalus gazella

			Μ	ean		SD	Rang	e		CV	ŀ	0
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	33	180.00	1.00	5.71	_	179.65-203.45	_	0.03	_		
condytosusur tength (cb2)	m	53	240.68	1.00	6.02	_	226 71-261 83	_	0.03	_	0.000	_
Gnathion – mid-occipital crest	f	22	163.49	0.86	5.74	0.02	151.47-172.38	0.83-0.89	0.04	0.02	0.000	
	m	53	220.42	0.92	7.40	0.02	205.49-246.69	0.87-0.97	0.03	0.02	0.000	0.000
Gnathion – posterior end of nasals	f	33	61.32	0.32	3.14	0.01	56.26-69.66	0.30-0.34	0.05	0.04	0.000	0.000
	m	53	83.31	0.35	3.86	0.01	76.30-04.03	0.32-0.37	0.05	0.03	0.000	0.000
Length of nasals	f	31	29.47	0.16	2.11	0.01	26.03-34.15	0.14-0.18	0.07	0.06	0.000	0.000
	m	47	39.68	0.16	2.84	0.01	34.95-45.47	0.1/-0.10	0.07	0.07	0.000	0.000
Palatal notch – incisors	f	77	82.23	0.43	4.33	0.02	74.65-01.24	0.41-0.46	0.05	0.04	0.000	0.000
	m	53	111.03	0.46	4.49	0.01	100.7/-120.5/	0.42-0.48	0.04	0.03	0.000	0.000
Gnathion – posterior of maxilla (palatal)	f	33	80.03	0.47	4.28	0.01	82 26-101 51	0.45-0.50	0.05	0.03	0.000	0.000
	m	53	118 40	0.40	4.20	0.01	108 71-133 71	0.46-0.51	0.04	0.02	0.000	0.000
Basion – zvgomatic root	f	22	128 70	0.49	4.77	0.01	122 20-120 20	0.40 0.31	0.04	0.02	0.000	0.000
	m)) [)	120.70	0.00	4·34 5 31	0.01	122.29 139.20	0.00 0.70	0.03	0.02	0.000	0.084
Basion – hand of ptervgoid	f	22	67.09	0.00	2.84	0.01	131.27 170.09 r8 67-72 1/	0.00 0.70	0.05	0.02	0.000	0.004
Dasion – bena or prerygola	m	55	07.00 81.10	0.35	2.84	0.01	72 58-80 87	0.31-0.30	0.04	0.04	0.000	0.000
Chathian caudal border postgloppid process	f	53	01.19	0.34	3.74	0.01	/3.50-09.0/	0.32-0.30	0.05	0.03	0.000	0.000
Gilatilion – caudal border postglenold process	1 m	33	130.12	0.72	4.40	0.01	127.01-147.52	0.70-0.73	0.03	0.01		
Cnathian foromon infraorhitala	f III	53	1/0.00	0.74	5.30	0.01	109.10-194.13	0.72-0.76	0.03	0.01	0.000	0.000
	1	33	55.00	0.29	4.05	0.02	49.00-05.14	0.27-0.34	0.07	0.06		
Crathian and all harder of prearhital presso	۲ ۱۱۱	53	//.32	0.32	4.63	0.02	68./9-8/.82	0.29-0.36	0.06	0.05	0.000	0.000
Ghathion – caudal border of preorbital process	T	33	54.89	0.29	2.17	0.01	50.75-59.68	0.28-0.30	0.04	0.03		
	m	53	75.40	0.31	3.19	0.01	68.55-88.05	0.30-0.34	0.04	0.03	0.000	0.000
Breadth of skull												
Breadth of nares	f	33	25.53	0.14	1.47	0.01	22.06–29.74	0.12-0.15	0.06	0.05		
	m	53	34.11	0.14	1.95	0.01	30.28–39.01	0.13–0.16	0.06	0.06	0.000	0.000
Breadth at preorbital processes	f	33	48.24	0.25	2.98	0.02	42.71-55.45	0.23-0.29	0.06	0.07		
	m	53	66.47	0.28	4.07	0.02	59.41-73.91	0.25-0.31	0.06	0.06	0.000	0.000
Interorbital constriction	f	33	24.66	0.13	1.87	0.01	21.77-28.97	0.12-0.15	0.08	0.08		
	m	53	38.38	0.16	3.47	0.01	30.53-45.68	0.13-0.19	0.09	0.09	0.000	0.000
Breadth at supraorbital processes	f	30	43.27	0.23	4.10	0.02	34.23-53.37	0.18-0.27	0.10	0.09		
	m	52	63.57	0.26	6.38	0.03	50.75-76.44	0.22-0.33	0.10	0.10	0.000	0.000
Breadth of braincase	f	33	77.56	0.41	2.97	0.02	72.25-85.60	0.37-0.44	0.04	0.04		
	m	52	80.12	0.33	2.85	0.02	74.03-87.26	0.30-0.37	0.04	0.05	0.000	0.000
Occipital crest – mastoid	f	33	83.88	0.44	2.48	0.01	78.29-89.93	0.42-0.47	0.03	0.03		
	m	53	119.51	0.50	5.69	0.02	103.95-129.99	0.45-0.53	0.05	0.04	0.000	0.000
Rostral width	f	33	33.27	0.18	2.07	0.01	28.91-37.29	0.16-0.19	0.06	0.05		
	m	53	56.82	0.24	3 12	0.01	51 18-64 32	0.22-0.28	0.06	0.06	0.000	0.000
Breadth of zygomatic root of maxilla	f	22	14.22	0.08	1.40	0.01	11.28-18.44	0.06-0.10	0.10	0.11	0.000	0.000
2. cast. c. 2950 and root of maxima	m	53	20.05	0.00	1 60	0.01	16 68-24 70	0.07-0.11	0.08	0.00	0.000	0.000
Zvgomatic breadth	f	22	110 75	0.58	3.87	0.02	103.83-118.87	0.55-0.62	0.04	0.03	0.000	0.000
	m	53	148 40	0.62	5.36	0.02	136 86-160 15	0.56-0.66	0.04	0.03	0.000	0.000
		د ر	-40.40	0.02	تر در	0.02	1,0.00 100.15	0.00	0.04	0.00	5.500	0.000

Auditory breadth	f	33	87.91	0.46	2.54	0.02	83.07–91.89	0.44-0.49	0.03	0.04		
	m	52	119.46	0.50	4.86	0.02	108.77-129.24	0.44-0.54	0.04	0.04	0.000	0.000
Mastoid breadth	f	32	95.23	0.50	3.06	0.02	90.04–101.63	0.47-0.54	0.03	0.03		
	m	53	139.38	0.58	7.22	0.03	123.45-154.37	0.51-0.63	0.05	0.04	0.000	0.000
Height of skull at supraorbital processes	f	33	57.59	0.30	2.52	0.01	52.97-63.00	0.28-0.33	0.04	0.04		
	m	53	74.23	0.31	3.99	0.01	66.52-84.45	0.28-0.34	0.05	0.05	0.000	0.061
Height of skull at ventral margin of mastoid	f	33	73.13	0.39	3.49	0.02	63.84–82.71	0.35-0.43	0.05	0.05		
	m	53	100.19	0.42	6.92	0.02	80.96–115.56	0.35-0.46	0.07	0.05	0.000	0.000
Height of sagittal crest	f	33	0.00	0.00	0.00	0.00	0.00-0.00	0.00-0.00	0.00	0.00		
	m	52	8.69	0.04	3.06	0.01	3.19–16.68	0.01-0.07	0.35	0.35	0.000	0.000
Breadth of palate at postcanines 3–4	f	33	24.91	0.13	1.90	0.01	21.61-30.24	0.11-0.16	0.08	0.08		
	m	53	33.53	0.14	2.55	0.01	26.30-37.70	0.11-0.16	0.08	0.08	0.000	0.001
Breadth of palate at postcanines 4–5	f	33	28.52	0.15	1.69	0.01	25.47-34.02	0.13-0.18	0.06	0.06		
	m	53	38.06	0.16	2.68	0.01	27.83-42.97	0.12-0.18	0.07	0.07	0.000	0.000
Breadth of palate at postcanine 5	f	33	29.94	0.16	1.75	0.01	26.86-34.86	0.14-0.18	0.06	0.06		
	m	53	40.72	0.17	2.89	0.01	31.33-46.04	0.14-0.19	0.07	0.07	0.000	0.000
Length of orbit	f	33	53.80	,	1.60		50.26-56.70		0.03	,		
	m	53	58.56	_	1.63	_	54.14-63.22	_	0.03	_	0.000	0.000
Breadth of orbit	f	33	50.57		1.63		47.20-54.07	_	0.03			
	m	53	55.51	_	1.53	_	53.45-60.38	_	0.03	_	0.000	0.000
Mandible and teeth		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	55.5-				JJ ()-		,			
Length of mandible	f	33	121.42	0.64	4.72	0.01	112.47-130.03	0.61-0.66	0.04	0.02		
	m	40	163.23	0.68	4.47	0.01	149.77-176.83	0.65-0.71	0.03	0.02	0.000	0.000
Length of mandibular tooth row	f	33	54.30	0.29	2.46	0.01	48.04-50.17	0.27-0.31	0.05	0.03	0.000	0.000
	m	40	72.00	0.30	2.58	0.01	64.38-77.87	0.26-0.32	0.04	0.04	0.000	0.000
Mesiodistal diameter of lower canines	f	22	6.81	0.04	0.20	0.01	E 08-7 27	0.02-0.04	0.06	0.12	0.000	0.000
mesiodistal dameter of tower cannes	m	26	15 87	0.07	1 50	0.01	12 50-10 42	0.06-0.08	0.00	0.00	0.000	0.000
Distance becaudal border of upper canines	f	22	E2 41	0.07	2 71	0.01	42 74-57 01	0.00 0.00	0.09	0.09	0.000	0.000
Distance becaudat border of upper cannes	m)) []	52.41	0.20	2.85	0.02	42.74 57.91	0.25 0.50	0.07	0.00	0.000	0.024
Height of upper canines above alveolus	f	22	16 77	0.27	5.05	0.02	12 01-20 12	0.25 0.50	0.00	0.00	0.000	0.024
neight of upper cannes above alveolus	m	22	25.41	0.09	2.05	0.01	17.22-22.25	0.07 0.11	0.09	0.09	0.000	0 000
Mesiodistal diameter of postcanines	f	27	2 <u>5</u> .41	0.11	5.05	0.01	1/.22 55.55 4 27-5 60	0.07 0.15	0.12	0.11	0.000	0.000
mesiodistal diameter of postcanines	m	20	4.95 5.60	_	0.51	_	4.57 5.00	_	0.00	_	0.000	0.000
Length of lower postcanine row	f	20	5.00 20.50	0.21	2.18	0.02	4.45 0.52 21.61-52.68	0 17-0 28	0.00	0.08	0.000	0.000
Length of tower posteanine row	m	22	59.59 45 07	0.21	3.10	0.02	27.24-40.00	0.17 0.20	0.00	0.00	0.000	0 000
Height of mandible at meaturs	f	40	42.97	0.19	2.45	0.01	20 25-20 84	0.15 0.20	0.05	0.00	0.000	0.000
neight of manuface at meaturs	m	22	54.10	0.10	2·54 4 18	0.01	40.26-68.28	0.10 0.20	0.07	0.00	0.000	0 000
Angularis - coronoideus	f	40	50.90	0.24	2.10	0.02	22 02-42 81	0.20 0.29	0.07	0.07	0.000	0.000
Angularis coronolacus	m	22	57.04	0.20	2.25	0.01	52.95 45.01	0.10 0.22	0.00	0.05	0.000	0 000
Longth of massatoric fossa	f	40	59.02 20.06	0.25	2.50	0.02	52./1 09.52 22.64-27.02	0.22 0.29	0.00	0.07	0.000	0.000
בנווקנוו טו וומססכוכוול וטססמ	ı m	33	30.00	0.10	3.05	0.02	22.04-37.02	0.12-0.19	0.13	0.11	0.000	0.000
Broadth of massatoric fossa	f	40	40.07	0.19	3.05	0.02	3/./0-54.04	0.10-0.22	0.00	0.00	0.000	0.000
	ı m	33	20.70	0.11	1.90	0.01	15.24-23.02	0.00-0.13	0.09	0.09	0.000	0.000
	111	40	32.40	0.13	2.70	0.01	20.39-39.20	0.11-0.16	0.00	0.06	0.000	0.000
SD = standard deviation, CV = coefficient of	variation, P	= probabili	ty values deriv	ved from stud	dents <i>t</i> -test.							

 Table 9
 Summary statistics for skull measurements – adult male and female Arctocephalus gazella.

Table 10A. tropicalis

			N	ean		SD	Rang	e		cv	ŀ	0
'ariable enath of skull	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	13	186.24	1.00	7.23	_	175.78-197.36	_	0.04	_	0.000	0.000
condytosusurtength (cb2)	m	36	221.84	1.00	7.33	_	203.87-234.76	_	0.03	_	0.000	0.000
Gnathion – mid-occipital crest	f	13	161.19	0.87	7.31	0.02	1/10.73-173.60	0.83-0.91	0.05	0.03	0.000	0.774
	m	36	102.53	0.87	7.05	0.02	173.50-203.74	0.82-0.91	0.04	0.02	0.000	0.774
Gnathion – posterior end of pasals	f	13	58 70	0.32	3.03	0.02	51 10-65 43	0.20-0.34	0.07	0.05	0.000	0.007
	m.	-5	73.05	0.33	3 73	0.01	63 73-80 32	0.20-0.36	0.05	0.04	01000	0.007
Length of nasals	f	12	30.85	0.17	2.62	0.01	25.56-35.08	0.14-0.18	0.09	0.07	0.000	0.562
201301 01 100000	m.	27	37.62	0.17	3 31	0.01	20.47-43.02	0.14-0.10	0.00	0.08	01000	0.902
Palatal notch – incisors	f	-7	70.08	0.43	4.06	0.01	73.05-87./1	0.42-0.44	0.05	0.02	0.000	0.000
	m	-5	00.74	0.45	5.58	0.02	87 38-108 07	0.42-0.48	0.06	0.04	0.000	0.000
Gnathion – posterior of maxilla (palatal)	f	13	87 12	0.47	J. JC	0.01	78 48-03 16	0.45-0.40	0.05	0.02	0.000	0.000
	m	26	108.28	0.47	4.41	0.01	06 66-115 02	0.43 0.49	0.03	0.02	0.000	0.000
Pasion zugomatic root	f	10	100.20	0.49	4.45	0.01	90.00 115.92	0.47 0.51	0.04	0.02	0.000	0.005
Basion – zygomatic root	ı m	13	130.39	0.70	0.15	0.01	122.47-140.95	0.09-0.71	0.05	0.01	0.000	0.005
Design hand of starward	۲. ۲	30	154.00	0.69	5.50	0.01	130.07-102.35	0.00-0.72	0.04	0.01		
Basion – bend of pterygold	I	13	65.39	0.35	2.07	0.01	61.91-68.91	0.33-0.37	0.03	0.04	0.000	0.000
	m	36	74.08	0.33	2.45	0.01	67.68-79.19	0.32-0.35	0.03	0.03		
Gnathion – caudal border postglenoid process	f	13	134.41	0.72	6.42	0.01	125.28-145.28	0.70-0.74	0.05	0.02	0.000	0.000
	m	36	164.13	0.74	5.83	0.01	149.01–171.60	0.72-0.76	0.04	0.01		
Gnathion – foramen infraorbitale	f	13	59.16	0.32	4.76	0.02	52.97–68.03	0.29–0.36	0.08	0.06	0.000	0.133
	m	36	72.93	0.33	6.79	0.03	56.83–86.95	0.28–0.38	0.09	0.08		
Gnathion – caudal border of preorbital process	f	13	51.73	0.28	2.82	0.01	47.90-57.57	0.26–0.30	0.05	0.03	0.000	0.000
	m	36	66.03	0.30	3.30	0.01	57.56-72.00	0.28–0.32	0.05	0.04		
Breadth of skull												
Breadth of nares	f	13	21.22	0.12	1.14	0.01	19.06-23.68	0.11-0.12	0.05	0.05	0.000	0.000
	m	36	27.54	0.12	1.67	0.01	23.36-30.86	0.11-0.14	0.06	0.07		
Breadth at preorbital processes	f	13	30.50	0.21	2.05	0.01	35.57-42.43	0.20-0.23	0.05	0.04	0.000	0.000
Diedatii at preeizitat preesses	m	-5	53-53 51 67	0.22	2.05	0.01	45 20-58 28	0.20-0.26	0.06	0.05	01000	0.000
Interorbital constriction	f	12	15.80	0.23	2.16	0.01	11 27-20 00	0.20 0.20	0.00	0.05	0.000	0.000
	m	26	22.65	0.09	2.10	0.01	17.84-28.15	0.00 0.10	0.14	0.15	0.000	0.000
Breadth at supraorbital processes	f	12	22.05	0.10	2.50	0.01	22.28-44.51	0.00 0.15	0.11	0.11	0.000	0.004
bleadth at supraoibitat processes	ı m	12	37.30	0.20	3.41	0.02	32.30-44.51	0.17-0.23	0.09	0.08	0.000	0.004
Proadth of braincasa	f	34	40.35	0.22	4.25	0.02	39.71-50.10	0.19-0.20	0.09	0.08	0 125	0.000
Diedutii of Didilicase	1	13	/5.4/	0.41	3.00	0.02	00.30-00.14	0.37-0.44	0.04	0.05	0.135	0.000
	rii C	36	/6.94	0.35	2.66	0.02	/3.53-82.52	0.32-0.40	0.04	0.05		
Occipital crest – mastold	r	13	84.93	0.46	3.54	0.01	80.16-90.59	0.44–0.48	0.04	0.03	0.000	0.000
- · · · · · · · · · · · · · · · · · · ·	m	36	105.86	0.48	4.90	0.02	94.98–114.85	0.45-0.51	0.05	0.04		
Rostral width	t	13	30.70	0.17	2.33	0.01	26.86-33.80	0.15-0.18	0.08	0.06	0.000	0.000
	m	36	44.80	0.20	2.73	0.01	37.76-51.33	0.18-0.23	0.06	0.05		
Breadth of zygomatic root of maxilla	f	13	9.59	0.05	1.18	0.01	7.66–11.32	0.04–0.06	0.12	0.12	0.000	0.000
	m	36	14.48	0.07	1.76	0.01	9.41-17.45	0.05–0.08	0.12	0.11		
Zygomatic breadth	f	13	113.28	0.61	4.92	0.02	105.10–120.63	0.58–0.64	0.04	0.02	0.000	0.531
	m	36	135.57	0.61	4.98	0.02	124.70–146.54	0.57–0.65	0.04	0.03		

Auditory breadth	f	13	88.01	0.47	3.72	0.02	79.33-92.30	0.44-0.51	0.04	0.04	0.000	0.000
	m	36	109.88	0.50	5.14	0.02	97.61–118.25	0.47-0.53	0.05	0.04		
Mastoid breadth	f	13	95.50	0.51	6.37	0.02	86.88-104.21	0.48–0.55	0.07	0.04	0.000	0.000
	m	36	125.39	0.57	6.81	0.03	115.07-137.19	0.52-0.62	0.05	0.04		
Height of skull at supraorbital processes	f	13	54.63	0.29	2.52	0.01	49.35-57.84	0.27-0.31	0.05	0.04	0.000	0.692
	m	36	65.30	0.29	3.22	0.01	57.83-71.77	0.27-0.32	0.05	0.04		
Height of skull at ventral margin of mastoid	f	13	74.77	0.40	2.92	0.01	70.13-79.02	0.39-0.43	0.04	0.03	0.000	0.712
	m	36	88.83	0.40	5.90	0.02	76.86-108.88	0.35-0.47	0.07	0.06		
Height of sagittal crest	f	13	0.11	0.00	0.41	0.00	0.00-1.48	0.00-0.01	3.61	3.61	0.000	0.000
	m	36	4.32	0.02	2.23	0.01	0.00-8.31	0.00-0.04	0.52	0.52		
Breadth of palate at postcanines 3–4	f	13	20.20	0.11	0.27	0.01	17.69-22.37	0.10-0.12	0.06	0.06	0.000	0.050
	m	36	25.71	0.12	2.22	0.01	22.21-31.43	0.10-0.14	0.09	0.09		-
Breadth of palate at postcanines 4–5	f	13	22.03	0.12	1.16	0.01	19.69-23.77	0.11-0.13	0.05	0.07	0.000	0.002
	m	36	28.30	0.13	2.61	0.01	24.00-33.81	0.11-0.15	0.09	0.09		
Breadth of palate at postcanine 5	f	13	22.51	0.12	1.30	0.01	20.50-25.75	0.11-0.14	0.06	0.08	0.000	0.002
	m	36	29.33	0.13	2.71	0.01	23.69-34.80	0.11-0.15	0.09	0.09		
Length of orbit	f	13	52.00	0.28	2.50	0.01	47.00-56.10	0.26-0.30	0.05	0.05	0.000	0.000
	m	35	57.09	0.26	1.64	0.01	52.86-59.81	0.24-0.27	0.03	0.04		
Breadth of orbit	f	13	48.79	0.26	2.02	0.01	44.62-52.34	0.25-0.27	0.04	0.03	0.000	0.000
	m	35	52.37	0.24	1.74	0.01	49.19-56.47	0.22-0.25	0.03	0.03		
Mandible and teath			5 57		., 1		19- 9- 9- 10					
Manaible and leeln	£			- ()	() -			- (((
Length of mandible	1	10	118.98	0.64	6.42	0.01	110.42-130.01	0.63-0.66	0.05	0.02	0.000	0.000
I want a farmer ditudente etternete	m	26	147.45	0.66	6.77	0.02	130.41-156.37	0.63-0.69	0.05	0.02		
Length of mandibular tooth row	T	10	52.30	0.28	2.97	0.01	48.44-56.16	0.27-0.29	0.06	0.03	0.000	0.012
	m	26	64.41	0.29	3.12	0.01	57.50-68.51	0.27-0.31	0.05	0.04		
Mesiodistal diameter of lower canines	r	8	6.84	0.04	0.74	0.01	5.82-7.76	0.03–0.04	0.11	0.14	0.000	0.000
	m	22	12.91	0.06	1.20	0.01	10.59–15.84	0.05-0.07	0.09	0.11		
Distance becaudal border of upper canines	t	13	52.41	0.28	2.73	0.01	47.66-55.96	0.27-0.29	0.05	0.03	0.000	0.002
	m	36	59.98	0.27	4.17	0.02	42.73-67.46	0.21-0.30	0.07	0.06		
Height of upper canines above alveolus	t	7	17.62	0.10	1.27	0.01	16.21-20.06	0.09-0.10	0.07	0.05	0.000	0.815
	m	26	21.42	0.10	2.40	0.01	15.94–25.88	0.08–0.11	0.11	0.09		
Mesiodistal diameter of postcanines	t	9	5.79	0.03	0.41	0.00	5.26-6.63	0.03–0.03	0.07	0.00	0.111	-
	m	26	6.08	0.03	0.53	0.00	5.23-7.33	0.02-0.03	0.09	0.08		
Length of lower postcanine row	f	10	38.14	0.20	2.80	0.01	33.31–42.65	0.18-0.22	0.07	0.05	0.000	0.047
	m	26	43.63	0.20	2.38	0.01	36.71–46.80	0.18–0.21	0.06	0.04		
Height of mandible at meatus	f	10	37.65	0.20	2.34	0.01	34.49-43.39	0.19–0.22	0.06	0.05	0.000	0.000
	m	26	52.49	0.24	3.08	0.01	47.61–62.64	0.22-0.28	0.06	0.06		
Angularis – coronoideus	f	10	41.17	0.22	2.92	0.01	37.32–48.04	0.21-0.24	0.07	0.05	0.000	0.000
	m	26	53.46	0.24	3.54	0.01	47.59-63.32	0.22-0.28	0.07	0.06		
Length of masseteric fossa	f	10	38.64	0.21	3.61	0.01	33.75-46.27	0.19-0.24	0.09	0.06	0.000	0.001
	m	26	51.40	0.23	3.96	0.02	42.25-57.96	0.20-0.25	0.08	0.07		
Breadth of masseteric fossa	f	10	24.20	0.13	1.22	0.01	22.87-26.30	0.12-0.14	0.05	0.06	0.000	0.000
	m	26	33.77	0.15	2.75	0.01	29.21–38.90	0.13-0.17	0.08	0.07		
SD = standard deviation, CV = coefficient of	f variation, P	= probab	ility values de	rived from st	udents <i>t</i> -test.							

 Table 10
 Summary statistics for skull measurements – adult male and female Arctocephalus tropicalis.

Table 11 A. forsteri

			Μ	ean		SD	Rang	e		CV	F	0
/ariable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
length of skull												
Condylobasal length (CBL)	f	16	20/ 11	1.00	8 60	_	100 70-224 50	_	0.04	_	0.000	0.000
condytosusur tength (cb2)	m	60	237 71	1.00	7.28	_	220 44-251 00	_	0.03	_	0.000	0.000
Gnathion – mid-occipital crest	f	16	169.63	0.83	6.75	0.01	161.27-187.02	0.81-0.86	0.04	0.02	0.000	0.000
	m	60	206.86	0.87	8.02	0.02	183 24-230 05	0.82-0.06	0.04	0.02	0.000	0.000
Gnathion – posterior end of nasals	f	15	68.63	0.3/	4.65	0.02	62.41-77.03	0.32-0.37	0.07	0.05	0.000	0.000
	m	- J 60	84.42	0.36	4.08	0.01	75 03-03 64	0.32-0.38	0.05	0.04	0.000	0.000
Length of nasals	f	13	36.56	0.18	3.04	0.02	30.80-41.80	0.16-0.20	0.08	0.08	0.000	0.603
201301 01 140410	m	-J 53	/1.69	0.18	3.70	0.01	31.80-49.60	0.14-0.20	0.09	0.08	0.000	0.005
Palatal notch – incisors	f	16	89.56	0.44	5.14	0.01	79.88-101.74	0.42-0.46	0.06	0.03	0.000	0.011
	m	60	106.23	0.44	4 70	0.02	05 57-188 48	0.41-0.48	0.05	0.03	0.000	0.011
Gnathion – posterior of maxilla (palatal)	f	16	98.44	0.48	4.75	0.01	90.47-100.02	0.46-0.50	0.05	0.03	0.000	0.019
	m	60	116 87	0.40	5 85	0.02	103 02-142 54	0.45-0.57	0.05	0.04	0.000	0.019
Basion – zvgomatic root	f	16	128.01	0.49	6.20	0.02	120.06-152.62	0.45 0.57	0.05	0.02	0.000	0.025
	m	60	162 72	0.00	0.20 E 22	0.01	1/5 25-17/ 70	0.05 0.09	0.05	0.02	0.000	0.025
Basion – hand of ptervgoid	f	16	60.66	0.09	5.52	0.01	45.55 1/4./9 65.58-74.58	0.00 0.72	0.05	0.02	0.000	0.000
Basion – bena or prerygola	m	60	78.62	0.34	3.10	0.01	70.01-86.02	0.33-0.35	0.05	0.03	0.000	0.000
Chathian caudal border postgloppid process	f	16	70.02	0.33	3.07	0.01	70.01-00.02	0.30-0.30	0.04	0.03	0.000	0.000
Gilatilion – caudal border postglenold process	1	10	149.64	0.73	0.73	0.01	139.52-100.99	0./1-0./5	0.05	0.01	0.000	0.000
Culathian fammen informulitale	۲۱ ۲۱۱	60	1/8.89	0.75	6.53	0.02	157.65-192.99	0.6/-0./8	0.04	0.02		
Ghathion – foramen infraorbitale	T	16	61.13	0.30	4.18	0.02	52.17-71.36	0.26-0.32	0.07	0.05	0.000	0.000
	m	60	76.58	0.32	4.24	0.02	65.70-85.26	0.29–0.35	0.06	0.05		
Ghathion – caudal border of preorbital process	r	15	63.41	0.31	3.53	0.01	57.08-71.19	0.29–0.33	0.06	0.03	0.000	0.000
	m	60	79.45	0.33	6.56	0.02	69.89–122.05	0.30-0.50	0.08	0.07		
Breadth of skull												
Breadth of nares	f	16	25.07	0.12	1.71	0.01	21.64–27.48	0.10-0.13	0.07	0.07	0.000	0.000
	m	60	32.94	0.14	2.51	0.01	24.72-39.06	0.11-0.16	0.08	0.08		
Breadth at preorbital processes	f	15	45.86	0.22	3.65	0.01	37.53-50.73	0.20-0.24	0.08	0.06	0.000	0.000
	m	59	57.99	0.24	3.19	0.01	52.65-67.85	0.22-0.28	0.06	0.06		
Interorbital constriction	f	16	20.16	0.10	1.72	0.01	16.93-22.63	0.09-0.11	0.09	0.08	0.000	0.000
	m	60	28.69	0.12	2.61	0.01	23.71-36.03	0.10-0.15	0.09	0.09		
Breadth at supraorbital processes	f	16	36.72	0.18	3.51	0.02	31.06-43.01	0.15-0.21	0.10	0.10	0.000	0.000
	m	60	51.07	0.21	5.50	0.02	36.46-60.57	0.16-0.26	0.11	0.10		
Breadth of braincase	f	15	74.86	0.37	2.93	0.02	70.66-79.58	0.34-0.40	0.04	0.06	0.055	0.000
	m	60	76.56	0.32	2.74	0.02	69.32-82.94	0.28-0.35	0.04	0.05		
Occipital crest – mastoid	f	16	88.85	0.44	3.52	0.01	83.34-94.75	0.42-0.45	0.04	0.02	0.000	0.000
	m	60	113.00	0.48	5.48	0.02	02.78-123.02	0.43-0.52	0.05	0.04	0.000	0.000
Rostral width	f	16	35 51	0.17	2 36	0.01	31 63-30 80	0.16-0.10	0.07	0.07	0.000	0.000
	m	60	53.31	0.17	2.50	0.01	44.26-60.22	0.10 0.19	0.07	0.07	0.000	0.000
Breadth of zygomatic root of maxilla	f	16	12 62	0.06	0.10	0.01	10 52-14 27	0.05-0.07	0.08	0.00	0.000	0.000
Steadth of Lygomatic root of maxina	m	60	16.05	0.00	1 5 2	0.01	12 21-20 2 ^Q	0.05 0.07	0.00	0.09	0.000	0.000
Zygomatic breadth	f	16	116 60	0.07		0.02	106 07-126 72	0.00 0.00	0.09	0.10	0.000	0.000
ZySomatic Dicauti	m	60	146.86	0.57	J.12	0.02	100.9/ 120./2	0.54 0.00	0.04	0.03	0.000	0.000
	111	00	140.00	0.02	5.//	0.02	125.04-159.1/	0.57-0.07	0.04	0.03		

Auditory breadth	f	16	91.21	0.45	2.76	0.02	84.96–94.48	0.42-0.47	0.03	0.03	0.000	0.000
	m	60	114.89	0.48	4.77	0.02	98.03–122.16	0.45-0.53	0.04	0.04		
Mastoid breadth	f	16	101.68	0.50	5.00	0.02	92.52-107.92	0.47-0.53	0.05	0.04	0.000	0.000
	m	60	135.22	0.57	6.81	0.02	115.44-147.09	0.50-0.63	0.05	0.04		
Height of skull at supraorbital processes	f	16	59.35	0.29	1.28	0.01	56.75-61.15	0.27-0.32	0.02	0.04	0.000	0.021
	m	60	71.17	0.30	3.50	0.01	62.43–78.96	0.28-0.33	0.05	0.04		
Height of skull at ventral margin of mastoid	f	16	80.57	0.40	6.94	0.02	70.81–89.97	0.36-0.43	0.09	0.06	0.000	0.077
	m	60	96.81	0.41	5.88	0.02	79.59–109.50	0.37–0.46	0.06	0.05		
Height of sagittal crest	f	15	1.14	0.01	0.32	0.01	0.00-4.08	0.00-0.02	1.16	1.09	0.000	0.000
	m	60	9.27	0.04	3.38	0.01	4.20–18.45	0.02-0.08	0.36	0.36		
Breadth of palate at postcanines 3–4	f	16	25.47	0.13	1.62	0.01	21.88-27.82	0.11-0.14	0.06	0.07	0.000	0.003
	m	60	31.66	0.13	2.56	0.01	24.05-37.63	0.10-0.15	0.08	0.07		
Breadth of palate at postcanines 4–5	f	16	29.48	0.14	1.92	0.01	26.67-32.58	0.13–0.16	0.07	0.07	0.000	0.026
	m	60	35.71	0.15	2.84	0.01	28.46–41.69	0.11-0.17	0.08	0.08		
Breadth of palate at postcanine 5	f	16	29.62	0.15	3.21	0.02	24.97-38.02	0.12-0.19	0.11	0.11	0.000	0.622
	m	60	35.31	0.15	3.05	0.01	28.83-44.13	0.12-0.18	0.09	0.09		
Length of orbit	f	0	-	-	-	-	-	-	-	-	0.000	0.000
	m	2	56.35	-	0.20	-	56.21–56.49	-	0.00	-		
Breadth of orbit	f	0	-	-	-	-	-	-	-	-	0.000	0.000
	m	2	54.67	-	0.70	-	54.16-55.15	-	0.01	-		
Mandible and teeth												
Length of mandible	f	10	133.42	0.66	5.85	0.01	123.90–142.67	0.63–0.67	0.04	0.02	0.000	0.000
	m	53	163.47	0.69	6.03	0.02	146.05-179.68	0.66-0.72	0.04	0.02		
Length of mandibular tooth row	f	10	54.38	0.27	3.15	0.01	48.49-58.32	0.25-0.28	0.06	0.04	0.000	0.018
	m	53	65.54	0.28	2.66	0.01	59.68-70.72	0.25-0.30	0.04	0.04		
Mesiodistal diameter of lower canines	f	9	8.78	0.04	1.26	0.01	6.88-10.74	0.04–0.06	0.14	0.16	0.000	0.000
	m	48	15.06	0.06	1.66	0.01	9.66–18.38	0.04–0.08	0.11	0.11		
Distance becaudal border of upper canines	f	16	54.41	0.27	3.18	0.01	47.29-59.66	0.25-0.29	0.06	0.04	0.000	0.000
	m	60	59.56	0.25	2.71	0.01	52.51-65.08	0.22-0.28	0.05	0.05		
Height of upper canines above alveolus	f	11	19.11	0.09	1.53	0.01	16.15–21.46	0.08-0.11	0.08	0.10	0.000	0.001
	m	45	25.73	0.12	3.23	0.01	16.38–31.60	0.07-0.13	0.13	0.13		
Mesiodistal diameter of postcanines	f	16	6.43	-	0.59	-	4.68-8.08	-	0.15	-	0.000	0.000
	m	60	6.90	-	0.64	-	5.66-9.38	-	0.16	-		
Length of lower postcanine row	f	10	42.49	0.21	3.19	0.01	37.08-47.06	0.19-0.22	0.08	0.05	0.012	0.001
	m	53	45.69	0.19	2.16	0.01	40.05–49.64	0.16-0.21	0.05	0.05		
Height of mandible at meatus	f	10	42.27	0.21	2.29	0.01	38.74-47.25	0.20-0.22	0.05	0.03	0.000	0.000
	m	53	60.54	0.26	4.03	0.02	47.31–68.13	0.22-0.28	0.07	0.06		
Angularis – coronoideus	f	10	42.17	0.21	2.93	0.01	36.57-47.08	0.19-0.21	0.07	0.03	0.000	0.000
	m	53	59.86	0.25	4.19	0.02	46.74–66.73	0.22-0.28	0.07	0.06		
Length of masseteric fossa	f	10	41.54	0.20	3.29	0.01	37.01-46.93	0.18-0.22	0.08	0.06	0.000	0.000
	m	53	55.87	0.24	4.01	0.02	46.07-65.23	0.20-0.27	0.07	0.07		
Breadth of masseteric fossa	f	10	27.66	0.14	2.07	0.01	25.39-32.22	0.13-0.14	0.08	0.04	0.000	0.000
	m	53	38.72	0.16	3.24	0.01	30.46-46.60	0.13-0.19	0.08	0.08		

 Table 11
 Summary statistics for skull measurements – adult male and female Arctocephalus forsteri.

Table 12A. pusillus pusillus

			Μ	ean		SD	Rang	e		CV	ŀ	0
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	43	217.01	1.00	8.89	_	196.54-235.19	_	0.04	_	0.000	0.000
	m	37	270.17	1.00	7.45	_	2/0./6-288.08	_	0.03	_		
Gnathion – mid-occipital crest	f	43	185.62	0.86	8.73	0.02	163.31-201.82	0.82-0.88	0.05	0.02	0.000	0.000
	m	38	242.45	0.90	8.41	0.02	227.45-264.04	0.86-0.93	0.04	0.02		
Gnathion – posterior end of nasals	f	43	72.39	0.33	6.13	0.02	44.06-80.85	0.20-0.35	0.09	0.07	0.000	0.000
	m	38	97.64	0.36	4.99	0.01	85.32-108.08	0.32-0.39	0.05	0.04		
Length of nasals	f	30	38.28	0.18	3.60	0.01	30.46-45.71	0.1/-0.20	0.09	0.08	0.000	0.030
201301 01 140410	m	3/	/0.57	0.18	4.41	0.02	30.01-58.08	0.14-0.21	0.09	0.08	0.000	
Palatal notch – incisors	f	/3 /2	42.27	0.43	5 45	0.02	78 00-104 86	0.38-0.45	0.06	0.04	0.000	0.003
	m	38	117 54	0.44	6 25	0.01	104 01-128 57	0.40-0.46	0.05	0.03	0.000	0.005
Gnathion – posterior of maxilla (palatal)	f	50 د/	101.85	0.44	5.2J	0.01	86 25-112 52	0.44-0.40	0.05	0.02	0.000	0.104
	m	45	127.78	0.47	5·4/	0.01	118 14-127 27	0.44 0.49	0.05	0.02	0.000	0.104
Pasion zugomatic root	f	50	127.70	0.47	4.74	0.01	127.20 160.81	0.45 0.50	0.04	0.05	0.000	0 (52
Basion – zygomatic root	1 m	43	14/.21	0.08	0.05	0.01	127.20-100.81	0.05-0.70	0.05	0.02	0.000	0.453
Design hand of starward	۲. ۲	37	104.53	0.00	11.67	0.04	124.22-200.73	0.40-0.71	0.06	0.05		
Basion – bend of pterygold	1	42	68.37	0.32	3.07	0.01	61.42-73.39	0.29-0.34	0.05	0.04	0.000	0.001
	m	37	82.43	0.31	2.64	0.01	76.01-88.18	0.28-0.33	0.03	0.04		
Gnathion – caudal border postglenoid process	r	43	162.55	0.75	8.48	0.01	137.60-178.07	0.70-0.78	0.05	0.02	0.000	0.000
	m	38	208.16	0.77	6.84	0.01	188.42-220.36	0.75–0.80	0.03	0.01		
Gnathion – foramen infraorbitale	f	43	67.89	0.31	4.31	0.01	58.43–78.91	0.29–0.35	0.06	0.05	0.000	0.000
	m	38	90.47	0.34	6.29	0.02	77.52–108.83	0.30-0.39	0.07	0.06		
Gnathion – caudal border of preorbital process	f	43	67.71	0.31	4.04	0.01	58.45–75.61	0.29–0.34	0.06	0.04	0.000	0.000
	m	38	91.85	0.34	3.50	0.01	83.83–99.02	0.33-0.35	0.04	0.02		
Breadth of skull												
Breadth of nares	f	43	26.29	0.12	2.09	0.01	21.54-31.19	0.10-0.14	0.08	0.07	0.000	0.046
	m	38	34.17	0.13	3.56	0.01	25.21-41.16	0.00-0.15	0.10	0.11		
Breadth at preorbital processes	f	/3	55 63	0.26	3.40	0.01	48 44-67 76	0.23-0.20	0.06	0.05	0.000	0.000
Breadth at preorbital processes	m	27	77.60	0.20	4.50	0.02	67 50-86 06	0.25 0.29	0.00	0.63	0.000	0.000
Interorbital constriction	f	57	20.27	0.29	4.59	0.02	22 62-24 66	0.25 0.52	0.00	0.55	0.000	0.000
	m	45	29.27 42.85	0.14	2.30	0.01	25.05 54.00	0.11 0.10	0.00	0.00	0.000	0.000
Proadth at supraorbital processos	f	57	42.05	0.10	5.55	0.01	20.95 50.00	0.14 0.19	0.00	0.00	0.000	0.000
bleadth at supraorbitat processes	I m	40	45.50	0.21	4.14	0.02	34.15-55.51	0.10-0.20	0.09	0.10	0.000	0.000
Dreadth of brainces	۲. ۲	30	64./1	0.24	5.02	0.02	53./2-/5./4	0.19-0.28	0.09	0.09		
Breauth of braincase	1	42	/5.44	0.35	2.26	0.02	/0.42-80./8	0.31-0.39	0.03	0.04	0.000	0.000
	m	38	77.40	0.29	2.02	0.01	73.20-81.07	0.26-0.31	0.03	0.04		
Occipital crest – mastold	r	43	95.56	0.44	4.99	0.02	85.82-109.02	0.41–0.48	0.05	0.04	0.000	0.000
- · · · · · · · ·	m	38	127.86	0.47	5.23	0.02	120.74-141.53	0.45-0.51	0.04	0.04		
Rostral width	t	43	38.41	0.18	2.65	0.01	31.36-43.32	0.16-0.20	0.07	0.05	0.000	0.000
	m	37	60.57	0.22	3.44	0.01	52.73–68.13	0.20-0.25	0.06	0.05		
Breadth of zygomatic root of maxilla	f	43	12.94	0.06	1.12	0.01	10.17-15.54	0.05-0.07	0.09	0.09	0.000	0.000
	m	38	19.32	0.07	1.85	0.01	15.93-23.57	0.06–0.08	0.10	0.09		
Zygomatic breadth	f	43	123.88	0.57	7.56	0.02	108.59–137.53	0.53–0.62	0.06	0.04	0.000	0.000
	m	38	162.03	0.60	6.86	0.02	146.42–179.01	0.56–0.64	0.04	0.04		

Auditory breadth	f	43	97.99	0.45	4.48	0.02	88.26-109.25	0.42-0.48	0.05	0.03	0.000	0.000
	m	38	131.31	0.49	6.18	0.02	118.75–145.67	0.44-0.53	0.05	0.05		
Mastoid breadth	f	42	111.66	0.51	8.39	0.03	82.62-127.77	0.40–0.56	0.08	0.06	0.000	0.000
	m	38	154.80	0.57	7.09	0.03	144.18–176.40	0.53–0.63	0.05	0.04		
Height of skull at supraorbital processes	f	43	64.17	0.30	3.54	0.01	56.89–71.89	0.27-0.32	0.06	0.04	0.000	0.001
	m	38	82.73	0.31	3.99	0.02	76.52–93.62	0.28–0.34	0.05	0.05		
Height of skull at ventral margin of mastoid	f	42	83.20	0.38	3.75	0.02	75.74-94.52	0.34-0.43	0.05	0.05	0.000	0.000
	m	38	108.46	0.40	5.61	0.02	99.10–119.74	0.36–0.44	0.05	0.05		
Height of sagittal crest	f	40	1.99	0.01	1.53	0.01	0.00-5.70	0.00-0.02	0.77	0.75	0.000	0.000
	m	37	12.25	0.05	3.86	0.01	6.82-23.12	0.03–0.08	0.32	0.31		
Breadth of palate at postcanines 3–4	f	42	24.59	0.11	2.34	0.01	17.79–29.42	0.08–0.14	0.10	0.10	0.000	0.000
	m	38	34.59	0.13	2.99	0.01	30.32–41.86	0.11-0.15	0.09	0.09		
Breadth of palate at postcanines 4–5	f	42	27.44	0.13	2.48	0.01	20.58-32.95	0.09–0.16	0.09	0.10	0.000	0.001
	m	38	37.28	0.14	3.77	0.01	25.73-45.16	0.09–0.16	0.10	0.10		
Breadth of palate at postcanine 5	f	42	27.83	0.13	2.39	0.01	21.59-32.54	0.10-0.15	0.09	0.09	0.000	0.000
	m	38	37.51	0.14	2.99	0.01	32.09–45.38	0.12-0.16	0.08	0.08		
Length of orbit	f	39	51.98	0.24	1.77	0.01	47.54-55.42	0.22-0.26	0.03	0.03	0.000	0.000
	m	36	57.57	0.21	1.91	0.01	53.02–61.30	0.19-0.23	0.03	0.04		
Breadth of orbit	f	39	48.03	0.22	1.79	0.01	44.75-51.39	0.20-0.24	0.04	0.04	0.000	0.000
	m	36	54.76	0.20	2.03	0.01	51.07–58.99	0.18-0.22	0.04	0.05		
Mandible and teeth												
Length of mandible	f	42	1/18.25	0.68	7.08	0.02	125.30-163.02	0.64 - 0.71	0.05	0.02	0.000	0.000
	m	31	190.52	0.71	8.10	0.02	168./1-206.2/	0.68-0.74	0.04	0.02		
Length of mandibular tooth row	f	/2	59.70	0.28	3.32	0.01	51.85-66.16	0.25-0.29	0.06	0.04	0.000	0.000
	m	21	76.74	0.20	3 31	0.01	60.74-84.43	0.26-0.31	0.00	0.04	0.000	0.000
Mesiodistal diameter of lower canines	f	30	8 76	0.04	1.00	0.00	7 00-11 33	0.03-0.05	0.11	0.10	0.000	0 000
	m	20	17 75	0.07	1.84	0.01	14 20-22 24	0.05-0.08	0.10	0.11	01000	0.000
Distance becaudal border of upper canines	f	-2	55.85	0.26	3.35	0.01	47.98-64.45	0.24-0.28	0.06	0.05	0.000	0.000
	m	38	64.41	0.24	3.73	0.01	5/1./13-72.12	0.22-0.27	0.06	0.05	01000	0.000
Height of upper canines above alveolus	f	30	20.81	0.10	2 88	0.01	13 67-25 51	0.07-0.12	0.14	0.12	0.000	0.841
	m	23	25.02	0.10	4.25	0.02	12.55-32.62	0.05-0.12	0.16	0.15	01000	0.041
Mesiodistal diameter of postcanines	f	30	7.60	0.04	4·-J	0.00	6.64-8.75	0.03-0.04	0.06	0.12	0.000	0.000
	m	31	8.20	-	0.65	_	6.80-9.27	-	0.08	_	01000	0.000
Length of lower postcanine row	f)- //2	43.46	0.20	3.32	0.01	38.75-59.69	0.10-0.28	0.08	0.07	0.000	0.000
	m	31	50.53	0.10	2.12	0.01	46.49-55.24	0.17-0.20	0.04	0.04	01000	0.000
Height of mandible at meatus	f	/1	45.45	0.21	3.78	0.01	37.01-52.62	0.10-0.23	0.08	0.06	0.000	0.000
	m	31	69.28	0.26	<i>1.</i> /6	0.01	62.83-82.00	0.24-0.29	0.06	0.05	01000	0.000
Angularis – coronoideus	f)- //2	48.80	0.23	3.57	0.01	38.84-54.85	0.20-0.24	0.07	0.05	0.000	0.000
	m	31	70.38	0.26	5.57 4.47	0.01	64.28-80.43	0.24-0.29	0.06	0.05	01000	0.000
Length of masseteric fossa	f	12	52 53	0.24	5.53	0.02	30 74-62 57	0.20-0.27	0.11	0.08	0.000	0 000
	m	31	76.00	0.28	5.00	0.02	64.01-83.31	0.25-0.31	0.07	0.06	0.000	0.000
Breadth of masseteric fossa	f	/2	31.20	0.1/	2.76	0.01	23.80-36.20	0.12-0.17	0.00	0.07	0.000	0.000
2. cault of musselene fossu	' m	44 21	44 70	0.17	2.70	0.02	20.09 20.20	0.11-0.10	0.09	0.00	0.000	0.000
		⊥ر	44.19	0.17	4.22	0.02	50.11 52.95	0.11 0.19	0.10	0.09		

 Table 12
 Summary statistics for skull measurements – adult male and female Arctocephalus pusillus pusillus.

Table 13A. p. doriferus

			Μ	ean		SD	Rang	e		CV	ŀ	0
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	42	226.46	1.00	6.98	_	207.52-238.41	_	0.03	_	0.000	0.000
	m	4-	281.60	1.00	7.99	_	265.77-302.15	_	0.03	_	0.000	0.000
Gnathion – mid-occipital crest	f	42	191.45	0.85	7.41	0.02	176.38-205.97	0.81-0.89	0.04	0.02	0.000	0.000
	m	45	248.56	0.88	8.98	0.02	227.50-270.45	0.84-0.92	0.04	0.02		
Gnathion – posterior end of nasals	f	42	76.37	0.34	3.68	0.01	67.09-84.09	0.30-0.36	0.05	0.04	0.000	0.000
	m	45	98.66	0.35	5.06	0.01	86.83-107.96	0.32-0.38	0.05	0.04		
Length of nasals	f	45	/0.92	0.18	2.90	0.01	34.50-47.20	0.16-0.20	0.07	0.06	0.000	0./1/
201301 01 100000	m	30	50.07	0.18	4.56	0.01	38.40-58.30	0.1/-0.21	0.09	0.08	0.000	01414
Palatal notch – incisors	f	12	96.41	0.43	5.00	0.02	82.62-105.01	0.38-0.45	0.05	0.04	0.000	0.328
	m	4-	121.33	0.43	11.1/	0.04	85.51-140.31	0.32-0.47	0.09	0.08	0.000	0.520
Gnathion – posterior of maxilla (palatal)	f	45	107.76	0.45	4 30	0.01	06.04-117.04	0.45-0.50	0.04	0.02	0.000	0.044
	m	44	135 21	0.48	4· <i>J</i>	0.01	125 80-140 00	0.46-0.51	0.04	0.02	0.000	0.044
Basion - zvgomatic root	f	40	153.21	0.40	5.05	0.01	140 25-162 25	0.40 0.91	0.04	0.02	0.000	0.027
	m	42	152.95	0.00	5.09	0.01	140.35 103.35	0.00 0.09	0.05	0.01	0.000	0.057
Basion – hand of ptervgoid	f	45	70.20	0.08	0.70	0.01	62 70-77 61	0.00-0.70	0.04	0.02	0.000	0 102
Basion – bena or prerygola	m	42	70.39	0.31	2.02	0.01	70 65 07 05	0.20-0.33	0.04	0.04	0.000	0.102
Chathian caudal border postgloppid process	f	45	170.60	0.31	3.72	0.01	/9.05-9/.05	0.29-0.33	0.04	0.03	0.000	0.000
Gilatilion – caudal border postglenoid process	1	42	1/0.60	0.75	6.19	0.01	153.34-101.23	0./3-0.//	0.04	0.01	0.000	0.000
Crathian foremen infragrhitals	۲ (()	45	217.35	0.77	7.16	0.01	199.09-235.40	0.75-0.80	0.03	0.01		
Ghathion – foramen infraorbitale	1	42	69.70	0.31	2.96	0.01	63.41-77.02	0.29-0.32	0.04	0.03	0.000	0.000
	m	45	91.66	0.33	4.77	0.01	78.56-100.05	0.29–0.34	0.05	0.04		
Gnathion – caudal border of preorbital process	t	42	72.03	0.32	3.33	0.01	65.10-78.30	0.30-0.34	0.05	0.03	0.000	0.000
	m	45	94.87	0.34	3.87	0.01	84.33–104.07	0.31–0.35	0.04	0.03		
Breadth of skull												
Breadth of nares	f	42	26.61	0.12	1.85	0.01	22.91–30.71	0.10-0.13	0.07	0.06	0.000	0.000
	m	45	37.24	0.13	2.13	0.01	32.75-43.60	0.12-0.15	0.06	0.06		
Breadth at preorbital processes	f	42	56.50	0.25	2.99	0.01	49.57–63.50	0.24–0.28	0.05	0.05	0.000	0.000
	m	45	79.29	0.28	4.19	0.01	69.44–87.71	0.25-0.31	0.05	0.05		
Interorbital constriction	f	42	29.16	0.13	1.36	0.01	26.28–32.44	0.12-0.14	0.05	0.05	0.000	0.000
	m	45	42.71	0.15	3.04	0.01	35.59–47.80	0.13-0.17	0.07	0.07		
Breadth at supraorbital processes	f	41	45.89	0.20	4.46	0.02	26.43-55.28	0.11-0.23	0.10	0.09	0.000	0.000
	m	45	66.17	0.24	5.50	0.02	55.66–76.07	0.20-0.27	0.08	0.08		
Breadth of braincase	f	42	75.27	0.33	2.09	0.02	70.02-79.24	0.30-0.37	0.03	0.05	0.000	0.000
	m	45	78.17	0.28	2.25	0.01	72.60–83.87	0.25-0.30	0.03	0.05		
Occipital crest – mastoid	f	42	96.52	0.43	4.81	0.02	81.84–104.69	0.36–0.46	0.05	0.04	0.000	0.000
	m	45	130.89	0.46	5.39	0.02	116.97–140.12	0.42-0.50	0.04	0.04		
Rostral width	f	42	39.19	0.17	2.13	0.01	35.18-44.25	0.16-0.19	0.05	0.04	0.000	0.000
	m	45	62.18	0.22	3.60	0.01	52.37-69.76	0.19-0.24	0.06	0.05		
Breadth of zygomatic root of maxilla	f	42	13.61	0.06	1.31	0.01	11.09–16.54	0.05-0.07	0.10	0.09	0.000	0.000
	m	45	19.01	0.07	1.84	0.01	13.56-22.46	0.05-0.08	0.10	0.11		
Zygomatic breadth	f	42	124.45	0.55	4.95	0.02	110.53-133.96	0.52-0.60	0.04	0.03	0.000	0.000
	m	45	164.72	0.59	5.99	0.02	153.68-178.95	0.54-0.63	0.04	0.03		

Auditory breadth	f	42	98.97	0.44	3.74	0.01	89.13–106.79	0.41–0.46	0.04	0.03	0.000	0.000
	m	45	135.02	0.48	8.53	0.02	120.16–179.00	0.44-0.59	0.06	0.05		
Mastoid breadth	f	42	113.03	0.50	6.39	0.02	95.45-128.73	0.46–0.54	0.06	0.04	0.000	0.000
	m	45	158.04	0.56	5.72	0.02	147.71-170.40	0.52–0.60	0.04	0.03		
Height of skull at supraorbital processes	f	42	65.00	0.29	3.13	0.01	59.87-72.11	0.27-0.31	0.05	0.04	0.000	0.001
	m	45	83.36	0.30	4.12	0.01	68.99–90.48	0.26-0.32	0.05	0.05		
Height of skull at ventral margin of mastoid	f	42	85.79	0.38	4.16	0.02	76.85-97.47	0.35-0.41	0.05	0.04	0.000	0.000
	m	45	114.75	0.41	5.50	0.02	100.98–128.12	0.37–0.46	0.05	0.05		
Height of sagittal crest	f	42	2.58	0.01	1.51	0.01	0.00-4.99	0.00-0.02	0.59	0.60	0.000	0.000
	m	45	10.71	0.04	2.41	0.01	6.88–16.48	0.02–0.06	0.23	0.23		
Breadth of palate at postcanines 3–4	f	42	26.80	0.12	2.34	0.01	22.35-32.01	0.10-0.14	0.09	0.10	0.000	0.000
	m	44	38.53	0.14	3.26	0.01	28.90-44.49	0.11-0.16	0.09	0.09		
Breadth of palate at postcanines 4–5	f	42	29.66	0.13	2.80	0.01	24.45-35.09	0.10-0.15	0.09	0.10	0.000	0.000
	m	45	42.64	0.15	3.18	0.01	36.07–48.54	0.13–0.18	0.08	0.08		
Breadth of palate at postcanine 5	f	42	27.89	0.12	2.53	0.01	22.59–33.88	0.10-0.15	0.09	0.10	0.000	0.000
	m	45	39.77	0.14	2.78	0.01	33.51-45.10	0.12-0.16	0.07	0.08		
Length of orbit	f	2	53.53	0.23	0.47	0.00	53.19–53.86	0.23-0.23	0.01	0.00	-	-
	m	1	56.52	-	-	-	-	-	-	-	-	-
Breadth of orbit	f	2	47.76	0.21	0.77	0.01	47.21–48.30	0.20-0.21	0.02	0.03	-	-
	m	1	54.19	-	-	-	-	-	-	-		
Mandible and teeth												
Length of mandible	f	42	153.98	0.68	6.11	0.01	134.96–167.07	0.65–0.71	0.04	0.02	0.000	0.000
	m	41	198.10	0.70	7.22	0.01	181.70-214.60	0.67-0.73	0.04	0.02		
Length of mandibular tooth row	f	42	57.85	0.25	3.16	0.01	50.32–66.91	0.22-0.28	0.06	0.05	0.000	0.000
	m	41	75.15	0.27	3.20	0.01	69.23–84.17	0.24-0.29	0.04	0.04		
Mesiodistal diameter of lower canines	f	42	10.20	0.05	0.99	0.01	8.13-12.43	0.04–0.05	0.10	0.11	0.000	0.000
	m	41	18.35	0.07	1.66	0.01	14.25-21.54	0.05–0.08	0.09	0.11		
Distance becaudal border of upper canines	f	42	57.72	0.26	3.80	0.02	45.29-66.77	0.21-0.28	0.07	0.06	0.000	0.000
	m	45	66.61	0.24	2.85	0.01	61.70-73.24	0.22-0.26	0.04	0.04		
Height of upper canines above alveolus	f	40	20.07	0.09	3.16	0.01	12.90-27.47	0.06-0.12	0.16	0.16	0.000	0.186
	m	36	26.03	0.09	4.81	0.02	12.18-32.28	0.04-0.11	0.19	0.18		
Mesiodistal diameter of postcanines	f	2	8.42	0.04	0.28	0.01	8.22-8.61	0.03-0.04	0.03	0.20	0.000	0.000
	m	1	8.76	-	-	-	-	-	-	-		
Length of lower postcanine row	f	42	44.75	0.20	2.50	0.01	38.12–49.62	0.17-0.21	0.06	0.05	0.000	0.000
	m	41	51.61	0.18	2.56	0.01	43.86-57.53	0.16-0.20	0.05	0.05		
Height of mandible at meatus	f	42	45.35	0.20	3.95	0.01	32.74-52.09	0.16-0.22	0.09	0.07	0.000	0.000
	m	41	69.03	0.25	5.30	0.02	47.66–78.04	0.17-0.28	0.08	0.07		
Angularis – coronoideus	f	42	48.20	0.21	4.24	0.02	38.80–55.60	0.19–0.24	0.09	0.07	0.000	0.000
	m	41	68.77	0.25	4.35	0.02	56.33–76.81	0.21-0.28	0.06	0.06		
Length of masseteric fossa	f	42	52.44	0.23	3.98	0.02	39.54–61.42	0.19–0.26	0.08	0.06	0.000	0.000
	m	41	75.00	0.27	4.63	0.02	62.58-83.13	0.23-0.30	0.06	0.06		
Breadth of masseteric fossa	f	42	31.09	0.14	2.60	0.01	24.36-35.99	0.11-0.15	0.08	0.07	0.000	0.000
	m	41	45.70	0.16	3.23	0.01	36.85-51.53	0.14–0.18	0.07	0.07		

 Table 13
 Summary statistics for skull measurements – adult male and female Arctocephalus pusillus doriferus.

Table 14 A. townsendi

			Μ	lean		SD	Rang	e		CV	ŀ	D
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	1	221.00	1.00	_	_	_	_	_	_	_	_
	m	2	250.41	1.00	5.33	_	246.64-254.17	_	0.02	_		
Gnathion – mid-occipital crest	f	1	189.00	0.86	_	_	-	_	_	_	_	_
	m	2	213.73	0.86	5.90	0.00	209.56-217.90	0.85-0.86	0.03	0.01		
Gnathion – posterior end of nasals	f	1	70.40	0.32	_	_	-	_	_	_	_	_
	m	2	82.08	0.33	1.44	0.00	81.06-83.10	0.33-0.33	0.02	0.00		
Length of nasals	f	1	37.00	0.17		_	-	-	-	-	-	-
	m	2	37.92	0.15	0.74	0.00	37.40-38.44	0.15-0.15	0.02	0.00		
Palatal notch – incisors	f	1	90.40	0.41	_	_	-	_	_	_	-	-
	m	2	113.28	0.45	6.54	0.01	108.65-117.90	0.44–0.46	0.06	0.03		
Gnathion – posterior of maxilla (palatal)	f	1	107.30	0.49	_	-	-		_	-	-	-
	m	2	126.31	0.51	4.72	0.01	122.97–129.64	0.50-0.51	0.04	0.01		
Basion – zygomatic root	f	1	151.10	0.68	_	_	-	_	_	_	-	-
	m	2	166.84	0.67	1.98	0.01	165.44–168.24	0.66–0.67	0.01	0.01		
Basion – bend of pterygoid	f	1	65.30	0.30	_	_	-	_ ,	-	-	-	-
1 ,0	m	2	73.21	0.29	1.60	0.01	72.08-74.34	0.28-0.30	0.02	0.05		
Gnathion – caudal border postglenoid process	f	1	164.70	0.75	-	_	-	-	-	-	-	-
	m	2	187.74	0.75	3.92	0.00	184.96–190.51	0.75-0.75	0.02	0.00		
Gnathion – foramen infraorbitale	f	1	64.80	0.29	_	-	-	-	_	-	-	-
	m	2	90.19	0.36	4.77	0.01	86.82-93.56	0.35-0.37	0.05	0.04		
Gnathion – caudal border of preorbital process	f	1	68.70	0.31	_	-	-	-	-	-	-	-
	m	2	78.67	0.32	4.43	0.01	75.54-81.80	0.31-0.32	0.06	0.02		
Breadth of skull				2	1 12		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Breadth of nares	f	1	20.37	0.09	-	-	-	-	_	-	-	_
	m	2	27.35	0.11	0.57	0.00	26.95-27.75	0.11-0.11	0.02	0.00		
Breadth at preorbital processes	f	1	42.40	0.19	-	-	-	-	_	-	-	_
	m	2	54.31	0.22	2.60	0.01	52.47-56.15	0.21-0.23	0.05	0.06		
Interorbital constriction	f	1	19.20	0.09	-	-	-	-	-	-	-	-
	m	2	25.32	0.10	1.78	0.00	24.06–26.58	0.10-0.10	0.07	0.00		
Breadth at supraorbital processes	f	1	39.15	0.18	_	-	-	-	_	-	-	-
	m	2	50.62	0.21	6.54	0.02	45.99-55.24	0.19-0.22	0.13	0.10		
Breadth of braincase	f	1	82.20	0.37	-	-	-	_	-	-	-	-
	m	2	81.09	0.32	2.03	0.00	79.65-82.52	0.32-0.32	0.03	0.00		
Occipital crest – mastoid	f	1	86.20	0.39	-	-	-	_	-	-	-	-
	m	2	101.54	0.41	5.49	0.01	97.66–105.42	0.40-0.41	0.05	0.02		
Rostral width	f	1	33.45	0.15	-	-	-	_	-	-	-	-
	m	2	48.08	0.19	1.24	0.00	47.20–48.95	0.19-0.19	0.03	0.00		
Breadth of zygomatic root of maxilla	f	1	15.70	0.07	-	-	-	_	-	-	-	-
	m	2	19.89	0.08	3.37	0.01	17.50-22.27	0.07-0.09	0.17	0.18		
Zygomatic breadth	f	1	122.95	0.56	-	-	-	_	-	-	-	-
	m	2	137.68	0.55	5.30	0.01	133.93–141.42	0.54–0.56	0.04	0.03		

Auditory breadth	f	1	93.70	0.42	-	-	-	-	-	-	-	-
	m	2	107.06	0.43	4.99	0.01	103.53-110.59	0.42-0.44	0.05	0.03		
Mastoid breadth	f	1	104.60	0.47	-	-	-	-	-	-	-	-
	m	2	120.50	0.49	4.32	0.01	117.44–123.55	0.48–0.49	0.04	0.02		
Height of skull at supraorbital processes	f	1	57.30	0.26	-	-	-	-	-	-	-	-
	m	2	67.19	0.27	0.56	0.01	66.79–67.58	0.26-0.27	0.01	0.03		
Height of skull at ventral margin of mastoid	f	1	76.55	0.35	-	-	-	-	-	-	-	-
	m	2	88.07	0.36	3.72	0.01	85.44–90.70	0.35-0.36	0.04	0.02		
Height of sagittal crest	f	1	0.00	-	-	-	-	-	-	-	-	-
	m	2	4.94	0.02	1.77	0.01	3.69–6.19	0.01-0.02	0.36	0.47		
Breadth of palate at postcanines 3-4	f	1	25.50	0.12	-	-	-	-	-	-	-	-
	m	2	27.95	0.12	0.96	0.01	27.27-28.62	0.11-0.12	0.03	0.06		
Breadth of palate at postcanines 4-5	f	1	28.15	0.13	-	-	-	-	-	-	-	-
	m	2	29.78	0.12	1.32	0.01	28.84–30.71	0.11-0.12	0.04	0.06		
Breadth of palate at postcanine 5	f	1	28.10	0.13	-	-	-	-	-	-	-	-
	m	2	32.81	0.13	1.53	0.01	31.72-33.89	0.12-0.14	0.05	0.11		
Length of orbit	f	1	53.75	0.24	-	-	-	-	-	-	-	-
	m	2	56.59	0.23	2.54	0.01	54.79–58.38	0.22-0.24	0.05	0.06		
Breadth of orbit	f	1	46.85	0.21	-	-	-	-	-	-	-	-
	m	2	52.81	0.21	1.07	0.01	52.05-53.56	0.20-0.22	0.02	0.07		
Mandible and teeth												
Length of mandible	f	1	1/17.00	0.67	_	_	_	_	_	_	_	_
	m	2	171.80	0.69	5.85	0.01	167.66-175.93	0.68-0.69	0.03	0.01		
Length of mandibular tooth row	f	0	-	_	_	_	_	_	_	_	_	_
	m.	2	81.39	0.33	1.41	0.01	80.39-82.38	0.32-0.33	0.02	0.02		
Mesiodistal diameter of lower canines	f	-	_	_	_	_	_	_	_	_	_	_
	m	2	7.32	0.03	10.35	0.04	0.00-14.64	0.00-0.06	1.41	1.41		
Distance becaudal border of upper canines	f	1	70.20	0.32	_	_	-	_	_	_	_	_
	m	2	74.38	0.30	3.78	0.01	71.70-77.05	0.29-0.30	0.05	0.02		
Height of upper canines above alveolus	f	1	20.15	0.09	_	_	_	_	_	_	_	_
	m	2	23.69	0.10	1.67	0.01	22.51-24.87	0.09-0.10	0.07	0.07		
Mesiodistal diameter of postcanines	f	0		_	_	_	_	_	_	_	_	_
·····	m	1	7.55	0.03	_	0.01	_	0.03-0.03	_	1.00		
Length of lower postcanine row	f	0	_	_	_	_	_	_	_	_	_	_
	m	2	57.56	0.23	0.47	0.00	57.23-57.89	0.23-0.23	0.01	0.00		
Height of mandible at meatus	f	1	36.70	0.17	_	_	_	_		_	_	_
	m	2	52.70	0.21	0.42	0.00	52.40-53.00	0.21-0.21	0.01	0.00		
Angularis – coronoideus	f	1	42.65	0.19	_	_	-	_	_	_	_	_
0	m	2	55.25	0.22	2.70	0.00	53.34-57.16	0.22-0.22	0.05	0.00		
Length of masseteric fossa	f	1	38.95	0.18	_	_	_	_	_	_	_	_
5	m	2	49.52	0.20	3.25	0.01	47.22-51.81	0.19-0.21	0.07	0.07		
Breadth of masseteric fossa	f	1	27.45	0.12	-	_	_	_	_	_	_	_
	m	2	28.91	0.12	1.08	0.01	28.14-29.67	0.11-0.12	0.04	0.06		
			-						•			

 Table 14
 Summary statistics for skull measurements – adult male and female Arctocephalus townsendi.

Table 15A. galapagoensis

			Μ	ean		SD	Rang	e		cv	ŀ	D
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	5	176 85	1.00	2 78	_	174 81-180 32	_	0.02	_	_	_
condytosusurtength (cb2)	m	6	204.43	1.00	6.85	_	105 25-212 20	_	0.02	_		
Gnathion – mid-occipital crest	f	E	156 12	0.88	2 7 2	0.01	152 24-162 18	0.88-0.00	0.03	0.01	_	_
	m	6	175 37	0.86	8.04	0.02	16/ 33-180 03	0.84-0.80	0.02	0.02		
Gnathion – posterior end of pasals	f	E	-7 5.57	0.22	2.68	0.01	E2 40-E8 82	0.21-0.22	0.05	0.02	_	_
Shathon posterior end or hasais	m	6	67 11	0.32	3.82	0.01	61 60-71 72	0.31-0.34	0.05	0.04	_	_
Length of pasals	f	E	26.04	0.55	2.17	0.01	24 14-20 00	0.14-0.17	0.00	0.07	_	_
	m	2	20.94	0.15	1.21	0.01	24.14 29.99	0.14 0.17	0.00	0.07		
Palatal notch - incisors	f	4	72 60	0.15	2.27	0.02	68 62-77 21	0.14 0.13	0.04	0.04	_	_
	m	5	72.09 85.06	0.41	3.27	0.02	00.02-77.21 91.11 00.40	0.39-0.43	0.05	0.04		
Cnathion postorior of maxilla (nalatal)	f	5	82.90	0.42	3.59	0.01	70 22 %5 11	0.40-0.44	0.04	0.03		
Ghathion – posterior of maxilia (palatal)	1	5	02.00	0.4/	2.35	0.01	/9.32-05.11	0.45-0.48	0.03	0.02	-	-
Design aurometic rest	£	6	93.61	0.46	4.96	0.02	89.24-100.30	0.42-0.47	0.05	0.04		
Basion – zygomatic root	T	5	122.50	0.69	2.74	0.01	118.99–125.79	0.68-0.70	0.02	0.01	-	-
	m	6	143.66	0.70	5.81	0.02	137.41-153.55	0.69-0.73	0.04	0.02		
Basion – bend of pterygold	f	5	61.44	0.35	1.10	0.01	59.77-62.66	0.34-0.36	0.02	0.03	-	-
	m	6	69.49	0.34	3.50	0.02	64.33–75.21	0.32–0.36	0.05	0.05		
Gnathion – caudal border postglenoid process	f	5	129.08	0.73	3.67	0.01	125.16–133.17	0.72-0.74	0.03	0.01	-	-
	m	6	151.15	0.74	5.54	0.01	145.34–158.35	0.73-0.75	0.04	0.01		
Gnathion – foramen infraorbitale	f	5	58.64	0.33	3.60	0.02	53.70–62.69	0.31-0.35	0.06	0.05	-	-
	m	6	67.36	0.33	5.27	0.03	61.51–75.63	0.29–0.36	0.08	0.08		
Gnathion – caudal border of preorbital process	f	5	52.36	0.30	1.93	0.01	49.77-54.40	0.28-0.30	0.04	0.03	-	-
	m	6	63.54	0.31	3.02	0.01	59.18–66.92	0.29-0.32	0.05	0.04		
Breadth of skull												
Breadth of nares	f	5	22.08	0.12	1.03	0.01	20.95-23.05	0.12-0.13	0.05	0.04	_	_
	m	6	27.69	0.14	2.56	0.01	24.98-31.96	0.12-0.15	0.09	0.08		
Breadth at preorbital processes	f	5	41.19	0.23	2.25	0.01	38.66-43.99	0.22-0.25	0.06	0.06	_	_
	m	5	50.71	0.24	4.22	0.02	44.44-54.81	0.22-0.26	0.08	0.06		
Interorbital constriction	f	5	10.12	0.11	1.38	0.01	17.26-20.60	0.10-0.12	0.07	0.08	_	_
	m	5	25.02	0.12	2.48	0.01	21.3/-27.00	0.11-0.13	0.10	0.07		
Breadth at supraorbital processes	f	5	38.08	0.22	1.63	0.01	35 02-40 14	0 21-0 23	0.04	0.04	_	_
	m	5	42.52	0.21	2.70	0.02	28 05-48 17	0.10-0.23	0.04	0.07		
Breadth of braincase	f	2 F	42.22	0.21	5.79	0.02	72 18-75 70	0.19 0.23	0.09	0.07	_	_
Dieadth of Dialitase	m	5	74.41	0.42	1.04	0.01	73.10-75.70	0.41-0.43	0.01	0.02		
Occipital crast mactaid	f III	5	74.37	0.37	1./1	0.02	/2.1/-/5.0/	0.34-0.39	0.02	0.05		
occipital crest – mastolu	1	5	/9.98	0.45	2.29	0.01	//.1/=01.99	0.44-0.47	0.03	0.03	-	-
	m	6	95.07	0.47	5.36	0.02	87.34–101.33	0.44–0.49	0.06	0.04		
Rostral width	r	5	33.17	0.19	2.18	0.01	30.31-35.73	0.17-0.20	0.07	0.06	-	-
	m	6	46.46	0.23	4.48	0.02	41.50-53.25	0.21-0.25	0.10	0.08		
Breadth of zygomatic root of maxilla	f	5	12.57	0.07	1.32	0.00	11.39–14.57	0.07–0.08	0.11	0.06	-	-
	m	6	15.80	0.08	0.99	0.00	14.64–17.46	0.07–0.08	0.06	0.05		
Zygomatic breadth	f	5	109.33	0.62	3.54	0.01	104.24–113.30	0.60–0.63	0.03	0.02	-	-
	m	6	127.82	0.63	7.32	0.03	117.54–136.88	0.59–0.68	0.06	0.05		

Auditory breadth	f	5	85.11	0.48	2.91	0.01	82.04-88.77	0.47-0.49	0.03	0.02	-	-
	m	6	98.86	0.49	6.54	0.03	91.51–109.08	0.46–0.52	0.07	0.05		
Mastoid breadth	f	5	91.86	0.52	4.68	0.02	87.59–97.62	0.50-0.54	0.05	0.03	-	-
	m	6	114.02	0.56	7.69	0.03	105.04-125.21	0.52-0.59	0.07	0.05		
Height of skull at supraorbital processes	f	5	51.80	0.29	0.54	0.01	51.11–52.46	0.29-0.30	0.01	0.02	-	-
	m	6	61.61	0.30	3.16	0.01	57.57-66.30	0.29-0.32	0.05	0.04		
Height of skull at ventral margin of mastoid	f	5	70.36	0.40	2.35	0.02	68.66–74.44	0.38-0.43	0.03	0.05	-	-
	m	6	79.72	0.39	3.91	0.02	73.34–83.31	0.36-0.42	0.05	0.05		
Height of sagittal crest	f	5	0.00	0.00	0.00	0.00	0.00-0.00	0.00-0.00	-	-	-	-
	m	6	4.05	0.02	2.32	0.01	0.00–6.92	0.00-0.03	0.57	0.54		
Breadth of palate at postcanines 3–4	f	5	23.28	0.13	1.36	0.01	22.12-25.35	0.12-0.14	0.06	0.06	-	-
	m	6	29.71	0.15	2.11	0.01	26.72-33.22	0.13-0.17	0.07	0.10		
Breadth of palate at postcanines 4–5	f	5	26.85	0.15	1.54	0.01	25.09–28.99	0.14–0.16	0.06	0.07	-	-
	m	6	34.65	0.17	2.33	0.01	31.54-37.33	0.16–0.19	0.07	0.07		
Breadth of palate at postcanine 5	f	5	27.96	0.16	1.70	0.01	26.05-30.55	0.14-0.17	0.06	0.07	-	-
	m	6	36.04	0.18	2.38	0.02	32.68–38.63	0.16-0.20	0.07	0.09		
Length of orbit	f	5	48.89	0.28	0.89	0.00	47.89–49.90	0.27-0.28	0.02	0.02	-	-
	m	6	52.44	0.26	1.93	0.01	50.10-55.01	0.25-0.27	0.04	0.03		
Breadth of orbit	f	5	45.34	0.26	0.84	0.01	44.40–46.25	0.25-0.26	0.02	0.02	-	-
	m	6	49.00	0.24	2.52	0.01	45.56–51.60	0.23-0.26	0.05	0.05		
Mandible and teeth												
Length of mandible	f	5	115.73	0.65	4.43	0.02	110.85–121.74	0.63–0.68	0.04	0.03	-	-
	m	4	138.14	0.68	6.03	0.02	130.98–145.73	0.66–0.69	0.04	0.02		
Length of mandibular tooth row	f	5	52.78	0.30	4.38	0.02	48.19-59.93	0.28-0.33	0.08	0.06	-	-
	m	4	60.04	0.30	1.40	0.01	58.07–61.06	0.29-0.30	0.02	0.02		
Mesiodistal diameter of lower canines	f	3	6.96	0.04	0.14	0.00	6.82-7.09	0.04-0.04	0.02	0.00	-	-
	m	3	12.51	0.06	0.47	0.00	12.15-13.04	0.06–0.06	0.04	0.00		
Distance becaudal border of upper canines	f	5	48.01	0.27	1.19	0.00	46.73-49.30	0.27-0.28	0.03	0.02	-	-
	m	6	50.07	0.24	5.15	0.02	39.80–53.46	0.20-0.26	0.10	0.09		
Height of upper canines above alveolus	f	4	17.87	0.10	2.16	0.01	15.35-20.03	0.09-0.11	0.12	0.09	-	-
	m	2	23.94	0.12	1.35	0.01	22.98–24.89	0.11-0.12	0.06	0.06		
Mesiodistal diameter of postcanines	f	5	6.15	0.04	0.41	0.01	5.53-6.57	0.03-0.04	0.07	0.15	-	-
	m	3	6.73	0.03	0.71	0.00	5.94-7.31	0.03-0.03	0.11	0.00		
Length of lower postcanine row	f	5	37.36	0.21	2.73	0.01	35.12-41.77	0.20-0.23	0.07	0.06	-	-
	m	4	39.30	0.19	1.19	0.01	38.01–40.48	0.18-0.20	0.03	0.04		
Height of mandible at meatus	f	5	35.42	0.20	1.98	0.01	32.35-37.71	0.19–0.21	0.06	0.05	-	-
	m	4	46.72	0.23	1.91	0.01	44.20–48.62	0.22-0.25	0.04	0.06		
Angularis – coronoideus	f	5	37.93	0.22	2.09	0.01	34.68–39.83	0.20-0.23	0.06	0.05	-	-
	m	4	47.23	0.23	1.10	0.01	46.09–48.41	0.22-0.25	0.02	0.05		
Length of masseteric fossa	f	5	35.61	0.20	1.62	0.01	33.87-37.38	0.19–0.21	0.05	0.04	-	-
	m	4	46.25	0.23	1.15	0.01	45.22-47.52	0.22-0.23	0.03	0.02		
Breadth of masseteric fossa	f	5	22.44	0.13	1.69	0.01	20.75-25.06	0.12-0.14	0.08	0.07	-	-
	m	4	28.94	0.13	2.73	0.01	25.85-32.13	0.12-0.14	0.09	0.07		

Table 15 Summary statistics for skull measurements – adult male and female Arctocephalus galapagoensis.

Table 16A. australis

			Mean		SD		Range		CV		Р	
Variable	Sex	n	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	26	170 58	1.00	8 05	_	170 58-222 16	_	0.04	_		
condytosusurtength (cb2)	m	37	241.67	1.00	6.28	_	228 16-251 43	_	0.03	_	< 0.001	< 0.001
Gnathion – mid-occipital crest	f	26	171.24	0.84	7 75	0.03	153 73-101 68	0 77-0 88	0.05	0.03	<0.001	<0.001
	m	37	208 20	0.86	6.20	0.02	103 82-223 24	0.80-0.00	0.03	0.03	< 0.001	< 0.001
Gnathion – posterior end of pasals	f	26	63.25	0.31	3.74	0.01	55 60-74 88	0.20-0.34	0.06	0.04	<0.001	<0.001
	m	37	80 11	0.33	3.55	0.01	72 03-85 80	0.31-0.36	0.04	0.04	< 0.001	< 0.001
Length of pasals	f	20	20.02	0.15	J.J.J E 14	0.02	22.02-46.54	0.12-0.22	0.04	0.15	<0.001	<0.001
Length of habits	m	20	26.68	0.15	2.05	0.02	22.95 40.54	0.12 0.22	0.17	0.15	0.005	0.048
Palatal notch - incisors	f	20	50.00 85.42	0.15	5.05	0.01	29.00 41.20 76.64-05 18	0.15 0.17	0.00	0.00	0.005	0.940
	m	20	102.05	0.42	4.42	0.02	70.04 95.10	0.37 0.44	0.05	0.04	<0.001	0.282
Cnathian postariar of maxilla (nalatal)	f	37	102.05	0.42	0.53	0.02	91.13-114.92	0.36-0.40	0.00	0.05	<0.001	0.202
Ghathion – posterior of maxilia (palatal)	I ma	20	96.30	0.47	4.73	0.01	05.10-104.51	0.45-0.49	0.05	0.02		
Desire events west	۲۱ ۲۱۱	37	113.81	0.4/	4.99	0.01	103./4-123.44	0.45-0.50	0.04	0.03	<0.001	0.943
Basion – zygomatic root	T	26	139.97	0.68	6.24	0.01	119.25-149.65	0.66-0.71	0.04	0.02		
	m	37	166.52	0.69	5.95	0.01	153.77-176.09	0.67-0.73	0.04	0.02	<0.001	0.134
Basion – bend of pterygold	f	26	66.60	0.33	3.13	0.02	58.24-70.58	0.27-0.35	0.05	0.05		-
	m	37	77.04	0.32	3.03	0.01	68.46-82.56	0.29-0.34	0.04	0.04	<0.001	0.058
Gnathion – caudal border postglenoid process	f	26	152.14	0.74	7.42	0.01	130.45–168.62	0.72–0.76	0.05	0.02		
	m	37	182.78	0.76	6.09	0.01	171.68–193.26	0.74–0.78	0.03	0.01	<0.001	<0.001
Gnathion – foramen infraorbitale	f	26	65.41	0.32	4.02	0.02	60.34–76.02	0.28–0.37	0.06	0.07		
	m	37	81.36	0.34	7.36	0.03	52.21–95.38	0.21–0.39	0.09	0.08	<0.001	0.012
Gnathion – caudal border of preorbital process	f	26	62.42	0.30	3.67	0.01	54.83-74.35	0.28-0.33	0.06	0.03		
	m	37	77.57	0.32	2.59	0.01	69.31–82.10	0.30-0.34	0.03	0.03	<0.001	<0.001
Breadth of skull												
Breadth of nares	f	26	24.82	0.12	1.63	0.01	20.42-27.41	0.11-0.13	0.07	0.05		
	m	37	31.74	0.13	1.96	0.01	26.74-35.53	0.11-0.14	0.06	0.06	<0.001	<0.001
Breadth at preorbital processes	f	24	48.58	0.24	3.51	0.01	40.34-57.43	0.22-0.26	0.07	0.06		
	m	35	63.30	0.26	3.96	0.02	55.04-70.59	0.23-0.29	0.06	0.06	<0.001	<0.001
Interorbital constriction	f	26	24.97	0.12	2.30	0.01	21.28-30.14	0.10-0.14	0.09	0.09		
	m	36	35.12	0.15	3.21	0.01	29.76-41.67	0.12-0.17	0.09	0.09	<0.001	<0.001
Breadth at supraorbital processes	f	24	39.83	0.19	3.88	0.02	34.72-50.43	0.17-0.23	0.10	0.09		
· · · · · · · · · · · · · · · · · · ·	m	35	52.50	0.22	5.61	0.02	40.20-63.48	0.17-0.27	0.11	0.11	< 0.001	< 0.001
Breadth of braincase	f	26	73.10	0.36	1.84	0.02	68.01-77.52	0.33-0.40	0.03	0.05		
	m	26	75.50	0.21	2 50	0.01	70.25-81.84	0.28-0.22	0.02	0.04	0.002	<0.001
Occipital crest – mastoid	f	26	88.00	0.51	2.30	0.02	80 10-07 88	0.20 0.33	0.05	0.04	0.002	<0.001
	m	20	111 56	0.45	4.71 6.25	0.02	00.10 97.00	0.41 0.47	0.05	0.04	< 0.001	<0.001
Postral width	f	37	27.15	0.40	0.35	0.02	99.90-124.59	0.42-0.51	0.00	0.05	<0.001	<0.001
KUSLIAI WIULII	1	20	37.15	0.18	3.13	0.01	30.20-41.59	0.10-0.20	0.08	0.07	-0.001	
	۲۱۱ د	37	54.52	0.23	3.45	0.01	40.20-00.90	0.20-0.25	0.06	0.05	<0.001	<0.001
Breauth of Zygomatic root of maxilla	T	26	13.77	0.07	1.50	0.01	11.29–16.93	0.06-0.08	0.11	0.11		(
7	m	37	17.42	0.07	1.26	0.01	14.41-20.27	0.06-0.08	0.07	0.08	<0.001	0.063
Zygomatic breadth	r	25	117.11	0.57	6.58	0.02	98.27-127.80	0.54-0.62	0.06	0.04		
	m	36	143.57	0.59	7.15	0.03	125.53–161.26	0.53-0.65	0.05	0.04	<0.001	0.001

Auditory breadth	f	26	91.93	0.45	4.14	0.01	82.61–98.56	0.43-0.47	0.05	0.03		
	m	37	112.83	0.47	5.64	0.02	102.37-127.62	0.43-0.53	0.05	0.05	<0.001	0.001
Mastoid breadth	f	26	102.35	0.50	7.15	0.03	87.46–114.90	0.45-0.55	0.07	0.05		
	m	37	132.62	0.55	7.15	0.03	115.27–149.97	0.49–0.61	0.05	0.05	<0.001	<0.001
Height of skull at supraorbital processes	f	26	59.12	0.29	3.08	0.01	50.09-67.73	0.27-0.31	0.05	0.04		
	m	37	71.21	0.29	3.14	0.01	63.88-77.09	0.26-0.32	0.04	0.05	<0.001	0.102
Height of skull at ventral margin of mastoid	f	26	75.14	0.37	3.92	0.02	69.16-84.13	0.34-0.41	0.05	0.05		
	m	37	91.93	0.38	7.20	0.03	74.89-105.50	0.32-0.44	0.08	0.07	<0.001	0.015
Height of sagittal crest	f	26	1.45	0.01	1.84	0.01	0.00-6.61	0.00-0.03	1.27	1.28		-
	m	37	9.03	0.04	3.46	0.01	2.27-16.81	0.01-0.07	0.38	0.37	<0.001	<0.001
Breadth of palate at postcanines 3-4	f	26	25.09	0.12	2.97	0.01	20.09-29.54	0.09-0.14	0.12	0.11		
	m	37	32.56	0.14	3.06	0.01	24.71-40.11	0.11-0.17	0.09	0.09	<0.001	0.001
Breadth of palate at postcanines 4-5	f	26	28.03	0.14	3.16	0.01	21.26-33.27	0.10-0.16	0.11	0.11		
	m	37	36.23	0.15	3.48	0.01	29.71-44.62	0.13-0.19	0.10	0.09	<0.001	0.001
Breadth of palate at postcanine 5	f	26	28.76	0.14	3.02	0.01	23.39-33.77	0.10-0.16	0.11	0.11		
	m	37	36.92	0.15	3.45	0.01	31.13-45.43	0.13-0.19	0.09	0.09	<0.001	0.003
Length of orbit	f	26	50.20	0.24	2.04	0.01	45.23-53.74	0.23-0.26	0.04	0.04		
	m	37	54.02	0.22	2.03	0.01	50.02-57.464	0.21-0.25	0.04	0.04	< 0.001	< 0.001
Breadth of orbit	f	26	46.55	0.23	1.00	0.01	40.68-50.33	0.21-0.25	0.04	0.03		
	m.	37	50.56	0.21	1.81	0.01	46.69-54.43	0.10-0.23	0.04	0.04	< 0.001	< 0.001
Man dible and to ath		57	50.50	0.21	1101	0.01	40009 5445	0119 0129	0104	0104		
Mandible and teeth									,			
Length of mandible	r	17	136.89	0.67	8.68	0.02	115.15-153.60	0.64-0.71	0.06	0.03		
	m	10	169.33	0.71	8.96	0.03	156.26-181.10	0.67-0.78	0.05	0.05	<0.001	0.008
Length of mandibular tooth row	t	17	59.67	0.29	2.98	0.01	51.90-63.96	0.28–0.32	0.05	0.03		
	m	10	72.52	0.30	3.05	0.01	68.67–78.22	0.28–0.32	0.04	0.03	<0.001	0.026
Mesiodistal diameter of lower canines	f	14	8.13	0.04	0.96	0.00	6.78–10.07	0.03-0.05	0.12	0.12		
	m	8	14.59	0.06	1.00	0.00	13.41–16.45	0.06–0.07	0.07	0.06	<0.001	<0.001
Distance becaudal border of upper canines	f	26	53.33	0.26	3.05	0.01	45.27–58.79	0.22-0.28	0.06	0.05		
	m	37	59.25	0.25	3.62	0.02	49.83–66.07	0.20-0.27	0.06	0.06	<0.001	<0.001
Height of upper canines above alveolus	f	14	21.50	0.11	2.32	0.01	17.64–25.41	0.09–0.12	0.11	0.08		
	m	18	24.19	0.10	2.91	0.01	17.75–28.31	0.08-0.12	0.12	0.12	0.276	0.211
Mesiodistal diameter of postcanines	f	19	7.12	0.03	0.39	0.01	6.59-8.07	0.03-0.04	0.05	0.15		
	m	23	7.53	0.03	0.43	0.00	6.67-8.28	0.03-0.03	0.06	0.00	0.112	-
Length of lower postcanine row	f	17	43.61	0.21	5.49	0.02	36.38–62.69	0.19-0.30	0.13	0.11		
	m	10	47.07	0.20	1.94	0.01	43.66–50.42	0.19-0.21	0.04	0.04	0.691	0.022
Height of mandible at meatus	f	17	42.76	0.21	4.21	0.02	34.66–53.93	0.19–0.26	0.10	0.08		
	m	10	61.75	0.26	3.67	0.02	56.51–66.92	0.23-0.28	0.06	0.07	<0.001	<0.001
Angularis – coronoideus	f	17	43.84	0.22	4.39	0.02	33.79-54.36	0.19–0.26	0.10	0.07		
	m	10	60.03	0.25	4.66	0.02	55.36-67.28	0.22-0.29	0.08	0.08	<0.001	<0.001
Length of masseteric fossa	f	17	43.52	0.21	4.90	0.02	33.90-51.45	0.19-0.24	0.11	0.09		
-	m	10	58.38	0.24	4.98	0.02	51.06-65.51	0.21-0.28	0.09	0.10	<0.001	0.003
Breadth of masseteric fossa	f	17	28.58	0.14	2.55	0.01	23.01-32.44	0.12-0.165	0.09	0.07		-
	m	, 10	37.71	0.16	3.80	0.01	32.98-43.29	0.14-0.18	0.10	0.10	<0.001	0.010
SD — standard doviation CV — safficient of	Evariation 5	n	, , ,	ariuad from a								
JJ = Stanuaru ueviation, $Cv = COEIIICIEIII OI$, vanation, P	— hinngr	mily values u	enveu nolli s	students t-test	•						

 Table 16
 Summary statistics for cranial measurements – adult male and female Arctocephalus australis.

Table 17 A. philippii

	Sex	n	Mean		SD		Range		CV		Р	
Variable			Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual (mm)	Relative to CBL	Actual	Relative to CBL	Actual	Relative to CBL
Lenath of skull												
Condylobasal length (CBL)	f	1	221.34	1.00	_	_	_	_	_	_	_	_
	m	1	267.72	1.00	_	_	_	_	_	_		
Gnathion – mid-occipital crest	f	1	188.92	0.85	_	_	_	_	_	_	_	_
	m	1	236.40	0.88	_	_	_	_	_	_		
Gnathion – posterior end of nasals	f	1	71.63	0.32	_	_	_	_	_	_	_	_
	m	1	102.83	0.38	_	_	_	_	_	_		
Length of nasals	f	1	35.83	0.16	_	_	_	_	_	_	_	_
	m	1	53.12	0.20	_	-	_	-	-	_		
Palatal notch – incisors	f	1	100.47	0.45	_	_	_	_	_	_	_	_
	m	1	119.95	0.45	_	-	_	-	-	_		
Gnathion – posterior of maxilla (palatal)	f	1	111.31	0.50	_	_	_	_	_	_	_	_
	m	1	137.53	0.51	_	_	_	_	_	_		
Basion – zvgomatic root	f	1	147.66	0.67	_	_	_	_	_	_	_	_
Busion Zygomatic root	m	1	178.06	0.67	_	_	_	_	_	_		
Basion – bend of pterygoid	f	1	69.03	0.31	_	_	_	_	_	_	_	_
	m	1	71.80	0.27	_	_	_	_	_	_		
Gnathion – caudal border postglenoid process	f	1	165.31	0.75	_	_	_	_	_	_	_	_
	m	1	205.07	0.77	_	_	_	_	_	_		
Gnathion – foramen infraorbitale	f	1	73.48	0.33	_	_	_	_	_	_	_	_
	m	1	95.15	0.36	_	_	_	_	_	_		
Gnathion – caudal border of preorbital process	f	1	68.92	0.31	_	_	_	_	_	_	_	_
	m	1	92.24	0.34	_	_	_	_	_	_		
Breadth of skull			<u></u>									
Breadth of nares	f	1	24.46	0.11	_	_	_	_	_	_	_	_
	m	1	30.96	0.12	_	_	_	_	_	_		
Breadth at preorbital processes	f	1	51.90	0.23	_	_	_	_	_	_	_	_
	m	1	63.63	0.24	_	_	_	_	_	_		
Interorbital constriction	f	1	23.10	0.10	_	_	_	_	_	_	_	_
	m	1	34.87	0.13	_	_	_	_	_	_		
Breadth at supraorbital processes	f	1	41.26	0.19	_	_	_	_	_	_	_	_
	m	1	59.57	0.22	_	_	_	_	_	_		
Breadth of braincase	f	1	78.93	0.36	_	_	_	_	_	_	_	_
	m	1	83.25	0.31	_	_	_	_	_	_		
Occipital crest – mastoid	f	1	91.88	0.42	_	_	_	_	_	_	_	_
	m	1	116.43	0.43	_	_	_	_	_	_		
Rostral width	f	1	33.54	0.15	_	_	_	_	_	_	_	_
······································	m	1	58.98	0.22	_	_	_	_	_	_		
Breadth of zygomatic root of maxilla	f	1	15.97	0.07	_	_	_	_	_	_	_	_
	m	-	2/.15	0.00	_	_	_	_	_	_		
Zygomatic breadth	f	-	122.01	0.56	_	_	_	_	_	_		
-,3	m	1	153.73	0.57	_	_	_	_	_	_	_	_

Auditory breadth	f	1	96.19	0.43	-	-	-	-	-	-		
	m	1	122.78	0.46	-	-	-	-	-	-	-	-
Mastoid breadth	f	1	104.55	0.47	-	-	-	-	-	_		
	m	1	141.08	0.53	-	-	-	-	-	-	-	-
Height of skull at supraorbital processes	f	1	63.53	0.29	-	-	-	-	-	-		
	m	1	82.26	0.31	-	_	-	-	_	_	_	-
Height of skull at ventral margin of mastoid	f	1	80.68	0.36	-	_	-	_	-	-		
	m	1	97.80	0.37	-	_	-	_	-	-	_	_
Height of sagittal crest	f	1	1.78	0.01	-	_	-	_	-	-		
	m	1	10.45	0.04	-	-	-	-	_	_	_	_
Breadth of palate at postcanines 3-4	f	1	21.01	0.09	-	-	-	-	_	_		
	m	1	24.17	0.09	_	_	_	_	_	_	_	_
Breadth of palate at postcanines 4-5	f	1	23.04	0.10	_	_	_	_	_	_	_	_
	m	1	31.11	0.12	_	_	_	_	_	_	_	_
Breadth of palate at postcanine 5	f	1	27.06	0.12	_	_	_	_	_	_		
	m	1	, 34.33	0.13	_	_	_	_	_	_	_	_
Length of orbit	f	1	53.18	0.24	_	_	_	_	_	_		
	m	1	57.05	0.21	_	_	_	_	_	_	_	_
Breadth of orbit	f	1	49.95	0.23	_	_	_	_	_	_		
	m	1	53.69	0.20	_	_	_	_	_	_	_	_
Mandible and teeth			555									
Length of mandible	f		151.33	0.68	_	_	_	_	_	_	_	_
	m		184.51	0.69	_	_	_	_	_	_		
Length of mandibular tooth row	f		69.31	0.31	_	_	_	_	_	_	_	_
	m		81.23	0.30	_	_	_	_	_	_		
Mesiodistal diameter of lower canines	f		8.57	0.04	_	_	_	_	_	_	_	_
	m		8.87	0.03	_	_	_	_	_	_		
Distance becaudal border of upper canines	f		69.75	0.32	_	_	_	_	_	_	_	_
	m		77.65	0.29	_	_	_	_	_	_		
Height of upper canines above alveolus	f		20.86	0.09	_	_	_	_	_	_	_	_
	m		26.94	0.10	_	_	_	_	_	_		
Mesiodistal diameter of postcanines	f		6.93	0.03	_	_	_	_	_	_	_	_
·····	m		8.15	0.03	_	_	_	_	_	_		
Length of lower postcanine row	f		50.64	0.23	_	_	_	_	_	_	_	_
	m		57.01	0.21	_	_	_	_	_	_		
Height of mandible at meatus	f		41.93	0.19	_	_	_	_	_	_	_	_
	m		63.12	0.24	_	_	_	_	_	_		
Angularis – coronoideus	f		47.20	0.21	_	_	_	_	_	_	_	_
	m		62.86	0.23	_	_	_	_	_	_		
Length of masseteric fossa	f		30.04	0.25	_	_	_	_	_	_	_	_
	m		58.00	0.22	_	_	_	_	_	_		
Breadth of masseteric fossa	f		26.61	0.12	_	_	_	_	_	_	_	_
	m		42.70	0.16	_	_	_	_	_	_		

 Table 17
 Summary statistics for skull measurements – adult male and female Arctocephalus philippii.