Tokenization

Markus Dickinson
Corpora & Linguistic Knowledge
April 10, 2002
dickinso@ling.ohio-state.edu

1. How tokenization fits into NLP

 Preprocessing > Tokenization > Morphological
analysis (e.g. POS tagging)
» Tokenization = dividing the input text into tokens

— words, which can have further morphological analysis
and belong to a certain syntactic class

— character(s) with recognizable structure, e.g.
punctuation, numbers, dates
* Closely linked to the task of sentence
segmentation (sentence-final vs. abbreviatory
periods)

Tokenization

» Background/Motivation:
— 1. Where tokenization fits into annotation tools
— 2. What the task depends on
— 3. Concerns (Abbreviations)
» Approaches:
— 4. “Informed” approach
— 5. Statistical approach
— 6. Hybrid approach

(Pre-)Classification

* Tokenization can also be done as labeled tokenization or as
a step to pipeline into classification.

* e.g number, date, time, title classifications — pipelines in
the LT TTT program. Tokenize a number differently
because you’ve identified it as a number, so pass that
information along.

* Can be tricky:

— Dr. North vs. Oak Dr. North
— They sold 1996 {bales of hay / cars}.




Preprocessing

Filter out typesetting distinctions
However, font information can be important
(Grefenstette 1999) -- can use markup information

Some tasks -- e.g. dehyphenation -- can be seen
either as preprocessing or as tokenization proper

Language Dependence

Spoken or written
Logographic, syllabic, or alphabetic
Sentence/word marking: Ambharic texts explicitly
mark word & sentence boundaries; Thai marks
neither; English is in-between.

— English is a space-delimited language; Chinese is an

unsegmented language

Many tasks, e.g. regular expression matching, will
be language-specific

2. 4 Dependencies (Palmer)

Language Dependence
Character-set Dependence
Application Dependence
Corpus Dependence

Character-set Dependence

Asciifiation: de’ja’ or delja2 (normally, a word
ending in a number might be an abbreviation)
Multiple encodings exist for the same character set

-- e.g. GB & Big-5 for Chinese -- but tokenize the
characters the same

byte range 161-191 are punctuation marks in
Latin-1 encoding of English; the same range are
Thai consonants in TIS620 encoding

— might be code-switching in the text




Application Dependence

No absolute definition for tokenization

Contraction expansion: might want to expand /'m
into / am if we want to parse later (/ 'm might be
an unknown word).

Proper names like John Jones could be one token
for most purposes, but if tokenization is a
preprocessing step for a family identification

3. Concerns

» Recoverability -- eliminating space/tab/newline
distinction (for languages with spaces)
 very langauge-specific tasks:

— Same or different?: 3.9 to 4 million dollars vs. $3.9 to
34 million

— Multipart words: Boston-based dogs, = dog +,

— Multiword expressions: in spite of (=despite)

program, not a good idea — Abbreviations

ACL is 3 phonological words, one orthographic

abbreviation (Sproat et al 1996) 9 1"
Corpus Dependence Abbreviations

governor’s is expanded/split in the Susanne corpus
(two tokens); one token in the Brown corpus

cannot expect a corpus to follow set conventions
on spelling, punctuation, etc. (e-mail text will
likely be “ill-formed”)

LOB Corpus uses \0 to signal a one-word

abbreviation (Leech 1997 in Garside et al 1997):
\0in. (abbreviation) vs. in. (sentence-final)

» Abbreviations are productive: cannot produce a
list of all of them

» Abbreviations can also be words: mass is also the
short form of Massachusetts

» Abbreviations can represent different words & so
be in different contexts: Sz. = Saint, State, or
Street. (Saint less likely to be at a sentence
boundary)




Abbreviations (cont.)

 Contraction Expansion: expand /’m into / am
— need to know that 'm = am
— probably would also want to expand non-apostrophe-
containing words like Spanish del = de + el.
» Punctuation can be very ambiguous

— for an in-depth discussion of punctuation, as it applies
to linguistics in general, see Nunberg 1990

Apostrophes

If we split I’/ into I and I/ we now have “funny
words” (Manning & Schutze 1999) in the data.

If we do not split, then rules like S -> NP VP no
longer apply for sentences like /'m right.

Apostrophes can be used as single quotes, so there
is potential for ambiguity.

As mentioned before, could be used in something
like de’ja’

Word-internal uses: Pudd’n’head rock ‘n’ roll

Punctuation

» Apostrophes: [’ll -- one token or two?

* Hyphens: line-final because initially one seamless
word or initially hyphenated?

» Periods: sentence-final or abbreviatory?

Hyphens

If we dehyphenate (for the line-final cases), it is
possible that the original corpus information may
be lost -- can probably add markup.

Dehyphenating all line-final cases will over-
dehyphenate.

Some hyphenated words are one word: e-mail,
co-operate, non-lawyer

Some are not one word: text-based, sound-change




Periods

The bulk of research has concerned separating

sentence-final periods from ones denoting

abbreviations.

— The bizarre 12 in. alien told us to come in.

— note that the analysis would have repercussions for a
text-to-speech system ([IntSIz] vs. [In])

Ties into the area of sentence segmentation

Approaches

Now that we’ve identified the problems of
tokenization, we can examine some solutions

(Linguistically) Informed Approach
Statistical Approach
Hybrid Approach

Haplology

One character/string having 2 simultaneous uses

Apply your tokenizer to the following “corpus”:
— “‘Whose frisbee is this?’ John asked, rather self-
consciously. ‘Oh, it’s one of the boys’ said the Sen.”
The hyphen, apostophe/single quote, & final
period are all serving two uses.

Usually, we want to handle the two uses
differently -- e.g. split a sentence-final period from
the preceding word (unless an abbreviation).

4. Informed Approaches

use something about the language to find abbrevs.
(Grefenstette & Tapanainen 1994,
Grefenstette1999):

— match regular expressions (for segmented Igs.)

— use a corpus filter

— use a lexicon

— use a list of abbreviations
similar techniques for unsegmented languages

Use as a baseline: any period not followed by a
blank is not a full stop; otherwise, a full stop. 2




Regular Expressions

can use a tool like lex/flex or awk

(English) numbers: ([0-9]+[,])*[0-9]([.][0-9]+)?
single capital letters: [A-Za-z]\.

L.L.: [A-Za-z]\.(J[A-Za-z0-9]\.)+

capital letter + consonants + period (eg. Assn.):
[A-Z][bcdfghj-np-tvxz]+\.

Will not catch: Gen. 25-ft. USN.

possible to use other regular expressions

will not work with unsegmented languages

21

Use a lexicon

+ First, identify numbers & separate on spaces

* Ordered filter (part of the morphological
analyzer):

— 1. Define: known abbreviation: followed by
lowercase letter, comma, or semi-colon

— 2. Prune: lowercase, exists in the lexicon w/o a period -
-> not an abbreviation;

— 2. Add: lowercase otherwise (always with a period):
abbreviation

23

Corpus filter

Identify likely abbreviations, ending with a period
& followed by:

— another piece of punctuation, a lower-case letter, a
number, or a word beginning with a capital letter &
ending in a period.

Then, use the corpus as a filter: if the likely
abbreviations appears elsewhere in the corpus
without a period, remove it from the likely list

— note, however, that OH. & OH can both appear in a
corpus (although, not likely)

22

Use a lexicon (cont.)

— 3. Prune: begins w/ uppercase letter, is not a known
abbreviation, appears elsewhere w/o a period; or
appears only once or twice --> not an abbreviation
(probably proper name)

— 4. Else: an abbreviation

* still some problems: in. (=inch) as an
abbreviation will be ruled out by all the other non-
abbreviatory uses

24




Use abbreviations in the lexicon

» Simply define abbreviations in the lexicon that:
— a) are fairly hard to detect otherwise
— b) do not exist as words otherwise (e.g. in. would
wrongly identify sentence-ending prepositions)
* New procedure:

— 1. abbreviation = followed by lowercase letter, comma,
or semi-colon

— 2. abbreviation = exists as abbreviation in lexicon
— 3. otherwise, sentence terminator

— could probably also use some of previous pruning
25

Character-as-word

Average word length in Chinese is 1-2 characters
Not good for parsing, POS tagging, text-to-speech
good for information retrieval systems

also, not very general: same type of strategy
wouldn’t work for an alphabetic system

27

Unsegmented Languages

* Need a more informed approach: extensive word
list & an informed segmentation algorithm

» unknown words are difficult
» Approaches

— character-as-word
— greedy algorithm for word-matching

» Native speakers disagree: Sproat et al (1996)
report Chinese speakers agree on word
segmentation around 70% of the time

26

Greedy algorithm

Or maximum matching algorithm

Start at the first character & match the longest
word in the word list starting with that character

— if matches a word, mark the end of the longest word &
start with the next character after that word

— if doesn’t match, segment that character as a word &
begin again at the next character
variation: match a sequence of unmatched
characters

ignores ambiguity -- one segmentation 25




Forward-backward matching

English: thetabledownthere would be segmented
as theta bled own there

If we match back-to-front, however, we obtain the
table down there (reverse maximum matching)

Forward-backward matching: compare results of
forward matching with reverse matching (use
language-specific heuristics)

29

Log likelihood ratio

 Null hypothesis: Hy: P(e,w) =p =P(~e,w)
— in other words, the probability of a word occurring with

a period is independent of whether it occurs elsewhere
without a period (i.e. not a collocation)

* Alternative: H,: P(e,w) p, # p, P(~e,w)
— the occurrence of a period is not independent (either

because it is most likely a collocation or most likely not
a collocation)

* log A =-2 log (L(H,)/L(H,))
— where L(X) is the likelihood of X -- calculated using

the probabilities of a collocation, themselves based on
the occurrence counts 31

5. Statistical approach(es)

Kiss & Strunk 2002 treat period-ending
abbreviations as bigrams
count up the occurrences of a word with a period
& occurrences without in a training corpus
use the log likelihood ratio to determine if the
bigram is a true collocation
Compare the null hypothesis that the period is
independent of the preceding word with the
alternative hypothesis that it is not independent.
— a similar idea to Grefenstette’s corpus filter

30

Scaling the log likelihood ratio

» The method gets most of the abbreviations, but
generates many false positives -- e.g. says holiday
is an abbreviation

» Using C(word,e) as the count of word with a
following period and C(word,~e) as the count of
word without a following period, we scale by:

— ratio of occurrence: eC0vord:#)/Ciword:~e)
— relative difference: (C(word,e)-C(word,~e))/
(C(word,e)+C(word,~e))

— length of abbreviation: 1/(e'ength) )




6. Hybrid approaches

» Some approaches use lexical-based knowledge &
then use statistical information to pick out the best
segmentation from a set of choices

* ¢.g. could use POS information to rank the choices

— note that this breaks down the straight-line flow of
information from tokenizer to morphological analyzer
& POS tagger

 Sproat et al follow a similar route of selecting a
best choice

33

Main Problems

e Unknown words:

— Morphologically derived words: xue2-shengl-+men0 =
‘student’ + plural = ‘students’

— Personal names: shi2-jil-lin2 will not be in any
dictionary

— Transliterated foreign words: bu4-lang3-shi4-wei2-ke4
= ‘Brunswick’

35

Chinese word segmentation

» Sproat et al 1996

* use a dictionary -- ideally from the same genre as
the text to be separated.

» “coverage of the dictionary ... [is] possibly more
important than the particular set of methods used
in the segmentation”

— e.g. huang2-rong?2 youl-youl de dao4 ‘Huang Rong
soberly said’ where youl-youl = ‘soberly’ A different
system attached youl to the preceding name because its
dictionary lacked youl-youl.

34

Why hybrid?

* Words in the lexicon treated with the FST (next
slide). Unknown words treated by deriving them
via productive (linguistic) processes

 e.g. morphological analysis for some affixes

* ¢.g. use information like the semantic radical to
estimate the probability of a sequence of
characters being a name

— radical: some characters have general semantic
meanings, like GHOST or GOLD

36




Finite-State Transducer

* use a weighted finite-state transducer

— each arc corresponds to a Chinese character (or to
epsilon) and has a numerical weight assigned to it
(obtained from a training corpus)

— the cheapest path through the FST will be the chosen
segmentation
* e.g. ABCD could be ABC/D or AB/CD
— The ABC path costs 6.0 & D costs 5.0, so path=11.0
— AB costs 4.0 & CD costs 5.0, so path =9.0
— ergo, choose AB / CD

37

Limitations

« Will only catch local ambiguities

« if the ambiguity resolution depends on broader
context, the WFST cannot handle it

* e.g. ma3-lu4 means either ‘horse way’ or ‘road’
depending on the global context of the sentence

— The horse got sick on the way. (‘this CL horse way on
sick ASP”)

— Very few cars pass by this read. (‘this CL road very
few car pass by’)

39

Finite-State Transducer (cont.)

 All characters have zero weight; the actual
weighting takes place on final POS arcs, which
denote that the previous arcs made up a word:

38

LTTTT

» Also hybrid: some components are rule-based,

others are statistical

* Documentation found at:

or
file:/opt/compling/tools/TTT v1.0/DOC/tttdoc.html

 Different components do different tasks, like

number/date/time identifcation

40




“Assignment”

>cd /opt/compling/tools/TTT v1.0
>setenv TTT /home/compling/tools/TTT v1.0
>more runplain

— # read the comments to get an idea of what the
pipelines are doing

>cat STTT/EGS/plain/texts | $TTT/runplain >

/home/<username>/texts.html

open up netscape & load the file texts.html

try running one pipeline at a time to see what each

component is doing i

References (cont.)

Nunberg, Geoffrey. 1990. The Linguistics of Punctuation. Stanford, CA:
Center for the Study of Language and Information.

Palmer, David D. (2000). Tokenisation and Sentence Segmentation. In Dale,
Robert, Moisl, Herman, and Somers, Harold, eds. Handbook of Natural
Language Processing, pp. 11-35. New York: Marcel Dekker.
http://www.netLibrary.com/ebook_info.asp?product_id=47610.

Sproat R., Shih C., Gale W., Chang N. 1996. A Stochastic Finite-State Word-
Segmentation Algorithm for Chinese. Computational Linguistics, 22(3).

43

References

Garside, Roger, Leech, Geoffrey, and McEnery, Tony (Eds.) (1997). Corpus
Annotation: linguistic information from computer text corpora. Harlow,
England: Addison Wesley Longman Limited

Grefenstette, Gregory (1999). Tokenization. In Syntactic Wordclass Tagging,
H. van Halteren, ed., pp. 117-133. Dordrecht: Kluwer Academic Publishers.

Grefenstette, Gregory and Tapanainen, Pasi (1994). What is a word, What is a
sentence? Problems of tokenization. In Third Conference on Computational
Lexicography and Text Research (COMPLEX-94). Budapest, Hungary.
http://www .xrce.xerox.com/publis/mltt/mltt-004.ps.

Kiss, Tibor, and Strunk, Jan (2002). Scaled log likelihood ratios for the
detection of abbreviations in text corpora. ms.

Manning, Christopher D., and Schutze, Hinrich (1999). Foundations of
Statistical Natural Language Processing. Cambridge, MA: MIT Press.

42




