
3

• Preprocessing > Tokenization > Morphological

analysis (e.g. POS tagging)

• Tokenization = dividing the input text into tokens

– words, which can have further morphological analysis

and belong to a certain syntactic class

– character(s) with recognizable structure, e.g.

punctuation, numbers, dates

• Closely linked to the task of sentence

segmentation (sentence-final vs. abbreviatory

periods)

4

• Tokenization can also be done as labeled tokenization or as

a step to pipeline into classification.

• e.g number, date, time, title classifications – pipelines in

the LT TTT program. Tokenize a number differently

because you’ve identified it as a number, so pass that

information along.

• Can be tricky:

– Dr. North vs. Oak Dr. North

– They sold 1996 {bales of hay / cars}.

1

Markus Dickinson

Corpora & Linguistic Knowledge

April 10, 2002

dickinso@ling.ohio-state.edu

2

• Background/Motivation:

– 1. Where tokenization fits into annotation tools

– 2. What the task depends on

– 3. Concerns (Abbreviations)

• Approaches:

– 4. “Informed” approach

– 5. Statistical approach

– 6. Hybrid approach

7

• Spoken or written

• Logographic, syllabic, or alphabetic

• Sentence/word marking: Amharic texts explicitly

mark word & sentence boundaries; Thai marks

neither; English is in-between.

– English is a space-delimited language; Chinese is an

unsegmented language

• Many tasks, e.g. regular expression matching, will

be language-specific

8

• Asciifiation: de’ja’ or de1ja2 (normally, a word
ending in a number might be an abbreviation)

• Multiple encodings exist for the same character set
-- e.g. GB & Big-5 for Chinese -- but tokenize the
characters the same

• byte range 161-191 are punctuation marks in
Latin-1 encoding of English; the same range are
Thai consonants in TIS620 encoding
– might be code-switching in the text

5

• Filter out typesetting distinctions

• However, font information can be important

(Grefenstette 1999) -- can use markup information

• Some tasks -- e.g. dehyphenation -- can be seen

either as preprocessing or as tokenization proper

6

• Language Dependence

• Character-set Dependence

• Application Dependence

• Corpus Dependence

11

• Recoverability -- eliminating space/tab/newline

distinction (for languages with spaces)

• very langauge-specific tasks:

– Same or different?: 3.9 to 4 million dollars vs. $3.9 to

$4 million

– Multipart words: Boston-based dogs, = dog + ,

– Multiword expressions: in spite of (�despite)

– Abbreviations

12

• Abbreviations are productive: cannot produce a

list of all of them

• Abbreviations can also be words: mass is also the

short form of Massachusetts

• Abbreviations can represent different words & so

be in different contexts: St. = Saint, State, or

Street. (Saint less likely to be at a sentence

boundary)

9

• No absolute definition for tokenization

• Contraction expansion: might want to expand I’m

into I am if we want to parse later (I’m might be

an unknown word).

• Proper names like John Jones could be one token

for most purposes, but if tokenization is a

preprocessing step for a family identification

program, not a good idea

• ACL is 3 phonological words, one orthographic

abbreviation (Sproat et al 1996)

10

• governor’s is expanded/split in the Susanne corpus

(two tokens); one token in the Brown corpus

• cannot expect a corpus to follow set conventions

on spelling, punctuation, etc. (e-mail text will

likely be “ill-formed”)

• LOB Corpus uses \0 to signal a one-word

abbreviation (Leech 1997 in Garside et al 1997):

\0in. (abbreviation) vs. in. (sentence-final)

15

• If we split I’ll into I and ’ll we now have “funny
words” (Manning & Schutze 1999) in the data.

• If we do not split, then rules like S -> NP VP no
longer apply for sentences like I’m right.

• Apostrophes can be used as single quotes, so there
is potential for ambiguity.

• As mentioned before, could be used in something
like de’ja’

• Word-internal uses: Pudd’n’head rock ‘n’ roll

16

• If we dehyphenate (for the line-final cases), it is

possible that the original corpus information may

be lost -- can probably add markup.

• Dehyphenating all line-final cases will over-

dehyphenate.

• Some hyphenated words are one word: e-mail,

co-operate, non-lawyer

• Some are not one word: text-based, sound-change

13

• Contraction Expansion: expand I’m into I am

– need to know that ’m = am

– probably would also want to expand non-apostrophe-

containing words like Spanish del = de + el.

• Punctuation can be very ambiguous

– for an in-depth discussion of punctuation, as it applies

to linguistics in general, see Nunberg 1990

14

• Apostrophes: I’ll -- one token or two?

• Hyphens: line-final because initially one seamless

word or initially hyphenated?

• Periods: sentence-final or abbreviatory?

19

• Now that we’ve identified the problems of

tokenization, we can examine some solutions

• (Linguistically) Informed Approach

• Statistical Approach

• Hybrid Approach

20

• use something about the language to find abbrevs.

(Grefenstette & Tapanainen 1994,

Grefenstette1999):

– match regular expressions (for segmented lgs.)

– use a corpus filter

– use a lexicon

– use a list of abbreviations

• similar techniques for unsegmented languages

• Use as a baseline: any period not followed by a

blank is not a full stop; otherwise, a full stop.

17

• The bulk of research has concerned separating

sentence-final periods from ones denoting

abbreviations.

– The bizarre 12 in. alien told us to come in.

– note that the analysis would have repercussions for a

text-to-speech system ([IntSIz] vs. [In])

• Ties into the area of sentence segmentation

18

• One character/string having 2 simultaneous uses

• Apply your tokenizer to the following “corpus”:

– “‘Whose frisbee is this?’ John asked, rather self-

consciously. ‘Oh, it’s one of the boys’ said the Sen.”

• The hyphen, apostophe/single quote, & final

period are all serving two uses.

• Usually, we want to handle the two uses

differently -- e.g. split a sentence-final period from

the preceding word (unless an abbreviation).

23

• First, identify numbers & separate on spaces

• Ordered filter (part of the morphological

analyzer):

– 1. Define: known abbreviation: followed by

lowercase letter, comma, or semi-colon

– 2. Prune: lowercase, exists in the lexicon w/o a period -

-> not an abbreviation;

– 2. Add: lowercase otherwise (always with a period):

abbreviation

24

– 3. Prune: begins w/ uppercase letter, is not a known

abbreviation, appears elsewhere w/o a period; or

appears only once or twice --> not an abbreviation

(probably proper name)

– 4. Else: an abbreviation

• still some problems: in. (=inch) as an

abbreviation will be ruled out by all the other non-

abbreviatory uses

21

• can use a tool like lex/flex or awk

• (English) numbers: ([0-9]+[,])*[0-9]([.][0-9]+)?

• single capital letters: [A-Za-z]\.

• L.L.: [A-Za-z]\.([A-Za-z0-9]\.)+

• capital letter + consonants + period (eg. Assn.):
[A-Z][bcdfghj-np-tvxz]+\.

• Will not catch: Gen. 25-ft. USN.

• possible to use other regular expressions

• will not work with unsegmented languages

22

• Identify likely abbreviations, ending with a period

& followed by:

– another piece of punctuation, a lower-case letter, a

number, or a word beginning with a capital letter &

ending in a period.

• Then, use the corpus as a filter: if the likely

abbreviations appears elsewhere in the corpus

without a period, remove it from the likely list

– note, however, that OH. & OH can both appear in a

corpus (although, not likely)

27

• Average word length in Chinese is 1-2 characters

• Not good for parsing, POS tagging, text-to-speech

• good for information retrieval systems

• also, not very general: same type of strategy

wouldn’t work for an alphabetic system

28

• Or maximum matching algorithm

• Start at the first character & match the longest

word in the word list starting with that character

– if matches a word, mark the end of the longest word &

start with the next character after that word

– if doesn’t match, segment that character as a word &

begin again at the next character

• variation: match a sequence of unmatched

characters

• ignores ambiguity -- one segmentation

25

• Simply define abbreviations in the lexicon that:

– a) are fairly hard to detect otherwise

– b) do not exist as words otherwise (e.g. in. would

wrongly identify sentence-ending prepositions)

• New procedure:

– 1. abbreviation = followed by lowercase letter, comma,

or semi-colon

– 2. abbreviation = exists as abbreviation in lexicon

– 3. otherwise, sentence terminator

– could probably also use some of previous pruning

26

• Need a more informed approach: extensive word

list & an informed segmentation algorithm

• unknown words are difficult

• Approaches

– character-as-word

– greedy algorithm for word-matching

• Native speakers disagree: Sproat et al (1996)

report Chinese speakers agree on word

segmentation around 70% of the time

31

• Null hypothesis: H0: P(�,w) = p = P(~�,w)
– in other words, the probability of a word occurring with

a period is independent of whether it occurs elsewhere
without a period (i.e. not a collocation)

• Alternative: H
�
: P(�,w) p1 � p2 P(~�,w)

– the occurrence of a period is not independent (either
because it is most likely a collocation or most likely not
a collocation)

• log � = -2 log (L(H0)/L(H
�
))

– where L(X) is the likelihood of X -- calculated using
the probabilities of a collocation, themselves based on
the occurrence counts

32

• The method gets most of the abbreviations, but

generates many false positives -- e.g. says holiday

is an abbreviation

• Using C(word,�) as the count of word with a

following period and C(word,~�) as the count of

word without a following period, we scale by:

– ratio of occurrence: eC(word,�)/C(word,~�)

– relative difference: (C(word,�)-C(word,~�))/

(C(word,�)+C(word,~�))

– length of abbreviation: 1/(elength)

29

• English: thetabledownthere would be segmented

as theta bled own there

• If we match back-to-front, however, we obtain the

table down there (reverse maximum matching)

• Forward-backward matching: compare results of

forward matching with reverse matching (use

language-specific heuristics)

30

• Kiss & Strunk 2002 treat period-ending
abbreviations as bigrams

• count up the occurrences of a word with a period
& occurrences without in a training corpus

• use the log likelihood ratio to determine if the
bigram is a true collocation

• Compare the null hypothesis that the period is
independent of the preceding word with the
alternative hypothesis that it is not independent.
– a similar idea to Grefenstette’s corpus filter

35

• Unknown words:

– Morphologically derived words: xue2-sheng1+men0 =

‘student’ + plural = ‘students’

– Personal names: shi2-ji1-lin2 will not be in any

dictionary

– Transliterated foreign words: bu4-lang3-shi4-wei2-ke4

= ‘Brunswick’

36

• Words in the lexicon treated with the FST (next

slide). Unknown words treated by deriving them

via productive (linguistic) processes

• e.g. morphological analysis for some affixes

• e.g. use information like the semantic radical to

estimate the probability of a sequence of

characters being a name

– radical: some characters have general semantic

meanings, like GHOST or GOLD

33

• Some approaches use lexical-based knowledge &

then use statistical information to pick out the best

segmentation from a set of choices

• e.g. could use POS information to rank the choices

– note that this breaks down the straight-line flow of

information from tokenizer to morphological analyzer

& POS tagger

• Sproat et al follow a similar route of selecting a

best choice

34

• Sproat et al 1996

• use a dictionary -- ideally from the same genre as
the text to be separated.

• “coverage of the dictionary … [is] possibly more
important than the particular set of methods used
in the segmentation”
– e.g. huang2-rong2 you1-you1 de dao4 ‘Huang Rong

soberly said’ where you1-you1 = ‘soberly’ A different
system attached you1 to the preceding name because its
dictionary lacked you1-you1.

39

• Will only catch local ambiguities

• if the ambiguity resolution depends on broader

context, the WFST cannot handle it

• e.g. ma3-lu4 means either ‘horse way’ or ‘road’

depending on the global context of the sentence

– The horse got sick on the way. (‘this CL horse way on

sick ASP’)

– Very few cars pass by this road. (‘this CL road very

few car pass by’)

40

• Also hybrid: some components are rule-based,

others are statistical

• Documentation found at:
http://www.ltg.ed.ac.uk/software/ttt/tttdoc.html

or

file:/opt/compling/tools/TTT_v1.0/DOC/tttdoc.html

• Different components do different tasks, like

number/date/time identifcation

37

• use a weighted finite-state transducer

– each arc corresponds to a Chinese character (or to

epsilon) and has a numerical weight assigned to it

(obtained from a training corpus)

– the cheapest path through the FST will be the chosen

segmentation

• e.g. ABCD could be ABC / D or AB / CD

– The ABC path costs 6.0 & D costs 5.0, so path = 11.0

– AB costs 4.0 & CD costs 5.0, so path = 9.0

– ergo, choose AB / CD

38

• All characters have zero weight; the actual

weighting takes place on final POS arcs, which

denote that the previous arcs made up a word:

43

• Nunberg, Geoffrey. 1990. The Linguistics of Punctuation. Stanford, CA:

Center for the Study of Language and Information.

• Palmer, David D. (2000). Tokenisation and Sentence Segmentation. In Dale,

Robert, Moisl, Herman, and Somers, Harold, eds. Handbook of Natural

Language Processing, pp. 11-35. New York: Marcel Dekker.

http://www.netLibrary.com/ebook_info.asp?product_id=47610.

• Sproat R., Shih C., Gale W., Chang N. 1996. A Stochastic Finite-State Word-

Segmentation Algorithm for Chinese. Computational Linguistics, 22(3).

41

• >cd /opt/compling/tools/TTT_v1.0

• >setenv TTT /home/compling/tools/TTT_v1.0

• >more runplain

– # read the comments to get an idea of what the
pipelines are doing

• >cat $TTT/EGS/plain/texts | $TTT/runplain >
/home/<username>/texts.html

• open up netscape & load the file texts.html

• try running one pipeline at a time to see what each
component is doing

42

• Garside, Roger, Leech, Geoffrey, and McEnery, Tony (Eds.) (1997). Corpus
Annotation: linguistic information from computer text corpora. Harlow,
England: Addison Wesley Longman Limited

• Grefenstette, Gregory (1999). Tokenization. In Syntactic Wordclass Tagging,
H. van Halteren, ed., pp. 117-133. Dordrecht: Kluwer Academic Publishers.

• Grefenstette, Gregory and Tapanainen, Pasi (1994). What is a word, What is a
sentence? Problems of tokenization. In Third Conference on Computational
Lexicography and Text Research (COMPLEX-94). Budapest, Hungary.
http://www.xrce.xerox.com/publis/mltt/mltt-004.ps.

• Kiss, Tibor, and Strunk, Jan (2002). Scaled log likelihood ratios for the
detection of abbreviations in text corpora. ms.

• Manning, Christopher D., and Schutze, Hinrich (1999). Foundations of
Statistical Natural Language Processing. Cambridge, MA: MIT Press.

