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• Preprocessing > Tokenization > Morphological 

analysis (e.g. POS tagging)

• Tokenization = dividing the input text into tokens

– words, which can have further morphological analysis 

and belong to a certain syntactic class

– character(s) with recognizable structure, e.g. 

punctuation, numbers, dates

• Closely linked to the task of sentence 

segmentation (sentence-final vs. abbreviatory 

periods)
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• Tokenization can also be done as labeled tokenization or as 

a step to pipeline into classification.

• e.g number, date, time, title classifications – pipelines in 

the LT TTT program.  Tokenize a number differently 

because you’ve identified it as a number, so pass that 

information along.

• Can be tricky:

– Dr. North vs. Oak Dr. North

– They sold 1996 {bales of hay / cars}.
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• Background/Motivation:

– 1. Where tokenization fits into annotation tools

– 2. What the task depends on

– 3. Concerns (Abbreviations)

• Approaches:

– 4. “Informed” approach

– 5. Statistical approach

– 6. Hybrid approach
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• Spoken or written

• Logographic, syllabic, or alphabetic

• Sentence/word marking:  Amharic texts explicitly 

mark word & sentence boundaries; Thai marks 

neither; English is in-between.

– English is a space-delimited language; Chinese is an 

unsegmented language

• Many tasks, e.g. regular expression matching, will 

be language-specific
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• Asciifiation:  de’ja’ or de1ja2 (normally, a word 
ending in a number might be an abbreviation)

• Multiple encodings exist for the same character set 
-- e.g. GB & Big-5 for Chinese -- but tokenize the 
characters the same

• byte range 161-191 are punctuation marks in 
Latin-1 encoding of English; the same range are 
Thai consonants in TIS620 encoding
– might be code-switching in the text
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• Filter out typesetting distinctions

• However, font information can be important 

(Grefenstette 1999) -- can use markup information

• Some tasks -- e.g. dehyphenation -- can be seen 

either as preprocessing or as tokenization proper
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• Language Dependence

• Character-set Dependence

• Application Dependence

• Corpus Dependence
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• Recoverability -- eliminating space/tab/newline

distinction (for languages with spaces)

• very langauge-specific tasks:

– Same or different?:  3.9 to 4 million dollars vs. $3.9 to 

$4 million

– Multipart words:  Boston-based dogs, = dog + ,

– Multiword expressions:  in spite of (�despite)

– Abbreviations
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• Abbreviations are productive:  cannot produce a 

list of all of them

• Abbreviations can also be words:  mass is also the 

short form of Massachusetts

• Abbreviations can represent different words & so 

be in different contexts:  St. = Saint, State, or 

Street.  (Saint less likely to be at a sentence 

boundary)
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• No absolute definition for tokenization

• Contraction expansion:  might want to expand I’m

into I am if we want to parse later (I’m might be 

an unknown word).

• Proper names like John Jones could be one token 

for most purposes, but if tokenization is a 

preprocessing step for a family identification 

program, not a good idea

• ACL is 3 phonological words, one orthographic 

abbreviation (Sproat et al 1996)
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• governor’s is expanded/split in the Susanne corpus 

(two tokens); one token in the Brown corpus

• cannot expect a corpus to follow set conventions 

on spelling, punctuation, etc. (e-mail text will 

likely be “ill-formed”)

• LOB Corpus uses \0 to signal a one-word 

abbreviation (Leech 1997 in Garside et al 1997):  

\0in. (abbreviation) vs. in. (sentence-final)
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• If we split I’ll into I and ’ll we now have “funny 
words” (Manning & Schutze 1999) in the data.

• If we do not split, then rules like S -> NP VP no 
longer apply for sentences like I’m right.

• Apostrophes can be used as single quotes, so there 
is potential for ambiguity.

• As mentioned before, could be used in something 
like de’ja’

• Word-internal uses:  Pudd’n’head rock ‘n’ roll
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• If we dehyphenate (for the line-final cases), it is 

possible that the original corpus information may 

be lost -- can probably add markup.

• Dehyphenating all line-final cases will over-

dehyphenate.

• Some hyphenated words are one word:  e-mail, 

co-operate, non-lawyer

• Some are not one word:  text-based, sound-change
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• Contraction Expansion:  expand I’m into I am

– need to know that ’m = am

– probably would also want to expand non-apostrophe-

containing words like Spanish del = de + el.

• Punctuation can be very ambiguous

– for an in-depth discussion of punctuation, as it applies 

to linguistics in general, see Nunberg 1990
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• Apostrophes:  I’ll -- one token or two?

• Hyphens:  line-final because initially one seamless 

word or initially hyphenated?

• Periods:  sentence-final or abbreviatory?
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• Now that we’ve identified the problems of 

tokenization, we can examine some solutions

• (Linguistically) Informed Approach

• Statistical Approach

• Hybrid Approach
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• use something about the language to find abbrevs. 

(Grefenstette & Tapanainen 1994, 

Grefenstette1999):

– match regular expressions (for segmented lgs.)

– use a corpus filter

– use a lexicon

– use a list of abbreviations

• similar techniques for unsegmented languages

• Use as a baseline:  any period not followed by a 

blank is not a full stop; otherwise, a full stop.
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• The bulk of research has concerned separating 

sentence-final periods from ones denoting 

abbreviations.

– The bizarre 12 in. alien told us to come in.

– note that the analysis would have repercussions for a 

text-to-speech system ([IntSIz] vs. [In])

• Ties into the area of sentence segmentation
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• One character/string having 2 simultaneous uses

• Apply your tokenizer to the following “corpus”:

– “‘Whose frisbee is this?’ John asked, rather self-

consciously.  ‘Oh, it’s one of the boys’ said the Sen.”

• The hyphen, apostophe/single quote, & final 

period are all serving two uses.

• Usually, we want to handle the two uses 

differently -- e.g. split a sentence-final period from 

the preceding word (unless an abbreviation).
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• First, identify numbers & separate on spaces

• Ordered filter (part of the morphological 

analyzer):

– 1. Define:  known abbreviation:  followed by 

lowercase letter, comma, or semi-colon

– 2. Prune:  lowercase, exists in the lexicon w/o a period -

-> not an abbreviation; 

– 2. Add:  lowercase otherwise (always with a period):  

abbreviation

24

– 3. Prune:  begins w/ uppercase letter, is not a known 

abbreviation, appears elsewhere w/o a period; or 

appears only once or twice --> not an abbreviation 

(probably proper name)

– 4. Else: an abbreviation

• still some problems:  in. (=inch) as an 

abbreviation will be ruled out by all the other non-

abbreviatory uses
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• can use a tool like lex/flex or awk

• (English) numbers:  ([0-9]+[,])*[0-9]([.][0-9]+)?

• single capital letters:  [A-Za-z]\.

• L.L.:  [A-Za-z]\.([A-Za-z0-9]\.)+

• capital letter + consonants + period (eg. Assn.):  
[A-Z][bcdfghj-np-tvxz]+\.

• Will not catch:  Gen. 25-ft. USN.

• possible to use other regular expressions

• will not work with unsegmented languages
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• Identify likely abbreviations, ending with a period 

& followed by:

– another piece of punctuation, a lower-case letter, a 

number, or a word beginning with a capital letter & 

ending in a period.

• Then, use the corpus as a filter:  if the likely 

abbreviations appears elsewhere in the corpus 

without a period, remove it from the likely list

– note, however, that OH. & OH can both appear in a 

corpus (although, not likely)
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• Average word length in Chinese is 1-2 characters

• Not good for parsing, POS tagging, text-to-speech

• good for information retrieval systems

• also, not very general:  same type of strategy 

wouldn’t work for an alphabetic system
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• Or maximum matching algorithm

• Start at the first character & match the longest 

word in the word list starting with that character

– if matches a word, mark the end of the longest word & 

start with the next character after that word

– if doesn’t match, segment that character as a word & 

begin again at the next character

• variation:  match a sequence of unmatched 

characters

• ignores ambiguity -- one segmentation
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• Simply define abbreviations in the lexicon that:

– a) are fairly hard to detect otherwise

– b) do not exist as words otherwise (e.g. in. would 

wrongly identify sentence-ending prepositions)

• New procedure:

– 1. abbreviation = followed by lowercase letter, comma, 

or semi-colon

– 2. abbreviation = exists as abbreviation in lexicon

– 3. otherwise, sentence terminator

– could probably also use some of previous pruning
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• Need a more informed approach:  extensive word 

list & an informed segmentation algorithm

• unknown words are difficult

• Approaches

– character-as-word

– greedy algorithm for word-matching

• Native speakers disagree:  Sproat et al (1996) 

report Chinese speakers agree on word 

segmentation  around 70% of the time
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• Null hypothesis:  H0:  P(�,w) = p = P(~�,w)
– in other words, the probability of a word occurring with 

a period is independent of whether it occurs elsewhere 
without a period (i.e. not a collocation)

• Alternative:  H
�
:  P(�,w) p1 � p2 P(~�,w)

– the occurrence of a period is not independent (either 
because it is most likely a collocation or most likely not 
a collocation)

• log � = -2 log (L(H0)/L(H
�
))

– where L(X) is the likelihood of X -- calculated using 
the probabilities of a collocation, themselves based on 
the occurrence counts
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• The method gets most of the abbreviations, but 

generates many false positives -- e.g. says holiday

is an abbreviation

• Using C(word,�) as the count of word with a 

following period and C(word,~�) as the count of 

word without a following period, we scale by:

– ratio of occurrence: eC(word,�)/C(word,~�)

– relative difference: (C(word,�)-C(word,~�))/ 

(C(word,�)+C(word,~�))

– length of abbreviation:  1/(elength)
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• English:  thetabledownthere would be segmented 

as theta bled own there

• If we match back-to-front, however, we obtain the 

table down there (reverse maximum matching)

• Forward-backward matching:  compare results of 

forward matching with reverse matching (use 

language-specific heuristics)
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• Kiss & Strunk 2002 treat period-ending 
abbreviations as bigrams

• count up the occurrences of a word with a period 
& occurrences without in a training corpus

• use the log likelihood ratio to determine if the 
bigram is a true collocation

• Compare the null hypothesis that the period is 
independent of the preceding word with the 
alternative hypothesis that it is not independent.
– a similar idea to Grefenstette’s corpus filter
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• Unknown words:

– Morphologically derived words:  xue2-sheng1+men0 = 

‘student’ + plural = ‘students’

– Personal names:  shi2-ji1-lin2 will not be in any 

dictionary

– Transliterated foreign words:  bu4-lang3-shi4-wei2-ke4

= ‘Brunswick’
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• Words in the lexicon treated with the FST (next 

slide).  Unknown words treated by deriving them 

via productive (linguistic) processes

• e.g. morphological analysis for some affixes

• e.g. use information like the semantic radical to 

estimate the probability of a sequence of 

characters being a name

– radical:  some characters have general semantic 

meanings, like GHOST or GOLD
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• Some approaches use lexical-based knowledge & 

then use statistical information to pick out the best 

segmentation from a set of choices

• e.g. could use POS information to rank the choices

– note that this breaks down the straight-line flow of 

information from tokenizer to morphological analyzer 

& POS tagger

• Sproat et al follow a similar route of selecting a 

best choice
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• Sproat et al 1996

• use a dictionary -- ideally from the same genre as 
the text to be separated.

• “coverage of the dictionary … [is] possibly more 
important than the particular set of methods used 
in the segmentation”
– e.g. huang2-rong2 you1-you1 de dao4 ‘Huang Rong 

soberly said’ where you1-you1 = ‘soberly’  A different 
system attached you1 to the preceding name because its 
dictionary lacked you1-you1.
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• Will only catch local ambiguities

• if the ambiguity resolution depends on broader 

context, the WFST cannot handle it

• e.g. ma3-lu4 means either ‘horse way’ or ‘road’ 

depending on the global context of the sentence

– The horse got sick on the way. (‘this CL horse way on 

sick ASP’)

– Very few cars pass by this road. (‘this CL road very 

few car pass by’)
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• Also hybrid:  some components are rule-based, 

others are statistical

• Documentation found at:  
http://www.ltg.ed.ac.uk/software/ttt/tttdoc.html

or         

file:/opt/compling/tools/TTT_v1.0/DOC/tttdoc.html

• Different components do different tasks, like 

number/date/time identifcation
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• use a weighted finite-state transducer

– each arc corresponds to a Chinese character (or to 

epsilon) and has a numerical weight assigned to it 

(obtained from a training corpus)

– the cheapest path through the FST will be the chosen 

segmentation

• e.g. ABCD could be ABC / D or AB / CD

– The ABC path costs 6.0 & D costs 5.0, so path = 11.0

– AB costs 4.0 & CD costs 5.0, so path = 9.0

– ergo, choose AB / CD
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• All characters have zero weight; the actual 

weighting takes place on final POS arcs, which 

denote that the previous arcs made up a word:
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• >cd /opt/compling/tools/TTT_v1.0

• >setenv TTT /home/compling/tools/TTT_v1.0

• >more runplain 

– # read the comments to get an idea of what the 
pipelines are doing

• >cat $TTT/EGS/plain/texts | $TTT/runplain > 
/home/<username>/texts.html

• open up netscape & load the file texts.html

• try running one pipeline at a time to see what each 
component is doing
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