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ABSTRACT
The species richness of venomous snakes in Ecuador (~39 species) is among the highest in the 
world. However, until now no information exists regarding geographic patterns of ophidism. In 
this study, we present a detailed spatial snakebite risk map which was built by stacking weighted 
ecological niche models of the 19 snake species responsible for the majority of Ecuador’s 
envenomation cases. Our weights were based on the proportion of cases reported for each species 
on local epidemiological studies. Based on our analyses, we identify 184 densely populated rural 
communities with high snakebite risk that should be monitored by health organizations. We also 
identified three densely populated rural locations (Palora Metzera, Sangay and Shell) that may 
require special attention because they had much higher snakebite risk values than the rest.

1.  Introduction

Ophidism is considered a neglected tropical disease, 
despite its high incidence, and the considerable health 
problems (serious and permanent functional sequelae 
in affected persons) and high number of deaths that it 
causes in human populations [1,2]. Recent global esti-
mates suggest that a minimum of 421,000 envenom-
ings and 20,000 deaths owed to venomous snakes take 
place each year, and that these numbers could be up to 
1,841,000 bites and 94,000 deaths [3]. And, based on the 
fact that envenomings occur in about one in four peo-
ple who are bitten, these same authors estimated that 
between 1.2 and 5.5 million of snakebites occur annually.

Ecuador has a great diversity of venomous snakes (~36 
species, which account to 5 and 19% of the diversity of 
the world and the Americas, respectively) [4], and one of 
the highest prevalence of snakebites in the continent [5]. 
However, epidemiologic studies in the country remains 
scarce [4]. Most of the information consists of isolated 
hospital reports for certain regions of the country [2]. To 
date, there has been one comprehensive study of tempo-
ral and social aspects of snakebites, but a geographical 
analysis of snakebite risk is still lacking [2].

Ideally, strategies to deal with snakebites would be 
based on assessments of true rates of bites and enven-
omation via community-based epidemiological studies, 
independent of the vagaries of hospital reporting, but 

this procedure would be expensive to apply at large 
scales (e.g. Ecuador) [6]. As a result, correlative ecological 
niche models have been recently used to infer snakebite 
risk at regional and continental scales [5,7].

We applied this niche modelling technique to estimate 
potential snakebite risk (defined here as the probability 
of being bitten by a venomous snake in a given location) 
in Ecuador integrating: (1) maps of potential distribution 
and environmental suitability of snake species of medical 
importance, and (2) information that approximates the 
probability of being bitten by a specific species. We also 
identified vulnerable human communities for snakebites 
based on a densely populated rural communities map.

2.  Methods

2.1.  Biological data

We obtained species occurrences through the Global 
Biodiversity Information Facility (GBIF, http://www.
gbif.org) and VertNet (http://www.vertnet.org) web-
sites (accessed to both  =  March 2017). We eliminated 
any doubtful (e.g. occurrences that fall in the ocean or 
in other continents) information and we applied the 
“Spatially Rarefy Occurrence Data” from “SDMtoolbox” 
[8] in ArcGIS® 10.3 (©ESRI) to minimize spatial auto-cor-
relation and model overfitting [9]. We used a rarefica-
tion buffer of 20 km based on the clustering nature and 
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these layers to the extent of a polygon that represents a 
hypothetical area of historical accessibility for each spe-
cies (area M; sensu Soberón and Peterson [12]). We used 
a vectorial map of terrestrial ecoregions generated by 
the WWF [13] to determine the M area.

Moreover, we reduced dimensionality and collinearity 
among bioclimatic layers by applying a principal compo-
nents analysis (PCA). To do this, we used the “PCARaster” 
function in the R [14] package ENMGadgets [15]. We 
retained for the modelling stage the first five compo-
nents that explained ≥95% of the overall variance.

2.3.  Ecological niche modelling

We used Maxent 3.3.3k [16] to estimate environmental 
suitability and the potential distribution of each spe-
cies. We chose this program because it is reputed to 
have better predictive ability than other presence-only 
data algorithms [17]. We used calibration data across 
the accessible area (M) for each species with the Maxent 
bootstrapping/replicated settings and a “cloglog” out-
put. We also carried out ten replicate analyses to explore 
effects of specific calibration data sets on model out-
puts. Finally, to obtain the potential distribution maps 
we thresholded the average environmental suitability 
models utilizing the “10 percentile training presence” 
rule to exclude problematic occurrences (e.g. taxonomic 
misidentifications, presences from sink populations and 
imprecisions in geo-referencing) [17]. In all the maps, we 
keep suitability values only within the potential distribu-
tion area (Figure 1).

2.4.  Model evaluation

We assessed predictive performance with the evalu-
ation data-set via the partial ROC (receiver operating 
characteristic) approach. This technique is based on the 
traditional ROC [18], but takes into account the area of 
coverage of the commission error axis by model predic-
tions, and gives preference to omission over commission 
error in evaluating model strength [19]. We calculated 
the AUC (area under the curve) ratio for each species 
using the software Tool for Partial-ROC [20] with an 
allowed omission of 10% of validation data. AUC ratio 
values above one indicate that models outperform the 
null expectation [19].

2.5.  Snakebite risk maps

Following Yañez-Arenas et al. [5], we built a snakebite 
risk map that approximates the probability of being bit-
ten by a venomous snake at a given cell. We estimated 
snakebite risk by stacking ecological niche models and 
weighing each species by a number related to the pro-
portion of bites caused by it. Specifically, we summed 
the environmental suitability values of the cells that were 

abundance of presence points; we would have lost many 
records for some species if we had used a greater dis-
tance. Finally, we split presence records randomly into 
calibration (80%) and evaluation (20%) data-sets (sam-
ple sizes for complete, filtered, calibration and validation 
datasets are presented in Table 1).

We modelled the potential distribution of 19 snake 
species (Table 1), including only species for which at 
least five occurrences were available to avoid statistical 
difficulties associated with small sample sizes [8]. We are 
confident that excluding these species did not affect our 
analysis because they have characteristics (e.g. rareness, 
restricted distributions, low abundance) that would 
greatly reduce the frequency of bites [5]. Besides, the 
majority of snakebites in Ecuador are caused by only six 
species [4,9,10].

2.2.  Environmental layers

We used 19 bioclimatic layers (resolution = 30 arc-sec-
onds) from World Clim (http://www.worldclim.org/) [11] 
to characterize environmental conditions. We masked 

Table 1.  Summary of ecological niche modelling inputs and 
evaluations.

Notes: T Occ = total occurrences, F Occ = filtered occurrences, N Calib = cali-
bration occurrences, N Test = evaluation occurrences, AUC r = AUC ratio 
of Partial ROC (the absence of a value in this column indicates that the 
species was not modelled).

Species T Occ F Occ N Calib N Test AUC r
Bothriechis schlegelii 416 173 138 35 1.797
Bothriopsis bilineata 59 56 45 11 1.683
Bothriopsis pulchra 15 15 12 3 1.718
Bothriopsis taeniata 41 31 25 6 1.090
Bothrocophias 

campbelli
9 4 – – –

Bothrocophias 
hyoprora

44 25 20 5 1.537

Bothrocophias 
microphthalmus

14 3 – – –

Bothrops asper 1482 279 223 56 1.746
Bothrops atrox 848 103 82 21 1.081
Bothrops brazili 32 2 – – –
Bothrops lojanus 4 3 – – –
Bothrops punctatus 23 16 – – –
Lachesis acrochorda 4 4 – – –
Lachesis muta 85 39 31 8 1.656
Leptomicrurus 

narduccii 
52 27 22 5 1.479

Micrurus ancoralis 43 19 15 4 1.656
Micrurus annellatus 9 0 – – –
Micrurus bocourti 3 3 – – –
Micrurus dumerilii 47 47 38 9 0.254
Micrurus filiformis 8 0 – – –
Micrurus hemprichii 8 0 – – –
Micrurus langsdorffi 31 19 15 4 1.378
Micrurus lemniscatus 71 46 37 9 1.986
Micrurus margari-

tiferus
6 2 – – –

Micrurus mipartitus 120 97 78 19 1.929
Micrurus ornatis-

simus
13 11 9 2 1.918

Micrurus spixii 65 49 39 10 1.745
Micrurus steindach-

neri
15 8 6 2 1.739

Micrurus surina-
mensis

33 24 19 5 1.684

Micrurus tschudii 8 8 – – –
Porthidium nasutum 105 64 51 13 1.660

http://www.worldclim.org/
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classified as potential distribution for each species. Then, 
we multiplied these values by the reported proportion of 
snakebites caused for each species (Table 2) in epidemi-
ological studies carried out in Ecuador [21–23].

Finally, we identified vulnerable rural communities 
(rural localities with high population density and high 
snakebite risk) based on the “estimates of rural popula-
tion density to 2015” global raster [24], and a shapefile 
of localities obtained from “Geodescargas” (http://www.
geoportaligm.gob.ec/; elaborated on January 2013, 
accessed on June 2015).

3.  Results

In all, we gathered 1187 spatially filtered presence 
records, varying among species from 1 (Micrurus annel-
latus, M. hemprichii) to 1482 (Bothrops asper). AUC ratio 
values for almost all species were >1 (with the exception 

Table 2. Species values that weights their probability to cause 
human envenomation.

Species Weights based on incidence data
Bothrops asper 80.0
Bothrops atrox 58.0
Bothrops bilineatus 36.0
Bothrops taeniatus 5.0
Bothriechis schlegelii 5.0
Lachesis muta 5.0
Bothrocophias hyoprora 5.0
Porthidium nasutum 5.0
Bothrops pulchra 5.0
Micrurus mipartitus 0.1
Micrurus spixii 0.1
Micrurus ancoralis 0.1
Micrurus lemniscatus 0.1
Micrurus surinamensis 0.1
Micrurus dumerilii 0.1
Micrurus ornatissimus 0.1
Micrurus steindachneri 0.1
Micrurus langsdorffi 0.1
Micrurus narduccii 0.1

Figure 2. Snakebite risk map for Ecuador. Source: Authors.

http://www.geoportaligm.gob.ec/
http://www.geoportaligm.gob.ec/
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however, there are very few densely populated rural 
communities (Figure 3). Finally, three locations in the 
eastern region stand out as having a much higher esti-
mated risk than the rest: “Palora (Metzera)”, “Sangay” 
and “Shell”.

4.  Discussion

Our study estimated snakebite risk at fine resolution 
(~1  km2) based on detailed environmental suitability/
distribution models for 19 species. A good predictive 
performance was observed in potential distribution 
models for almost all venomous snakes, including those 
of medical importance such as Bothrops asper, B. atrox, B. 
brazili, Bothrocophias microphthalmus, Bothriopsis biline-
ata, B. taeniata, Lachesis muta [4,22,23], except Micrurus 
dumerilii.

This research represents the first of its type in Ecuador, 
in terms of geographic dimension and scope. Previous 
studies were carried out at local scales (e.g. Smalligan 

of Micrurus dumerilii), indicating that models outperform 
null expectations (Table 1).

Modelled snakebite risk showed a broad geographic 
pattern, wherein the central region (Andes) of Ecuador 
has low to medium snakebite risk, while the western 
(Coast) and eastern (Amazonia) regions have in general 
medium to high risk (Figure 2). Because our snakebite risk 
index was produced giving greater weight to B. asper and 
B. atrox, the regions of the map of greatest risk (Figure 2) 
coincide with the areas of high environmental suitability 
for these species (Figure 1).

We identified 187 rural communities (Table S1) 
that we consider vulnerable because they are densely 
populated and have high environmental suitability for 
the snake species (B. asper and B. atrox) responsible 
for the majority of accidents in the country. Of these 
communities, 75% are located in the western region 
of Ecuador, 14% in the central region, and 11% in 
the eastern region. In the latter, our model estimates 
an extensive area with high snakebite risk values, 

Figure 3. Categories of snakebite risk for densely populated rural communities in Ecuador. Source: Authors.
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