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a  b  s  t  r  a  c  t

In the  late  1990s  Allan  Robinson  developed  a  theory  of  NPZ  inter-
actions  in  a  laminar  upwelling  flow  field.  His  approach  was  to  use
the  advection  reaction  (AR) equation  in a Lagrangian  coordinate
system. Recently,  his  theory  was  extended  to turbulent  flow  by
applying  a probability  density  function  to the  solution  of  the  AR
equation. A  review  of  this  work  is  presented  as well  as  new  work
examining  the  role  of  the  turbulent  induced  biodynamical  interac-
tion  (TIBI)  effect,  which  is typically  neglected  in  advection  diffusion
reaction  (ADR)  formulations  for  NPZ  problems.  The  TIBI  effect  is
associated  with  turbulence  inducing  fluctuations  in nonlinear  bio-
logical  constituent  interactions  and  is  separate  from  the effect  of
turbulent  mixing  in  dispersing  the  constituents.  A  simple  example
of  the  application  of  the  theory  –  that  of  nutrient  and  phytoplank-
ton fields  being  upwelled  into  a uniform  optically  active  turbulent
mixed layer  –  is  presented.  For  this  example,  not  including  the
TIBI  term  in  an  ADR  formulation  results  in  an  overestimate  of  the
primary  production,  increasing  with  decreasing  turbulent  Peclet
number.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the late 1990s Allan Robinson developed a novel approach to modeling the interaction of nutri-
ents, N, phytoplankton, P, and zooplankton, Z (Robinson, 1997, 1999). His approach was  to model
NPZ interactions by the advection reaction (AR) equation and utilize a Lagrangian coordinate sys-
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tem to obtain solutions. With this methodology, he examined a number of example NPZ interactions
undergoing advection into an optically active upper layer. However, the upper ocean is typically char-
acterized by turbulent rather than purely laminar flow. To accomplish the goal of including turbulence,
an extension of the basic Robinson AR theory was  required.

There are two general approaches to turbulent NPZ problems. These are: (1) embedding a NPZ
interaction model in a numerical simulation of the turbulent field; or (2) embedding a NPZ inter-
action model in the advection diffusion reaction (ADR) equation. Examples of approach (1) include:
Yamazaki and Kamykowski (1991) and Visser (1997),  both of whom use random walk simulations
to model NPZ interactions in an optically active turbulent mixed layer. Three significant issues arise
with this approach. First, it is computationally intensive and becomes very limited in the type of tur-
bulence model and mean background flow fields which can be used. Care must be applied in properly
taking into account advective effects (Ross and Sharples, 2004). Second, and more subtle, the bound-
ary conditions prescribed are either perfectly reflecting or perfectly absorbing and do not capture the
nature of a balance between advection and diffusion at the mixed layer lower boundary. More realistic
boundary conditions which prescribe some fraction of the material allowed to escape the mixed layer
would require a further empirical assumption.

The second approach is that of using the NPZ interaction model as the “reactive” term of the advec-
tive diffusive reaction (ADR) equation. See, for example, Wroblewski (1977) and Franks (2002).  That
approach neglects the effect of the Turbulence Induced Biodynamical Interactions (TIBI) which arise
from the inherent non linearity of the biodynamical interactions between N, P, Z. Donaghay and Osborn
(1997) have recognized the importance of the TIBI term and suggested using a simple linearization of
the interaction term. Note that the TIBI effect should be distinguished from that of turbulent mixing,
the latter typically modeled by some type of eddy diffusivity.

Allan Robinson and I collaborated on extending his biodynamical theory to include turbulence.
The approach, following that of Pope (1994),  was to apply a probability density function (PDF) for the
turbulent displacement field to the starting point of the Robinson biodynamical theory, namely the
AR equation. This collaboration culminated in a manuscript (Goodman and Robinson, 2008) applying
a PDF model based on a random walk to the Robinson biodynamical theory. We  reworked a number of
his original examples and established that the resulting phytoplankton growth was  a strong function
of the turbulent Peclet number, the ratio of the advective to the turbulent time scale. Most recently, and
just prior to his untimely death, Allan and I developed a theory to obtain a turbulent PDF as a solution
to the AD equation. This allowed a direct comparison of the effect of including, or not including, the
TIBI term in the ADR equation approach to the NPZ interaction problem.

In this manuscript I will review the basic biodynamical theory set forth by Allan Robinson (Section
2), and our initial work in its extension to turbulence (Section 3). These sections are a review of the
theory described in manuscripts Robinson (1997, 1999) and in Goodman and Robinson (2008).  Sections
4 and 5 contain new work on which Allen and I recently collaborated. Section 4 presents a prescription
for obtaining a turbulent PDF compatible with including the TIBI term in the ADR equation, while
Section 5 applies these results to a simple NP interaction problem. Section 6 contains the summary
and conclusions.

2. Robinson biodynamical theory

The starting point typically used in NPZ interaction models is the advection reaction (AR) equation
(Robinson, 1997; Franks, 2002)

d�i
dt

= Fi[�1, �2, . . . �n; �x,  t], (1)

where �i, i = 1, . . . n, are any one of n biological state variables, i.e. N, P, Z, for n = 3, and Fi is the reaction
(growth/decay rate) term describing the biodynamical interaction between the state variables. In
general Fi has explicit space, �x, and time, t, dependence due to external factors such as the light field.
See Franks (2002) for a review of models of Fi.
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The left hand term of (1) is recognized as the total time derivative, defined by

d�i
dt

≡
(
∂�i
∂t

)
�X,t0

=
(
∂�i
∂t

)
�x
+ �u · ∇(�i), (2)

which can also expressed in terms of the Lagrangian coordinates �X, t, t0 through �x = �x(�X, t, t0), the
trajectory of a fluid element at time, t, whose initial position is �X , at time, t0. The velocity field is then
given by �u  = (∂�x/∂t)�X,t,t0 .

In a series of manuscripts, Robinson (1997, 1999) showed that by using a Lagrangian coordinate
system, solutions of Eq. (1) can be obtained. To see this consider, the ratio

d�i/dt

d�j/dt
= d�i
d�j

= Fi[�1, �2, . . . , �n; �x,  t]
Fj[�1, �2, . . . , �n; �x,  t]

= Fi[�1, �2, . . . , �n; �X,  t]

Fj[�1, �2, . . . , �n; �X,  t]
,

which for i /= j leads to n−1 set of independent equations and solutions of the form

�j =  j(�i, �X,  t)|j  /=  i. (3)

In general, the solutions given by (3) are not in closed form, i.e. the functional dependence on �X, t are,
in general, unknown. Substitution of (3) into (1) yields a set of n uncoupled equations of the form

d�i
dt

= Ri[�i; �X,  t, t0], (4)

where Ri is the reaction term. For application to the NPZ upwelling problem, the constraints imposed
on the solution to (4) are:

Constraint A, �i(�X, t, to) specified at t = to over some boundary �X;  and
Constraint B, the Lagrangian trajectory �x(�X,  t, to) specified for t ≥ to, over �X . Using (4), Robinson

(1999) examined a number of cases of laminar upwelling for various model optically active NPZ
interactions.

3. Extension to turbulence

To include turbulence, the fluid velocity is decomposed into a mean and fluctuating component,

�u = �U + �u′, (5)

where �U = 〈�u〉. To proceed further, some additional assumption on the nature of the random field
fluctuations has to be made. Typically, in turbulence applications to scalar mixing, an eddy diffusivity

model is assumed, whence the constituent particle flux term is given by 〈�′
i
�u′
i
〉 = −

↔
k ·  ∇�̄i, where the

eddy diffusivity,
↔
k ,  is represented in its most general tensor form to allow for different directional

mixing and spatial dependence. With this assumption, ensemble averaging Eq. (1),  and using (2) and
(3), we obtain an equation for the evolution of the mean field of �̄i, namely〈

d�i
dt

〉
= ∂�̄i
∂t

+ �U · ∇�̄i − ∇ · (
↔
k ·  ∇�̄i) = 〈Fi[�j; �x,  t]〉, (6)

where the overbar is used interchangeably with the angular brackets to indicate an ensemble average.
At this point this equation cannot be solved unless the RHS term, 〈Fi[�j, �x,  t]〉, is determined or known
in terms of the moments of �j. However, it should be noted that it is not Eq. (6) that is used as the
starting point in NPZ modeling, but rather

∂�̄i
∂t

+ �Ui · ∇�̄i − ∇ · (
↔
k ·  ∇�̄i) = Fi[�̄j; �x,  t], (7)

where, implicitly, the assumption is made that

〈Fi[�j; �x,  t]〉 = Fi[�̄j; �x,  t]. (8)
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See, for example, Wroblewski (1977) and Franks (2002).  However, note that, in general,

Fi[�j] = Fi[�̄j + �′
j] = Fi[�̄j] + F ′

i , (9)

where 〈F ′
i
〉 is the turbulence induced biodynamical interaction (TIBI) term. In Eq. (9) the notation for

the space and time dependence is suppressed but space and time dependence are still, in general,
explicitly included. The TIBI term, 〈F ′

i
〉, represents the effect of turbulence on the non-linear coupling

within Fi[�j].
Rather than solve the ADR equation (6),  Goodman and Robinson (2008) applied a model PDF to

the solution of the AR equation (4) to obtain solutions for the mean biodynamical variables and for
the mean interaction term, 〈Fi〉. They used a PDF associated with a random walk undergoing perfect
reflection at the top and bottom of the mixed layer. In following the approach of Robinson (1997, 1999),
the solution to the AR equation is obtained in terms of Lagrangian coordinates. To obtain statistics of
the biodynamical state variables at fixed locations, the PDF required must be expressed in terms of
Eulerian coordinates. This was accomplished by using Bayes’ theorem, Eq. (2.11) of Goodman and
Robinson (2008).

For the simple bilinear interaction case, they found that there are environmental parameter regimes
in which the TIBI term was of order the mean term, |〈F ′

i
〉|∼|Fi[�̄j]|. The key parameter in determining

the effect of the turbulent field on the TIBI term was  found to be the turbulent Peclet number, defined
as the ratio of turbulent diffusion to advective time scale.

However, the model PDF used in Goodman and Robinson (2008) does not satisfy the AD equation
and the mean value of the biological constituents, i.e. N̄, P̄, Z̄ ,  do not satisfy the ADR equation. To
be able to examine the effect of the TIBI term in the ADR equation, a PDF has to be obtained which
does satisfy the AD equation and which does result in the mean biological constituents satisfying
the ADR equation. We  will now show that, by using the boundary condition of a balance between
the advective and turbulent flux at the lower boundary of the mixed layer and no advective and no
turbulent flux at the upper boundary, a PDF can be derived which does satisfy the AR equation with
the mean biodynamical variables, i.e. N̄, P̄, Z̄ ,  satisfying the ADR equation.

4. A PDF based on the AD equation

Note that the homogenous, non-reactive version of (6),  i.e. the LHS, is the advection diffusion (AD)
equation, whose solution, �̃, satisfies

∂ �̃

∂t
+ �Ui · ∇ �̃ − ∇ · (

↔
k ·  ∇ �̃) = 0. (10)

Using the normalization∫
d�x�̃ = 1,

�̃ = �̃(�x; �X,  t, t0) can be interpreted as the conditional probability density function (PDF) associated
with a random walk displacement, �x, undergoing advection by velocity, �Ui (Papoulis, 1965). This PDF
describes the statistics of the fluid particle displacement, �x, conditioned on its present time, t, its initial
location, �X , and its initial time, t0. At this point no boundary condition has been imposed on the PDF.
Consider the conditional PDF associated with the initial time, t0, as the independent random variable
but conditioned on �x, t; �X .  That is, given a particle at location �x at  time t, t0 is the time at which the
biological constituent particle was located at �X , which will be taken as the position of the boundary
where the biological constituent particles enter the turbulent domain. This conditional PDF is then
given by �(to; �x, �X,  t) = C �̃; C is a normalizing constant defined by∫

dt0�(to; �x, �X,  t) = 1, (11)
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where �, like �̃, satisfies the AD equation (10). Consider the mean quantity

�̄i =
∫
dt0�i(�X, t, to)�(to; �x, �X,  t). (12)

We will now show that �̄� satisfies an ADR equation with the reaction term containing the TIBI term.
This follows since

d�̄�
dt

=
(
d�̄�
dt

)
�X,t,t0

=
∫
dt0

{(
d��
dt

)
�X,t,t0

�(to; �x, �X,  t) + ��

(
d�

dt

)
�X,t,t0

}

=
∫
dt0{G(��)�(to; �x, �X,  t) + ��∇ · (

↔
k ·  ∇�)}.

Since �� = ��(�X, t, t0), it then follows that∫
dt0 ��∇ · (

↔
k ·  ∇�)} = ∇ · (

↔
k ·  ∇�̄i),

which results in

d�̄�
dt

− ∇ · (
↔
k ·  ∇�̄�) =

〈
F(��)

〉
. (13)

To illustrate an application of this result and an examination of the role of the TIBI term in the ADR
equation (13), a simple example – upwelling of seed nutrients and phytoplankton into a turbulent
optically active mixed layer – is presented.

5. Example: TIBI effect for a bilinear NP interaction

Consider the simple example used in previous manuscripts by Robinson (1999) and Goodman and
Robinson (2008),  namely, that of a linear strain upwelling of seed nutrients and phytoplankton into
an optically active turbulent mixed layer. The equations for this model are

dP̃

dt
=

(
∂P̃

∂t

)
z

+ w̃
(
∂P̃

∂z

)
t

= ˇÑP̃ (14a)

dÑ

dt
=

(
∂Ñ

∂t

)
z

+ w̃
(
∂Ñ

∂z

)
t

= −ˇÑP̃, (14b)

where P̃, Ñ are the phytoplankton, nutrient linear densities (units of m−3), respectively;  ̌ is the
nutrient uptake rate; w̃ = −˛z is the vertical velocity with a constant strain rate, −˛; z is taken as
positive downward. The turbulent mixed layer is located between z = 0 and z = D. The mean flow field is
two dimensional and incompressible. It is assumed that one dimensional turbulent mixing dominates,
i.e. turbulent scales in the horizontal are much larger than that in the vertical. Adding (14a) and (14b)
result in the total biomass density being conserved in a Lagrangian coordinate system, i.e.

M0 = Ñ + P̃, (15)

where M0 = N0 + P0 is the biomass density at t = t0. Normalizing the variables in equations (14a) and
(14b) using the mixed layer depth D, total biomass density, M0, and the nutrient uptake time � = 1/ˇM0
yields

P̃

M0
→ P;

Ñ

M0
→ N; P + N = 1; t� → t;

˛

�
→ ˛;

z

D
→ z

and results in the normalized set of equations

dP

dt
=

(
∂P

∂t

)
z

− ˛z

(
∂P

∂z

)
t

= PN (16a)
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dN

dt
=

(
∂N

∂t

)
z

− ˛z

(
∂N

∂z

)
t

= −PN, (16b)

which have the solutions

P = P(Z, t, t0) = P0

P0 + N0 exp[−(t − t0)]
, (17a)

N = 1 − P, (17b)

with P0, N0 the normalized phytoplankton and nutrient seed densities, respectively, at t = t0. To obtain
the PDF our starting point is the advection diffusion equation for a linear strain rate mean flow and a
constant vertical eddy diffusivity, �. Eq. (10) for this case reduces to

∂ �̂

∂t
− ˛z

∂  �̂

∂z
− �

∂2�̂

∂z2
= 0. (18)

For boundary conditions we assume that the total flux of material (the sum of the advective and
turbulent components) vanish at the base of the mixed layer and both the advective and turbulent
flux vanish at the top of the mixed layer, whence

˛z �̂ + �
∂ �̂

∂z
= �

∂ �̂

∂z
= 0 at z = 0, (19a)

˛z �̂ + �
∂ �̂

∂z
= ˛z�0 at z = 1. (19b)

where �0 is the density of material entering the mixed layer Eq. (18) with boundary conditions (19a)
and (19b) describes the evolution of a scalar non-interacting density field, �̂, entering the mixed layer
with initial density, �0. To see the latter, consider a solution to (18) of the form

�̂ =
∞∫
0

d �̃K( �̃) exp(− �̃(t − t0) + �0,

where �0 is the density at z = 1, t = t0 and which, upon substitution into (18), yields

�̃K + ˛z
∂K

∂z
+ �

∂2K

∂z2
= 0, (20)

with the boundary conditions (19) becoming

∂K

∂z
= 0 at z = 0, (21a)

˛K + �
∂K

∂z
= 0 at z = 1. (21b)

Let

K = G(z) exp
(

−Pe
4
z2

)
,

where the turbulent Peclet number is given by

Pe = ˛

�
.

where  ̨ is the non dimensional strain rate and � the non dimensional turbulent diffusivity. Substitution
of K into Eq. (20) yields

Pe

[
� − 1

2
− Pe

z2

4

]
G + ∂2G

∂z2
= 0, (22)
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where �̃ = ˛� .  With the above substitution, G satisfies the boundary conditions

∂G

∂z
= 0 at z = 0, (23a)

Pe

2
G + ∂G

∂z
= 0 at z = 1. (23b)

It is straightforward to show that Eq. (22) with boundary conditions (23) result in eigenfunction
solutions G = Gm, with associated eigenvalues, � = �m, m = 1, 2, . . . , n, . . .Note that Gm is orthonormal,∫ 1

0

dz GmGn = ımn.

It is also straightforward to show that

G1 = 1
c1

exp
(

−Pe
4
z2

)
,

c2
1 =

∫ 1

0

dz(G1)2,

�1 = 1.

Using these eigenfunctions and eigenvalues yields the solution

�̂ = �0

[
1 −

m=∞∑
m=1

AmGmc1G1 exp(−˛�m(t − t0)

]
, (24)

where

Am =
∫ 1

0

dz′Gm(z′) exp
(
Pe

4
z′2

)
.

Eq. (24) describes the temporal and spatial evolution of the density field, �̂, which is given by
�̂ = �0 at t = t0 and z = 1. Note that when t = ∞,  �̂ = �0, as expected.

To obtain the PDF, we  rewrite (24) as

�̂ =
∫ t

−∞
dt′H(t0, t′)

(
−∂ �̂

∂t′

)
=

∫ t

−∞
dt′{�0H(t0, t′)}

{
1
�0

(
−∂ �̂

∂t′

)}
, (25)

with the Heaviside function H defined by

H(t0, t′) =
[

1 t′ ≥ t0
0 t′ < t0

]
.

Eq. (25) can then be interpreted as the prescription for obtaining the average density �̂ = �̄ from
the initial density � = �0H(t0, t′) using the PDF, F̂  = 1

�0
(−∂ �̂/∂t′).Changing the independent random

variable t′ to z̃ according to z̃ = exp[−˛(t − t′)], results in

�̄ =
∫ 1

0

dz̃ �(z̃)
F̂(z̃)
dz̃/dt′

=
∫ 1

0

dz̃ �(z̃)F(z̃), (26a)

F =
m=∞∑
m=1

�mAmGmc1G1z̃
(�m−1) = ∂Q

∂z̃
(26b)

with

Q =
m=∞∑
m=1

AmGmc1G1z̃
�m .
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Note that F, as a PDF, has the proper normalization∫ t

−∞
dt′F(t′) =

∫ 1

0

dz̃F(z̃) =
∫ 1

0

dz̃
∂Q

∂z̃
= Q (1) − Q (0) = 1.

We can interpret z̃  as the Lagrangian position of a fluid element at time t′, whose initial position at
z = 1 was t. Ensemble averages of P and PN are then given by

〈P〉 =
∫ t

−∞
dt′P(t′)F(t′) =

∫ 1

0

dz̃ P(z̃)F(z̃), (27a)

〈PN〉 =
∫ t

−∞
dt′P(t′)N(t′)F(t′) =

∫ 1

0

dz̃ P(z̃)N(z̃)F(z̃). (27b)

Using Eq. (26b) with (27a) and (27b), it is straightforward to show that the mean phytoplankton
density P̄ satisfies the ADR equation

(I)

∂P̄

∂t
−

(II)

˛z
∂P̄

∂z
−

(III)

�
∂2P̄

∂z2
=

(IV)
R ,  (28)

with boundary conditions

∂P̄

∂z
= 0 at z = 0, (29a)

PeP̄ + ∂P̄

∂z
= PeP0 at z = 0. (29b)

The “reaction” term, R, is given by

R = 〈PN〉 = R0 + RT ;

with R0 = P̄N̄ and RT =〈 P′N′ 〉, the latter the TIBI term. Thus, we have formally solved the ADR equation
(28) without recourse to dropping the TIBI term.

To examine the role of the TIBI term, RT, we will compare the results out lined above to that of
obtaining a solution to the ADR equation (28) with no TIBI term, i.e. R = R0 = P̄N̄.  To obtain numerical
results we use as input parameters typical oceanic values of

˜̨∼10−6–10−5 s−1,

�̃∼10−4–10−2 m2 s−1,
D∼10–50 m

(Large et al., 1994; Goodman and Robinson, 2008). This yields a range of turbulent Peclet numbers
of order .01 < Pe < 10. Note that Pe is independent of the nutrient uptake time, �. If we use one day as
a characteristic nutrient uptake time and the smaller value of the linear strain rate of ˜̨∼10−6, this
results in the normalized strain rate  ̨ ∼ .1 (Robinson, 1999).

In Fig. 1 vertical profiles of P̄ are shown for the steady state (t → ∞,  ∂P̄/∂t = 0) for 0≤ Pe ≤ ∞
and  ̨ = .1. The solid color coded lines are Case A, the solution for 〈P〉 using Eqs. (26b) and (27a), TIBI
term included. The dashed color coded lines are solutions to the ADR equation (28) with the TIBI term
neglected, RT = 0, Case B, using the same range of Pe and  ̨ = .1. The red solid line of Fig. 1 corresponds
to no turbulence, pure advection, Pe =∞. We  see a very significant difference in the limiting value of
Pe = 0 for the two cases. Fig. 1 shows that neglecting the TIBI term over a wide range of Pe,  up to Pe = 10,
where advection dominates turbulence, results in a large over estimate of P̄.  Compare the dashed with
the solid lines. Thus, turbulence in this simple model tends to limit phytoplankton growth over a very
wide range of Peclet numbers.

To understand this result we present in Fig. 2(a–d), for the steady state cases presented in Fig. 1,
the contribution of the three steady state terms of Eq. (27) – advection, term II, blue lines; turbulent
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Fig. 1. Steady state (t → ∞,  ∂P̄/∂t = 0) vertical profiles of 〈P〉 for the Peclet numbers indicated in the figure, using  ̨ = .1. Case
A,  the solid color coded lines are the solutions for 〈P〉 obtained by using (27a) with (26b) as the PDF, TIBI term included. Case B,
the  dashed color coded lines, the solution to the ADR equation (28) with the TIBI term neglected, R = R0.

diffusion, term III, green lines; and growth rate (reaction), R, term IV, the black lines. As in Fig. 1, the
solid lines refer to Case A, the dashed lines, Case B.

Note that the advection term II, blue line, is always negative and indicates an upward flux of
material. The turbulent diffusion term, III, green line, can be of either sign, with negative indicating a
downward flux of material, and positive, an upward flux. The growth rate term, III, black line, is always
positive. The three terms must balance in the steady state.

In Fig. 2d, the no turbulence, pure advection (red line) regime, where RT = 0, advection balances
growth rate. For the turbulence dominated regime of Pe = 0, Fig. 2a, turbulent diffusion balances growth
rate for both case A, including the TIBI term, and Case B, no TIBI term. In Figs. 1 and 2a, where Pe = 0,
note the constant vertical distribution of P̄ and constant vertical distribution of terms III and IV of
the ADR equation (28). This results from vertically uniform mixing in the steady state. Turbulence
strongly dominates advection, which is reflected in the vertically uniform PDF, F = 1. However, this
result only depends on the relative value of the turbulent time scale to advective time scale as given
by the definition of the turbulent Peclet number,

Pe = (�̃/D2)
−1

˜̨ −1
= ˜̨D2

�̃
,

and not on the absolute intensity of the turbulent field, i.e. value of �̃ alone. We  also see in Fig. 2a
and b for turbulent Peclet numbers Pe = 0.1 that for Case A, TIBI term included, (solid green line), at all
depths, turbulent diffusion fluxes phytoplankton toward the base of the mixed layer. This downward
flux of phytoplankton interacts with the incoming upward moving seed nutrients and the growth rate
(black lines). However at Pe = 10 there is a change in sign of turbulent diffusion with depth at z ≈ .65.
This results in an upward turbulent flux of phytoplankton for z>

˜
.65. The upward flux diminishes the

growth rate in that depth range, as indicated in Fig. 2c. Compare in Fig. 2c the black solid line to the
black dashed line, the former being with TIBI, the latter no TIBI. Thus, the TIBI term affects growth rate
through its feed back with the turbulent diffusion term. The advection term is also affected when the
TIBI term is included. Relative to not including TIBI, it remains negative, but upwardly transporting less
material when the diffusion term III is positive, and more material when the diffusion term is negative.
These effects are also present for smaller values of Pe,  where turbulence dominates, and result in the
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Fig. 2. Steady state (t → ∞,  ∂P̄/∂t = 0) contribution of the terms of equation (28) – advection, term II, blue lines; turbulent diffusion, term III, green lines; and the growth rate (reaction),
R,  term IV, black lines. As in Fig. 1, the solid lines refer to Case A, the dashed lines, Case B. Note: the advection term II, blue line, is always negative and indicates an upward flux of material;
the  turbulent diffusion term, III, green line, can be either sign with negative a downward flux of material and positive an upward flux; the reaction (growth rate) term, III, black line, is
always  positive. The three terms must balance in the steady state. (a) Pe = 0, (b) Pe = 1, (c) Pe = 10, (d) Pe =∞.
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different total integrated phytoplankton growth in the TIBI versus non-TIBI case. See Fig. 1, blue and
green solid and dashed lines, respectively.

6. Summary and conclusions

In the late 1990s Allan Robinson developed a theory of NPZ interaction in a laminar upwelling
flow field. His approach was to use the advection reaction equation (AR) and obtain solutions for the
evolution of N, P, Z in a Lagrangian coordinate system (Robinson, 1997, 1999). The Robinson theory
was extended to turbulent flow by Goodman and Robinson (2008) by using a probability density
function (PDF) on the solution to the AR equation. The PDF employed was  associated with a random
walk undergoing perfect reflection at the top and bottom of the mixed layer. Bayes’ theorem was  used
to express the PDF in Eulerian coordinates.

A simple bilinear NP turbulent upwelling interaction case was  examined with this approach. It was
shown that the key non dimensional parameter describing the evolution of the primary production
was the turbulent Peclet number, the ratio of the advective to turbulent time scale. It was  also observed
that the Turbulence Induced Biodynamical Interaction (TIBI) term could not, in general, be neglected.
The TIBI term arises from the effect of turbulence on the non-linear part of biodynamical interaction
and is distinct from that of turbulent mixing.

However, the PDF used by Goodman and Robinson (2008) does not satisfy the AR equation nor
does the resulting N̄, P̄, Z̄ satisfy the advective diffusion reaction (ADR) equation. This resulted in an
inability of that approach to be used to examine the role of the TIBI in the commonly used ADR models
of NPZ interaction.

Allan and I, just prior to his untimely death, developed an approach, given in Section 4, to obtain
a PDF which does satisfy the AD equation and also results in the mean biodynamical state variables
N̄, P̄, Z̄ satisfying the ADR equation. In Section 5, this approach is applied to the bilinear NP interaction
example considered in previous manuscripts (Robinson, 1999; Goodman and Robinson, 2008), with
particular emphasis on the role of the TIBI term. Except for extremely high Peclet numbers, Pe � 10,
which correspond to advection effects dominating that of turbulence, the TIBI term results in a very
significant contribution to the mean phytoplankton profile P̄. Neglect of the TIBI term, as seen in Fig. 1,
results in an overestimate of P̄ with the overestimate increasing with decreasing Pe.  Not including the
TIBI term in the ADR equation also greatly alters the overall role that turbulence plays in determining
the mean phytoplankton profile and in contributing to total phytoplankton production. As indicated
in Fig. 1, for the limiting case of Pe =∞, not including TIBI term, results in the mean total phytoplankton

production in the steady state, PT =
∫ 1

0
dzP̄,  being overestimated by approximately 40%. Also, as shown

in Figs. 1 and 2, the vertical distribution of P̄ and the three terms of the steady state ADR equation (27)
are altered in the vertical over the intermediate range of Peclet numbers 1 < Pe < 10. In particular the
turbulent diffusion term (green lines, solid, no turbulence case, dashed lines, turbulent cases) show a
sign reversal at depth for 1 < Pe < 10.

The original theoretical framework developed by Allan Robinson lead to a PDF approach to modeling
the TIBI term and most recently to a PDF which satisfies the AR equation and with N̄, P̄, Z̄  satisfying
the ADR equation. This allows a quantification of the role of TIBI in the ADR equation approach and a
prescription on how to proceed with more complicated and realistic NPZ models in turbulent flows.
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