SOILS (06)

- I Main Topics
 - A Pedologic classification schemes
 - B Engineering classification schemes
 - C Behavior of soils and influence of geologic history
- II Pedologic classification schemes
 - A Soils: the part of the regolith that can support rooted plants
 - 1 Soils contain organic material
 - 2 Factors influencing soil development (Hans Jenny)
 - a Climate
 - b Organic factors
 - c Topography
 - d Parent material
 - e Time (Soils are in many senses non-renewable resources)
 - B Master soil horizons
 - <u>O horizon</u> (surface accumulation of organic material)
 - <u>A horizon</u> (mixture of organic material and mineral soil)
 - a Zone of clay loss (zone of leaching of iron and aluminum)
 - b Moderately dark color
 - E horizon
 - a Less organic material than A (so lighter color)
 - b Less iron, aluminum, and clay than B
 - <u>B horizon</u>
 - a Zone of clay accumulation, ped development
 - b Clay can develop in place or be transported in
 - c Red color (iron and aluminum accumulation)
 - d Concentration of insoluble elements
 - K horizon (Carbonate horizon; desert soils)
 - <u>C horizon</u> (zone of weathered rock)
 - R horizon bedrock)
- III Engineering classification schemes
 - A Rock: requires blasting or heavy earth-moving equipment
 - B Soils: can excavate by hand or with light earth-moving equipment
 - C Soils as solid particles and fluid-filled voids (multiphase system)
- IV Behavior of engineering soils (preview of consolidation theory)

Particle	Grain size	Comments
Gravel	> 2 mm	Hurts toes. Gritty
Sand	1/16 mm - 2 mm	Visible to unaided eye.
		Beware quick sands
Silt	1/256 mm - 1/16 mm	Invisible to unaided eye. Gritty.
		Washes off fingers easily.
		Loess can fracture and collapse
Clay	< 1/256 mm	Invisible to unaided eye.
		Gives soil cohesion. Sticks to fingers
		when wet. Beware quick clays and
		expansive clays (montmorillonite)

B Effective stress, Pore pressure, and total stress (see handout)

- 1 Effective stress: normal stress load born by the solid skeleton
- 2 Pore pressure: normal stress load born by the pore fluid
- 3 Total stress: effective stress + normal stress
- C Consolidation (volume loss) of unconsolidated materials During consolidation porosity (void ratio) and water content decrease and strength increases. Usually soil strength increases with depth. <u>Time for consolidation primarily controlled by the time</u> <u>it takes water to flow from material.</u>
 - 1 <u>Soil memory and preconsolidation stress</u> (see handout) The mechanical behavior of an unconsolidated material hinges varies depending on the past loads imposed on it.

- 2 Influence of geologic history on soil behavior
 - a Normally consolidated soil: soil has been consolidated by a load equivalent to that of the existing overburden
 - b Overconsolidated soil: soil has been consolidated by a load greater than that of the existing overburden
 - i Erosion of overburden
 - i i Desiccation
 - c Underconsolidated soil: soil has been consolidated by a load less than of the existing overburden
 - d Effect of moisture on soil color
 - i Wet conditions = reducing environment: blue or black color
 - i i Dry conditions = oxidizing environment: yellow or red color

Hydromechanical Analog for Consolidation (from Lambe and Whitman, 1969)

