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1.Introduction

The spaces LP@)(Q),Q C R", with variable order p(z) were studied recently. We refer
to the pioneer work by I.I. Sharapudinov [6] and the later papers by O.Kovécik and J.
Rékosnik [2] and by the author [3]-[5]. In the paper [2] the Sobolev type spaces W™P@)(Q)
were also studied. D.E.Edmunds and J. Rakosnik [1] dealt with the problem of denseness of
C*-functions in W™?®)(Q)) and proved this denseness under some special monotonicity-
type condition on p(z). We prove that C$°(R") is dense in W™P@(R™) without any
monotonicity condition, requiring instead that p(x) is somewhat better than just continuous
- satisfies the Dini-Lipschitz condition. For this purpose we prove the boundedness of the
convolution operators einlC (f) % f in the space LP(®) uniform with respect to e . This is the
main result, the above mentioned denseness being its consequence, in fact.

In the one dimensional periodical case a similar result for the uniform boundedness in
LP@) of some family of operators K, depending on €, was proved by I.I.Sharapudinov [7].

2. Preliminaries
We refer to the papers [2]-[6] for basics of the spaces LP®) | but remind their definition
and some important properties.
Let p(x) be a measurable function on a domain 2 C R" satisfying the condition 1 <
p(z) < oo and let
Esw = Ex(p) = {z€Q :p(xr) =00}
We denote

P = sup p(x), po = infp(z).
2€Q\Eoo (p) v

where sup and inf stand for esssup and essinf, respectively. By LP(®)(Q2) we denote the
space of measurable functions f(z) on €2 such that
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In case of P < oo the space LP\®) is a Banach space with respect to the norm

1Ay = I fllpy + [ flleee(me) - (2)

We emphasize that || f||, is finite for any f(z) € LP(®)(Q) in the case P = oo as well, but
LP®)(Q) is not a linear space and || f||, is not a norm in this case

We note the following properties of the space LP®)(Q) :

a) the Holder inequality ([6],[2],[3]) :

/ F@)e@)] dr < K|l
1

where 1 < p(z) < oo, ﬁ + @ = 1, k =sup,cq p(x) + sup,co (x),
b) inequalities between I,(f) and || f|| )

([61,[2],3]) -

115y < LY < WA o if  fll <1 0
IFlGyy < T(f) < AIGy » if Ifllw =1, ()
the left-hand side inequality in (4) and the right-hand side one in (5) being trivial in the

case P = o0 ;
) estimates for the norm of the characteristic function of a set ([3])

El7 <lxellp < [El™, if [E[<1, ECQ\Ex(p), (6)
the signs of the inequalities being opposite if |E| > 1; here |E| is the Lebesgue measure of
E ; asin (4)-(5), the corresponding inequalities are trivial in the case P = oo ;

d) the embedding theorem ([3]) :

let 1 <r(z) <p(r) <P <ooforzeQand | <oo
Then LP(® C L"®) and

1f1lr < (a2 + (1 = a) QDI f]l, (7)
where a; = infq 2&) (2)

(@) @2 = SuPg ;(i), see also [2] for this imbedding without the restriction
p(r) < P < oo, but with worse constants ay =1 and 1 —a; =1
e

) denseness of step functions ([3]): functions of the form > " | cpxa,, Q% C Q, || <
o0, with constant ¢y, form a dense set in LP(®)((2).

As in [4]-[5], we use the weak Lipschits condition (Dini-Lipschits condition)

A 1
Ip(z) — p(y)| < — -yl < <.

Everywhere below we assume that P < oo

3. Statements of the main results

Let IC(z) be a measurable function with support in the ball Br = B(0, R) of a radius
R < 00, and let

o - 4 (2).



We consider the family of operators

//C z—y)f(y)dy , (9)

Q) being a bounded domain in R" .
For the given domain 2 we define the larger domain

Qr ={z: dist(x,Q) <R} DQ .
Let p(x) be a function defined in Qg such that
1<p(z)<P<oo, €. (10)
1 1
Let alsom + 5 = 1 and
e ={M i 1B (p)] > 0 .

where Ey(p) = {z € Qg : p(z) = 1}.
Theorem 1. Let K(z) € L?(Bg) and let p(x) satisfy (10) and (8) for allx andy € Qp.
Then the operators K. are uniformly bounded from LP@®(Q) into LP®) (Qg) :

[ Kcf e @) < cllf e @) (12)

where ¢ does not depend on e.
Theorem 2 . Let p(z) and K(z) satisfy the assumptions of Theorem 1 and

/B K(y)dy = 1. (13)

Then (9) is an identity approzimation in LP@(Q) :
lin [K.f — ey = 0, flz) € (@) (14)

Let
1

fe(z) =
€n|B(O,1)| yeQ,ly—z|<e

be the Steklov mean of the function f(y).
Corollary 1. Under the assumptions of Theorem 1 on p(x),

lii%”fe - f||Lp<w>(Q) = 0. (16)

f(y)dy (15)

Remark 1. The statement (16) is an analogue of mean continuity property for LP(*)-
spaces, but with respect to the averaged ”shift” operator (15). In the standard form, the
mean continuity property lim,_o || f(x+h) — f(z)||, = 0, generally speaking, is not valid
for variable exponents p(z) and, moreover, there exist functions p(z) and f(z) € L™ such
that f(z + hy) & LP® for some hy, — 0, see [2], Example 2.9 and Theorem 2.10.
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Corollary 2. Let 1 < p(x) < P < oo,z € R", and p(x) satisfy the condition (8) in
any ball in R™ (where A may depend on the ball) . Then C$° is dense in LP@(R™).

Remark 2. As it was shown in [2], C§°(€2) is dense in LP(®)(Q),1 < p(z) < P < oo,
without requiring that p(x) satisfies the condition (8).

Let WmP@ = JWmr@(R™) be the Sobolev type space of functions f(x) € LP(®)(R")
which have all the distributional derivatives D’ f(z) € LP®)(R"),0 < |j| < m, and let

[ fllwmpe = Z ”Dijp :

lil<m
Theorem 3. Let p(z) satisfy the assumptions of Theorem 3. Then C§°(R") is dense
in WmP@) (R,

4. Proof of Theorem 1.
We assume that

[flly <1 (17)
By (4)-(5) it suffices to show that
LS = [ Kf@Pis < (13)
Qr

with ¢ > 0 not depending on ¢ . By the Holder inequality (3) it is easy to show that
| K f(z)] < cforall x € Qg and € > €°(c = ¢(€°) in this case). Therefore, it suffices to
prove (18) for 0 < e < €° under some choice of €.

Let
k

be any partition of Qg into small parts w comparable with the given ¢ :
diam W% < € ,k=1,2,--- N ; N = N(e).

We represent the integral in (18) as

N () —pr+pk
LD =3 / % /Q Koz — 1)f (4)dy dx (19)
with
pe = inf p(z) < inf p(z) (20)

:JcGQ’I% TEWPH

where some larger portions Q% D wh will be chosen later comparable with e :
diam Q% <me, m>1 . (21)

We shall prove the uniform estimate

p(z)—pk

Ay(z.e) = / Kz —fdy| <., ek (22)
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where ¢ > 0 does not depend on x € wh, k and € € (0,€°) with some € > 0. To this end,
we first obtain the estimate

Ap(z,€) < ¢ eP@-Pl g e Qp, (23)

To get (23), we differ the cases ) = 0o and @ < oc.
Let @) = oco. We have

ae.d < (2 [ vson@iol)

where M = supp,, |KC(x)|. By the Hélder inequality (3) and the assumption (17) we obtain

Mk p(@)—prk

Ag(z,€) < ( ) . (24)

According to (2) we have
IxBoerlly = Sw XB0er)(T) + X ) =1+ IXBO0.R)l(0)
oo (g
In view of (6) we get
1

IXBo.erlly <1+ ("[B(0, R)[)® <2

under the asumption that )
0<e<|B(O,R)| » :=¢]. (25)

Then (24) provides the estimate (23) with ¢, = (2kM)F~P0 if 2kM > 1 and ¢; = 1
otherwise.

Let @ < oo . The estimate (23) is obtained in a similar way. Indeed, applying the
Hoélder inequality (3) again, we arrive at

Ap(x,€) < (KK = y)ll )"

0
1 _ a(y)
) ) < = / K (x y) dy
€ \Jo\Ex(q) €

where 0 = % or 6 = qi depending on the fact whether the last integral in the parentheses
is less or greater than 1, respectively. Hence,

0
] Tr—e€
1Ko - il < = ( / ()] dy)
ly|<R,z—ey€R\ Exs(q)

1 Q ’ 1 Q 0 -n
<< |18l + KN dy| <= [1Bal + IKIE] e (20)
€ lyl<R,|K(y)[=1 €

By (4)-(5) we have

1
IKuta =l = 1 (5

)

where ¢, = max{c3 ,Ca } c3 = |Bg| + ||/CH8



Therefore, from (26) and (27) we obtain (23) in the case @) < oo as well, with ¢; =
(cok)P=Pe if ¢; > 1 and ¢; = 1 otherwise.
The estimate (23) having been proved, we observe now that by (8)

A
p(a) —pr = [p(x) = P&l < ——
8 To=&
k
where z € wh, & € Q. Evidently,
|z — & | < diamQ% < me
by (21). Therefore,
A
p(z) —pr < i (28)
log -
under the assumption that
1 o
O<e§%2162. (29)
Then from (23) and (28)
A
Ap(z,€) < cre “=me | €W, (30)
¢1 not depending on x and being given above. Then from (30)
Ap(zye) < ¢y 1= c1e?4
for x € Wk and
0 1
O<e§63::W. (31)

Therefore, we have the uniform estimate (22) with ¢ = cje?4 and 0 < € < €, € =

min;<x<3 €5 , €9 being given by (25), (29) and (31).
Using the estimate (22) we obtain from (19)

N
Ip(Kef> <c
>/,

w

Pk

dz .

/Kux—wﬂw@
Q

Here p; are constants so that we may apply the usual Minkowsky inequality for integrals
and obtain

1 Pk

gﬂx—wW¢Q

1 Pk



Obviously, the domain of integration in z in the last integral is embedded into the domain

U {z:2+yewf} (33)

yGBsR

which already does not depend on y . Now, we choose the sets QF in (20), which were not
determined until now, as the sets (33). Then, evidently, Q% D wk and it is easily seen that

diam QO < (1+2R)e (34)

so that the requirement (21) is satisfied with m =1+ 2R.

From (32) we have
N Dk
d e
EDY {/R laf [ 1o

<o { / |<R|/c<y>|dy}

where 0 = P if f WI<R IK(y)|dy < 1 and 6 = p, otherwise. In view of (34), the covering
{wp = QBENOHY | has a finite multiplicity (that is, each point z € € belongs simultaneously
not more than to a finite number n, of the sets wg, n, < 1+ (1 + 2R)" in this case).
Therefore,

o N

>/ NS

k=1

L(K.f) < e / ()P de (35)

where

o) = maxp,

the maximum being taken with respect to all the sets w; containing x . Evidently, p(z) <
p(z) for x € Q . Then from (35) and (4)-(5) we obtain the estimate

L (K.f) < olflz, 61<P,

with 0, = infp(z) if [[f|; < 1 and 6; = supp(x) otherwise. Applying the imbedding
theorem (7), we arrive at the final estimate

L (K f) < allflly < e

5. Proof of Theorem 2.

To prove (14), we use Theorem 1, which provides the uniform boundedness of the
operators K, from LP@(Q) into LP (QR) Then, by the Banach-Steinhaus theorem it
suffices to verify that (14) holds for some dense set in LP®)(Q) | for example, for step
functions, according to property e) of the spaces LP)(Q). So, it is sufficient to prove (14)
for the characteristic function yg(x) of any bounded measurable set £ C 2. We have

K.(xe) — x& = /B K () [xe(e — ey) — (@) dy
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by (13). Hence
I1Kc(xe) — xelp < / KWl Ixe(- = ey) = xp(@)[[pdy — 0
Br

as € — 0 by the Lebesgue dominated convergence theorem and the P-mean continuity of
functions in L” with a constant P (P = sup,cq, p(z) in this case). Then, by (7), also

|Kc(xe) — xel, —0

with p =p(z) < P < 00.0

6. Proof of Corollaries

To obtain Corollary 1 from Theorem 1, it suffices to choose K(y) = mxg(g,l)(y).

Proof of Corollary 2. Let xn(z) = xpo,n)(z). Then the functions fV(z) = xn(z)f(z)
have compact support and approximate f(z) € LP(®)(R") :

=

W= PN < I — ) = ( / | f(x)\p(’“")dx) o

z|>N

as N — oo.
Therefore, we may consider f(x) with a compact support in the ball By from the very
beginning. To approximate f(x) by Cg°, we use the identity approximation

flx) = | Kz —t)f(t)dt = K(y)f(z —ey)dy (36)

R ly|<1

where Kc(z) = LK (£) and K(y) € C5°(R™) with support in the ball By and such that

K(y)dy =1 .

lyl<1

Then, evidently, f.(x) € C§°(R") and has compact support because f.(z) = 0if |z| > N+e.
Therefore, for e < 1,

[ fe = fllp@rmny = [1Kef = fllver By — 0

as € — 0.

Proof of Theorem 3.

The proof follows from Theorem 2 and Corollary 2 in two steps.

1° Let f(z) € WmP@(R") and let u(r),0 < r < oo, be a smooth step-function:
p(r)y=1for 0 <r <1,u(r)=0forr>2 u(r) e Cg°(RL) and 0 < p(r) < 1. Then

) = (B s e wro (37)
for every N € R! and has compact support in Bay.
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The functions (37) approximate f(x) in W™P@(R"). Indeed, denoting vy(z) = 1 —
1 (%) , so that vy (z) = 0 for |z| < N, and using the Leibnitz formula for differentiation,
we have

1 = o = D ID enhll < Yo D el D ww) D7y

l7]1<m |7]1<m 0<k<j
<D DSl + e >0 3 ID en) DA
[7|I<m |7]1<m 0<k<j
<Y Dl e XY o, -0 (3%)
l71<m [71<m 0<k<j

as N — 0.
2. By the step 1° we may consider f(x) € W™P®@)with compact support. Then we take
K(y) € C°(R™) with support in the ball B; and such that f <1 € (y)dy = 1 and arrange

the approximation (36). Then, evidently, f. € Cg°(R™) . Indeed, for any j we have

Difa) = / K (51) snare oxar

and fc(z) has compact support because f(z) = 0if |z| > 14+, where A = sup, ¢, 2], supp
standing for support of f(x).

We have ' '
() = Fllwmoor < > NDf = K(D? )| potor ()
lil<m
=) D f = KD )l oo

l7|<m

where Qy = {x : dist(z,Q) < 1},Q = suppf(x). It suffices to apply Theorem 2.
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