Denseness of $C_{0}^{\infty}\left(R^{n}\right)$ in the generalized Sobolev spaces $W^{m, p(x)}\left(R^{n}\right)$

by
Stefan Samko

1.Introduction

The spaces $L^{p(x)}(\Omega), \Omega \subseteq R^{n}$, with variable order $p(x)$ were studied recently. We refer to the pioneer work by I.I. Sharapudinov [6] and the later papers by O.Kovácik and J. Rákosník [2] and by the author [3]-[5]. In the paper [2] the Sobolev type spaces $W^{m, p(x)}(\Omega)$ were also studied. D.E.Edmunds and J. Rákosník [1] dealt with the problem of denseness of C^{∞}-functions in $W^{m, p(x)}(\Omega)$ and proved this denseness under some special monotonicitytype condition on $p(x)$. We prove that $C_{0}^{\infty}\left(R^{n}\right)$ is dense in $W^{m, p(x)}\left(R^{n}\right)$ without any monotonicity condition, requiring instead that $p(x)$ is somewhat better than just continuous - satisfies the Dini-Lipschitz condition. For this purpose we prove the boundedness of the convolution operators $\frac{1}{\epsilon^{n}} \mathcal{K}\left(\frac{x}{\epsilon}\right) * f$ in the space $L^{p(x)}$ uniform with respect to ϵ. This is the main result, the above mentioned denseness being its consequence, in fact.

In the one dimensional periodical case a similar result for the uniform boundedness in $L^{p(x)}$ of some family of operators K_{ϵ}, depending on ϵ, was proved by I.I.Sharapudinov [7].

2. Preliminaries

We refer to the papers [2]-[6] for basics of the spaces $L^{p(x)}$, but remind their definition and some important properties.

Let $p(x)$ be a measurable function on a domain $\Omega \subseteq R^{n}$ satisfying the condition $1 \leq$ $p(x) \leq \infty$ and let

$$
E_{\infty}=E_{\infty}(p)=\{x \in \Omega: p(x)=\infty\}
$$

We denote

$$
P=\sup _{x \in \Omega \backslash E_{\infty}(p)} p(x), \quad p_{0}=\inf _{x \in \Omega} p(x)
$$

where sup and inf stand for esssup and essinf, respectively. By $L^{p(x)}(\Omega)$ we denote the space of measurable functions $f(x)$ on Ω such that

$$
I_{p}(f):=\quad \int_{\Omega \backslash E_{\infty}}|f(x)|^{p(x)} d x<\infty \quad \text { and } \quad f(x) \in L^{\infty}\left(E_{\infty}\right)
$$

Let

$$
\begin{equation*}
\|f\|_{(p)}=\inf \left\{\lambda>0: I_{p}\left(\frac{f}{\lambda}\right) \leq 1\right\} \tag{1}
\end{equation*}
$$

In case of $P<\infty$ the space $L^{p(x)}$ is a Banach space with respect to the norm

$$
\begin{equation*}
\|f\|_{p}=\|f\|_{(p)}+\|f\|_{L^{\infty}\left(E_{\infty}\right)} \tag{2}
\end{equation*}
$$

We emphasize that $\|f\|_{p}$ is finite for any $f(x) \in L^{p(x)}(\Omega)$ in the case $P=\infty$ as well, but $L^{p(x)}(\Omega)$ is not a linear space and $\|f\|_{p}$ is not a norm in this case.

We note the following properties of the space $L^{p(x)}(\Omega)$:
a) the Hölder inequality $([6],[2],[3])$:

$$
\begin{equation*}
\int_{\Omega}|f(x) \varphi(x)| d x \leq k\|f\|_{p}\|\varphi\|_{q} \tag{3}
\end{equation*}
$$

where $1 \leq p(x) \leq \infty, \frac{1}{p(x)}+\frac{1}{q(x)} \equiv 1, k=\sup _{x \in \Omega} \frac{1}{p(x)}+\sup _{x \in \Omega} \frac{1}{q(x)}$;
b) inequalities between $I_{p}(f)$ and $\|f\|_{(p)}([6],[2],[3])$:

$$
\begin{align*}
\|f\|_{(p)}^{P} & \leq I_{p}(f) \leq\|f\|_{(p)}^{p_{0}}, \quad \text { if } \quad\|f\|_{(p)} \leq 1 \tag{4}\\
\|f\|_{(p)}^{p_{0}} & \leq I_{p}(f) \leq\|f\|_{(p)}^{P}, \quad \text { if } \quad\|f\|_{(p)} \geq 1 \tag{5}
\end{align*}
$$

the left-hand side inequality in (4) and the right-hand side one in (5) being trivial in the case $P=\infty$;
c) estimates for the norm of the characteristic function of a set ([3]) :

$$
\begin{equation*}
|E|^{\frac{1}{p}} \leq\left\|\chi_{E}\right\|_{(p)} \leq|E|^{\frac{1}{p_{0}}} \quad, \quad \text { if } \quad|E| \leq 1, \quad E \subseteq \Omega \backslash E_{\infty}(p) \tag{6}
\end{equation*}
$$

the signs of the inequalities being opposite if $|E| \geq 1$; here $|E|$ is the Lebesgue measure of E; as in (4)-(5), the corresponding inequalities are trivial in the case $P=\infty$;
d) the embedding theorem ([3]) : let $1 \leq r(x) \leq p(x) \leq P<\infty$ for $x \in \Omega$ and $|\Omega|<\infty$. Then $L^{p(x)} \subseteq L^{r(x)}$ and

$$
\begin{equation*}
\|f\|_{r} \leq\left(a_{2}+\left(1-a_{1}\right)|\Omega|\right)\|f\|_{p} \tag{7}
\end{equation*}
$$

where $a_{1}=\inf _{\Omega} \frac{r(x)}{p(x)}, a_{2}=\sup _{\Omega} \frac{r(x)}{p(x)}$, see also [2] for this imbedding without the restriction $p(x) \leq P<\infty$, but with worse constants $a_{2}=1$ and $1-a_{1}=1$.
e) denseness of step functions ([3]): functions of the form $\sum_{k=1}^{m} c_{k} \chi_{\Omega_{k}}, \Omega_{k} \subset \Omega,\left|\Omega_{k}\right|<$ ∞, with constant c_{k}, form a dense set in $L^{p(x)}(\Omega)$.

As in [4]-[5], we use the weak Lipschits condition (Dini-Lipschits condition):

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{A}{\log \frac{1}{|x-y|}},|x-y| \leq \frac{1}{2} \tag{8}
\end{equation*}
$$

Everywhere below we assume that $P<\infty$.

3. Statements of the main results

Let $\mathcal{K}(x)$ be a measurable function with support in the ball $B_{R}=B(0, R)$ of a radius $R<\infty$, and let

$$
\mathcal{K}_{\epsilon}(x)=\frac{1}{\epsilon^{n}} \mathcal{K}\left(\frac{x}{\epsilon}\right) .
$$

We consider the family of operators

$$
\begin{equation*}
K_{\epsilon} f=\int_{\Omega} \mathcal{K}_{\epsilon}(x-y) f(y) d y \tag{9}
\end{equation*}
$$

Ω being a bounded domain in R^{n}.
For the given domain Ω we define the larger domain

$$
\Omega_{R}=\{x: \operatorname{dist}(x, \Omega) \leq R\} \supseteq \Omega
$$

Let $p(x)$ be a function defined in Ω_{R} such that

$$
\begin{equation*}
1 \leq p(x) \leq P<\infty, \quad x \in \Omega_{R} \tag{10}
\end{equation*}
$$

Let also $\frac{1}{p(x)}+\frac{1}{q(x)} \equiv 1$ and

$$
Q=\left\{\begin{array}{cc}
\sup _{x \in \Omega_{R}} q(x)=\frac{p_{0}}{p_{0}-1}, & \text { if }\left|E_{1}(p)\right|=0 \tag{11}\\
\infty, & \text { if }\left|E_{1}(p)\right|>0
\end{array}\right.
$$

where $E_{1}(p)=\left\{x \in \Omega_{R}: p(x)=1\right\}$.
Theorem 1. Let $\mathcal{K}(x) \in L^{Q}\left(B_{R}\right)$ and let $p(x)$ satisfy (10) and (8) for all x and $y \in \Omega_{R}$. Then the operators K_{ϵ} are uniformly bounded from $L^{p(x)}(\Omega)$ into $L^{p(x)}\left(\Omega_{R}\right)$:

$$
\begin{equation*}
\left\|K_{\epsilon} f\right\|_{L^{p(x)}\left(\Omega_{R}\right)} \leq c\|f\|_{L^{p(x)}(\Omega)} \tag{12}
\end{equation*}
$$

where c does not depend on ϵ.
Theorem 2 . Let $p(x)$ and $\mathcal{K}(x)$ satisfy the assumptions of Theorem 1 and

$$
\begin{equation*}
\int_{B_{R}} \mathcal{K}(y) d y=1 \tag{13}
\end{equation*}
$$

Then (9) is an identity approximation in $L^{p(x)}(\Omega)$:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left\|K_{\epsilon} f-f\right\|_{L^{p(x)}\left(\Omega_{R}\right)}=0, \quad f(x) \in L^{p(x}(\Omega) \tag{14}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{\epsilon}(x)=\frac{1}{\epsilon^{n}|B(0,1)|} \int_{y \in \Omega,|y-x|<\epsilon} f(y) d y \tag{15}
\end{equation*}
$$

be the Steklov mean of the function $f(y)$.
Corollary 1. Under the assumptions of Theorem 1 on $p(x)$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left\|f_{\epsilon}-f\right\|_{L^{p(x)}(\Omega)}=0 \tag{16}
\end{equation*}
$$

Remark 1. The statement (16) is an analogue of mean continuity property for $L^{p(x)}$ spaces, but with respect to the averaged "shift" operator (15). In the standard form, the mean continuity property $\lim _{h \rightarrow 0}\|f(x+h)-f(x)\|_{p}=0$, generally speaking, is not valid for variable exponents $p(x)$ and, moreover, there exist functions $p(x)$ and $f(x) \in L^{p(x)}$ such that $f\left(x+h_{k}\right) \notin L^{p(x)}$ for some $h_{k} \rightarrow 0$, see [2], Example 2.9 and Theorem 2.10.

Corollary 2. Let $1 \leq p(x) \leq P<\infty, x \in R^{n}$, and $p(x)$ satisfy the condition (8) in any ball in R^{n} (where A may depend on the ball) . Then C_{0}^{∞} is dense in $L^{p(x)}\left(R^{n}\right)$.

Remark 2. As it was shown in [2], $C_{0}^{\infty}(\Omega)$ is dense in $L^{p(x)}(\Omega), 1 \leq p(x) \leq P<\infty$, without requiring that $p(x)$ satisfies the condition (8).

Let $W^{m, p(x)}=W^{m, p(x)}\left(R^{n}\right)$ be the Sobolev type space of functions $f(x) \in L^{p(x)}\left(R^{n}\right)$ which have all the distributional derivatives $D^{j} f(x) \in L^{p(x)}\left(R^{n}\right), 0 \leq|j| \leq m$, and let

$$
\|f\|_{W^{m, p(x)}}=\sum_{|j| \leq m}\left\|D^{j} f\right\|_{p}
$$

Theorem 3. Let $p(x)$ satisfy the assumptions of Theorem 3. Then $C_{0}^{\infty}\left(R^{n}\right)$ is dense in $W^{m, p(x)}\left(R^{n}\right)$.

4. Proof of Theorem 1.

We assume that

$$
\begin{equation*}
\|f\|_{p} \leq 1 \tag{17}
\end{equation*}
$$

By (4)-(5) it suffices to show that

$$
\begin{equation*}
I_{p}\left(K_{\epsilon} f\right)=\int_{\Omega_{R}}\left|K_{\epsilon} f(x)\right|^{p(x)} d x \leq c \tag{18}
\end{equation*}
$$

with $c>0$ not depending on ϵ. By the Hölder inequality (3) it is easy to show that $\left|K_{\epsilon} f(x)\right| \leq c$ for all $x \in \Omega_{R}$ and $\epsilon \geq \epsilon^{o}\left(c=c\left(\epsilon^{o}\right)\right.$ in this case $)$. Therefore, it suffices to prove (18) for $0<\epsilon \leq \epsilon^{o}$ under some choice of ϵ^{o}.

Let

$$
\Omega_{R}=\cup_{k=1}^{N} \omega_{R}^{k}
$$

be any partition of Ω_{R} into small parts ω_{R}^{k} comparable with the given ϵ :

$$
\operatorname{diam} \omega_{R}^{k} \leq \epsilon, k=1,2, \cdots, N ; N=N(\epsilon)
$$

We represent the integral in (18) as

$$
\begin{equation*}
I_{p}\left(K_{\epsilon} f\right)=\sum_{k=1}^{N} \int_{\omega_{R}^{k}}\left|\int_{\Omega} \mathcal{K}_{\epsilon}(x-y) f(y) d y\right|^{p(x)-p_{k}+p_{k}} d x \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
p_{k}=\inf _{x \in \Omega_{R}^{k}} p(x) \leq \inf _{x \in \omega_{R}^{k}} p(x) \tag{20}
\end{equation*}
$$

where some larger portions $\Omega_{R}^{k} \supset \omega_{R}^{k}$ will be chosen later comparable with ϵ :

$$
\begin{equation*}
\operatorname{diam} \Omega_{R}^{k} \leq m \epsilon, \quad m>1 \tag{21}
\end{equation*}
$$

We shall prove the uniform estimate

$$
\begin{equation*}
A_{k}(x, \epsilon):=\left|\int_{\Omega} \mathcal{K}_{\epsilon}(x-y) f(y) d y\right|^{p(x)-p_{k}} \leq c, \quad x \in \omega_{R}^{k} \tag{22}
\end{equation*}
$$

where $c>0$ does not depend on $x \in \omega_{R}^{k}, k$ and $\epsilon \in\left(0, \epsilon^{o}\right)$ with some $\epsilon^{o}>0$. To this end, we first obtain the estimate

$$
\begin{equation*}
A_{k}(x, \epsilon) \leq c_{1} \epsilon^{-n\left[p(x)-p_{k}\right]}, \quad x \in \Omega_{R} \tag{23}
\end{equation*}
$$

To get (23), we differ the cases $Q=\infty$ and $Q<\infty$.
Let $Q=\infty$. We have

$$
A_{k}(x, \epsilon) \leq\left(\frac{M}{\epsilon^{n}} \int_{\Omega} \chi_{B(0, \epsilon R)}(y)|f(y)| d y\right)^{p(x)-p_{k}}
$$

where $M=\sup _{B_{R}}|\mathcal{K}(x)|$. By the Hölder inequality (3) and the assumption (17) we obtain

$$
\begin{equation*}
A_{k}(x, \epsilon) \leq\left(\frac{M k}{\epsilon^{n}}\left\|\chi_{B(0, \epsilon R)}\right\|_{q}\right)^{p(x)-p_{k}} \tag{24}
\end{equation*}
$$

According to (2) we have

$$
\left\|\chi_{B(0, \epsilon R)}\right\|_{q}=\sup _{E_{\infty}(q)} \chi_{B(0, \epsilon R)}(x)+\left\|\chi_{B(0, \epsilon R)}\right\|_{(q)}=1+\left\|\chi_{B(0, \epsilon R)}\right\|_{(q)}
$$

In view of (6) we get

$$
\left\|\chi_{B(0, \epsilon R)}\right\|_{q} \leq 1+\left(\epsilon^{n}|B(0, R)|\right)^{\frac{1}{q_{0}}} \leq 2
$$

under the asumption that

$$
\begin{equation*}
0<\epsilon \leq|B(0, R)|^{-\frac{1}{n}}:=\epsilon_{1}^{o} \tag{25}
\end{equation*}
$$

Then (24) provides the estimate (23) with $c_{1}=(2 k M)^{P-p_{0}}$ if $2 k M \geq 1$ and $c_{1}=1$ otherwise.

Let $Q<\infty$. The estimate (23) is obtained in a similar way. Indeed, applying the Hölder inequality (3) again, we arrive at

$$
A_{k}(x, \epsilon) \leq\left(k\left\|\mathcal{K}_{\epsilon}(x-y)\right\|_{q}\right)^{p(x)-p_{k}}
$$

By (4)-(5) we have

$$
\left\|\mathcal{K}_{\epsilon}(x-y)\right\|_{(q)}=\frac{1}{\epsilon^{n}}\left\|\mathcal{K}\left(\frac{x-y}{\epsilon}\right)\right\|_{(q)} \leq \frac{1}{\epsilon^{n}}\left(\int_{\Omega \backslash E_{\infty}(q)}\left|\mathcal{K}\left(\frac{x-y}{\epsilon}\right)\right|^{q(y)} d y\right)^{\theta}
$$

where $\theta=\frac{1}{Q}$ or $\theta=\frac{1}{q_{o}}$ depending on the fact whether the last integral in the parentheses is less or greater than 1 , respectively. Hence,

$$
\begin{gather*}
\left\|\mathcal{K}_{\epsilon}(x-y)\right\|_{(q)} \leq \frac{1}{\epsilon^{n}}\left(\int_{|y|<R, x-\epsilon y \in \Omega \backslash E_{\infty}(q)}|\mathcal{K}(y)|^{q(x-\epsilon y)} d y\right)^{\theta} \\
\leq \frac{1}{\epsilon^{n}}\left[\left|B_{R}\right|+\int_{|y|<R,|\mathcal{K}(y)| \geq 1}|\mathcal{K}(y)|^{Q} d y\right]^{\theta} \leq \frac{1}{\epsilon^{n}}\left[\left|B_{R}\right|+\|\mathcal{K}\|_{Q}^{Q}\right]^{\theta} \leq c_{2} \epsilon^{-n} \tag{27}
\end{gather*}
$$

where $c_{2}=\max \left\{c_{3}^{\frac{1}{Q}}, c_{3}^{\frac{1}{q_{o}^{o}}}\right\}, c_{3}=\left|B_{R}\right|+\|\mathcal{K}\|_{Q}^{Q}$.

Therefore, from (26) and (27) we obtain (23) in the case $Q<\infty$ as well, with $c_{1}=$ $\left(c_{2} k\right)^{P-p_{o}}$ if $c_{2}>1$ and $c_{1}=1$ otherwise.

The estimate (23) having been proved, we observe now that by (8)

$$
p(x)-p_{k}=\left|p(x)-p\left(\xi_{k}\right)\right| \leq \frac{A}{\log \frac{1}{\left|x-\xi_{k}\right|}}
$$

where $x \in \omega_{R}^{k}, \xi_{k} \in \Omega_{R}^{k}$. Evidently,

$$
\left|x-\xi_{k}\right| \leq \operatorname{diam} \Omega_{R}^{k} \leq m \epsilon
$$

by (21). Therefore,

$$
\begin{equation*}
p(x)-p_{k} \leq \frac{A}{\log \frac{1}{m \epsilon}} \tag{28}
\end{equation*}
$$

under the assumption that

$$
\begin{equation*}
0<\epsilon \leq \frac{1}{2 m}=: \epsilon_{2}^{o} \tag{29}
\end{equation*}
$$

Then from (23) and (28)

$$
\begin{equation*}
A_{k}(x, \epsilon) \leq c_{1} \epsilon^{-\frac{A}{\log \frac{L}{m \epsilon}}}, x \in \omega_{R}^{k} \tag{30}
\end{equation*}
$$

c_{1} not depending on x and being given above. Then from (30)

$$
A_{k}(x, \epsilon) \leq c_{4}:=c_{1} e^{2 A}
$$

for $x \in \omega_{R}^{k}$ and

$$
\begin{equation*}
0<\epsilon \leq \epsilon_{3}^{0}:=\frac{1}{m^{2}} \tag{31}
\end{equation*}
$$

Therefore, we have the uniform estimate (22) with $c=c_{1} e^{2 A}$ and $0<\epsilon \leq \epsilon^{o}, \epsilon^{o}=$ $\min _{1 \leq k \leq 3} \epsilon_{k}^{0}$, ϵ_{k}^{o} being given by (25), (29) and (31).

Using the estimate (22) we obtain from (19)

$$
I_{p}\left(K_{\epsilon} f\right) \leq c \sum_{k=1}^{N} \int_{\omega_{R}^{k}}\left|\int_{\Omega} \mathcal{K}_{\epsilon}(x-y) f(y) d y\right|^{p_{k}} d x
$$

Here p_{k} are constants so that we may apply the usual Minkowsky inequality for integrals and obtain

$$
\begin{gather*}
I_{p}\left(K_{\epsilon} f\right) \leq c \sum_{k=1}^{N}\left\{\int_{|y|<\epsilon R}\left|\mathcal{K}_{\epsilon}(y)\right| d y\left(\int_{\omega_{R}^{k}}|f(x-y)|^{p_{k}} d x\right)^{\frac{1}{p_{k}}}\right\}^{p_{k}} \\
=c \sum_{k=1}^{N}\left\{\int_{|y|<R}|\mathcal{K}(y)| d y\left(\int_{x+\epsilon y \in \omega_{R}^{k}}|f(x)|^{p_{k}} d x\right)^{\frac{1}{p_{k}}}\right\}^{p_{k}} \tag{32}
\end{gather*}
$$

Obviously, the domain of integration in x in the last integral is embedded into the domain

$$
\begin{equation*}
\bigcup_{y \in B_{\epsilon R}}\left\{x: x+y \in \omega_{R}^{k}\right\} \tag{33}
\end{equation*}
$$

which already does not depend on y. Now, we choose the sets Ω_{R}^{k} in (20), which were not determined until now, as the sets (33). Then, evidently, $\Omega_{R}^{k} \supset \omega_{R}^{k}$ and it is easily seen that

$$
\begin{equation*}
\operatorname{diam} \Omega_{R}^{k} \leq(1+2 R) \epsilon \tag{34}
\end{equation*}
$$

so that the requirement (21) is satisfied with $m=1+2 R$.
From (32) we have

$$
\begin{gathered}
I_{p}\left(K_{\epsilon} f\right) \leq c \sum_{k=1}^{N}\left\{\int_{|y|<R}|\mathcal{K}(y)| d y\right\}^{p_{k}} \int_{\Omega_{R}^{k}}|f(x)|^{p_{k}} d x \\
\leq c\left\{\int_{|y|<R}|\mathcal{K}(y)| d y\right\}^{\theta} \sum_{k=1}^{N} \int_{\Omega_{R}^{k} \cap \Omega}|f(x)|^{p_{k}} d x
\end{gathered}
$$

where $\theta=P$ if $\int_{|y|<R}|\mathcal{K}(y)| d y \leq 1$ and $\theta=p_{o}$ otherwise. In view of (34), the covering $\left\{\omega_{k}=\Omega_{R}^{k} \cap \Omega\right\}_{k=1}^{N}$ has a finite multiplicity (that is, each point $x \in \Omega$ belongs simultaneously not more than to a finite number n_{o} of the sets $\omega_{k}, n_{o} \leq 1+(1+2 R)^{n}$ in this case). Therefore,

$$
\begin{equation*}
I_{p}\left(K_{\epsilon} f\right) \leq c_{5} \int_{\Omega}|f(x)|^{\tilde{p}(x)} d x \tag{35}
\end{equation*}
$$

where

$$
\tilde{p}(x)=\max _{j} p_{j}
$$

the maximum being taken with respect to all the sets ω_{j} containing x. Evidently, $\tilde{p}(x) \leq$ $p(x)$ for $x \in \Omega$. Then from (35) and (4)-(5) we obtain the estimate

$$
I_{p}\left(K_{\epsilon} f\right) \leq c_{5}\|f\|_{\tilde{p}}^{\theta_{1}}, \quad \theta_{1}<P
$$

with $\theta_{1}=\inf \tilde{p}(x)$ if $\|f\|_{\tilde{p}} \leq 1$ and $\theta_{1}=\sup \tilde{p}(x)$ otherwise. Applying the imbedding theorem (7), we arrive at the final estimate

$$
I_{p}\left(K_{\epsilon} f\right) \leq c_{6}\|f\|_{p}^{\theta_{1}} \leq c_{6}
$$

5. Proof of Theorem 2.

To prove (14), we use Theorem 1, which provides the uniform boundedness of the operators K_{ϵ} from $L^{p(x)}(\Omega)$ into $L^{p(x)}\left(\Omega_{R}\right)$. Then, by the Banach-Steinhaus theorem it suffices to verify that (14) holds for some dense set in $L^{p(x)}(\Omega)$, for example, for step functions, according to property e) of the spaces $L^{p(x)}(\Omega)$. So, it is sufficient to prove (14) for the characteristic function $\chi_{E}(x)$ of any bounded measurable set $E \subset \Omega$. We have

$$
K_{\epsilon}\left(\chi_{E}\right)-\chi_{E}=\int_{B_{R}} \mathcal{K}(y)\left[\chi_{E}(x-\epsilon y)-\chi_{E}(x)\right] d y
$$

by (13). Hence

$$
\left\|K_{\epsilon}\left(\chi_{E}\right)-\chi_{E}\right\|_{P} \leq \int_{B_{R}}|\mathcal{K}(y)|\left\|\chi_{E}(\cdot-\epsilon y)-\chi_{E}(x)\right\|_{P} d y \rightarrow 0
$$

as $\epsilon \rightarrow 0$ by the Lebesgue dominated convergence theorem and the P-mean continuity of functions in L^{P} with a constant $P\left(P=\sup _{x \in \Omega_{R}} p(x)\right.$ in this case $)$. Then, by (7), also

$$
\left\|K_{\epsilon}\left(\chi_{E}\right)-\chi_{E}\right\|_{p} \rightarrow 0
$$

with $p=p(x) \leq P<\infty$.

6. Proof of Corollaries

To obtain Corollary 1 from Theorem 1, it suffices to choose $\mathcal{K}(y)=\frac{1}{|B(0,1)|} \chi_{B(0,1)}(y)$.
Proof of Corollary 2. Let $\chi_{N}(x)=\chi_{B(0, N)}(x)$. Then the functions $f^{N}(x)=\chi_{N}(x) f(x)$ have compact support and approximate $f(x) \in L^{p(x)}\left(R^{n}\right)$:

$$
\left\|f-f^{N}\right\| \leq I_{p}^{\frac{1}{p}}\left(f-f^{N}\right)=\left(\int_{|x|>N}|f(x)|^{p(x)} d x\right)^{\frac{1}{p}} \rightarrow 0
$$

as $N \rightarrow \infty$.
Therefore, we may consider $f(x)$ with a compact support in the ball B_{N} from the very beginning. To approximate $f(x)$ by C_{0}^{∞}, we use the identity approximation

$$
\begin{equation*}
f_{\epsilon}(x)=\int_{R^{n}} \mathcal{K}_{\epsilon}(x-t) f(t) d t=\int_{|y|<1} \mathcal{K}(y) f(x-\epsilon y) d y \tag{36}
\end{equation*}
$$

where $\mathcal{K}_{\epsilon}(x)=\frac{1}{\epsilon^{n}} \mathcal{K}\left(\frac{x}{\epsilon}\right)$ and $\mathcal{K}(y) \in C_{0}^{\infty}\left(R^{n}\right)$ with support in the ball B_{1} and such that

$$
\int_{|y|<1} \mathcal{K}(y) d y=1
$$

Then, evidently, $f_{\epsilon}(x) \in C_{0}^{\infty}\left(R^{n}\right)$ and has compact support because $f_{\epsilon}(x) \equiv 0$ if $|x|>N+\epsilon$. Therefore, for $\epsilon<1$,

$$
\left\|f_{\epsilon}-f\right\|_{L^{p(x)}\left(R^{n}\right)}=\left\|K_{\epsilon} f-f\right\|_{L^{p(x)}\left(B_{N+1}\right)} \rightarrow 0
$$

as $\epsilon \rightarrow 0$.

Proof of Theorem 3.

The proof follows from Theorem 2 and Corollary 2 in two steps.
1^{o}. Let $f(x) \in W^{m, p(x)}\left(R^{n}\right)$ and let $\mu(r), 0 \leq r \leq \infty$, be a smooth step-function: $\mu(r) \equiv 1$ for $0 \leq r \leq 1, \mu(r) \equiv 0$ for $r \geq 2, \mu(r) \in C_{0}^{\infty}\left(R_{+}^{1}\right)$ and $0 \leq \mu(r) \leq 1$. Then

$$
\begin{equation*}
f^{N}(x)=\mu\left(\frac{|x|}{N}\right) f(x) \in W^{m, p(x)}\left(R^{n}\right) \tag{37}
\end{equation*}
$$

for every $N \in R_{+}^{1}$ and has compact support in $B_{2 N}$.

The functions (37) approximate $f(x)$ in $W^{m, p(x)}\left(R^{n}\right)$. Indeed, denoting $\nu_{N}(x)=1-$ $\mu\left(\frac{|x|}{N}\right)$, so that $\nu_{N}(x) \equiv 0$ for $|x|<N$, and using the Leibnitz formula for differentiation, we have

$$
\begin{align*}
& \left\|f-f^{N}\right\|_{W^{m, p(x)}}=\sum_{|j| \leq m}\left\|D^{j}\left(\nu_{N} f\right)\right\|_{p} \leq \sum_{|j| \leq m} \sum_{0 \leq k \leq j} c_{k}\left\|D^{k}\left(\nu_{N}\right) D^{j-k} f\right\|_{p} \\
& \quad \leq \sum_{|j| \leq m}\left\|\nu_{N} D^{j} f\right\|_{p}+c \sum_{|j| \leq m} \sum_{0<k \leq j}\left\|D^{k}\left(\nu_{N}\right) D^{j-k} f\right\|_{p} \\
& \leq \sum_{|j| \leq m}\left\|\nu_{N} D^{j} f\right\|_{p}+c \sum_{|j| \leq m} \sum_{0<k \leq j} \frac{1}{N^{|k|}}\left\|D^{j-k} f\right\|_{p} \rightarrow 0 \tag{38}
\end{align*}
$$

as $N \rightarrow 0$.
2. By the step 1^{o} we may consider $f(x) \in W^{m, p(x)}$ with compact support. Then we take $\mathcal{K}(y) \in C_{0}^{\infty}\left(R^{n}\right)$ with support in the ball B_{1} and such that $\int_{|y|<1} \mathcal{K}(y) d y=1$ and arrange the approximation (36). Then, evidently, $f_{\epsilon} \in C_{0}^{\infty}\left(R^{n}\right)$. Indeed, for any j we have

$$
D^{j} f_{\epsilon}(x)=\frac{1}{\epsilon^{n+|j|}} \int_{|y|<1}\left(D^{j} \mathcal{K}\right)\left(\frac{x-t}{\epsilon}\right) f(t) d t \in C^{\infty}\left(R^{n}\right)
$$

and $f_{\epsilon}(x)$ has compact support because $f_{\epsilon}(x) \equiv 0$ if $|x|>1+\lambda$, where $\lambda=\sup _{x \in \text { supp } f}|x|$, supp standing for support of $f(x)$.

We have

$$
\begin{gathered}
\left\|f_{\epsilon}(x)-f\right\|_{W^{m, p(x)}} \leq \sum_{|j| \leq m}\left\|D^{j} f-K_{\epsilon}\left(D^{j} f\right)\right\|_{L^{p(x)}\left(R^{n}\right)} \\
=\sum_{|j| \leq m}\left\|D^{j} f-K_{\epsilon}\left(D^{j} f\right)\right\|_{L^{p(x)}\left(\Omega_{1}\right)}
\end{gathered}
$$

where $\Omega_{1}=\{x: \operatorname{dist}(x, \Omega) \leq 1\}, \Omega=\operatorname{supp} f(x)$. It suffices to apply Theorem 2 .

References

1. Edmunds,D.E. and Rákosník, J. Density of smooth functions in $W^{k, p(x)}(\Omega)$. Proc. R. Soc. Lond. A (1992)437, 229-236.
2. Kováčik, O. and Rákosník, J. On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czech. Math. J., 41(116)(1991), 592-618.
3. Samko, S.G. Differentiation and integration of variable order and the spaces $L^{p(x)}$. Proceed. of Intern. Conference "Operator Theory and Complex and Hypercomplex Analysis", 12-17 December 1994, Mexico City, Mexico, Contemp. Math., 1997
4. Samko S.G. Convolution type operators in $L^{p(x)}$. Preliminary results. Integr. Transf. Spec. Funct., 1997 (to appear).
5. Samko S.G. Convolution and potential type operators in $L^{p(x)}$. Integr. Transf. Spec. Funct., 1997 (to appear).

6 . Sharapudinov, I.I. On a topology of the space $L^{p(t)}([0,1])$. Matem. Zametki 26(1979), no 4, 613-632.

7 . Sharapudinov, I.I. On uniform boundedness in $L^{p}(p=p(x))$ of some families of convolution operators (in Russian). Matem. Zametki, 59 (1996), no. 2, 291-302.

