Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents

Jonathan L. Gordon, David Armisén, Estelle Proux-Wéra, Seán S. ÓhÉigeartaigh, Kevin P. Byrne, and Kenneth H. Wolfe ${ }^{1}$

Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
${ }^{1}$ To whom correspondence should be addressed. E-mail khwolfe@tcd.ie

Abstract

We investigate yeast sex chromosome evolution by comparing genome sequences from 16 species in the family Saccharomycetaceae, including new data from genera Tetrapisispora, Kazachstania, Naumovozyma and Torulaspora. We show that although most yeast species contain a mating-type (MAT) locus and silent $H M L$ and $H M R$ loci structurally analogous to those of Saccharomyces cerevisiae, their detailed organization is highly variable and indicates that the MAT locus is a deletion hotspot. Over evolutionary time, chromosomal genes located immediately beside MAT have continually been deleted, truncated, or transposed to other places in the genome in a process that is gradually shortening the distance between $M A T$ and $H M L$. Each time a gene beside $M A T$ is removed by deletion or transposition, the next gene on the chromosome is brought into proximity with MAT and is in turn put at risk of removal. This process has also continually replaced the triplicated sequence regions, called Z and X , that allow $H M L$ and $H M R$ to be used as templates for DNA repair at $M A T$ during mating-type switching. We propose that the deletion and transposition events are caused by evolutionary accidents during mating-type switching, combined with natural selection to keep MAT and $H M L$ on the same chromosome. The rate of deletion accelerated greatly after whole-genome duplication, probably because genes were redundant and could be deleted without requiring transposition. We suggest that, despite its mutational cost, switching confers an evolutionary benefit by providing a way for an isolated germinating spore to re-form spores if the environment is too poor.

Keywords: genome evolution | gene transposition | gene truncation | DNA repair | Saccharomyces
\body

The MAT locus is the only site in the Saccharomyces cerevisiae genome that is continually cleaved and repaired as part of the normal life cycle (1,2). The MAT locus exists in two versions (idiomorphs) that contain either MATa or MAT α genes, enabling it to specify three cell types: haploid \mathbf{a}, haploid α, and diploid \mathbf{a} / α. Mating-type switching is a programmed DNA rearrangement process that occurs in haploid cells and converts a MATa idiomorph into a MAT α idiomorph, or vice versa. During switching, DNA at the MAT locus is removed and replaced with DNA copied from either the $H M L$ or the $H M R$ locus. $H M L$ and $H M R$ are 'silent cassettes' that store the α-specific and \mathbf{a}-specific sequence information, respectively, but are transcriptionally inactive due to chromatin modification (2-4).

The ability to switch mating type does not exist in all fungi, but originated independently at least twice (5): once in the family Saccharomycetaceae that includes S. cerevisiae and Kluyveromyces lactis, and once in the Schizosaccharomycetaceae that includes Schizosaccharomyces pombe. In the Saccharomycetaceae, switching evolved in a two-step process $(6,7)$. The first step was the origin of the $H M L$ and $H M R$ cassettes, which occurred at the base of this family after it had diverged from other families such as Debaryomycetaceae and the Candida albicans clade (8). All species having silent cassettes, for example Lachancea waltii (9), are probably able to switch mating types using the homologous recombination machinery. However, in some clades a second evolutionary step increased the rate and/or precision of switching by directing a dsDNA break to the MAT locus in cells that are about to switch. This second step occurred independently, by two different mechanisms, in two groups of yeasts. In the 'post-WGD' clade (species that underwent whole-genome duplication (10)), and their closest relatives such as Zygosaccharomyces rouxii, the dsDNA break is made by the HO endonuclease $(6,11)$. The $H O$ gene does not exist outside this clade. In the genus Kluyveromyces, the dsDNA break is made by the excision of a mobile genetic element from the MAT α idiomorph, during the switch from MAT α to MATa $(12,13)$. The mobile element contains a gene, $\alpha 3$, that is only present in Kluyveromyces. To switch in the opposite direction, from MATa to MATa, Kluyveromyces induces a dsDNA break at MATa by a different but uncharacterised mechanism (12).

In all species that have silent cassettes, DNA repair at $M A T$ is guided by two regions of sequence (the Z and X regions) that are almost identical between $M A T, H M L$ and $H M R$. In S. cerevisiae, the Z region contains the 3^{\prime} end of the $\alpha 1$ gene, and the X region contains the 3^{\prime} end of $\alpha 2$ and the 5^{\prime} end of the neighboring chromosomal gene BUD5 (Fig. 1). The idiomorph-specific region between them is called Y , the two versions of which ($\mathrm{Y} \alpha$ and Ya) have no sequence similarity to one another. In S. cerevisiae, switching begins when the HO endonuclease cleaves the Y / Z junction in the MAT locus $(1,2,14)$. The old $M A T$ - Y region is degraded. The Z and X sequences direct the use of $H M L$ or $H M R$
as a template for repair, during which both strands of DNA at MAT-Y are newly synthesized in an error-prone fashion $(15,16)$. Repair is initiated by invasion of a 3 ' end from $M A T-\mathrm{Z}$ into the $H M$ donor $(17,18)$, so the first strand of the $M A T-Y$ region is always synthesized in the direction from Z to X . Switching takes about one hour (18).

Switching does not occur during every cell cycle, but is a strategy that enables a 'lonely' haploid yeast cell (that is, an isolated single cell that cannot find a partner of the opposite mating type) to produce diploid descendants (19-21). The haploid cell buds mitotically, the mother cell switches mating type, and the mother and daughter cells then mate to produce a homozygous diploid that can continue to replicate mitotically (22). In natural populations of S. paradoxus, switching has been estimated to occur approximately once per 20,000 cell generations (23). The average generation time of natural yeast populations is not known (21), but generation times of 100 minutes (24), 100 hours or 100 days would correspond approximately to one mating-type switch per 4 years, 200 years, or 5000 years respectively. Even at the lowest of these rates, two yeast species that diverged 10 million years ago would each have gone through 2000 switches since they shared a common ancestor, so switching needs to be efficient and accurate. For species that grow primarily as haploids, the rate of switching may be much higher. In this paper, we report evidence that switching errors do accumulate along evolutionary lineages and have had a profound effect on the structure of the MAT-containing chromosome in post-WGD species.

Results

Conservation of MAT-HML linkage. We compared MAT locus organization in 16 species of the family Saccharomycetaceae (25). We augmented existing data with new genome sequences for seven species: two each from the post-WGD genera Kazachstania, Tetrapisispora and Naumovozyma, and one from the non-WGD genus Torulaspora. The new data support previous hypotheses that the 3cassette structure ($M A T, H M L, H M R$) originated at the base of the Saccharomycetaceae (6-8), that the HO endonuclease is younger than the 3-cassette structure $(6,12)$, and that the loss of the MATa2 gene $(6,26,27)$ occurred on the same branch of the phylogenetic tree as the WGD. No losses of the MATa1, $M A T \alpha 1$ or MAT $\alpha 2$ genes occur in the Saccharomycetaceae species, in contrast to the multiple losses of MAT genes in the Candida clade $(28,29)$.

Among the 14 species in which mating-type switching appears to be possible, we find that MAT and $H M L$ are always on the same chromosome ($86-310 \mathrm{~kb}$ apart) and the genotype of $H M L$ is always α. $H M R$ is often on a different chromosome (30), and some species have two HMR loci (31). HML and
$H M R$ are usually but not invariably subtelomeric. The conservation of $H M L$ and $M A T$ in $c i s$, and of the α genotype at $H M L$, is probably due to conservation of the recombination enhancer (RE) site among species. The RE, which has so far only been found in S. cerevisiae $(32,33)$, is located in the interval between $H M L$ and $M A T$. It increases the frequency of productive switching by biasing the choice of donor (32), and operates by binding the $\alpha 2$ protein $(34,35)$. The two species that may be unable to switch mating type are Lachancea kluyveri which has no $H M L$ or $H M R(6,36)$, and Kazachstania africana which appears to have separate MAT α and MATa loci due to a genomic rearrangement and has lost $H M L, H M R$ and the $H O$ endonuclease gene.

Turnover of \mathbf{Z} and \mathbf{X} regions. Although the $M A T$ loci of most of the species are organized in a manner analogous to that of S. cerevisiae, the detailed structure of the Z and X regions varies extensively in terms of which $M A T$ genes and neighboring chromosomal genes extend into them (Fig. 2). The X regions of S. cerevisiae and Kaz. naganishii, for instance, have nothing in common. This variation is surprising because the Z and X regions are virtually identical among the three copies within each genome, and were previously found to be among the most slowly-evolving sequences in the genome (with $>96 \%$ identity) among four species in the genus Saccharomyces that are separated by tens of millions of years (37). Therefore the Z and X region sequences have low rates of nucleotide substitution but can be completely replaced. There is an evolutionary requirement for triplicated sequences flanking $M A T, H M L$ and $H M R$ to guide mating-type switching, but the requirement is for triplication per se and not for any particular sequence.

A general principle of $M A T$ locus organization apparent from Figure 2 is that the idiomorph-specific region $\mathrm{Y} \alpha$ must contain parts of both the $\alpha 1$ and $\alpha 2$ genes, and Ya must contain parts of the al and (where present) a2 gene, so that the gene fragments in the MAT-Z and MAT-X regions are incapable of expression in cells with the 'wrong' genotype. Beyond this principle, however, it does not seem to matter which MAT genes extend into Z and X (Fig. 2), although in species with the HO endonuclease the Y / Z junction has been stabilized to a site in MAT α. Tetrapisispora phaffii is puzzling because it seems to violate the principle: it has no Ya region (there is no DNA between the Z and X regions in its MATa idiomorph), so it is not clear how (or if) MATa1 expression is prevented in MAT α cells of this species.

Collision and truncation of chromosomal genes flanking MAT. The Z and X regions often include parts of flanking chromosomal genes whose functions are not related to cell identity (colored blue in Fig. 2), again with much variation among species. These genes are partially duplicated at $H M L$ and $H M R$. Remarkably, there is often almost no intergenic DNA between the flanking genes and the MAT genes and in some cases they overlap (Fig. 2; Fig. S1). Some flanking genes are truncated, such as
S. cerevisiae BUD5 whose start codon overlaps the stop codon of MAT 2 2. The Bud5 protein is only half the length of its orthologs in other species, lacking an SH3 domain at its N-terminus (38). SLA2, SWI6 and LAA1 in other species are all similarly truncated at their ends closest to MAT (Fig. S2). These features are all suggestive of a process that tends to delete nonessential DNA beside the MAT locus.

Progressive DNA deletion beside MAT. To investigate how the MAT locus acquired different flanking genes in different post-WGD species, we compared the genomes to the 'Ancestral' gene order (39) inferred to have existed just before the WGD occurred. In the Ancestral genome nomenclature (39), HML and MAT are on chromosome 1 (Anc_1), with HML $\alpha 1$ and $H M L \alpha 2$ being the first two genes on this chromosome (Anc_1.1 and Anc_1.2) and the MAT locus about 120 genes further along (positions Anc_1.120 to Anc_1.122) (Fig. 3). The genes ancestrally flanking MAT are SLA2 and DIC1, an arrangement that appears to be quite old and stable because it is conserved in Komagataella phaffii (Pichia pastoris) (40) and Ogataea (Hansenula) polymorpha (6). Ancestral chromosome 1 was duplicated as part of the WGD, giving rise to two daughter chromosomes. We call one daughter the 'MAT chromosome' because it retained the MAT and HML loci, and the other the 'non-MAT chromosome' because it lost its copies of these loci. Both chromosomes underwent further rearrangement after the WGD, but in each post-WGD species the chromosomal regions derived from the MAT and the non-MAT chromosomes can be identified by tracing the products of each rearrangement event (39) and are shown in Fig. 3.

Strikingly, large deletions are seen on the $M A T$ chromosome in each post-WGD species, beginning at the MAT locus and extending in the Z direction (leftwards as drawn in Fig. 3). These deletions brought genes that were originally further away in the interval between $H M L$ and $M A T$ into direct proximity with MAT. In Vanderwaltozyma polyspora, for example, SWI6 (Anc_1.60) is now the neighbor of MATa1 (Anc_1.122) on the MAT chromosome, and almost all the ancestral genes between them were retained on the non-MAT chromosome instead (Fig. 3). This non-random distribution of genes between sister chromosomal regions contrasts with the usual pattern of gene losses after WGD (31, 41). The most obvious explanation is that 60 consecutive genes were removed from the $M A T$ chromosome in the V. polyspora lineage by deletion(s) that occurred soon after WGD, while most of its genome was still duplicated. The deletions have different endpoints in different post-WGD species, so that that among the nine post-WGD species in Fig. 3 the current neighbors of $M A T$ on the Z side are KCC4 (Anc_1.52), SWI6 (Anc_1.60), EMG1 (Anc_1.64), TAF2 (Anc_1.76) and CAN1 (Anc_1.83). A similar but less extensive deletion process has occurred on the other (X) side, where the genes flanking MAT are RNH203 (Anc_1.130), RCY1 (Anc_1.131) and BUD5 (Anc_1.134) in different post-WGD species. In T. blattae, a translocation has joined the X side of $M A T$ to a telomeric region.

Rearrangements like this probably cannot occur on the Z side due to the evolutionary constraint to maintain MAT and HML on the same chromosome.

In contrast to the situation for post-WGD species, none of the non-WGD species show large deletions beside the MAT locus. They all retain an organization similar to Torulaspora delbrueckii, which is shown for illustration in Fig. 3. In different non-WGD species the genes neighboring $M A T$ on the Zside are SLA2 (Anc_1.119) and SUII (Anc_1.118), and on the X-side DIC1 (Anc_1.123), LAA1 (Anc_1.127), RNH203 (Anc_1.130) and an unnamed zinc finger gene located between Anc_1.123 and 1.124 (Fig. 2). In Z. rouxii, similarly to T. blattae, a translocation has joined the X side of $M A T$ to a telomeric region containing CHA1.

Gene transpositions provide a timeline. Instead of being deleted, some genes transposed away from the vicinity of the MAT locus. For instance S. cerevisiae $J J J 3$ (Anc_1.113) is not found in the expected region of the MAT or the non-MAT chromosome (parts of chromosomes III and XIV, respectively), but instead is on chromosome $\mathrm{X}(Y J R 097 W) . J J J 3$ and its neighbor YJR098C (Anc_1.114) transposed from the MAT chromosome to a new genomic location descended from Ancestral chromosome 7, where they were inserted between genes Anc_7.468 (YJR096W) and Anc_7.470 (YJR099W). We found 39 separate such events of transposition away from MAT and use letters $\mathrm{A}-\mathrm{Z}$ and $\mathrm{AA}-\mathrm{MM}$ to identify them (Fig. 3). Each transposition event moved $1-3$ genes. Of the 39 events, 35 are on the Z side of $M A T$ and four are on the X side.

The transposition of $J J J 3$ and YJR098C to the site on Ancestral chromosome 7 (event A in Fig. 3) is shared by the genomes of six post-WGD species, so it must have occurred in their common ancestor. Further to the left (Z side) of the $M A T$ locus, events $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are transpositions shared by S. cerevisiae and Candida glabrata (they have the same four insertion sites), but not other species. Further left again, events F, G, H and I are unique to S. cerevisiae and then we reach the gene (TAF2, Anc_1.76) that is the current neighbor of MAT in S. cerevisiae. A similar pattern is seen in each other post-WGD species (Fig. 3; Table S1). It is evident that the genes transposed in a particular order, with those closest to Anc_1.120 moving before those further to the left, over a long time period during which the post-WGD lineages diverged from one another as shown by the phylogenetic tree in Fig. 3.

We therefore infer that the MAT locus tends to cause the deletion or transposition of the gene that is its immediate neighbor on the Z-side. When one neighbor is removed, the next comes under attack. During the 100-200 million years since WGD, this process has removed a series of 44-60 MATneighboring genes in different post-WGD species. On the X (right) side, only four transpositions are
seen but again an older transposition (event JJ) involved a gene that was ancestrally closer to the MAT locus than the younger transpositions (events KK-MM).

Discussion

We hypothesize that the evolutionary deletions, gene truncations, and transpositions beside the MAT locus were made during recovery from occasional accidents that occurred during mating-type switching. DNA synthesis during switching in S. cerevisiae is highly prone to errors including microhomology-mediated jumps to ectopic templates (16). The evolutionary deletions resemble the long one-sided deletions found extending up to 12 kb from the HO site, in the Z direction, in about 2% of S. cerevisiae cells in experiments by Yu and Gabriel (42) in which the cleaved chromosome was repaired by microhomology-mediated end joining (MMEJ) because no donor sequence was available. During switching in S. cerevisiae, the HO double-strand break is processed (resected) to generate a long single-stranded tail that can include all the Z region and extend into the flanking gene (TAF2) beyond it (17). If this tail broke and lost the Z region, no homologous donor would be available; to repair the chromosome in a way that satisfies the constraint (imposed by the RE) to keep MAT and $H M L$ in cis would require re-ligation by MMEJ, deleting part or all of TAF2. If instead the tail invaded some other place in the genome, it could cause transposition of TAF2 before the HML-MAT linkage is restored. The greater extent of deletions and transpositions seen on the Z -side than on the X -side (Fig. 3) may be because DNA strand exchange initiates in the Z region (17, 18). Successful repair of the chromosome would also require the new sequence flanking $M A T$ to be copied to $H M L$ and $H M R$ to become a new Z region; the fact that different chromosomal genes are incorporated into the Z and X regions in different species (Fig. 2) shows that such a feedback mechanism exists.

We infer that a tendency to delete DNA beside the MAT locus exists in non-WGD species as well as post-WGD species, because we see flanking gene truncations and some small gene deletions in nonWGD species (Fig. 2; Fig. S2; (43)). However, the effects of the deletion process are much more drastic in post-WGD species (Fig. 3). We hypothesize that the difference is because the WGD brought redundancy into the genome. Suddenly no genes beside the MAT locus were essential because they all had a second copy on the non-MAT chromosome, so large deletions were possible. As time progressed, duplicated genes were lost from throughout the post-WGD genome, and some genes in the interval between $H M L$ and $M A T$ became single-copy. We propose that when the deletion process brought MAT adjacent to an essential single-copy gene, the process stalled until the gene transposed away from beside MAT. It is notable that some genes such as TAM41 (Anc_1.86) transposed independently in multiple lineages to different genomic sites (events G, L, W and Z; Fig. 3 and Table S1). We suggest that its paralog on the non-MAT chromosome was lost soon after WGD, making

TAM41 essential and so requiring it to be relocated in each lineage when $M A T$ encroached on it. Some patterns of transposition (events $\mathrm{HH}, \mathrm{AA}, \mathrm{BB}$, and CC) also indicate that a gene can be 'trapped' in the Z region for a period of time while genes further to its left are deleted. Eremothecium gossypii SUII (Anc_1.118) may be an example of a trapped gene because CWC25 (Anc_1.117) has transposed from between it and VPS75 (Anc_1.116) (Fig. 2).

Our analysis suggests that errors during mating-type switching, combined with natural selection to keep MAT and HML on the same chromosome, have subjected the genes flanking the MAT locus to a continual process of attempted deletion and occasional transposition during evolution. Deletions were rampant in the immediate aftermath of the WGD but the rate at which MAT is moving towards $H M L$ is slowing (Fig. S4) because more genes are single-copy and need to be rescued by transposition. The deletion process removes genes and is therefore likely to impact on the biology of the species in which it occurs. One likely gene loss due to this process was a cyclin gene similar to Candida albicans CCN1 (44), which has no ortholog in S. cerevisiae. This gene is located between positions Anc_1.77 and Anc_1.78 in non-WGD species. It has been lost from all post-WGD genomes, except in the genus Kazachstania where it survives because the MAT locus has only deleted Z-wards as far as Anc_1.83 in that genus (Fig. 3). Another possible casualty is the MATa2 gene itself, whose loss led to rewiring of the cell identity pathway $(26,27)$.

Sex chromosomes are subject to unique evolutionary processes and mechanisms (5, 45-47). Our observations about the yeast $M A T$ chromosome are reminiscent of the movement of genes out of the mammalian X chromosome $(48,49)$, but unlike that process we do not suggest that the 'out-of-MAT gene movements are driven by natural selection. Instead, we propose a mechanical explanation: that mating-type switching is accident-prone, and that recovery from these accidents erodes the flanking chromosomal DNA. The fact that switching has been an evolutionarily successful strategy (23) implies that it must confer a benefit that outweighs the mutational costs of the deletions described here, and of the error-prone DNA synthesis that occurs during switching (16). What is this benefit? Unlike recombination, switching does not create or maintain any genetic diversity. And since switching occurs both in species that grow primarily as diploids (such as S. cerevisiae and most postWGD lineages) and in others that grow primarily as haploids and sporulate immediately after mating (such as K. lactis and most non-WGD lineages), the benefit cannot simply be one of diploidy over haploidy. We suggest that the benefit of switching may be that, in effect, it makes spore germination reversible. Consider a single isolated spore that finds itself in a poor environment. In a yeast species that cannot switch mating types, if the spore germinates it commits itself irreversibly (50) to mitotic growth until it finds a mating partner. If the environment is too harsh, this cell lineage will go extinct. In contrast, in a species that can switch, an isolated spore that germinates in a harsh environment can
form new spores genetically identical to itself after just two mitotic cell divisions (51), followed by switching, mating, and sporulation. In this way, mating-type switching may have the benefit of allowing spores to test environments of uncertain quality. In poor environments one could envisage spores going through repeated cycles of germination, switching, and re-sporulation, possibly leading to periodic bursts of switching and increased rates of DNA erosion at the MAT locus.

Materials and Methods

Sequencing. The new genomes were sequenced using Roche FLX technology with the aim of achieving high contiguity and establishing the order of genes along chromosomes. We sequenced the type strains, purchased from the Centraalbureau voor Schimmelcultures, of these species in the family Saccharomycetaceae (25): Tetrapisispora phaffii (CBS 4417; 17 scaffolds), Tetrapisispora blattae (CBS 6284; 10 scaffolds), Naumovozyma dairenensis (CBS 421; 12 scaffolds), Kazachstania africana (CBS 2517; 12 scaffolds), Kazachstania naganishii (CBS 8797; 13 scaffolds) and Torulaspora delbrueckii (CBS 1146; 7 scaffolds). We also completed the sequence of Naumovozyma castellii (CBS 4309; previously called Saccharomyces castellii or Naumovia castellii; 10 scaffolds), which was draftsequenced by Cliften et al. $(52,53)$. Sequencing was done under contract by Eurofins MWG Operon. Each genome was sequenced to $>20 \mathrm{x}$ coverage (>1 million reads) using a Roche GS FLX instrument with Titanium reagents, with a mixture of paired ($3 \mathrm{~kb}, 8 \mathrm{~kb}$ and 20 kb genomic DNA inserts; $1 / 4$ of data each) and unpaired ($1 / 4$ of data) sequence reads. Data was assembled into contigs and scaffolds using the Celera assembler (54). All inter-contig joins in the scaffold data were checked manually by reference to the paired-end reads and by comparison to other species. All scaffolds appear to correspond to complete chromosomes, except for one unplaced $15-\mathrm{kb}$ scaffold in T. phaffii. Ribosomal DNA was assembled and integrated into the scaffolds manually. Mitochondrial genomes were not assembled.

Annotation. We developed a pipeline, to be described in detail elsewhere, that utilizes gene order and sequence data from the YGOB database (55) to annotate new yeast genomes. The pipeline uses an approach based on TBLASTN to overcome frameshift sequencing errors.

Data access. Genomes can be viewed in the YGOB database (http://wolfe.gen.tcd.ie/ygob). Sequences have been deposited in the EMBL database (accession numbers HE576752-HE576761, HE580267HE580278).

Acknowledgments. This work was supported by Science Foundation Ireland and the European Research Council. We thank A. Rourke and F.S. Dietrich for help, and G. Butler and two referees for constructive comments.

References

1. Strathern JN et al. (1982) Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31: 183-192.
2. Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32: 561-599.
3. Hicks JB, Strathern JN, Herskowitz I (1977) in DNA Insertion Elements, Plasmids and Episomes, eds Bukhari A, Shapiro J, Adhya S (Cold Spring Harbor Laboratory Press, New York), pp. 457-462.
4. Herskowitz I, Rine J, Strathern JN (1992) in The Molecular and Cellular Biology of the Yeast Saccharomyces, eds Jones EW, Pringle JR, Broach JR (Cold Spring Harbor Laboratory Press, New York), pp. 583-656.
5. Lee SC, Ni M, Li W, Shertz C, Heitman J (2010) The evolution of sex: a perspective from the fungal kingdom. Microbiol Mol Biol Rev 74: 298-340.
6. Butler G et al. (2004) Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad Sci USA 101: 1632-1637.
7. Bennett RJ, Johnson AD (2005) Mating in Candida albicans and the search for a sexual cycle. Annu Rev Microbiol 59: 233-255.
8. Dujon B et al. (2004) Genome evolution in yeasts. Nature 430: 35-44.
9. Di Rienzi SC et al. (2011) Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii. Yeast 28: 137-151.
10. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708-713.
11. Kostriken R, Heffron F (1984) The product of the $H O$ gene is a nuclease: purification and characterization of the enzyme. Cold Spring Harb Symp Quant Biol 49: 89-96.
12. Barsoum E, Martinez P, Astrom SU (2010) Alpha3, a transposable element that promotes host sexual reproduction. Genes Dev 24: 33-44.
13. Rusche LN, Rine J (2010) Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease. Genes Dev 24: 10-14.
14. Haber JE (2006) Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair 5: 998-1009.
15. Ira G, Satory D, Haber JE (2006) Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion. Mol Cell Biol 26: 9424-9429.
16. Hicks WM, Kim M, Haber JE (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329: 82-85.
17. White CI, Haber JE (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9: 663-673.
18. Hicks WM, Yamaguchi M, Haber JE (2011) Real-time analysis of double-strand DNA break repair by homologous recombination. Proc Natl Acad Sci USA 108: 3108-3115.
19. Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52: 536-553.
20. Replansky T, Koufopanou V, Greig D, Bell G (2008) Saccharomyces sensu stricto as a model system for evolution and ecology. Trends Ecol Evol 23: 494-501.
21. Greig D, Leu JY (2009) Natural history of budding yeast. Curr Biol 19: R886-890.
22. Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10: 403-409.
23. Tsai IJ, Bensasson D, Burt A, Koufopanou V (2008) Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci USA 105: 49574962.
24. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24: 437-440.
25. Kurtzman CP (2011) in The Yeasts, a Taxonomic Study (5th edition), eds Kurtzman CP, Fell JW, Boekhout T (Elsevier, Amsterdam), Vol. 2, pp. 293-307.
26. Tsong AE, Miller MG, Raisner RM, Johnson AD (2003) Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389-399.
27. Tsong AE, Tuch BB, Li H, Johnson AD (2006) Evolution of alternative transcriptional circuits with identical logic. Nature 443: 415-420.
28. Butler G et al. (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657-662.
29. Reedy JL, Floyd AM, Heitman J (2009) Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 19: 891-899.
30. Fabre E et al. (2005) Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing and subtelomeres. Mol Biol Evol 22: 856-873.
31. Scannell DR et al. (2007) Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci USA 104: 8397-8402.
32. Wu X, Haber JE (1996) A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87: 277-285.
33. Zhou Z, Sun K, Lipstein EA, Haber JE (2001) A Saccharomyces servazzii clone homologous to Saccharomyces cerevisiae chromosome III spanning KAR4, ARS 304 and SPB1 lacks the recombination enhancer but contains an unknown ORF. Yeast 18: 789-795.
34. Szeto L, Fafalios MK, Zhong H, Vershon AK, Broach JR (1997) Alpha2p controls donor preference during mating type interconversion in yeast by inactivating a recombinational enhancer of chromosome III. Genes Dev 11: 1899-1911.
35. Wu C et al. (1998) Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. Genes Dev 12: 1726-1737.
36. Souciet JL et al. (2009) Comparative genomics of protoploid Saccharomycetaceae. Genome Res 19: 1696-1709.
37. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241-254.
38. Wong S, Fares MA, Zimmermann W, Butler G, Wolfe KH (2003) Evidence from comparative genomics for a complete sexual cycle in the "asexual" pathogenic yeast Candida glabrata. Genome Biol 4: R10.
39. Gordon JL, Byrne KP, Wolfe KH (2009) Additions, losses and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet 5: e1000485.
40. De Schutter K et al. (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27: 561-566.
41. Dietrich FS et al. (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304-307.
42. Yu X, Gabriel A (2003) Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 163: 843-856.
43. Wendland J, Walther A (2005) Ashbya gossypii: a model for fungal developmental biology. Nat Rev Microbiol 3: 421-429.
44. Whiteway M, Dignard D, Thomas DY (1992) Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc Natl Acad Sci USA 89: 9410-9414.
45. Bachtrog D (2006) A dynamic view of sex chromosome evolution. Curr Opin Genet Devel 16: 578-585.
46. de Clare M, Pir P, Oliver SG (2011) Haploinsufficiency and the sex chromosomes from yeasts to humans. BMC Biol 9: 15.
47. Ellison CE et al. (2011) Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma. Genetics 189: 55-69.
48. Emerson JJ, Kaessmann H, Betran E, Long M (2004) Extensive gene traffic on the mammalian X chromosome. Science 303: 537-540.
49. Potrzebowski Let al. (2008) Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 6: e80.
50. Herman PK, Rine J (1997) Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. $E M B O J$ 16: 6171-6181.
51. Strathern JN, Herskowitz I (1979) Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17: 371-381.
52. Cliften P et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71-76.
53. Cliften PF, Fulton RS, Wilson RK, Johnston M (2006) After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172: 863-872.
54. Koren S, Miller JR, Walenz BP, Sutton G (2010) An algorithm for automated closure during assembly. BMC Bioinformatics 11: 457.
55. Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15: 1456-1461.
56. Astell CR et al. (1981) The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell 27: 15-23.

Figure legends

Fig. 1. Organization of the MAT, HML and $H M R$ loci on chromosome III of a MATa S. cerevisiae cell. The Z and X regions occur in three copies in parallel orientation and include parts of the $\alpha 1, \alpha 2$ and BUD5 genes. The Y region between them occurs in two versions (idiomorphs), $\mathrm{Y} \alpha$ and Ya , which are completely dissimilar. This diagram is reversed relative to the standard S. cerevisiae orientation (2) to maintain compatibility with Figures 2 and 3 despite species-specific inversions in S. cerevisiae (30). Note on nomenclature: We define X and Z as the regions that occur in three copies. In S. cerevisiae (2 , 56) these are usually called X and Z 1 , and two duplicated regions that extend the similarity between $M A T$ and $H M L$ (but not $H M R$) beyond them are called W and Z 2 . There are similar duplicated extensions at the outer edges of the triplicated regions in the other species studied here, but we did not see any consistent patterns of organization.

Fig. 2. Schematic organization (not to scale) of the $M A T$ locus in 16 species. Both possible versions of the Y region are shown for each species. Y α contains the genes $\alpha 1$ (purple) and $\alpha 2$ (orange). Ya contains the genes a1 (red) and a2 (green, only in non-WGD species (6,26)). Caret symbols indicate introns. Gray shading indicates the extent of the Z and X regions. HO endonuclease, where present, cleaves the $M A T$ locus at the Y / Z boundary at a site in the $\alpha 1$ gene. Flanking chromosomal genes are shown in blue. Pink vertical bars indicate gene overlaps (broad bars) or intergenic distances $\leq 5 \mathrm{bp}$ (narrow bars). In L. kluyveri there are no $H M L$ and $H M R$ cassettes (36) but the sequenced strain is diploid so only the inner boundaries of Z and X are defined. In Kaz. africana there are two MAT-like regions and no HO gene. The dashed line for T. phaffii Ya represents zero length of sequence. Fig. S3 shows the same regions drawn to scale.

Fig. 3. Progressive loss of genes flanking the $M A T$ locus by deletion and transposition. The scale indicates gene positions along part of Ancestral chromosome 1, from Anc_1.1 to Anc_1.150. Each circle represents a gene, with $H M L$ and $M A T$ genes in red (each genome sequence is arbitrarily either MAT α or MATa). Horizontal lines connect genes that are currently neighbors; zigzags show inversions. For each post-WGD species, genes are assigned to three groups: those derived from the MAT chromosome (the chromosome that retained the MAT locus after WGD; black circles); those derived from the non-MAT chromosome (the paralogous chromosome that lost the MAT locus after WGD; open circles); and those that transposed from the MAT chromosome to other places in the genome (letters A-Z and AA-MM; colored backgrounds). Each transposition can be inferred to have
occurred on a particular branch of the phylogenetic tree on the left, based on the clade of species that share the insertion site, as shown by the different colors. Genes named above the scale are the current neighbors of the MAT locus in the species shown here; these genes are identified by bullseyes (for flanking genes that extend into the Z or X regions) or large black circles. Due to a large inversion in S. cerevisiae that spans the MAT locus and the centromere (30), the Z and X directions as indicated at the top correspond to rightwards and leftwards, respectively, on chromosome III. More details are given in Fig. S5.

Supporting Information

Figure S1. Details of the gene overlaps indicated in Figure 2.

Figure S2. Truncation of genes flanking the MAT locus. Shown are dot-matrix plots of concatenated protein sequences from all species for (A) Bud5, (B) Swi6, (C) Sla2, (D) Laa1, (E) Emg1 and (F) Rnh203. The number of amino acid residues in each protein is indicated. Pink highlighting denotes regions whose coding sequence lies inside the Z or X region. Each cell in the grids is a comparison between two species. If the proteins are alignable along their whole lengths, the diagonal signal runs into the corners of the cell. If one of the proteins is truncated, the signal does not go into a corner. For example, in \mathbf{C}, the Z. rouxii Sla2 protein has no region homologous to the C-terminus of Sla2 in many other species including S. cerevisiae; and in \mathbf{A}, the S. cerevisiae Bud5 protein has no region homologous to the N-terminus of Bud5 in many other species including C. glabrata. Bud5, Swi6, Sla2 and Laa1 are severely truncated in some species. Emg1 and Rnh203 are slightly shorter in the species in which they overlap the Z or X regions than in other species. In the comparison between the truncated Sla2 proteins of T. delbrueckii and Z. rouxii, the Z-overlapping region is seen to be conserved between the two species and the T. delbrueckii protein shows a deletion just upstream of the Z region. Plots were made using the program Dotter (1).

Figure S3. Scale representation of $M A T$ loci. Gray polygons show the extents of the Z and X regions.

Figure S4. Detailed version of Figure 3. Gene names are indicated at the ends of each segment of the $M A T$ and non-MAT chromosomes that remains intact in each species. The names of transposed genes are given in Table S1. Some small inversions, and genes not in the ancestral genome, are not shown. Small open circles (e.g. Anc_1.124 in N. dairenensis) represent genes whose assignment to the MAT or non-MAT chromosome was uncertain; these are arbitrarily shown on the non-MAT chromosome. Dashed lines denote large inversions in S. cerevisiae and T. blattae that span the MAT locus. In both of these species, the inversion of $M A T$ has been compensated by a small inversion of the $H M L$ genes, maintaining the parallel orientation of $M A T$ and $H M L$. The topology of the phylogenetic tree is based on Hedtke et al. (2), except that we find that Tetrapisispora phaffii is more closely related to V. polyspora than to T. blattae (in PhyML analysis of 30 protein-coding genes retained in duplicate in all post-WGD species, T. phaffii grouped with V. polyspora 44 times, and with other species 16 times).

Table S1. Details of the gene transposition events shown in Figure 3. These events can be viewed in YGOB (3) (temporary URL: http://wolferine.gen.tcd.ie/reviewer with username review and password 3r0s10n) by entering a gene name or Anc name.

1. Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167: GC1-10.
2. Hedtke SM, Townsend TM, Hillis DM (2006) Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol 55: 522-529.
3. Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15: 1456-1461.

Candida glabrata

MAT $\alpha 1$ (CAGLOB01243g)

Tetrapisispora phaffii

SWI6 (XPHAOEO3630)

Vanderwaltozyma polyspora

Zygosaccharomyces rouxii

Torulaspora delbrueckii

MAT $\alpha 1$

Lachancea waltii

SLA2 (Kwal_33.13556)

Z region
tccttgaagacttgagtagtacagagaagaaatgacgace K

MATa1

Lachancea thermotolerans

Saccharomyces cerevisiae

Eremothecium gossypii

Figure S1

A Bud5

B Swi6

C Sla2

D Laa1

Rnh203

Figure S3

Transposition event	Ancestral (old) location of transposed genes (name of S. cerevisiae ortholog in parentheses)	Specieswithtransposition	Transposed gene(s)	Current (new) locationt			
				Left neig	or at insertion site	Right neighbor	insertion site
A	Anc_1.113 (Jנ33), Anc_1.114 (YJR098C)	$\begin{gathered} \text { Scer } \\ \text { Cgla } \\ \text { Knag } \\ \text { Kafr } \\ \text { Ncas } \\ \text { Ndai } \end{gathered}$	YJR097W (JJJ3), YJR098C CAGLOCO45659, CAGLOC045879 XNAGODO1360, XNAGODO1350 XAFROG00910, XAFROGOO900 NCASOH00550, NCASOH00540 NDAIODOO500, NDAIODOO490	Anc_7.468 Anc_7.468 Anc_7.468 Anc_7.468 Anc_7.468 Anc_7.467	YJR096W CAGLOC04543g XNAGOD01370 XAFROG00920 NCASOH00560 NDAIOD00510	Anc_7.470 Anc_7.470 Anc_7.470 Anc 7.470 Anc_7.470	YJR099W (YUH1) CAGLOC04609g XNAGOD01330 XAFROG00890 NCASOH00530 NDAIOD00480
B	Anc_1.103 (COQ6)	$\begin{aligned} & \text { Scer } \\ & \text { Cgla } \end{aligned}$	YGR255C (COQ6) CAGLOF08239g	$\begin{aligned} & \hline \text { Anc_5.62 } \\ & \text { Anc_5.62 } \end{aligned}$	$\begin{aligned} & \text { YGR254W (ENO1) } \\ & \text { CAGLOF08261g } \end{aligned}$	$\begin{aligned} & \text { Anc_5.55 } \\ & \text { Anc_5.76 } \end{aligned}$	YGR256W (GND2) CAGLOF08217g
c	Anc_1.101 (TGL2)	$\begin{aligned} & \text { Scer } \\ & \text { Cgla } \end{aligned}$	YDR058C (TGL2) CAGLOE04708g	Anc 3.306 Anc_3.306	YDR057W (YOS9) CAGLOEO4686g	Anc_3.308 Anc_3.308	YDR059C (UBC5) CAGLOEO4752g
D	Anc_1.96 (LIN1), Anc_1.100 (YSP1)	$\begin{aligned} & \text { Scer } \\ & \text { Cgla } \end{aligned}$	YHR156C (LIN1), YHR155W (YSP1) CAGLOIO2002g, CAGLOIO1980g	$\begin{aligned} & \hline \text { Anc_5.89 } \\ & \text { Anc_5.89 } \end{aligned}$	$\begin{aligned} & \hline \text { YHR157W (REC104) } \\ & \text { CAGLOIO2068g } \end{aligned}$	Anc_5.94 Anc_5.94	YHR154W (RTT107) CAGLOIO1958g
E	Anc_1.92 (CWC23)	$\begin{aligned} & \hline \text { Scer } \\ & \text { Cgla } \end{aligned}$	YGL128C (CWC23) CAGLOIO9526g	$\begin{array}{\|l\|} \hline \text { Anc_6.116 } \\ \text { Anc_1.336 } \\ \hline \end{array}$	YGL127C (SOH1) CAGLOIO9504g	Anc_6.227 Anc_6.227	$\begin{aligned} & \hline \text { YGL129C (RSM23) } \\ & \text { CAGLOIO9548g } \end{aligned}$
F	Anc_1.90 (YGL140C)	Scer	YGL140C	Anc_2.335	YGL141W (HUL5)	Anc_6.241	YGL139W (FLC3)
G	Anc_1.86 (TAM41), Anc_1.88 (TFC4), Anc_1.89 (UFD1)	Scer	YGR046W (TAM41), YGR047C (TFC4), YGR048W (UFD1)	Anc_4.189	YGR044C (RME1)	Anc_4.191	YGR049W (SCM4)
H	Anc_1.80 (AVT1), Anc_1.83 (CAN1)	Scer	YEL064C (AVT2), YEL063C (CAN1)	Anc_6.17	YEL062W (NPR2)	none (telomeric)	YEL065W (SIT1)
I	Anc_1.77 (SLP1)	Scer	YOR154W (SLP1)	Anc_5.500	YOR153C (PDR5)	Anc_5.501	YOR155C (ISN1)
J	Anc_1.90 (YGL140C)	Cgla	CAGLOK082069	Anc_1.194	CAGL0K081849	Anc_1.220	CAGLOK082289
K	Anc_1.88 (TFC4)	Cgla	CAGLOA03630g	Anc_2.398	CAGLOA035869	Anc_3.122	CAGLOA036529
L	Anc_1.86 (TAM41)	Cgla	CAGL0G038619	Anc_4.32	CAGL0G03883g	Anc_4.35	CAGL0G037959
M	Anc_1.76 (TAF2)	Cgla	CAGLOL00297g	Anc_1.176	CAGLOLO0319g	none (telomeric)	CAGLOL00227g
N	Anc_1.71 (SPC25), Anc_1.72 (PER1)	Cgla	CAGLOM11858g, CAGLOM11880g	Anc_7.55	CAGLOM11902g	Anc_7.59	CAGLOM118369
\bigcirc	Anc_1.70 (ISC1)	Cgla	CAGLOE065569	Anc_5.247	CAGLOE065349	none (telomeric)	CAGLOE06600g
P	Anc_1.67 (MDL1)	Cgla	CAGLOE00385g	Anc_6.377	CAGLOE004079	none (telomeric)	CAGLOE00363g
Q	Anc_1.103 (COQ6)	$\begin{aligned} & \hline \text { Knag } \\ & \text { Kafr } \\ & \text { Ncas } \\ & \text { Ndai } \end{aligned}$	XNAGOB00490 XAFROFO4240 NCASOE00580 NDAIOIO2990	$\begin{aligned} & \hline \text { Anc_3.530 } \\ & \text { Anc_3.530 } \\ & \text { Anc_3.530 } \\ & \text { Anc_3.530 } \end{aligned}$	XNAGOB00500 XAFROFO4230 NCASOEOO570 NDAIOO2980	$\begin{aligned} & \text { Anc_3.531 } \\ & \text { Acc_6.59 } \\ & \text { Anc_3.54 } \\ & \text { Acc_3.531 } \end{aligned}$	XNAGOB00480 XAFROFO4250 NCASOEOO590 NDAIOIO3000
R	Anc_1.101 (TGL2)	$\begin{aligned} & \text { Knag } \\ & \text { Kafr } \\ & \text { Ncas } \\ & \text { Ndai } \end{aligned}$	XNAGOA07210 XAFR0101710 NCASOHO2970 NDAIOC00700	$\begin{array}{\|l\|l\|l\|} \hline \text { Anc_2.572 } \\ \text { Anc_2.527 } \\ \text { Anc_2.572 } \\ \text { Acc_2.570 } \\ \hline \end{array}$	XNAGOA07200 XAFROIO1720 NCASOHO2980 NDAIOC00680	$\begin{aligned} & \text { Anc_2.577 } \\ & \text { Anc_2.577 } \\ & \text { Anc_2. } 285 \\ & \text { Anc_2. } 285 \end{aligned}$	XNAG0A07220 XAFROIO1690 NCASOHO2960 NDAIOC00710
s	Anc_1.96 (LIN1), Anc_1.100 (YSP1)	$\begin{gathered} \text { Knag } \\ \text { Kafr } \end{gathered}$	XNAGOKO2480, XNAGOKO2490 XAFROA08480, XAFROA08490	$\begin{aligned} & \text { Anc_3.31 } \\ & \text { Anc_3.30 } \end{aligned}$	XNAGOK02500 XAFROA08500	Anc_3.35 Anc_3.35	XNAGOKO2470 XAFROA08470
T	Anc_1.95 (ORC5*)	$\begin{aligned} & \hline \text { Knag } \\ & \text { Kaff } \end{aligned}$	$\begin{aligned} & \hline \text { XNAGOD03580 } \\ & \text { XAFROFO3460 } \end{aligned}$	Anc_4.148 Anc_4.148	$\begin{aligned} & \hline \text { XNAGOD03570 } \\ & \text { XAFROFO3450 } \end{aligned}$	Anc_4.150 Anc_4.150	$\begin{aligned} & \hline \text { XNAGOD03590 } \\ & \text { XAFROFO3470 } \end{aligned}$
u	Anc_1.92 (CWC23)	$\begin{aligned} & \hline \text { Knag } \\ & \text { Kafr } \end{aligned}$	XNAGOB01890 XAFROA01530	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { Anc_1.282 } \\ \text { Anc_1.282 } \end{array}$	XNAGOB01880 XAFROA01520	Anc_1.284 Anc_1.284	XNAGOB01910 XAFROA01540
v	Anc_1.88 (TFC4), Anc_1.89 (UFD1), Anc_1.90 (YGL140C)	$\begin{gathered} \text { Knag } \\ \text { Kafr } \end{gathered}$	XNAGOC00550, XNAG0C00540, XNAGOC00530 XAFROD00470, XAFROD00460, XAFROD00450	Anc_1.46 Anc_1.47	XNAGOCOO520 XAFROD00440	Anc_1.48 Anc_1.48	XNAGOC00560 XAFROD00480
w	Anc_1.86 (TAM41)	$\begin{gathered} \text { Knag } \\ \text { Kafr } \end{gathered}$	XNAGOHO2120 XAFROH03410	Anc_2.270 Anc_2.270	XNAGOHO2130 XAFROH03420	Anc_2.272 Anc_2.272	XNAGOHO2110 XAFROHO3400
x	Anc_1.92 (CWC23), Anc_1.95 (ORC5*)	$\begin{aligned} & \hline \text { Ncas } \\ & \text { Ndai } \end{aligned}$	NCASOH03480, NCASOHO3490 NDAIOC00200, NDAIOC00190	$\begin{array}{\|l\|l\|} \hline \text { Anc_2.661 } \\ \text { Anc_2.661 } \\ \hline \end{array}$	NCASOH03470 NDAIOC00210	Anc_2.662 Anc_2.662	NCASOH03520 NDAIOC00180
Y	Anc_1.88 (TFC4), Anc_1.89 (UFD1), Anc_1.90 (YGL140C)	$\begin{aligned} & \hline \text { Ncas } \\ & \text { Ndai } \end{aligned}$	NCASOB08010, NCASOB08020, NCASOB08030 NDAIOB05320, NDAIOB05310, NDAIOB05300	Anc_1.231 Anc_1.231	NCAS0B08000 NDAIOB05330	Anc_1. 235 Anc_1.235	NCAS0B08040 NDAIOB05290
z	Anc_1.86 (TAM41)	$\begin{aligned} & \text { Ncas } \\ & \text { Ndai } \end{aligned}$	NCASOB01420 NDAIOEO1340	$\begin{array}{\|l\|} \hline \text { Anc_8.649 } \\ \text { Anc_8.649 } \\ \hline \end{array}$	$\begin{aligned} & \text { NCASOB01410 } \\ & \text { NDAIOE01350 } \end{aligned}$	Anc_8.651 Anc_8.651	NCASOB01430 NDAIOEO1330
AA	Anc_1.80 (AVT2)	Ncas	NCASOJ01840	Anc_4.305	NCASOJ01830	Anc_4.308	NCASOJ01850
BB	Anc_1.77 (SLP1)	Ncas	NCASOH02780	Anc_5.567	NCASOH02770	Anc_5.569	NCASOH02790
CC	Anc_1.76 (TAF2)	Ncas	NCAS0B07500	Anc_1.311	NCASOB07510	Anc_1.312	NCASOB07490
DD	Anc_1.80 (AVT2)	Ndai	NDAIOIO0130	Anc_6.350	NDAIOIOO140	none (telomeric)	NDAIOIOO120
EE	Anc_1.77 (SLP1)	Ndai	NDAIOFO2310	Anc_6.190	NDAIOFO2300	Anc_6.192	NDAIOFO2320
FF	Anc_1.76 (TAF2)	Ndai	NDAIOB04850	Anc_4.29	NDAIOD04860	Anc_4.30	NDAIOD04840
GG	Anc_1.59 (VTA1)	Ndai	NDAIOJ02120	Anc_4.227	NDAIOJ02100	Anc_4.230	NDAIOJO2130
HH	Anc_1.100 (YSP1), Anc_1.119 (SLA2)	$\begin{aligned} & \text { Vopl } \\ & \text { Tpha } \\ & \text { Tbla } \end{aligned}$	Kpol_1028.50, Kpol_1028.49 XPHAOD03870, XPHAOD03880 XBLAOIO2320, XBLAOIO2330	$\begin{array}{\|l\|} \hline \text { Anc_6.328 } \\ \text { Anc_6.328 } \\ \text { Anc_6.328 } \end{array}$	Kpol_1028.51 XPHAOD03860 XBLAOI02310	$\begin{aligned} & \hline \text { Anc_6.330 } \\ & \text { Anc_6.330 } \\ & \text { Anc_6.330 } \end{aligned}$	Kpol_1028.48 XPHAOD03890 XBLAOIO2340
II	Anc_1.65 (PRM1)	$\begin{aligned} & \text { Vpol } \\ & \text { Tpha } \end{aligned}$	$\begin{gathered} \text { Kpol_388.9 } \\ \text { XPHAOF00270 } \end{gathered}$	$\begin{aligned} & \text { Anc_4.21 } \\ & \text { Anc_4.24 } \end{aligned}$	$\begin{gathered} \text { Kpol_388.8 } \\ \text { XPHAOFOO280 } \end{gathered}$	$\begin{aligned} & \text { Anc_4.25 } \\ & \text { Anc_4.25 } \end{aligned}$	$\begin{aligned} & \text { Kpol_388.10 } \\ & \text { XPHAOFOO260 } \end{aligned}$
J	Anc_1.123 (DIC1)	Scer Cgla Knag Kafr Ncas Ndai Nd	YLR348C (DIC1) CAGLOG01166g XNAGOB05730 XAFROA06340 NCASOA03540 NDAIOA03380	Anc_4.180 Anc_4.180 Anc_4.180 Anc_4. 180 Anc 4.180 Anc_4.180	YLR347C (KAP95) CAGLOG01144g XNAGOB05720 XAFROA06350 NCASOA03530 NDAIOA03370	Anc_4.182 Anc_4.182 Anc_4.183 Anc_4.182 Anc_4.185 Anc_4.185	YLR350W (ORM2) CAGLOGO118889 XAGGOB57740 XARROAO6330 NCASOAAB5550 NDAIOAO3390
KK	Anc_1.130 (RNH203)	Scer	YLR154C (RNH203)	Anc_8.367	YLR153C (ACS2)	rDNA, Anc_8.376	YLR163C (MAS1)
LL	Anc_1.130 (RNH203)	Cgla	CAGLOFOO3419	Anc_1.526	CAGLOF00363g	Anc_1.529	CAGLOF00319
MM	Anc_1.129 (NCE101)	$\begin{aligned} & \hline \text { Ncas } \\ & \text { Ndai } \end{aligned}$	NCASOD04660 NDAIOIOO300	$\begin{array}{\|l\|l\|} \hline \text { Anc_6.349 } \\ \text { Anc_6.349 } \\ \hline \end{array}$	NCASOD04650 NDAIOI00310	$\begin{aligned} & \hline \text { Anc_6.377 } \\ & \text { Anc_6.377 } \end{aligned}$	NCASOD04670 NDAIOIOO290

