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Abstract  
Seagrass, seaweed, and bivalves are ubiquitous foundation species in estuarine ecosystems 

that often have positive impacts on biodiversity. However, relatively little is known about 

their distribution patterns on the South Island of New Zealand (specifically, Zostera muelleri, 

Ulva spp. and shell deposits from the ubiquitous cockle Austrovenus stutchburyi) and their 

effects on local biodiversity across spatiotemporal scales. To address this research gap, nine 

estuaries were sampled in winter 2020 across tidal elevations and along a latitudinal gradient 

from 41°S to 46 °S, and in two estuaries around the Banks Peninsula (every month from 

November 2020 to October 2021). Small- and large-scale sampling methods were used to 

quantify co-occurrence patterns between foundation species (Chapter 2) and their effects on 

associated plant and animal communities (Chapter 3) in both the latitudinal and seasonal 

surveys. Such multifactorial baseline data collected across spatiotemporal scales are 

important to gauge how estuaries may be affected by future stressors, like eutrophication, 

warming, and other anthropogenic stressors. 

In Chapter two, geotagged small scale digital photos and large-scale drone images were 

collected and analysed for percent cover of foundation species across latitudes and seasons. I 

found strong effects of latitude and season on the abundance of all foundation species, and 

results were consistent between scales. Zostera was most abundant in southern estuaries and 

in winter months whereas surface deposited shells were most abundant in northern estuaries 

and also in winter months. By comparison, Ulva was generally found in low abundances but 

was relatively common in the Avon Heathcote Estuary in summer months. I also found 

negative correlations between seaweed and seagrass suggesting that Ulva may have negative 

effects on Zostera, for example through competition for light or by creating adverse 

environmental conditions such as low oxygen levels.   

In Chapter three, species-habitat-associations were quantified in quadrats (e.g., limpets 

attached to shells, crabs hiding under seaweed) and invertebrate abundances and taxonomic 

identities were quantified from cores collected in bare mud, seagrass beds and seaweed mats.  

Quadrats and cores were collected from the same latitudes and seasons as described in 

Chapter 2, but also included sampling across two elevation levels. The quadrate data showed 

that abundances and richness of habitat-interactions were highest in the central estuaries at 

low elevation and in summer months. This survey highlighted that dead bivalve shells, a 

habitat often ignored in estuarine surveys, were common across estuaries, seasons, and 

elevations (as also shown in Chapter 2) and that shells had positive effects on biodiversity. 



3 
 

Examples of habitat-interactions that explained much of the multivariate variability in 

community structures included Ulva-on-shell, Notoacmea-on-Diloma, Diloma-on-shells, 

Notoacmea-on-shells, and Micrelenchus-on-shells, again highlighting the importance of 

shells providing habitat for estuarine epifauna.  The sediment core data showed the same 

overall pattern as the quadrate data, but also highlighted that estuarine foundation species are 

inhabited by more individuals and taxa compared to bare sediments and that abundances and 

richness was slightly higher in cores were seagrass and seaweed co-occurred compared to 

cores where foundation species were found alone.  Taxa that explained most of the variation 

in community structure in the sediment cores included many molluscs (e.g., Diloma, 

Micrelenchus, Notoacmea, Austrovenus, Zeacumantus) again emphasising the importance of 

shell-forming molluscs in estuarine habitats. 

The results were discussed in a context of latitudinal differences in temperature (for Zostera) 

and seasonal changes in temperature, light, desiccation, and grazing (for Zostera and Ulva) 

and possible differences in hydrodynamic conditions and sedimentation and erosion rates (for 

shells).  Richness and abundances of animals were, compared to previous work done in the 

same regions in 2016, slightly lower, perhaps because these estuaries experienced unusually 

hot summers in 2017/18 and 2018/19, or they may experience stronger anthropogenic stress 

e.g., from eutrophication. For example, after a short marine heatwave in February 2020, I 

recorded a decrease in seagrass cover and less habitat-interactions, suggesting that effect 

from high temperature may be rapid but also short-lived. This study added multifactorial 

baseline data about foundation species and their associated ecological communities, from 

moderately-to-poorly sampled estuaries on the South Island of New Zealand. I conclude that 

(i) estuarine foundation species, like seagrass, seaweeds, and shells, facilitate biodiversity 

across spatiotemporal gradients, (ii) facilitation is slightly stronger when foundation species 

(here seagrass and seaweed) cooccur, and (iii) surface deposited shells are common in 

estuaries, also increases diversity, and therefore should be included in future surveys and 

experimental estuarine studies.  
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Chapter 1: Introduction  
 

1.1. Estuaries are under siege from changing climate and other human stressors 

Estuaries are semi-enclosed ecosystems where rivers meet the ocean (Hume et al. 2007, 

Hume et al. 2016). Estuaries are therefore characterized by strong salinity gradients and 

strong influences by the adjacent terrestrial, freshwater, and marine ecosystems (Kennish 

2002, Hume et al. 2007, Hume et al. 2016). Estuaries are typically shallow with high benthic-

pelagic coupling, and they can be highly productive because of high nutrients inputs (Blaber 

et al. 2000, Day Jr et al. 2012). Estuaries are important for humans because they provide 

ecosystem services, such as fishery grounds, attenuating storm surges, acting as nursery 

habitats for commercial important species, capturing, and storing blue carbon, providing 

refugia from predators or ameliorating abiotic stressors, as well as providing a wide variety of 

cultural and spiritual values (Kennish 1991, Blaber et al. 2000, Bertness et al. 2001, Kennish 

2002, Angelini et al. 2011, Barbier et al. 2011, Thomsen et al. 2018b). In New Zealand, there 

are ca. 440 estuaries that vary wide in climate, geology, landforms, and oceanographic 

conditions, creating a variety of different types (Hume and Herdendorf 1988, Hume et al. 

2007, Hume et al. 2016, Berthelsen et al. 2020). Within these dynamic systems, biodiversity 

is often supported and augmented by habitat-forming foundation species (Dayton 1972, Day 

Jr et al. 2012, Bible and Sanford 2016). The positioning of estuaries at the river-land-sea 

interface, implies that these systems, over millennia, have been hotspots of human activity 

and today most major cities are positioned around estuaries (Kennish 2002, McLusky and 

Elliott 2004, Day Jr et al. 2012). Estuaries are therefore highly modified ecosystems, that 

have been dramatically altered by overfishing, causeways, hard structures, altered drainage 

patterns, urbanisation, industrial development, introduction of invasive species, pollution 

with oils, heavy metals and other toxins, accelerated sedimentation, and eutrophication 

(Kennish 2002, McLusky and Elliott 2004, Day Jr et al. 2012). Because of their shallow 

semi-enclosed geomorphology, estuaries can also be susceptible to diffusive anthropogenic 

stressors, like climate changes and heatwaves (Kennish 1991, 2002, Diaz et al. 2008, Grilo et 

al. 2011, Wetz and Yoskowitz 2013, Cheng et al. 2015, Robins et al. 2016). Understanding 

how estuarine ecosystems and their biological communities adapt and respond to 

anthropogenic stress is imperative to manage and conserve these important systems.  

 



10 
 

1.2. Estuarine foundation species 

Foundation species provide habitat, food and refugia, ameliorate stress and provide substrate 

for recruitment (Dayton 1972, Ellison et al. 2005). Foundation species also control biological 

interactions and reduce abiotic stress (Paine and Vadas 1969, Dodson 1970, Dayton 1972, 

Mills et al. 1993, Power et al. 1996, Ricciardi et al. 1997, Diaz and Rützler 2001, Ellison et 

al. 2005, Altieri and Witman 2006, Angelini et al. 2011, Schmidt et al. 2011, Foster 2019). 

Typical foundation species in marine ecosystems include coral reefs, kelp forest, seagrass 

beds, mangroves, saltmarshes, and reefs build by shell-forming species, where all these – 

minus corals and kelp – are important in estuaries (Dayton 1972, Stachowicz 2001, Gutiérrez 

et al. 2003, Ellison et al. 2005, Angelini et al. 2011, Barbier et al. 2011, Osland et al. 2013).  

Sedimentary estuaries are relatively homogenous across a landscape, but marine foundation 

species create complex three-dimensional structures that transforms the landscape into a more 

heterogeneous diverse system (Thomsen et al. 2016, Ramus et al. 2017, Foster 2019). In New 

Zealand estuaries, the typical foundation species are perennial clonal seagrasses (Zostera 

muelleri), seaweeds (Ulva spp. and Agarophyton chilensis (former Gracilaria chilensis)), 

filter feeding infaunal bivalves (in particular Austrovenus stutchburyi) and mobile shell-

forming fauna (like trochid snails) (Savage et al. 2012, Thrush et al. 2014, Gongol and 

Savage 2016, Thomsen et al. 2016, Foster 2019)(see also Section 1.5). Estuarine foundation 

species also provide essential ecosystem services like erosion control, wave and storm 

attenuation, filtration of organic matter, and sediment stabilization (Turner and Schwarz 

2006, Turner et al. 2007, Angelini et al. 2011, Savage et al. 2012, Fraser et al. 2014, Thrush 

et al. 2014, Cheng et al. 2015, Gongol and Savage 2016). Estuaries in New Zealand are, like 

estuaries worldwide, susceptible to and affected by anthropogenic stressors and climate 

change (Robertson et al. 2002, van Houte-Howes et al. 2004, Bloomfield and Gillanders 

2005, Nelson et al. 2015, Gongol and Savage 2016, Berthelsen et al. 2018). Human impacts 

are not only affecting the foundation species themselves, but also the animal communities 

that depend on them (Norkko 1998, Santelices and Marquet 1998, Allison 2004, Boström et 

al. 2006, Tomas et al. 2015). Cumulative effects often occur, e.g. small increases in 

temperature combined with excess nutrients can cause much stronger algal blooms (Norkko 

1998, Santelices and Marquet 1998, Allison 2004, Vaquer‐Sunyer and Duarte 2011, Nelson 

et al. 2015), and create hypoxic conditions stressing fauna and flora living underneath the 

algal mats (Altieri and Witman 2006, Marsden and Bressington 2009, Vaquer‐Sunyer and 

Duarte 2011). Such elevated temperature and nutrients can have major impact on 

biogeochemical process of seagrasses (Borum et al. 2005, Koch et al. 2007, Lee et al. 2007, 
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Höffle et al. 2012), affect the physiological function of estuarine invertebrates (Pörtner and 

Knust 2007, Rosenzweig et al. 2008), and causing large boom and bust cycles in seaweed 

(Nelson et al. 2015, Siciliano et al. 2019). Cumulative impacts from co-occurring human 

stressors on estuarine foundation species, although likely to be common, is still poorly studies 

across spatiotemporal scales (Kennish 1991, 2002, Harley et al. 2006).  

 

1.3. Spatiotemporal surveys as a research tool 

Research tools used to understand changes to communities include space for time substitution 

(Pickett 1989, Damgaard 2019), long-term studies (Strayer et al. 1986), and experiments 

(Dayton 1975). Long term studies were excluded here because of time constrains associated 

with a MSc thesis. Furthermore, field and laboratory experiments were not done partly 

because of Covid 19 threats (i.e., Covid-19 could, at any time, terminate an experiment), 

partly because laboratory facilities closed because of earthquake risks. Laboratory and field 

experiments also have limited ability to identify impacts from large scale stressors like 

climate changes and heating. For example, it is difficult to simulate extreme climatic events 

both in the lab and field experiments (Wernberg et al. 2012, Smale et al. 2015, Ashton et al. 

2017, Pegado et al. 2020). Space for time substitution can instead be a useful approach to 

detect trends in community structure across regions (Pickett 1989) and are particular common 

along latitudinal gradients (Willig et al. 2003, Tuya et al. 2009, Wernberg et al. 2010a, 

Wernberg et al. 2011b, Tuya et al. 2012, Wernberg et al. 2018). For example, quantifying 

distribution abundances of species across latitudes (including warm and cold regions) and 

seasons (including warm and cold months) allows for hypotheses to be generated about what 

species will be most affected in a future warmer world (Strayer et al. 1986, Pickett 1989, 

Damgaard 2019). Also, measuring seasonal and latitudinal changes in species distribution 

through repeated measures on different scales gives a greater option to detect more cryptic 

patterns.  This study here build on work by Foster (2019) and Siciliano (2018) who also 

quantified distribution of estuarine foundation species and their impacts on associated 

ecological communities (in 2015/16) in different estuaries in the South Island. More 

specifically, these studies focused specifically on how co-occurring habitat formers had 

positive impact on biodiversity across a range of spatial scales – as done in many other types 

of ecosystems (Altieri et al. 2007, Thomsen et al. 2010a, Angelini et al. 2011, Thomsen et al. 

2018b, Gribben et al. 2019). 
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1.4. Objectives and reading guidelines 

The main research objectives were to test if (1) estuarine foundation species varied across 

spatiotemporal gradients, including latitudes, anthropogenic stress, elevation, and season, and 

(2) if the different foundation species had different effects on associated ecological 

communities and (3) if associated ecological communities also varied across the same 

spatiotemporal gradients. Such multifactorial baseline data are important to gauge how 

estuaries may be affected by future stressors, like eutrophication, warming, and other 

anthropogenic stressors. These tests were addressed by quantifying distribution and 

abundances of foundation species and their associated communities using supplementary 

methods across the spatiotemporal scales mentioned above. More specifically, here in 

Chapter 1 I introduced estuarine foundation species, study locations, study organisms and 

general objectives. In Chapter 2 I describe surveys that, from small-scale photos and large-

scale drone images, quantify abundances of foundations species across latitudes and seasons. 

I hypothesized that Zostera and Ulva generally have negative associations with each other 

because they compete for limiting resources (Thomsen et al. 2012b) and that shells are 

positively associated with Zostera and Ulva because lowered hydrodynamic forcing in beds 

of aquatic plants can facilitate shell depositions (Prager and Halley 1999). Chapter 3 describe 

surveys that, from sediment cores and quadrats, quantify distributions and abundances of 

estuarine animals across latitudes, elevations, and seasons, associated with different types of 

habitats including bare mudflats, seagrasses, seaweed and scattered dead shells. Finally, 

Chapter 4 discuss and compare results from the two data chapters. 

 

1.5. Study System, local foundation species and main habitat-users 

During the summer of 2017-2018, New Zealand experienced its hottest summer on record 

(Salinger et al. 2020), with conditions exacerbated by warming events which are typical of La 

Niña conditions (Brandolino 2018). The combined effect of warm air temperatures and high 

sea surface temperature saw an overall increase of 2.1°C above normal average air 

temperature (Brandolino 2018). The 2018-2019 summer was also warm being 1.2°C above 

normal average air temperature (Fedaeff 2019). Within New Zealand, there remains a 

knowledge gap about how coastal communities respond to hot summers (Thomsen et al. 

2019a, Salinger et al. 2020). The occurrences of marine heatwaves (as observed near 

Christchurch, see Fig. 1.7.7) provide an important context to understand distribution patterns 

of estuarine organisms.  
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The main study objectives were addressed by sampling foundation species and their 

associated communities in sedimentary estuaries in the South Island of New Zealand. The 

distribution and abundances of foundation species and associated communities, were 

quantified from nine estuaries located in three latitudinal regions (Fig.1.7.3., Table 1.8.1.) – 

including Nelson Haven (-41.2361, 173.316, North), Cable Bay (-41.1688, 173.442032, 

North), Okiwi Bay (–41.2645, 173.916763, North), Avon Heathcote (-43.549, 172.746, 

Central), Duvauchelle Bay (-43.752, 172.927, Central), Robinsons Bay (-43.763, 172.960, 

Central), Papanui Inlet (-45.8389, 170.692, South), Portobello Bay (-45.8304, 170.672, 

South) and Waipuna Bay (-45.7875, 170.67, South). In addition, Avon Heathcote and 

Duvauchelle Bay were sampled more intensively to test if foundation species and their 

associated communities varied across seasons. These two estuaries were chosen because 

seagrass, seaweeds, and shells were common and because they had been sampled extensively 

in the past with similar methods (Marsden and Knox 2008, Marsden and Bressington 2009, 

Marsden and Maclaren 2010a, Thomsen et al. 2016, Siciliano 2018, Foster 2019). The Avon 

Heathcote Estuary is a ca 8 km2 bar-build estuary located within the city limited of 

Christchurch, New Zealand (Jones et al. 2005, Marsden and Knox 2008, Gibson 2016). 

Duvauchelle Bay is, by comparison a smaller (ca. 0.22 km2) mudflat located at the end of 

Akaroa Harbour, on the Bank’s peninsula (Fig. 1.7.5).  

Estuarine foundation species of particular interest were the seagrass Zostera muelleri, the 

endemic cockle Austrovenus stutchburyi and seaweeds, dominated by Ulva spp. (Jones et al. 

2005, Foster 2019).  New Zealand’s only seagrass species Zostera muelleri is a perennial, 

colonial species found in intertidal zones throughout New Zealand’s coastal waters (Turner 

and Schwarz 2006, Gibson 2016). Austrovenus is a widely distribution intertidal bivalve 

(Lohrer et al. 2016) that form biogenic habitat on mudflats (Mouritsen and Poulin 2003, 

Mouritsen 2004) and within seagrass beds (Thrush et al. 2006, Thrush et al. 2012, Thrush et 

al. 2014, Lohrer et al. 2016, Woodin et al. 2016). Dead shells of Austrovenus often 

accumulate on the sediment surface where they, like other bivalve shells, can provide habitat 

refuge, and ameliorate intertidal desiccation stress, and thereby potentially facilitate 

biodiversity (Posey et al. 1999, Lehnert and Allen 2002, Gutiérrez et al. 2003, Tolley and 

Volety 2005, Grabowski and Peterson 2007, Schejter and Bremec 2007, Gribben et al. 2009, 

Brett et al. 2011, Thomsen et al. 2016, Foster 2019). Still, ecological effects from surface 

deposited shells is poorly studied (Gutiérrez et al. 2003, Foster 2019). Ulva spp. is the most 

abundant genus of seaweed in New Zealand estuaries (Adams 1997, Jupp et al. 2007, 
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Marsden and Maclaren 2010b). Ulva is also a habitat-former and can be a primary food 

source for many estuarine grazers (Jorgensen et al. 2010, Johnston and Lipcius 2012, 

Thomsen et al. 2013, Lyons et al. 2014, Thomsen et al. 2016, Foster 2019). Ulva can have 

boom and bust cycles triggered by excess nutrient inputs sometimes causing localized 

hypoxia (through night-respiration and when Ulva decomposes) that can be detrimental to 

other estuarine organisms (Figueroa et al. 2009, Marsden and Bressington 2009, Marsden and 

Maclaren 2010b, Guidone et al. 2015, Nelson et al. 2015, Siciliano et al. 2019). Estuarine 

species that typically are found associated with these foundation species includes small 

limpets (e.g., Notoacmea helmsii), sea anemones (e.g., Anthopleura aureoradiata), various 

gastropods (e.g., Diloma spp., Micrelenchus tenebrosus), and crabs (e.g., Halicarcinus 

whitei) (Jones et al. 2005, Marsden and Knox 2008, Thomsen et al. 2016, Siciliano 2018, 

Siciliano et al. 2019). 
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1.7. Figures 

Figure 1.7.1. Images of foundation species  

Landscape ((left) and closeup (right) images of the estuarine foundation species studied here, 

including Zostera muelleri (A-B), dead shells of Austrovenus stutchburyi (C-D), a live A. 

stutchburyi (E, with an attached large Ulva), and Ulva spp. (F-G). 
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Figure 1.7.2. Methods photos  

Images shows the main methods used in the thesis: a typical sample image from the large 

scale drone survey (A), a typical sample image from the small scale photo survey (B), a 

typical sample from the quadrat survey (C), example of close-up observations of three 

habitat-interactions in the quadrate survey (D; Elminius modestus, Ulva spp. and 

Agarophyton chilensis attached to Austrovenus stutchburyi), example of the content from a 

sediment core in a sorting tray (E), invertebrates found in the same core – including bivalves, 

polychaetes, crabs, gastropods and dead shells (F). 
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Figure 1.7.3. Study sites in the latitudinal survey 

Latitudinal survey sites on the South Island of New Zealand done in winter 2020. The Avon Heathcote and Duvauchelle Bay were also sampled 

each month for a year. Map was created using Google Earth Pro (Google 2020). 
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Figure 1.7.4. Study sites in the seasonal survey – quadrate sampling in the Avon Heathcote Estuary 

Seasonal quadrat sampling sites located in the Avon Heathcote estuary. Map was created using Google Earth Pro (Google 2020). The top right 

image shows a typical landscape photo of the estuary with unvegetated mudflats and patches with seagrass and some interspersed Ulva.  
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Figure 1.7.5. Study sites in the seasonal survey – quadrate sampling in the Duvauchelle Bay 

Seasonal quadrat sampling sites located in Duvauchelle Bay. Maps was created using Google Earth Pro (Google 2020). The top right image 

shows a typical landscape photo of the estuary with unvegetated mudflats and patches with seagrass (and only little interspersed Ulva). 
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Figure 1.7.6. Study sites in the seasonal survey – drone surveys  

Seasonal drone sampling sites in the Avon Heathcote Estuary including Plover Street (1) and Heron Street (2), and Duvauchelle Bay (3) on 

Banks Peninsula site. Map was created using Google Earth Pro (Google 2020)  
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Figure 1.7.7. Sea-surface temperature and marine heatwave near Christchurch (north of Banks Peninsula), New Zealand  

The figure shows absolute temperature (A), and maximum intensity (B) of marine heatwaves that occurred ca. 1 km off the coast of 

Christchurch, New Zealand, from December 2015 to January 2021. Maximum intensity is defined in (Hobday et al. 2016), as the highest 

temperature anomaly during the heatwave. Graphs were created with the Marine heatwave tracker (Schlegel 2020). Note that there were several 

smaller heatwaves in 2020 (B), i.e., when I did my seasonal surveys. 
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1.8. Tables 

Table 1.8.1. Table of estuaries sampled in the latitudinal and seasonal surveys. 

Table of characteristics of the sampled estuaries were estuary type were classified according to Hume et al. (2016), and anthropogenic stress is 

described in Chapter Two (2.2.1.) Study sites and sampling dates. The Avon Heathcote Estuary and Duvauchelle Bay were sampled in more 

detail in the seasonal survey. 

Estuary Latitude Longitude Region Estuary type Catchment 

Anthropogenic 

Stress 

Nelson Haven  -41.2361 173.3160 North Tidal lagoon Nelson Haven High 

Delaware Bay -41.1688 173.4420 North Tidal lagoon Delaware Estuary Moderate 

Okiwa Bay -41.2645 173.9168 North Deep drowned valley Queen Charlotte Sound Low 

Avon Heathcote  -43.5490 172.7460 Central Tidal Lagoon Avon-Heathcote High 

Duvauchelle Bay  -43.7520 172.9270 Central Deep drowned valley Akaroa Harbour Moderate 

Robinsons Bay  -43.7630 172.9600 Central Deep drowned valley Akaroa Harbour Low 

Papanui Inlet  -45.8389 170.6920 South Tidal Lagoon Papanui Inlet High 

Portobello Bay  -45.8304 170.6720 South Deep drowned valley Otago Harbour Moderate 

Waipuna Bay  -45.7875 170.6700 South Deep drowned valley Otago Harbour Low 
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Chapter 2: Distribution, abundance, and associations between 

estuarine foundation species in the South Island of New Zealand 
 

2.1. Introduction  

Foundation species are ecologically important organisms that create habitat and refugia and 

control ecosystem functions (Dayton 1975, Ellison et al. 2005, Thomsen 2010). Foundation 

species are often sessile organisms that are abundant and modify environments (Angelini et 

al. 2011, Fraser et al. 2014, Cheng et al. 2015). Coastal foundation species such as kelp, 

fucoids, various estuarine seaweeds, oysters, corals, mangroves, and seagrasses (Angelini et 

al. 2011, Ramus et al. 2017, Thomsen et al. 2018b, Ellison 2019) provide ecosystem services 

like sediment stabilization, reduced wave attenuation, blue-carbon storage, refugia from 

predation, ameliorated abiotic stress, increased productivity, biodiversity, ecosystem 

resilience, and nursery habitats for commercial species (Angelini et al. 2011, Thomsen et al. 

2018b, Ellison 2019). The most common estuarine foundation species are seagrasses, 

seaweeds, and surface-dwelling bivalves (Thomsen et al. 2013, Foster 2019, Fitzsimons et al. 

2020, McAfee and Connell 2020, McKenzie et al. 2020). For example, clonal seagrass binds 

sediments and provide habitat for fish and crabs, sessile oyster and mussels create reef 

structures, and intertidal seaweed reduces erosion and predation effects (Coen et al. 2007, De 

Boer 2007, Ramus et al. 2017, Thomsen et al. 2019b). Bivalves can be foundation species, 

not only when they are alive, but also when dead shells accumulate on sediment surfaces 

(Gutiérrez et al. 2003). Dead shells can alter the biogeochemistry and physical characteristics 

of the sediments and provide hard substratum for the attachment of sessile organisms, and 

refugia from predators and abiotic stress (Kidwell and Jablonski 1983, Kidwell 2002, 

Casebolt and Kowalewski 2018, Foster 2019). Seagrass, seaweeds, and shells are abundant in 

New Zealand, although most research has focused on seagrass (Turner and Schwarz 2006, 

Turner 2007, Jones et al. 2008, Nelson et al. 2015, Lohrer et al. 2016, Thomsen et al. 2016, 

Plew et al. 2020). More specifically, estuarine foundation species in New Zealand are 

dominated by the seagrass, Zostera muelleri, different ephemeral and stress-tolerant 

seaweeds, like Ulva spp., and the endemic cockle Austrovenus stutchburyi (hereafter Zostera, 

Ulva and Austrovenus¸ respectively) (Turner and Schwarz 2006, Turner 2007, Jones et al. 

2008, Ross et al. 2012, Nelson et al. 2015, Lohrer et al. 2016, Thomsen et al. 2016, Foster 

2019, Plew et al. 2020). Most studies on estuarine foundation species have quantified 

distribution and abundances of individual species in isolation (see previous references), 
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although there is growing evidence that multiple foundation species often co-occur and 

sometimes increase biodiversity through facilitation cascades (Angelini et al. 2011, Bishop et 

al. 2013, Thomsen et al. 2016, Foster 2019, Gribben et al. 2019, Siciliano et al. 2019).  

Estuaries in New Zealand are exposed to a variety of anthropogenic stressors, including 

elevated sediment and nutrient levels, heavy metals, plastics and other pollutants, altered 

drainage patterns, restricted flow from causeways, climate changes, and marine heatwaves 

(Thomsen et al. 2009, Berthelsen et al. 2018, Anon. 2019, Oliver et al. 2019, Berthelsen et al. 

2020, Salinger et al. 2020). For example, many coastal foundation species have already been 

stressed by heatwaves (Smale et al. 2019, Straub et al. 2019) and one of the world’s most 

extensive seagrass habitats (Shark Bay, Western Australia) declined sharply after the 

extremely hot summer of 2010/11 (Fraser et al. 2014, Thomson et al. 2015). Similar 

heatwaves have recently been observed in New Zealand (Thomsen et al. 2019a, Salinger et 

al. 2020), but it is unknown if estuarine foundation species were affected. To understand how 

estuarine foundation species will respond to increasing levels of these types of stress and to 

manage future populations requires baseline data about their distribution, abundance, and co-

occurrence patterns. Such baseline data should be collected with standardized and rigorous 

methods across spatiotemporal scales (Caughlan and Oakley 2001, Nichols and Williams 

2006, Berthelsen et al. 2018, Berthelsen et al. 2020). Currently, these data are lacking for 

many estuarine foundation species on the South Island of New Zealand. 

To address this research gap, I quantified the distribution, abundance, and co-occurrence 

patterns of Zostera, Ulva and surface deposited shells on the South Island of New Zealand. 

Specifically, I asked (a) if abundances and distribution of estuarine foundation species change 

across season and latitude? And (b) do surface deposited shells, Zostera, and Ulva co-occur 

and if so - do they have positive, neutral, or negative associations?  The questions were 

addressed by combining surveys on small (c. 1 m2; from camera images), and large (c. 500 

m2, from drone images) scales across a latitudinal gradient (in 9 estuaries) and across seasons 

(in a single estuary). I hypothesized that Zostera and Ulva generally have negative 

associations because they compete for limited resources (Thomsen et al. 2012b) and that 

shell-deposits are positively associated with both Zostera and Ulva because lowered 

hydrodynamic forcing facilitates shell depositions (Prager and Halley 1999). 
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2.2. Methods  

 2.2.1. Study sites and sampling dates  

For the latitudinal study, foundation species were quantified in three northern, three central 

and three southern estuaries. Each estuary within each region, represents relatively a low, 

moderate, or high level of ‘anthropogenic stress’ (estimated from nearby population sizes, 

riverine nutrient inputs, etc, hereafter just ‘stress’, see Table 1.8.1. in Chapter 1). Specifically, 

I sampled in Nelson Haven (-41.2361 S, 173.316 E, North, high stress), Cable Bay (-41.1688 

S, 173.442032 E, North, moderate stress),  Okiwa Bay (–41.2645 S, 173.916763 E, North, 

low stress), Avon Heathcote (-43.549 S, 172.746 E, Central, high stress), Duvauchelle Bay (-

43.752 S, 172.927 E, Central, moderate stress), Robinsons Bay (-43.763 S, 172.960 E, 

Central, low stress), Papanui Inlet (-45.8389 S, 170.692 E, South, high stress), Portobello Bay 

(-45.8304 S, 170.672 E, South, moderate stress) and Waipuna Bay (-45.7875 S, 170.67 E, 

South, low stress). Northern estuaries were sampled from June 1 to June 5, central from 

September 3 to September 11, and southern estuaries from July 22 to June 26 (all in 2020). I 

also sampled Avon Heathcote estuary across seasons, because there are existing temporal 

data for this site (Foster 2019) from between November 2019 to October 2020. 

 

2.2.2. Study 1: Close-up survey across latitudes 

Small-scale distribution patterns of Zostera, Ulva, dead surface shells, rocks (including 

boulders), and mud (substrate without rocks or foundation species) were sampled with digital 

photos covering transects from the upper tidal shore to the shallow subtidal zone (see map on 

Fig. 1.7.2. in Chapter 1).  ndividual ‘samples’ were geotagged digital images taken 

approximately 1 meter above and perpendicular to the substrate using a Nikon Coolpix 

AW130 camera. Images covered ca. 1 m2 (Thomsen et al. 2018a) and were >1 m apart. A 

total of 836 samples were collected across the nine estuaries (37-149 from each estuary). I 

used digital images to survey small-scale distribution patterns because digital images provide 

a permanent record that can be revisited for checking data (Foster et al. 1991, Meese and 

Tomich 1992), and because many samples can be collected in a few hours during low tides 

(i.e., I only had the opportunity to sample a single low tide per estuary – where I also had 

collect drone images (this Chapter), sediment cores (Chapter 3) and do visual invertebrate 

surveys (Chapter 3). However, the disadvantage of this method is that abundances of co-

occurring subcanopy foundation species will be underestimated (as they are covered by a 

larger canopy-forming foundation species) (Foster et al. 1991, Meese and Tomich 1992). 
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2.2.3. Study 2. Landscape survey across latitudes 

The large-scale distributions of Zostera, Ulva, dead shells, rocks, and mud were sampled with 

drone-images. Drone surveys could not be done at Nelson Haven due to no-fly-zone 

regulations (Services 2021, UAVNZ 2021) or Papanui Inlet and Portobello Bay because of 

bad weather. Drone images were captured perpendicular to the substrate at approximately 20 

meters altitude using a DJI Mavic mini (47-80 images per estuary). At each estuary, I first 

laid out transect tapes near the upper intertidal zone. Starting at the 50-meter mark, the drone 

hovered at c. 20 m elevation to capture, record, and ground-truth the left and right bounds of 

the image. These measurements were used to calculate area per image using Image J software 

(Rueden et al. 2017). Three 150 m transects were flown from the upper intertidal zone 

towards the upper subtidal zones (also at 20 meters altitude) with starting points at 0, 50 and 

100 m, respectively. To correct an error in altitude readings when drone altitude reading was 

at 0.0 meters, the distance from the bottom of the drone to the substrate was recorded to 

correct altitude reading post sampling event. Images were analysed for percent cover of 

Zostera, Ulva, dead shells, bare mud, and rocks. 

 

2.2.4. Study 3: Close-up survey across seasons 

A close-up photo survey was done to compare the distribution of Zostera, Ulva, dead shells, 

rocks, and mud, in summer (February 2020, 170 samples) and winter (July 2020, 88 samples) 

from Heron Street in the Avon Heathcote estuary (-43.549 S, 172.746 E) using methods 

described for study 1. 

 

2.2.4. Study 4: Landscape survey across seasons  

Drone transects were done during spring low tide at Plover Street (-43.549 S,172.746 E) and 

Heron Street (-43.5496 S, 172.746 E), over ten months to quantify seasonal changes of 

foundation species using similar methods as described for study 2. The starting position was 

the same for every flight to account for GPS and altitude positioning error. Each flight started 

from the foreshore and continued horizontally across the bay, keeping tidal elevation 

consistent throughout each flight and each transect. Two transects, 200 m long and separated 

by a minimum of 75 m, were done at each site. A total of 160 images were captured for 
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Plover Street (mean of 16 per transect per month) and 147 for Heron Street (mean of 15 per 

transect per month. Image analysis was done as described for study 1. 

 

2.2.5. Statistical analysis  

Effect of latitude and anthropogenic stress was tested with two-way ANOVAs on percent 

cover of Zostera, Ulva, surface shells, rocks, and mud for the small-scale photo survey but 

with separate 1-way ANOVAs for the large-scale drone survey (because data was missing 

from three estuaries so that I could not test for interaction effects). Due to these missing data, 

latitudinal effects from central and northern moderate and low anthropogenic stress factors 

sites were also tested with a two-way ANOVA. Effect of season was tested with t-tests for 

the small-scale survey and 1-way ANOVA for the large-scale survey. All test factors were 

considered fixed, and percent cover data were arcsine transformed prior to analysis to reduce 

variance heterogeneity. Post-hoc Tukey Tests followed significant AN VA results (p ≤ 0.05) 

to identify specific treatment effects.  Finally, non-parametric Spearman rank correlation 

analysis was performed on abundances between all pairs of Zostera, Ulva and shells for each 

of the four studies. Analysis was conducted in R (Team 2020) and figures were produced 

using the package ggplot2 (Wickham 2016).  

 

2.3. Results 

2.3.1. Study 1: Close-up survey across latitudes 

Out of 718 images, 22% showed co-occurring Zostera, dead shells, and Ulva, 8 % Zostera 

and Ulva, 14% Ulva and dead shells, 18% Zostera and dead shells, 18% Zostera alone, 1% 

Ulva alone, 14% dead shells alone and 6% no foundation species. There were strong 

significant effects of latitude and stress (and their interaction) on abundances of Zostera, Ulva 

and shells (p < 0.001, minus ‘stress’ on Ulva, p = 0.052, Table 2.7.1). Overall, shell cover 

was relatively low, although the significant interaction (p < 0.001, Table 2.7.1) highlighted a 

high cover (50%) in the northern moderately stressed estuary (Cable Bay) compared to the 

other eight estuaries (0-25%, Fig. 2.5.1A).  This result was supported by post hoc tests that 

showed that this estuary was driving differences in shell cover across latitude (p < 0.001). No 

other patterns could be discerned for shells.  Cover of Zostera varied from 0 to 95% across 

the estuaries, with slightly higher cover in southern estuaries (Fig. 2.5.1B, Table 2.7.1).  A 

significant interaction (p < 0.001) reflected that latitudinal effects were strongest at 

moderately, compared to higher-stressed estuaries (Fig. 2.5.1B).  Post hoc tests showed this 
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was driven by variation within the southern estuaries, that were significantly different from 

central and northern estuaries (p < 0.001). Central and northern high-stress estuaries were 

also different (p < 0.001) but with no significant difference (p = 0.999) between central and 

southern high-stress estuaries.  Cover of Ulva was generally low, varying from 0-20% 

between estuaries (Fig. 2.5.1C). A significant interaction (p < 0.001) highlighted that 

although cover was generally high in the south, cover was higher in the central estuaries 

represented by low and high stress levels (Fig. 2.5.1C). The post hoc tests showed that 

moderate stress was different from both high (p < 0.001) and low (p = 0.001) stress. Ulva 

cover also varied between south and both central and northern regions (p < 0.001), but not 

between north and central regions. Cover of mud varied widely between estuaries (from 3-

80%, Fig. 2.5.1.D) being relatively high and consistent in central estuaries and varying more 

in southern and northern estuaries depending on stress levels.  Finally, I found low cover of 

rocks and boulders (< 15%), except in the low stress northern estuary (48%, i.e., Okiwa Bay, 

Fig. 2.5.1E).  There was no association between Ulva and Zostera (p = 0.62, r = -0.01, Fig. 

2.5.2A) but significant negative correlation between shells and Zostera (p = 0.001, r = -0.26, 

Fig. 2.5.2B) and positive correlation between shells and Ulva (p < 0.001, r = 0.25, Fig. 

2.5.2C) – the latter effect partly explained by a strong association observed in the moderate 

stressed northern estuary.  

 

2.3.2. Study 2: Landscape survey across latitudes  

Out of the 350 images, 67% showed co-occurring Zostera, dead shell, and Ulva, 8% Zostera 

and Ulva, 12% Ulva and dead shell, 4% Zostera and dead shells, 7% Ulva, 1% dead shells, 

1% had no co-occurring foundation species and no images found Zostera alone, 

The single factor ANOVAs showed significant effects of latitude on shell and Zostera (p < 

0.001) but not on Ulva (Table 2.7.2) whereas the two-way ANOVAs (here excluding the 

southern estuaries) found significant single factor effects of latitude and stress on shells and 

Zostera (p < 0.01 – with an additional significant Latitude × Stress interaction for shells) but 

not Ulva (p > 0.23, Table 2.7.3).  Highest shell cover was found in Cable Bay (a northern 

estuary with moderate stress, 55%, Fig. 2.5.3A) driving some of the patterns detected in the 

ANOVAs but post hoc tests also identified differences between Okiwa Bay (north) and 

Robinsons Bay and Duvauchelle Bay (central estuaries, p < 0.001). Zostera cover was 

highest in the low-stress southern estuary (80%) and decreasing from central to northern sites 

(< 50%, Fig. 2.5.3B). Post hoc tests showed significant effects between northern-central and 
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central-southern regions (p < 0.001) but not between northern and southern regions (p = 

0.224). There were not significant effects of latitude or stress on Ulva, emphasizing its 

variable abundances across all estuaries (0-15%), with the highest cover reported in the Avon 

Heathcote Estuary (Fig. 2.5.3C). Cover of mud was variable across latitudes and stress 

factors with mean cover ranging from 10-75% (Fig. 2.5.3D). By comparison, cover of large 

rocks and boulders was small with greatest cover found in Cable Bay (Fig. 2.5.3E) and no 

clear latitudinal patterns. Like in the close-up small-scale analysis, the latitudinal landscape-

scale correlation analyses found a significant negative correlation between shells and Zostera 

(p = 0.001, r = -0.17, Fig. 2.5.4B) but no relationship between Ulva and Zostera cover (p = 

0.65, r = -0.02, Fig. 2.5.4A). However, in contrast to the close-up latitudinal survey, I found a 

negative relationship between cover of shells and Ulva (p = 0.009, r = -0.14, Fig. 2.5.4.C). 

 

2.3.2. Study 3: Close-up seasonal changes 

Of the 258 photos, 63% showed co-occurring Zostera, dead shells, and Ulva, 2% Zostera and 

Ulva, 26% Ulva and dead shells, 4% Zostera and dead shells, 4% dead shells alone whereas 

no images showed Zostera alone, Ulva alone, or no foundation species at all.  There was 

significantly higher cover in winter than summer for both shells (14.45 ± 3.30 vs. 6.364 ± 

1.34, t(116) = 4.44, p < 0.001, Fig. 2.5.5.A) and Zostera (34.58 ± 6.36 vs. 16.45 ± 3.61, 

t(127) = 5.05, p < 0.001, Fig. 2.5.5.B). However, the pattern was opposite for Ulva that had 

significantly higher cover in summer (24.75 ± 4.85) than winter (5.55 ± 1.63, t(218) = 5.05, p 

< 0.001, Fig. 2.5.5C).  By comparisons, mud (Fig. 2.5.5D) and rocks (Fig. 2.5.5E) did not 

vary much between seasons with the former having around 50% cover and the latter only 1% 

cover.  There was (again) no relationship between Ulva and Zostera cover (p = 0.09, r = -

0.12, Fig. 2.5.6A) but significant negative correlation between shells and Zostera (p < 0.001, 

r = -0.28, Fig. 2.5.6B) and shells and Ulva (p = 0.003, r = -0.18, Fig. 2.5.6C). 

 

2.3.3. Study 4: Landscape survey across seasons 

Out of 435 drone images, 67% showed co-occurring Zostera, dead shells, and Ulva, 8% 

Zostera and Ulva, 12% Ulva and dead shells, 4% Zostera and dead shell, 0% Zostera alone, 

7% Ulva alone, 1% dead shells alone, and 1% no foundation species at all. ANOVA showed 

significant effects on Zostera and Ulva (p < 0.001), but not shells (p = 0.128, Table 2.7.4.). 

Still, shell cover varied slightly throughout seasons, increasing over winter months where 

cover varied between 0-20%, with the greatest cover at Plover Street in August (Fig. 2.5.7A, 
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16.43 ± 6.35).  Cover of Zostera, the most common biogenic habitat-former, was highly 

variable (15%-65%), with higher cover in winter months and in July at Heron Street (65.45 ± 

10.41, Fig. 2.5.7B). Post hoc tests showed differences in Zostera cover between February 

(summer) and July (winter), August (winter), and October (spring). Ulva was the second most 

common foundation species (Fig. 2.5.7C). Cover of Ulva varied between 0-35%, with overall 

lower cover in winter month and highest cover out from Heron street in February (65% ± 

5.77, Fig.2.5.7C).  Post hoc tests identified differences in the cover of Ulva February and 

July, August, and October.  Seasonal cover of mud (i.e., with absence of foundation species) 

varied between 25-65% across season, with largest cover observed in September (65% ± 

6.44, Fig. 2.5.7D). I found no larger rocks or boulders in the images (Fig. 2.5.7E).  Finally, I 

found significant negative relationships between Ulva and Zostera (p < 0.001, r = -0.28, Fig. 

2.5.8A), shells and Ulva (p < 0.001, r = -0.45, Fig. 2.5.8C) but no relationship between shells 

and Zostera (p = 0.10, r = -0.08, Fig.2.5.8B).  

 

2.4. Discussion  

Overall, Zostera was the most abundant foundation species and was more abundant in 

southern and central estuaries. Dead shells were found on sediment surfaces across all the 

sampled estuaries and was most abundant in Cable bay in the northern region. Seaweeds were 

not particularly common, except for in summer months in the Avon Heathcote estuary, where 

Ulva could form relatively large mats. I also found negative relationships between the 

abundances of foundation species, with the strongest being between Ulva and Zostera. 

 

2.4.1. Effects of latitude 

Zostera was least abundant in the northern estuaries, as shown in other studies (Siciliano 

2018, Foster 2019), although more estuaries should be sampled to verify this pattern. 

Furthermore, these abundance data should be combined with physiological measurements to 

test if different abundances reflect differences in ecological performance (Kerr and Strother 

1985, Spalding 2003, Turner and Schwarz 2006, York et al. 2013). I also found negative 

relationships between Ulva and Zostera and Ulva probably because dense mats of Ulva can 

shade and smother seagrass and even cause anoxia at the sediment-water interface as 

observed in many place throughout the world (Brun et al. 2003, Marsden and Bressington 

2009, Marsden and Maclaren 2010a, Olyarnik and Stachowicz 2012, Thomsen et al. 2012b, 

Lyons et al. 2014, Young et al. 2018, Barnes 2019). Algal smothering is even enhanced under 
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high temperatures (Höffle et al. 2011, Holmer et al. 2011, Höffle et al. 2012) and may 

therefore be more severe in the Northern estuaries. The distribution of Ulva spp. in New 

Zealand estuaries is highly variable (Heesch et al. 2009, Marsden and Bressington 2009, 

Marsden and Maclaren 2010a, Barr et al. 2013, Gongol and Savage 2016), as I also found 

here, probably because unattached mats drift with the tidal currents (Hawes and Smith 1995) 

and its growth rates and susceptibility to grazing vary dramatically in space and time (Geertz-

Hansen et al. 1993, Morgan et al. 2003, Thomsen 2004, Thomsen and McGlathery 2007).   

(Turner and Schwarz 2006). Still, both Zostera muelleri and Ulva spp. are relatively stress-

resistant primary producers that can tolerate high levels of desiccation, salinity changes, 

sedimentation burial and temperature fluctuations compared to open-water seaweeds and 

many other seagrass species (Hemminga and Duarte 2000, Taylor et al. 2001, Tanaka and 

Nakaoka 2004, Turner and Schwarz 2006, Figueroa et al. 2009, Collier and Waycott 2014). 

The greater abundance of Zostera  relative to seaweed could be explained by its clonal 

perennial growth habit combined with its high stress-tolerance, local seasonal conditions 

(winter sampling where low temperatures and low light levels cooler water and air 

temperatures, and lack of sun) that may favour seagrass over seaweeds (Turner and Schwarz 

2006, Turner 2007). In contrast to seagrass, shells were most abundant in the northern 

estuaries and decreased along the latitudinal gradients, a pattern observed in both the small 

and large scales surveys. This pattern could perhaps arise because of differences in tidal 

currents, with lower abundances of seagrass (in northern estuaries) facilitating infaunal 

bivalves and therefore eventually also deposition of their shells (Trewin and Welsh 1976, 

Bailey et al. 1994, Beal et al. 2020).  

 

2.4.2. Effect of season 

Seasonal patterns were similar between the small scale and large surveys showing higher 

abundances of Zostera and shells in winter and highest abundance of seaweed (Ulva) in 

summer. More specifically, Zostera had a summer dieback with rapid extension of beds 

between February and July, as has been shown in other estuaries in New Zealand (Turner and 

Schwarz 2006). The low abundance of Zostera over summer may reflect stress from high 

water and air temperatures (see Fig 1.7.7 in Chapter 1), combined with elevated intertidal 

desiccation stress because most of the seagrass beds were found in the intertidal zone (Foster 

1971, Kerr and Strother 1985, Ismail 2002, Inglis 2003, Foster 2019). I found slightly more 

shells over winter months perhaps because stronger winter storms can remove sediments and 
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exposed partly buried shells (Davies et al. 1989, De Haas and Eisma 1993, Olivera and Wood 

1997, Ganju et al. 2017). Dead shells were found at all locations and in all months 

highlighting that these understudied biogenic structures may have wide and general effect on 

estuarine communities (see next chapter). Dead shells are, of course, different from living 

biogenic structures because shells cannot ‘growth’ through accumulated sediments, in 

contrast to seagrasses (Cabaço and Santos 2007, Cabaço et al. 2008, Bunsom and Prathep 

2012, Duarte et al. 2013). Over time dead shells are therefore more likely to become buried 

(Johnson 1957, Tomašových et al. 2014). In other words, periodic erosion events and 

constant mortality of bivalves, are prerequisites to maintain dead shell deposits on the 

sediment surfaces.  Importantly, Austrovenus was the primary shell type found on the 

sediment surface and shells cover had a negative relationship with cover of seaweed. This 

negative relationship may be because Ulva attached to or deposited on live cockles decreased 

the bivalves’ filtration capacity, or because decomposition of Ulva caused hypoxia-related 

stress (Marsden and Bressington 2009, Marsden and Maclaren 2010b, Thomsen et al. 2012b). 

Finally, I found that Ulva was most abundant in summer, with little cover during most of the 

year.  The low abundance of Ulva outside the warmest summer months is likely due to a 

combination of low light levels and low temperatures resulting in lowered growth, combined 

with high grazing rates from the extremely abundant trochid snail, Micrelenchus tenebrosus 

(Geertz-Hansen et al. 1993, Morgan et al. 2003, Thomsen and McGlathery 2007, Thomsen et 

al. 2016, Siciliano 2018, Siciliano et al. 2019) (see also next chapter). 

 

2.4.3. Methodological issues 

The different types of surveys share methodological advantages and disadvantages because 

they rely on digital image capture and analyses. Importantly, abundances of individual 

foundation species will be underestimated if they occur underneath another foundation 

species, possibly an attributing factor to the negative relationships found in the correlation 

analyses (Meese and Tomich 1992, Martin et al. 2020). However, this was not a major 

problem in this study because seaweeds, that can create dense mats, generally only occurred 

in low abundances.  In the context of my objectives, the advantages were that many samples 

could be collected in a short period of time and that digital photography can provide a 

permanent digital archive of geopositioned samples that can be revisited for data-cross 

checking (Meese and Tomich 1992, Martin et al. 2020). Unfortunately, flight restrictions in 

Nelson Haven and poor weather conditions in Portobello Bay and Papanui Inlet resulted in an 
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unbalanced design for drone image analyses.  However, the smaller scale photo surveys 

generally found similar results and these data were collected from all estuaries. Furthermore, 

the two methods used here (i.e., combining geopositioned small scale photos with large scale 

drone images) supplement each other, because the photos allow for species identifications 

(e.g., of surface deposited shell types) and collection of data in poor weather conditions and 

where drones are prohibited, whereas the drone images allow sampling of difficult to reach 

areas (like on isolated bars) and increase the spatial scale by orders of magnitude.  Still, 

future studies should sample many more estuaries that include more latitudinal and human-

stress levels (Barr et al. 2013), analysis of tidal elevations and within-estuary locations, that 

sample many more estuaries in different seasons. Most importantly analyses should correlate 

patterns of foundation species to abiotic data collected across scales from the catchment scale 

to specific properties of estuaries and local site conditions (Hume et al. 2007, Hume et al. 

2016). Finally, I also suggest that future studies also quantify distribution of mobile shell-

forming foundation species (Altieri and Witman 2014), like snails (Foster 2019), linkages and 

processes between live bivalves and their dead shells, as well as do manipulative experiments 

to establish causal linkages and better understand the patterns described here. 

 

2.4.4. Conclusions 

This study highlights that multiple foundation species often co-occur in estuaries, adding 

complex biogenic patchy structures to the extensive areas of more homogeneous sediment 

surfaces. Effects from co-occurring foundation species on ecological communities should 

therefore be studied both in isolation and in concert (see next chapter).  Importantly, dead 

shells were common on sediment surfaces in all estuaries, suggesting that shells may have an 

important, yet understudied, impact on other estuarine species (see also next chapter).  

Finally, I found an inverse relationship between the abundances of seaweed and seagrass, 

suggesting competition for limited resources. If estuaries in New Zealand become more 

eutrophied, a reduction in the extent of existing seagrass beds are therefore expected.  
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2.5. Figures 

Figure 2.5.1. Study 1: Close-up survey across latitudes – distribution and abundances 

Mean percent cover (± 95% confidence intervals) of A) Shells, B) Zostera, C) Ulva, D) Mud, 

and D) Rocks in nine estuaries that represent three latitudinal regions (North, Central, South) 

and three levels of anthropogenic stress (Low, Moderate, High). See method section for 

details of each estuary.  
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Figure 2.5.2. Study 1: Close-up survey across latitudes – correlations 

Correlation between percent cover of A) Zostera vs Ulva, B) Zostera vs shells and C) Ulva vs 

shells. Individual samples are marked by latitudinal region and levels of anthropogenic stress.  

 

  

  0.01

    0. 2

   0.2 

  < 0.001

  0.25

  < 0.001

                                          

                  

  
  
  

  
 
 
  

  
 
  
 



36 
 

Figure 2.5.3. Study 2: Landscape survey across latitudes – distribution and abundance 

Mean percent cover (± 95% confidence intervals) of A) Shells, B) Zostera, C) Ulva, D) Mud, 

and D) Rocks in nine estuaries that represent three latitudinal regions (North, Central, South) 

and three levels of anthropogenic stress (Low, Moderate, High). See method section for 

details of each estuary; Nelson Haven, Portobello Bay and Papanui inlet could not be 

sampled because of flight restrictions or poor weather conditions.  
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Figure 2.5.4. Study 2: Landscape survey across latitudes – correlations  

Correlation between percent cover of A) Zostera vs Ulva, B) Zostera vs shells and C) Ulva vs 

shells. Individual samples are marked by latitudinal region and SF = Anthropogenic stress 

factor (Table 2.5.5).  
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Figure 2.5.5. Study 3: Close-up survey across seasons – distribution and abundance 

Mean percent cover (± 95% confidence intervals) of A) Shells, B) Zostera, C) Ulva, D) Mud, 

and D) Rocks in the Avon Heathcote Estuary in summer and winter.  
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Figure 2.5.6. Study 3: Close-up survey across seasons - correlations 

Correlation between percent cover of A) Zostera vs Ulva, B) Zostera vs shells and C) Ulva vs 

shells. Individual samples are marked by season. 
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Figure 2.5.7. Study 4: Landscape survey across seasons – distribution and abundance 

Mean percent cover (± 95% confidence intervals) of A) Shells, B) Zostera, C) Ulva, D) Mud, 

and D) Rocks in the Avon Heathcote Estuary at two sites across seasons. 
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Figure 2.5.8. Study 4: Landscape survey across seasons – correlations 

Correlation between percent cover of A) Zostera vs Ulva, B) Zostera vs shells and C) Ulva vs 

shells. Individual samples are marked by month and site. 
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2.7. Tables 

Table 2.7.1. Study 1: Close-up survey across latitudes – distribution and abundances 

Two-way ANOVA testing the effects of latitudinal region (North n = 237, Central n = 237, 

South n = 244) and anthropogenic stress level (Low, Moderate, High) on arcsine transformed 

percent cover of (A) shells, (B) Zostera, and (C) Ulva. Significant p-values are in bold.  

Response  Test Factor  Df SS F P 

(A) Shell  Latitude  2 4.954 81.39 < 0.001 

  Stress  2 3.762 61.82 < 0.001 

  Latitude × Stress 4 6.058 49.77 < 0.001 

  Residuals 709 21.58   

(B) Zostera  Latitude  2 21.45 119.2 < 0.001 

  Stress  2 3.85 21.38 < 0.001 

  Latitude × Stress 4 14.00 38.91 < 0.001 

  Residuals 709 63.80   

(C) Ulva  Latitude  2 0.081 10.255 < 0.001 

  Stress  2 0.023 2.97 0.052 

  Latitude ×Stress  4 0.109 6.923 < 0.001 

 Residuals 709 2.784   
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Table 2.7.2. Study 2: Landscape survey across latitudes – distribution and abundance 

One-way ANOVA testing for effect of latitudinal region (North n = 47, Central n = 49, South 

n = 47 – only using data from estuaries with low anthropogenic stress) on arcsine transformed 

cover of (A) shells, (B) Zostera, and (C) Ulva. Significant P-values are in bold. 

Response Test Factor  Df SS F P 

(A) Shell  Latitude  2 0.454 15.86 < 0.001 

  Residuals 140 2.004   

(B) Zostera  Latitude  2 13.405 138.6 < 0.001 

  Residuals 140 6.771   

(C) Ulva  Latitude  2 0.003 0.332 0.718 

 Residuals 140 0.670   
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Table 2.7.3. Study 2: Landscape survey across latitudes – distribution and abundance 

Two-way ANOVA testing for effects of latitudinal region (northern estuaries = Cable Bay 

and Okiwa Bay; n = 96, central estuaries = Robinsons Bay and Duvauchelle Bay; n = 129) 

and anthropogenic stress (Low, Moderate) on arcsine transformed cover of (A) shells, (B) 

Zostera, and (C) Ulva. Significant P-values are in bold. 

Response Test Factor  Df SS F P 

(A) Shell  Latitude  1 6.668 173.78 < 0.001 

  Stress  1 2.496 65.04 < 0.001 

  Latitude × Stress  1 3.384 88.19 < 0.001 

  Residuals 221 8.48   

(B) Zostera Latitude  1 0.43 6.835 0.009 

  Stress  1 0.49 7.79 0.006 

  Latitude × Stress  1 0 0.002 0.961 

  Residuals 221 13.77   

(C) Ulva  Latitude  1 0.010 1.435 0.232 

  Stress  1 0.000 0.02 0.879 

  Latitude × Stress  1 0.000 0.032 0.858 

 Residuals 221 1.475   
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Table 2.7.4. Study 4: Landscape survey across seasons – distribution and abundance 

One-way ANOVA testing for effects of season (months) on arcsine transformed percent 

cover of A) Zostera, (B) Ulva, and (C) shells. Significant P-values are in bold.  

Response  Test Factor  Df SS F P 

(A) Shell  Months  5 0.111 1.721 0.128 

  Residuals 429 5.545   

(B) Zostera  Months  5 14.26 32.06 < 0.001 

  Residuals 429 38.17   

(C) Ulva  Months  5 2.749 27.16 < 0.001 

 Residuals 429 47.3   
 

  



46 
 

Chapter 3. Variability in habitat usage by estuarine invertebrates 

across temperature-related spatiotemporal gradients 
 

3.1. Introduction 

Estuarine ecosystems bridge the land and the sea and provide a range of diverse habitats and 

ecosystem services, locally, regionally, and globally (Elliott et al. 2007, Barbier et al. 2011, 

Savage et al. 2012). Like in terrestrial, freshwater, and marine ecosystems, estuarine species 

that build biogenic habitat (i.e., habitat-formers and foundation species) are also important 

contributors to ecosystem productivity and many other ecosystem functions (Ellison et al. 

2005, Thomsen et al. 2010a, Angelini et al. 2011, Ellison 2019). For example, habitat-

forming species can attenuate waves, ameliorate abiotic stress, filter land-derived runoffs, and 

take up nutrients (Turner et al. 2007, Angelini et al. 2011, Fraser et al. 2014, Cheng et al. 

2015). Most habitat-forming species are sessile organisms, are abundant, and alter local 

abiotic environments (Dayton 1975, Ellison et al. 2005, Thomsen et al. 2010a). Examples of 

ecologically important marine habitat-formers include kelps, oysters, coral reefs, saltmarshes, 

mangroves, and seagrasses (Thomsen et al. 2010a, Angelini et al. 2011, Ellison 2019). It is 

imperative to understand how these organisms affect biodiversity and how their associated 

biodiversity will be affected by future anthropogenic stressors, such as climate changes and 

heatwaves (Ellison et al. 2005, Jentsch et al. 2007, Fraser et al. 2014, Cheng et al. 2015, 

Thomson et al. 2015, Bible et al. 2017).   

In estuaries, seagrasses are among the most important habitat-formers that can provide many 

ecosystem services while also enduring intense anthropogenic pressures, like nutrient runoffs 

(Turner 1996, Turner and Schwarz 2006, Turner 2007), species invasion (Orth et al. 2006, 

Wernberg et al. 2011a, Dijkstra et al. 2012, Massa et al. 2013, Thomsen et al. 2013), rising 

sea surface temperatures (Madeira et al. 2012, Hughes et al. 2018), and increased frequency 

and duration of heatwaves (Thomson et al. 2015, Oliver et al. 2018a, Kendrick et al. 2019). 

Anthropogenic stressors can negatively impact seagrass habitats by limiting growth rates 

( ’Mara and  ong 201 ), reproductive success (Eads et al. 2016, Armstrong et al. 2020), 

altering grazing rates of the seagrass or its epiphytes (Tomas et al. 2015), resulting in loss of 

entire seagrass beds (Orth et al. 2006, Short et al. 2014), ecosystem services (Orth et al. 2006, 

Turner et al. 2007), and suitable physical habitat (Tomlinson and Posluzny 2001, Waycott et 

al. 2009, Smale et al. 2017, Wild et al. 2019). Furthermore, anthropogenic stressors, such as 

excess nutrients, may exacerbate effects from warming (Diaz et al. 2008, Cheng et al. 2015). 
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The ecological performance of seagrass is directly affected by high temperature (Bulthuis 

1987, Koch et al. 2007, Lee et al. 2007, Höffle et al. 2012). For example, Höffle et al. (2012) 

found that the seagrass Halophila ovalis had reduced above-ground biomass, below-ground 

biomass and shoot length when exposed to multiple stressors associated with high 

temperature, drift algae and grazing rates. Elevated temperatures can increase metabolic 

demand in seagrasses resulting in lowered oxygen availability and disrupting other 

biogeochemical process within the plant (Borum et al. 2005, Koch et al. 2007, Höffle et al. 

2012). 

Anthropogenic stressors not only affect the seagrasses themselves but also the ecological 

communities that depend on them (Boström et al. 2006, Tomas et al. 2015). For example, 

small temperature increases can change physiological function and the ontogeny of estuarine 

invertebrates (Pörtner and Knust 2007, Rosenzweig et al. 2008) and effects from localized 

hypoxia often increase when high temperatures are combined with excess nutrients (Vaquer‐

Sunyer and Duarte 2011). However, it is not fully understood how co-occurring stressors 

(e.g., elevated temperature, hypoxia, and excessive nutrients) will impact estuarine 

communities across spatiotemporal scales (Harley et al. 2006). A dramatic example of 

seagrass loss was documented following an extreme marine heatwave in 2010/2011 in Shark 

Bay, Western Australia (Fraser et al. 2014, Thomson et al. 2015). This world heritage site lost 

up to 58% of its seagrass beds, with cascading negative impacts on commercially important 

species like roe abalone (Haliotis roei, with a 99% mortality on juveniles) (Hart 2014) and 

western rock lobster (Panulirus cygnus) (Smale et al. 2017).  For some seagrass-associated 

animals, recovery took up to seven years, and that included supplementing the natural 

population (abalone) with aquaculture reared individuals (Caputi et al. 2019, Strain 2019).  

Globally, effects of temperature, warming, and heatwaves have been studied in many 

seagrass systems (Smale et al. 2019) but this information is largely lacking from seagrass 

beds in New Zealand, where studies mainly have focused on local populations (Ismail 2002, 

Hume et al. 2007, Anderson et al. 2017, Dos Santos and Matheson 2017, Berthelsen et al. 

2018). Furthermore, even less is known about how seagrass-associated animals in New 

Zealand are affected by temperature related stressors. Analysing the effects of future changes 

to temperature, heatwaves, or other anthropogenic stressors on seagrass-associated 

communities in New Zealand will require rigorous baseline data collected across 

spatiotemporal gradients, including latitudes, estuaries, locations, elevation levels and 

seasons (Levin 1992). However, such multifactorial data about seagrass-associated 
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invertebrates are missing from the South Island of New Zealand. The general objective of this 

chapter is to address this research gap by collecting and analysing multifactorial seagrass-

associated invertebrate data from the South Island of New Zealand. 

Collecting robust data targeted to test for future elevated temperature stress can be done with 

time-for-space substitution surveys along latitudinal or elevational stress gradients (Pickett 

1989, Wernberg et al. 2010a, Lester et al. 2014, Damgaard 2019) and time-for-time 

substitution across seasons (Blois et al. 2013, Elmendorf et al. 2015).  Data collected along 

these gradients are also important because impacts from heatwaves, for example, depend on 

whether they occur toward the equatorial (warm conditions) or poleward (cold conditions) 

ranges of a species’ distribution, or in summer (warm conditions) or winter (cold conditions) 

(Wernberg et al. 2016, Wernberg et al. 2018, Smale et al. 2019). Similarly, temperature 

effects can also vary along elevation gradients. For example, deep water can provide cold 

refugia (Graham et al. 2007, Wernberg et al. 2011b), and intertidal organisms experience 

greater desiccation and temperature stress at higher elevations (Raffaelli and Hawkins 2012, 

Thomsen et al. 2019a). In other words, to understand present distribution patterns and future-

proof anthropogenic impact analyses, baseline data should capture these spatiotemporal 

gradients. 

Most studies on habitat-forming estuarine species have compared seagrasses to adjacent 

unvegetated areas (‘bare’ areas dominated by mud or sand) (Boström et al. 2006). However, 

other estuarine habitat-formers may provide similar ecological functions to seagrasses. Other 

estuarine habitat-formers include mussel beds (Dame et al. 1991), oyster reefs (Zimmerman 

et al. 1989, Thomsen and McGlathery 2006), polychaete gardens (Thomsen and McGlathery 

2005, Kollars et al. 2016), seaweed beds (Thomsen et al. 2006, Lyons et al. 2014, Thomsen et 

al. 2019b), and unconsolidated and scattered (alive or dead) bivalve shells (Thomsen et al. 

2016, Foster 2019).  t is largely unknown how common these ‘alternative’ (to seagrass) 

foundation species (Thomsen and South 2019) are in estuaries on the South Island of New 

Zealand and what their ecological roles are. The specific objective of this chapter is therefore 

to compare the distributions and abundances of estuarine animals across latitudes, 

elevations, and seasons associated with different types of habitats including bare mudflats, 

seagrasses, seaweed and scattered dead shells.  For simplicity, I focus the analyses on three 

fundamental biodiversity responses: the number of individuals in a sample (total abundance), 

the number of taxa in a sample (richness), and the multivariate community structure of a 

sample (Clarke 1993). 
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Foundation species typically co-occur in coastal marine ecosystems, where interactions 

between bivalves, gastropods and seaweeds creates a mosaic of habitats comprised of 

primary habitat formers (e.g. seagrasses) (Angelini et al. 2011, Thomsen et al. 2018b, Ellison 

2019) and alternative habitat formers (Thomsen et al. 2016, Thomsen et al. 2018b, Thomsen 

and South 2019) that coexist as a part of different species assemblages. The coexistence of 

primary and alternative habitat formers is comprised of adjacent or nested assemblages 

(Angelini et al. 2011, Thomsen et al. 2016, Thomsen and South 2019). Adjacent assemblages 

are densely distributed primary foundation species, generally across a landscape scale, that 

leaves no additional space for alternative foundation species to occupy (Angelini et al. 2011). 

In contrast, nested assemblages are foundation species that co-occur in the same area, 

whether due to primary foundation species not occupying entire space or providing suitable 

habitat for the colonization of local area by alternative foundation species (Angelini et al. 

2011). Of most interest to this study are nested assemblages, as these types of species 

assemblages take into account a greater number of foundation species per sampling event 

(Foster 2019). 

 

To address the general and specific study objectives, I quantified the distribution, abundance, 

community structure (based on core data) and the number and types of habitat-interactions 

between estuarine organisms (based on quadrat data), with supplementary methods along 

both a latitudinal and seasonal gradient. More specifically, quadrat sampling quantified fine-

scale epifaunal habitat-interactions, whereas core sampling quantified general habitat-

associations that included infauna, buried shells, and below ground seagrass roots and 

rhizomes. 

 

3.2. Methods  

3.2.1. Study locations and study organisms 

For the latitudinal study, 9 estuaries were sampled on the South Island, including three 

northern (Nelson Haven at -41.2361 S, 173.316 E, Cable Bay at -41.1688 S, 173.442032 E, 

Okiwa Bay at –41.2645 S, 173.916763 E), three central (Avon Heathcote at -43.549 S, 

172.746 E, Duvauchelle Bay at -43.752 S, 172.927 E, Robinsons Bay at -43.763 S, 172.960 

E) and three southern (Papanui Inlet at -45.8389 S, 170.692 E, Portobello Bay at -45.8304 S, 

170.672 E, Waipuna Bay at -45.7875 S, 170.67 E) estuaries. Northern estuaries were sampled 
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from June 1-5, central estuaries from September 3-11, and the southern estuaries from July 

22-26, all in 2020.  For the seasonal study, two of the three central estuaries were sampled 

repeatedly through time; The Avon Heathcote Estuary was sampled monthly between 

November 2019 and October 2020 and Duvauchelle Bay was sampled monthly between 

December 2019 and October 2020. The estuaries are described in more detail in Chapter one, 

including their ‘human-impact’ level or anthropogenic stress classification, where each 

latitudinal region is represented by a high, moderate, and relatively low impact-level estuary 

(see Table 1.8.1. for estuary ‘Anthropogenic Stress’ classification).  

 

3.2.2. Latitudinal survey: Quadrats 

Quadrats (0.010 m2) were sampled from the nine estuaries described above during daylight 

hours at low tide. Within each estuary, 12 quadrates were sampled, matching geocoordinates 

described in Foster (2019). Each quadrat was located with Google Maps on an iPhone within 

ca. 5 m of previously reported geocoordinates. Six quadrats were respectively sampled in the 

intertidal-subtidal transition zone and in the higher shore (>10 m away) Note that due to bad 

weather, only two high elevation quadrats were sampled from Okiwa Bay. A digital 

geotagged photo was taken perpendicular to the substrate (i.e., to each quadrat, using Nikon 

CoolPix AW130). Percent cover of the dominant habitat types was estimated from each 

photo. The dominant habitat types quantified were the percent cover of dead shells, seagrass, 

seaweed, and abiotic substrates (rock or mud). This method does not consider the possibility 

of layering of habitat types, so if the entire quadrat was covered by a dense seaweed mat, then 

only the seaweed was recorded.  In the field, the numbers, and species identities of all 

‘habitat-interactions’ visible to the naked eye were identified and tallied. Here, habitat-

interactions refer to the type of habitat a species was found on or under - including the top 1 

cm of the sediment surface. For example, if Anthopleura aureoradiata was found attached to 

Austrovenus stutchburyi this was tallied as one habitat-interaction. Habitat-interactions for 

sessile and strongly attached habitat-users were straightforward to quantify because these 

habitat-users were always physically attached to a habitat-former (e.g., limpets-attached-to-

dead shells, barnacles-attached-to-cockles). By comparison, habitat-interactions for mobile 

organisms also included interactions observed underneath structures, such as crabs-under-

dead-shells, or snails-under-drift-algae. 
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3.2.3. Latitudinal survey: Cores 

Cores (9 cm inner diameter, collected to 10 cm depth = 0.0064 m2) were collected from the 

same 9 estuaries during daylight hours at low tide. Three replicate core samples were 

collected from the mid-intertidal and intertidal-subtidal transition zones at random from each 

of four habitat types - bare sediment, sediment dominated by seaweed, sediment dominated 

by seagrass, and sediment that included seagrass and seaweed.  A total of 216 cores were 

collected for this survey (9 estuaries × 4 habitats × 2 elevations × 3 replicates). Individual 

cores were placed in 1 mm mesh bags with labels and tied off with rubber bands. Mesh bags 

were rinsed in the field to remove most sediments and then stored at -20 °C until processing. 

Frozen samples were defrosted and rinsed with freshwater in a 1 mm sieve to remove the 

remaining sediments. The content of the mesh bag was placed in a sorting tray. Animals were 

separated and recorded to species level (most crustaceans and molluscs) or operational 

taxonomic units (fragmented/broken worms and small juvenile crabs), counted, and stored in 

70% ethanol. Seagrass, seaweed, dead whole or fragmented shells larger than 10 mm were 

separated, and weights recorded after drying at 70°C for 72 hours. Sieving in the field and lab 

and freeze-thawing fragmented and broke soft and fragile invertebrates (like anemones and 

worms) so data for these organisms are less reliable (in other words, the analysis of core data 

focus primarily on organisms with hard external shells). 

 

3.2.4. Seasonal survey: Quadrats 

In the Avon-Heathcote, 60 quadrates covering 9 locations were sampled for detailed habitat-

association between foundation species and ecological communities each month during 

spring tides. The same methods were used as described for the latitudinal quadrat survey 

except I here used a larger 0.0625 m2 quadrat because the 9 locations had easier access and I 

could (in contrast to the latitudinal survey) revisit locations over multiple sampling dates. 

Half of the quadrates were from the mid-tidal zone and half from the intertidal-subtidal 

transition zone. Like for the latitudinal survey, each quadrate was located with Google Maps 

on an iPhone. Individual quadrats were sampled haphazardly within five meters of the geo-

referenced area. In Duvauchelle Bay, 24 quadrates were sampled monthly - 12 quadrats from 

the mid-tidal zone and 12 from the intertidal-subtidal transition zone. All response variables 

were measured as described for the latitudinal survey.   
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3.2.5. Seasonal survey: Cores 

Seasonal sampling consisted of taking three replicated 0.0064 m2 circular cores from both the 

subtidal/intertidal transition zones and the mid-intertidal zones at two locations (Plover street 

at -43.549467 S, 172.743438 E vs. Tern street at -43.5527 S, 172.7451 E) in the Avon 

Heathcote estuary. Cores were 10 cm deep and collected from bare sediment, sediment 

covered in seaweed, sediment covered in seagrass, and sediment covered with co-occurring 

seagrass and seaweed as was done for the latitudinal survey. Sampling was done in summer 

(February 2020) and winter (July 2020) corresponding to a total of 48 cores (4 habitats × 2 

elevations × 2 seasons × 3 replicates). Cores were processed as described in the latitudinal 

survey. 

 

3.2.6. Statistical analysis  

Cover data of habitat-forming organisms from the latitudinal and seasonal quadrat surveys 

were analysed graphically (their distribution and abundances are analysed statistically in 

chapter 2), whereas invertebrate data were analysed with permutation based factorial 

ANOVAs on univariate responses (abundances, richness) and permutation based factorial 

MANOVAs on multivariate community structure.  Response variables from the quadrats 

included (a) total number of habitat-interactions recorded per quadrat (analogous to total 

abundances in a sample), (b) the number of unique habitat-interactions per quadrat 

(analogous to richness of a sample) and (c) the full sample-habitat-interactions matrix 

(analogous to multivariate community structure of a sample).  The latitudinal invertebrate 

data from quadrats were analysed with fixed 3-factorial (M)ANOVAs, testing for orthogonal 

effects between latitude (north, central, south), tidal elevation (high, low), and anthropogenic 

impacts (low, moderate, high). For the seasonal data I first show monthly changes in the same 

three response variables (i.e., abundance, richness, multivariate community structure), 

followed by fixed 3-way factorial (M)ANOVA testing for orthogonal effects of season 

(where monthly data were classified into 6 coldest (May-September) vs. 6 warmest (October-

March) months), tidal elevation (high, low) and estuary (Avon-Heathcote, Duvauchelle Bay). 

Estuary was considered a fixed factor because the Avon Heathcote estuary represented a 

highly modified estuary surrounded by a large city whereas Duvauchelle Bay represented a 

less modified estuary surrounded by livestock farming.  

Response variables for the analyses of core data were (a) total organismal abundances , (b) 

taxonomic richness and (c) multivariate community structure (Clarke 1993). The latitudinal 
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core data were analysed with 4-factorial fixed (M)ANOVAs testing for orthogonal effects of 

latitudinal region (north, central, south), tidal elevation (high, low), seaweeds (presence, 

absence) and seagrass (presence, absence). Finally, seasonal core data were also analysed 

with 4-factorial fixed (M)ANOVAs testing for orthogonal effects of season (summer, winter), 

elevation (high, low), seaweed (presence, absence), and seagrass (presence, absence). 

Homogeneity of variances were checked using Levine’s test in UN STAT®. If data failed 

Levine’s test, data were square root transformed and rechecked. Significant effects were 

evaluated at p = 0.05. For multivariate analyses, Bray-Curtis similarity matrices were 

constructed (with a dummy variable of n = 1) from square root transformed data with 4999 

permutation. Principal coordinate analysis (PCO) with vector overlay correlations set at 0.25, 

were also constructed from the Bray- urtis similarity matrix. All analyses (minus Levine’s 

test) were done in PRIMER 6 (using Euclidean distances for univariate responses) (Clarke 

and Gorley 2015). All figures with the expectation PCO plots were made in R (Team 2020) 

and were produced using the package ggplot2 (Wickham 2016).  

 

3.3. Results  

3.3.1. Latitudinal survey: Quadrats 

3.3.1.1. Latitudinal survey: Quadrats - cover types 

Cover of habitat-formers was variable across latitudes and elevations (Fig. 3.5.1.1). The 

greatest difference across latitudes was observed for seagrass, which was most abundant in 

the southern region. Cover of dead shells on the sediment surface was also variable across 

regions and tended to be most abundant at lower elevation. Seaweeds were generally most 

abundant at low elevation at the central estuaries, although at the northern estuaries, seaweed 

were more abundant at higher elevations. Rock cover was generally low across regions with 

highest cover at the northern high elevation levels. 

 

3.3.1.2. Latitudinal survey: Quadrats - habitat-interactions 

There were significant effects on the mean number of habitat-interactions from region × 

elevation × impact (p = 0.029), region × impact (p < 0.001), and elevation (p = 0.029, Table 

3.6.1A). The mean number of habitat-interactions per sample was highest at central low 

elevation levels (8.56 ± 2.20) and lowest in southern high elevation levels (2.33 ± 0.71, Fig. 

3.5.1.2.A).  Results were relatively similar for richness of habitat-interactions (region × 

elevation × impact, p = 0.023; region × impact, p < 0.001), but there were no significant 
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single factor effects (Table 3.6.1B). Richness of habitat-interactions was greatest at northern 

low elevation levels (9.00 ± 0.65), and lowest at southern high elevation levels (5.00 ± 2.24, 

Fig. 3.5.1.2B). Finally, effect on community structures were significant for region × elevation 

× stress (p < 0.001), region × stress (p < 0.001), region × elevation (p = 0.038) and region (p 

< 0.001, Table 3.6.1C).  Graphical analysis of the PCO plot (Fig. 3.5.1.3) showed that 

northern high and low elevation levels generally were grouped together, and central and 

southern regions (irrespective of elevation levels) were relatively similar. The community 

pattern of habitat-interactions was driven by Austrovenus inhabiting mud and dead shells as 

habitat formers driving differences between elevation, latitude, and human impacts.  

 

3.3.2. Latitudinal survey:  Cores 

The abundance of habitat-users in the core samples was significantly affected by latitude × 

elevation (p = 0.012), seaweed (p < 0.001) and elevation (p < 0.001, Table 3.6.2.A, Fig. 

3.5.2.1.A). Cores with both seagrass and seaweed had greatest mean abundance at central low 

elevations (12.0 ± 12.54).  High abundances of habitat-users were also found at low 

elevations across latitudes in cores dominated by seagrass, with greatest abundances at 

southern low elevation levels (8.00 ± 5.44). Seagrass also had the highest single value for 

individual invertebrate abundance (372 individuals in a core). Mean abundances in cores 

dominated by seaweed was greatest at southern low elevation levels (10.29 ± 8.16) and the 

second highest number of individuals (311) was found in this habitat. 

Taxonomic richness was affected by seagrass × elevation × latitude (p = 0.015), elevation × 

latitude (p = 0.036), seaweed (p = 0.001), elevation (p = 0.005), and latitude (p = 0.001, Table 

3.6.2B). Seaweed cores at central high elevation levels had highest richness (3.47 ± 1.16, Fig. 

3.5.2.1B). Bare mud cores generally had low richness peaking at the central low elevation 

level (1.44 ± 1.23), with more variable richness at the northern regions but relatively similar 

richness across the southern regions. Richness in cores dominated by seagrass were relatively 

similar across regions and elevations (northern: 2.00 ± 0.67, central: 1.33 ± 1.21, southern: 

1.5 ± 1.21).  Cores dominated by seaweed had highest richness of any habitat type (3.46 ± 

1.16), but there was also high variation between elevations in central and southern regions. 

By comparison, cores with co-occurring seagrass and seaweed had similar richness at 

northern high elevation (2.00 ± 0.87) and southern low elevation (2.00 ± 0.67) levels. 
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The multivariate community structure was significantly affected by latitude × elevation (p < 

0.001), seagrass (p = 0.002), seaweed (p < 0.001), elevation (p < 0.001), and latitude (p < 

0.001) (Table 3.6.2C). Graphical analysis of the PCO plot (Fig. 3.5.2.2) showed large overlay 

between central and northern regions with southern region sample clusters being more 

affected by elevation than other regions. Vector overlays were dominated by Micrelenchus 

tenebrosus, sedentaria polychaetes and Zeacumantus subcarinatus where the former species 

was equally distributed between regions whereas the latter two taxa were more important in 

southern regions. 

 

3.3.3. Seasonal survey: Quadrats 

3.3.3.1. Seasonal survey: Quadrats – cover types 

In the Avon-Heathcote cover types varied slightly across seasons with greater variation 

between low and high elevations than across months (Fig. 3.5.3.1A). Rocks were rare – only 

being recorded at high elevations in November 2019. Mud cover was greatest at high 

elevations in May (77.0%) and lowest in March at low elevation (62.2%). Seaweed cover was 

generally greater at lower elevations but was relatively stable between March-October 2020. 

Greatest cover was observed in February 2020 at low elevations (20.6%) and lowest cover in 

October at high elevation (7.42%). Seagrass cover followed similar patterns with greater 

cover at lower elevations with lowest cover in February (2.8%) and highest cover in October 

(11.8%). Dead shell cover was greatest in November 2019 (15.5%) and lowest in September 

2020 at high elevations (6.0%).   

In Duvauchelle Bay, seagrass cover was higher compared to the Avon Heathcote estuary, 

whereas cover of seaweed and dead shells were lower (Fig. 3.5.3.1B). Cover of rocks did not 

show any directional trend and had greatest cover in July at high elevation (5.6 %). 

Duvauchelle Bay had higher cover of bare mud than the Avon Heathcote estuary, with the 

largest monthly cover found in March at high elevation (88%) and least cover in the same 

month at low elevations (36.4%). Seaweed cover was lower than in the Avon Heathcote 

estuary, and had highest cover in January at high elevation (5.9%), and with no seaweed at all 

in December March, May, and August. Seagrass cover was greatest in March at low 

elevations (63.0%) and lowest in January at high elevation (6.9%) but with no clear seasonal 

trends. Finally, cover of dead shells was greatest in July at high elevations (7.3%) and lowest 

in February at low elevations (0.10%). 
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3.3.3.2. Seasonal survey: Quadrats – habitat-interactions 

Test results were similar for the number and richness of habitat-interactions with significant 

effects of elevation × estuary (p < 0.001), season × estuary (p < 0.001, season (p < 0.001), 

elevation (p < 0.001) and estuary (p < 0.001, Table 3.6.3A,B). The number and richness of 

interactions were generally much higher in the Avon Heathcote estuary than in Duvauchelle 

Bay (Fig. 3.5.3.2A,B). Furthermore, the number of habitat-interactions was greatest at lower 

elevations in winter (53.47 ± 4.49) at high elevations (20.67 ± 1.44, Fig. 3.5.3.2A). 

Duvauchelle Bay had greatest and lowest number of habitat-interactions in winter at high 

elevation (5.01 ± 0.48) and in summer at low elevation (2.33 ± 10.31), respectively.  For the 

multivariate community data, all test factors were significant (p < 0.001, Table 3.6.3C) 

highlighting that each combination of test-factors had its own unique set of habitat-

interactions. The PCO plot suggested effects of latitude and stress was greater than seasonal 

and elevation effects, i.e., there was greater separation of samples between latitude and stress 

(Fig. 3.5.3.3).  

 

3.3.4. Seasonal survey: Cores 

Invertebrate abundances were significantly affected by seagrass (p = 0.014), seaweed (p < 

0.001), and season (p = 0.038) – but with no effect of elevation or any interactions (Table 

3.6.4.A).  Cores with bare mud had lowest abundances across habitat types, with the greatest 

abundance in the winter high elevation cores (0.82 ± 1.50, Fig. 3.5.4.1A). Cores dominated 

by seagrass had greater abundance at low elevations, with greatest abundance in the low 

elevation summer cores (2.03 ± 3.33). Cores dominated by seaweed had greater abundances 

at higher elevation in summer (4.03 ± 10.25), with opposite pattern in winter with higher 

abundances at lower elevations. Finally, the cores with both seagrass and seaweed had similar 

pattern as the cores with seaweed-only and had greatest abundances at low elevation (7.12 ± 

13.58).  The taxonomic richness of invertebrates was significantly affected by seagrass × 

elevation × season (p = 0.005), elevation × season (p < 0.002), and seagrass (p = 0.001), 

seaweed (p < 0.001), and season (p < 0.016, Table 3.5.4B). The cores with bare mud had 

lowest richness (2.00 ± 0.58, Fig. 3.5.4.1B) with slightly higher richness in summer. Seagrass 

dominated cores had highest richness in lower elevations during summer months (5.67 ± 

1.42) whereas seaweed dominated cores had highest richness at high elevations independent 

of season (6.33 ± 0.33). Furthermore, the cores where seagrass and seaweed co-occurred had 
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similar high taxonomic richness at the high (3.00 ± 2.51) and low (3.00 ± 2.59) elevation 

level. However, during winter, more taxa were found at low elevation, including the greatest 

reported mean richness (4.33 ± 5.79) of any core type. 

Finally, the multivariate community structure was significantly affected by seagrass × 

elevation × seaweed (p = 0.007), seagrass × seaweed (p = 0.009), seagrass × season (p = 

0.033), elevation × season (p = 0.020), seagrass (p = 0.003), seaweed (p < 0.001), and season 

(p = 0.024, Table 3.6.4). Graphical analysis of PCO plot (Fig. 3.5.4.2) showed that cores with 

similar habitat type and elevation generally were clustered close to each other. Vector-

overlays showed that Micrelenchus tenebrosus was driving much of the multivariate 

variability being most abundant in winter samples and in cores with seagrass and seaweed. 

By comparison, the bivalves Macomona liliana and Paphies australis were more abundant in 

summer and winter cores, respectively, but more so in mud-cores without vegetation. 
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3.4. Discussion 

 esearch on organisms that depend on biogenic habitat (here referred to as ‘habitat-users’ – 

dominated by invertebrates but can include vertebrates and seaweeds) has typically 

concluded that seagrass is the most important organism that builds biogenic habitat in 

sedimentary estuaries (Orth et al. 1984, Boström et al. 2006, Battley et al. 2011, Juan and 

Hewitt 2011, Foster 2019). By companion, fewer studies have highlighted the importance of 

seaweeds (Lyons et al. 2014, Thomsen and Wernberg 2015, Ramus et al. 2017) or co-

occurring habitat-formers – like seaweed entangled around seagrass leaves (Thomsen et al. 

2010a).  Here I documented that estuarine habitat-users can be strongly associated with other 

biogenic habitat formers such dead shells and cockles like Austrovenus stutchburyi in 

addition to being associated with seagrass and seaweed. Some studies have shown that 

poleward (cooler) climates have lower diversity of estuarine habitat-users (Duke et al. 1998, 

Engle and Summers 1999, Attrill et al. 2001) but I did not find that pattern in my surveys – 

species richness was generally similar across latitudes despite complex variability associated 

with specific combinations of habitat, estuaries and elevation levels – perhaps because the 

latitudinal gradient I sampled only spanned c. 5º latitude. The data collected here provides 

important baseline information about habitat-users across a range of latitudes, elevation, and 

seasons to gauge future impacts of climate changes and other human stressors. 

 

3.4.1. Latitudinal survey: quadrat data 

Considerable variation was found in the abundance of habitat-formers across latitude and 

elevations (Fig. 3.5.1). The cover of seagrass was most abundant at the southern latitude, a 

pattern commonly observed for Zostera spp. (Duke et al. 1998, Engle and Summers 1999, 

Attrill et al. 2001, Turner and Schwarz 2006). Cover of dead shells varied across regions, 

with higher cover at lower elevations, perhaps because stronger tidal currents and waves 

remove shells from this habitat (Olivera and Wood 1997). Seaweed cover was most 

prominent at low elevation central estuaries, partly driven by high cover in the Avon 

Heathcote estuary, a semi-enclosed shallow nutrient-rich estuary where mats of Ulva spp. and 

Agarophyton chilensis often accumulate (Marsden and Bressington 2009, Marsden and 

Maclaren 2010a, Thomsen et al. 2016). Regional differences in cover of foundation species 

may be explained by differences in environmental conditions (Turner 1996, Allison 2004, 

van Houte-Howes et al. 2004, Turner and Schwarz 2006), point source nutrient input and 

localized eutrophication (Turner 1996, Turner and Schwarz 2006, Turner 2007), or thermal 
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stress from air temperature and sea surface temperature (Ellis et al. 2017, Oliver et al. 2018b, 

Holbrook et al. 2019, Oliver 2019, Oliver et al. 2019). 

The abundance, richness, and community structure of habitat-interactions was affected by 

latitude, elevation, and anthropogenic impacts with most habitat-interactions observed at low 

elevations (Fig. 3.5.2.1A). This pattern may be partly driven by higher densities of habitat-

formers in this habitat (Fig.3.5.1), and partly by lower desiccation stress that relatively few 

species, like trochid snails and mud snails tolerate (Grant and McDonald 1979, Mitchell 

1980, Shumway and Marsden 1982, Omori et al. 1998, Bertness et al. 2001, Jones et al. 

2005).  The most common habitat-interactions involved primary producers (Zostera, Ulva, 

Agarophyton) and different shell-producing molluscs, including gastropods (Diloma, 

Micrelenchus tenebrosus), limpets (Notoacmea), bivalves (Austrovenus stutchburyi) and 

dead-shells (Fig. 3.5.1.3). Indeed four of the 12 most important interactions were molluscs 

attached to dead shells, a habitat that is typically overlooked in estuarine studies (Gutiérrez et 

al. 2003, Foster 2019). Importantly, dead shell deposits, here mainly from Austrovenus 

stutchburyi, can provide habitat at a large scale (see Chapter two) across seasons, estuaries, 

and elevations (Grange 1979, Gagné et al. 2008, Summerhayes et al. 2009, Foster 2019). As 

different stressors can affect habitat-users and habitat-formers differently (Ellis et al. 2017), 

many habitat-users depend on shell aggerates and other biogenic habitats to find refuge from 

desiccation, elevated sedimentation and various anthropogenic stressors (Thomsen et al. 

2016, Foster 2019). Loss of intertidal seagrass habitats (Turner 1996, van Houte-Howes et al. 

2004, Turner and Schwarz 2006) may also have created more patches of bare substrate with 

elevated desiccation and thermal stress (Ellis et al. 2017). In these types of habitats, dead 

shells may now provide alternative stress-refugium during low tides. 

 

3.4.2. Latitudinal survey: core data 

Invertebrate habitat-users were generally more abundant and species rich at low elevations 

and associated with seaweeds as well as in cores with co-occurring seaweed and seagrass, but 

with no clear latitudinal patterns (Table 3.6.4, Fig. 3.5.2.1) - patterns that generally supported 

the habitat-interactions observed from the quadrat survey. These results are likely because 

more habitat-users can use transition zones between intertidal and subtidal habitats than 

stressful high intertidal elevations (Turner and Schwarz 2006, Turner 2007, Berthelsen et al. 

2018) and because seaweed and seagrass provide food for grazers and ameliorate 
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environmental stress (Lyons et al. 2014, Thomsen et al. 2016). The most common seaweed, 

Ulva spp., requires hard substrate for its initial settlement and early growth (typically onto 

rocks, bivalves or dead shells) but often breaks and becomes drift algae that accumulate in 

deeper channels, where tidal currents are weak in and around seagrass leaves (Biber 2007) 

(Hawes and Smith 1995, Holmquist 1997, Cummins et al. 2004, Thomsen 2004, Huntington 

and Boyer 2008, Thomsen 2010, Halling et al. 2013). These drift algae accumulations 

support invertebrate communities because they build more complex habitat (Siciliano 2018), 

reduce abiotic desiccation stress (Lyons et al. 2014), is a food source for grazers, like many 

gastropods and amphipods (Jorgensen et al. 2010), and can reduce predation particularly on 

juvenile crabs (Johnston and Lipcius 2012, Thomsen et al. 2013). More specifically, habitat-

users were more abundant when seagrasses and seaweeds co-occurred, supporting many other 

studies that have found positive effects of co-occurring habitat formers on invertebrate 

communities (Hooks et al. 1976, Gore et al. 1981, Pihl and Rosenberg 1982, Schneider and 

Mann 1991, Holmquist 1997, Thomsen et al. 2012a, Thomsen et al. 2013). Community 

structures were significantly affected by latitude, elevation and presences of both seagrass 

and seaweed, but with most data-variability explained by latitude, where Zeacumantus and 

polychaetes were more common in southern estuaries, and grazing snails in central estuaries 

(Fig 3.5.2.2) as also found by Foster (2019).  Much of the large variation observed in 

community structures are likely explained by high variability in estuary types, areas and 

topography, catchment characteristics (Hume et al. 2007, Battley et al. 2011, Hume et al. 

2016), ocean currents, nutrient flows and different thermal stress (Turner et al. 2007, Sanford 

and Kelly 2011, Vaquer‐Sunyer and Duarte 2011). 

 

3.4.3. Seasonal survey: quadrat data 

Seasonal changes in cover types differed greatly between the Avon-Heathcote estuary and 

Duvauchelle Bay (Fig. 3.5.3.1.), with large variation in cover of seaweed, seagrass, and dead 

shells. Dead shells had higher cover at lower elevations, as was also found in the latitudinal 

survey. Differences between Duvauchelle Bay and the Avon-Heathcote Estuary may be 

because the latter is a bar built estuary with highly variable environmental conditions and 

seagrass only in the eastern parts), whereas the former is a smaller more uniform mudflat 

dominated by seagrass patches, particularly at lower elevations (Hume et al. 2007, Hume et 

al. 2016). Furthermore these estuaries have different entrances to the ocean (Roy et al. 2001) 

and sediment characteristics (Gray 2002, Bolton-Ritchie 2005, Thrush et al. 2006, Hume et 
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al. 2007, de Juan and Hewitt 2011, Bolton-Ritchie 2015) perhaps explaining why abundance 

and richness was higher in the Avon-Heathcote estuary throughout all seasons. 

Seasonal fluctuations in the abundance of seaweeds and seagrass were observed in both 

estuaries. Seagrass decreased slightly at the end of summer but recovered throughout winter 

months, as found in other studies in New Zealand (Ismail 2002, Les et al. 2002, Robertson et 

al. 2002, Inglis 2003, Turner and Schwarz 2006, Turner 2007). By contrast, seaweed cover 

was more variable across seasons perhaps because seaweed respond more rapidly to changes 

in nutrient concentrations, riverine influx, temperature, and hydrodynamic conditions 

(Raffaelli et al. 1998, Thomsen and McGlathery 2007, Marsden and Knox 2008, Abreu et al. 

2011, Zhang et al. 2016). Across all the sample locations in the Avon-Heathcote estuary dead 

shells were more abundant than seagrass (but less than mud and seaweed). Dead shells, 

dominated by bivalves, increases habitat heterogeneity in sedimentary systems (Jones et al. 

1994, Gutiérrez et al. 2003, Sousa et al. 2009), and create ‘satellite-habitats’ that enhance 

local biodiversity (Posey et al. 1999, Lehnert and Allen 2002, Gutiérrez et al. 2003, Tolley 

and Volety 2005, Grabowski and Peterson 2007, Schejter and Bremec 2007, Gribben et al. 

2009, Brett et al. 2011, Thomsen et al. 2016, Foster 2019). Again, these results highlight that 

these understudied habitats should be included in future surveys of estuarine biodiversity. By 

comparison, most estuarine biodiversity studies focus on bare sediments, seagrass and/or 

seaweeds (Raffaelli et al. 1998, Thomsen and McGlathery 2007, Marsden and Knox 2008, 

Abreu et al. 2011, Zhang et al. 2016). Still, a growing number of studies around the world 

have highlighted ecological legacy effects from dead shells (Posey et al. 1999, Lehnert and 

Allen 2002, Gutiérrez et al. 2003, Tolley and Volety 2005, Grabowski and Peterson 2007, 

Schejter and Bremec 2007, Gribben et al. 2009, Brett et al. 2011, Thomsen et al. 2016, Foster 

2019). 

In the Avon-Heathcote estuary, there were more habitat-interactions and higher habitat-

interaction richness at the lower elevation (Fig. 3.5.3.4.) – a pattern that was consistent across 

months. This pattern is probably explained by lower desiccation stress and more foraging 

time at lower elevations (Grant and McDonald 1979, Omori et al. 1998, Bertness et al. 2001). 

However, this pattern was not observed in Duvauchelle Bay (Fig. 3.5.5.1B) possibly because 

the number of interactions was much smaller and elevation effects may have been random 

due to the smaller population sizes.  
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The organisms that explained most of the multivariate variability in habitat-interactions were 

all molluscs – i.e., mudsnails (Amphibola crenata), cockles (Austrovenus stutchburyi), and 

limpets (Notoacmea helmsii) (Fig. 3.5.3.5). During summer months, physiological stress can 

be high on these molluscs (Vaquer‐Sunyer and Duarte 2011, Altieri and  edan 2015,  heng 

et al. 2015), and high-temperature and desiccation stress can lead to physiological changes in 

animals (Pörtner and Knust 2007, Rosenzweig et al. 2008, Delorme et al. 2020), seagrass 

(Turner et al. 2007, Short et al. 2014), and seaweeds (Vaquer‐Sunyer and Duarte 2011). 

Mobile organisms can move between cover types to decrease these physiological stressors 

(Micheli and Peterson 1999, Wright et al. 2014). Mobility allows these organisms to move 

towards less stressful microhabitats, whereas other physiological adaptations, like burrowing 

into sediments or the closing of opercula (Foster 1971, Shumway and Marsden 1982, Lowell 

1984) help to alleviate desecration stress within a microhabitat. I found that assessing the 

effect of dead shells, seaweeds, and seagrass on habitat-interactions gives more profound 

insight into the effects of season on estuarine communities. 

 

3.4.4. Seasonal survey: core data 

Richness and abundances of invertebrate habitat-users were generally low in bare sediments, 

high in summer at high elevation in the separate seagrass and seaweeds habitats, and high in 

winter at lower elevation when seagrass and seaweed co-occurred (Fig. 3.5.4.1., Tab.3.6.4). 

The morphology, structure, abundance and function can change across seasons for both 

temperate estuarine seagrass (Turner 1996, van Houte-Howes et al. 2004, Turner and 

Schwarz 2006, Turner et al. 2007, Battley et al. 2011) and seaweeds (Raffaelli et al. 1998, 

Thomsen and McGlathery 2007, Marsden and Knox 2008, Lyons et al. 2014, Zhang et al. 

2016). These changes to habitat-formers are likely to have flow-on effects on the distribution 

and abundance of invertebrates between seasons.  

Seagrass facilitates epifaunal habitat-users through their above-ground leaf structure (Heck Jr 

and Orth 1980, Bell et al. 2001, Turner and Schwarz , Duarte et al. 2007, Short et al. 2007), 

whereas infauna can be directly affected by below-ground rhizomes and root networks that 

also aid in stabilizing sediment (Bertness et al. 2001, Reise 2002, Newell and Koch 2004), 

which increases the recruitment of gastropods and bivalves (Bologna and Heck 2000, 

Boström and Bonsdorff 2000, Connolly and Hindell 2006). By comparison, seaweeds, are 

typically more variable across seasons and generally provide less habitat in winter (Norkko et 

al. 2000, Thomsen et al. 2013, Wright et al. 2014, Thomsen et al. 2016) (see also section 
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3.4.2.). Although seagrasses often have seasonal diebacks (Turner 1996, van Houte-Howes et 

al. 2004, Turner and Schwarz 2006, Turner et al. 2007) clonal perennial seagrass still 

provides a more stable habitat (in both space and time) to invertebrates than estuarine 

seaweeds that can break off from their substrates, drift around with currents, and die back 

dramatically over winter (Hawes and Smith 1995, Norkko et al. 2000, Thomsen 2004, 

Thomsen and McGlathery 2007, Marsden and Bressington 2009, Marsden and Maclaren 

2010a, Thomsen et al. 2013, Wright et al. 2014, Thomsen et al. 2016).  

Community structure was greatly affected by season and the presence of seagrass and 

seaweeds. As in latitudinal study, habitat-users were generally abundant and taxonomic rich 

when seagrasses and seaweeds cooccurred (Fig. 3.5.4.1.), thereby supporting many other 

similar ‘facilitation cascade’ studies (Hooks et al. 1976, Gore et al. 1981, Pihl and Rosenberg 

1982, Schneider and Mann 1991, Holmquist 1997, Thomsen et al. 2012a, Thomsen et al. 

2013, Thomsen et al. 2018b, Gribben et al. 2019). Seasonal variation in invertebrate 

community structure is often explained by a combination of seasonal variation in abundance 

of the habitat formers themselves (Turner , Norkko et al. 2000, van Houte-Howes et al. 2004, 

Turner and Schwarz 2006, Turner et al. 2007, Thomsen et al. 2013, Wright et al. 2014, 

Thomsen et al. 2016) as well as habitat preferences by habitat-users (Holmquist 1997, 

Cummins et al. 2004). More specifically, much of the data variability (Fig.3.5.4.2.) observed 

here was attributed to the highly abundant grazing snail, Micrelenchus tenebrosus that was 

more common in winter, and partly also to bivalves and polychaetes that were most abundant 

in summer as also shown in other studies from this region (Thomsen et al. 2016, Siciliano 

2018, Foster 2019, Siciliano et al. 2019) and from seagrass beds on the North Island (Duncan 

2017). Studies from other seagrass beds around the world have also found more invertebrates 

in summer months (Edgar 1990, Nelson and Waaland 1997, Bloomfield and Gillanders 

2005). 

 

3.5.5. Data limitations  

The collected data had limitations that can affect analyses and interpretations. For example, 

the latitudinal quadrat survey was unbalanced because only eight out of twelve quadrats were 

sampled in Okiwa Bay because of time constrains and poor weather. However, factorial 

MANOVA is relatively robust to a slightly unbalanced design (Scheiner 1993, Shaw and 

Mitchell-Olds 1993, Berger et al. 1999, Gastwirth et al. 2009). In the seasonal quadrat survey, 

relatively few taxa were common, so species rarefication curves could have been added to 
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better understand which species were over or underrepresented (Heck et al. 1975). I did find 

significant effects of season and cover types on invertebrate core communities, probably 

because time-constrains limited my field sampling and sample processing to only two 

replicates at the lowest sampling level (i.e., for each combination of elevation, location, 

seasons and presence of seaweed and seagrass). Future core-studies should include sampling 

across more months as well as more replicates on the lowest levels to understand temporal 

variability in estuarine invertebrate community structures (Chesson 1985, Wolfe et al. 1987, 

Triantis et al. 2003, Lindenmayer and Likens 2009, Shen et al. 2009, Magurran et al. 2010, 

Scheiner et al. 2011, White et al. 2018). Finally, future studies should also collect detailed 

abiotic data to explore relationships with the biotic data, for example by measuring current 

velocities, turbidity (Lenihan et al. 2001, Lunt and Smee 2014), nutrient levels, sediment 

properties, and air and sea surface temperature (Dijkstra et al. 2012, Cheng et al. 2015, 

Thomson et al. 2015, Lauchlan and Nagelkerken 2020), estuary size, depth and morphology, 

as well as large-scale catchment properties. 

 

3.5.6. Conclusion 

This study found consistent, strong effects of elevation on invertebrates in cores and 

interactions between habitat-formers and habitat-users – with higher diversity and more 

interactions at lower elevations (Siciliano 2018, Foster 2019).  In addition there was strong 

community effects between latitudes, highlighting that community analysis is more sensitive 

to detect larger-scale biogeographical patterns than abundances and richness metrics (Clarke 

and Gorley 2015). Importantly, dead shells on sediment surfaces were found to provide 

habitat for many species across latitudes, elevations, and seasons. Dead shells are often 

overlooked as important habitats in estuarine biodiversity surveys. The species that explained 

most variation in the latitudinal survey were gastropods (Diloma spp., Micrelenchus 

tenebrosus), limpets (Notoacmea), bivalves (Austrovenus stutchburyi), and seaweeds (Ulva 

and Agarophyton chilensis). In the seasonal survey, mollusc like M. tenebrosus, Notoacmea, 

and A. stutchburyi explained most of the variation in multivariate community structure and 

more habitat-users were found at low elevations in winter, possible because invertebrates 

‘concentrate’ around estuarine foundation species that are less common in this season 

(seaweed in particular). The data collected here provide important baseline information about 

estuarine habitat-users across a range of latitudes, elevation, and seasons to gauge future 

impacts of climate changes and other human stressors.  
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3.5. Figures  

Figure 3.5.1. Latitudinal survey: Quadrats 

Figure 3.5.1.1. Latitudinal survey: Quadrats – cover types of habitat formers 

Percent cover of the most common habitat types found in the latitudinal survey quadrats at 

two elevations (high, low) and three regions (north = N, central = C, south = S). Quadrat size 

= 0.010 m2.  
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Figure 3.5.1.2. Latitudinal survey: Quadrats – ‘         ’     ‘   h    ’  f h      -

interactions 

The mean number of interactions (A) and interaction-richness (B) (+SE) per quadrat across 

northern, central, and southern regions (pooled across estuarine impact levels per region). 

Quadrat size = 0.010m2. 
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Figure 3.5.1.3. Latitudinal survey: Quadrats – ‘  mm      p      ’  f h      -

interactions 

Principle coordinate analysis for latitudinal quadrat communities. Legend: First letter = 

region (N = North, C = Central, S = South), second letter = elevation (H = high, L = Low), 

third letter = habitat (blank = Bare, G = seagrass, W = seaweed, GW = seagrass and 

seaweed). Colour coding: North high = Black, low = grey; Central high = dark blue, low = 

light blue solid fill, and South high = dark green, low = light green. Symbols: Solid = high 

and open = low elevation.  Overlay vectors are abbreviated by numbers representing habitat-

user followed by habitat former: 1: Ulva-Dead shell, 2: Notoacmea helmsi-Diloma spp., 3: 

Austrovenus stutchburyi-Zostera muelleri, 4: Diloma spp.-Dead shell, 5: Gigartina spp.-

Micrelenchus tenebrosus, 6: Notoacmea helmsi-Dead shell, 7: Micrelenchus tenebrosus-Dead 

shell, 8: Anthopleura aureoradiata-Austrovenus stutchburyi, 9: Notoacmea helmsi-

Austrovenus stutchburyi, 10: Austrovenus stutchburyi,-Mud, 11: Agarophyton chilensis-

Austrovenus stutchburyi. Bray-Curtis similarity matrix of square root transformed community 

data with a dummy variable of one (n = 1) was used. Pearson correlation set to > 0.25. 
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Figure 3.5.2. Latitudinal survey: Cores  

Figure 3.5.2.1. Latitudinal survey: Cores - abundances and richness of habitat-users 

Latitudinal survey of habitat-users in sediment cores across latitudes. Mean abundance (A) and 

richness (B) of invertebrates per core (+ SE) at high and low elevations across northern, central, 

and southern regions in the absence and presence of the seagrass Zostera muelleri (SG) and the 

seaweed Ulva spp. (SW). Estuaries within each region were pooled. Bare = mud (i.e., cores 

without any habitat-forming foundation species). Cores were 0.0064 m2. 
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Figure 3.5.2.2. Latitudinal survey: Cores – community pattern of habitat-users 

Principle coordinate analysis for seasonal core communities. The first letter is region (N = 

North, C = Central, S = South), followed by elevation (H = high, L = Low), then core type 

(blank = Bare, G = seagrass, W = seaweed, GW = seagrass and seaweed). Regional elevation 

change is broken down into colour and fill categorization with North high = Black, low = 

grey; Central high = dark blue, low = light blue solid fill, and South high = dark green, low = 

light green. Solid symbols represent high elevation with open symbols representing low 

elevation.  Overlay vectors are abbreviated by number representing species: 1: Errantia, 2: 

Anthopleura aureoradiata, 3: Edwardsia leucomelos, 4: Amphipoda spp., 5: Diloma 

subrostrata, 6: Halicarcinus whitei, 7: Isopoda spp., 8: Macomona liliana, 9: Micrelenchus 

tenebrosus, 10: Notoacmea helmsi, 11: Sedentaria, 12: Zeacumantus subcarinatus. Bray-

Curtis similarity matrix of square root transformed community data with a dummy variable of 

one (n = 1) was used. Pearson correlation set to > 0.25.  
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Figure 3.5.3. Seasonal survey: Quadrats  

Figure 3.5.3.1. Seasonal survey: Quadrats - cover types of habitat formers 

Percent cover of the most common types of habitats found in seasonal quadrat survey in 2020 

in the Avon-Heathcote estuary (A) and Duvauchelle Bay (B). Locations within an estuary 

were pooled. Sampling started one month earlier in the Avon-Heathcote estuary. Quadrat size 

= 0.0625 m2. 
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Figure 3.5.3.2. Seasonal survey: Quadrats - ‘         ’  f h      -interactions per 

month 

Mean number of habitat-interactions per quadrat (+SE) per month in Avon-Heathcote estuary 

(A) and Duvauchelle bay (B) at high and low elevations. Locations within each estuary were 

pooled. Quadrat size = 0.0625 m2. 
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Figure 3.5.3.3. Seasonal survey: Quadrats – ‘   h    ’  f h      -interactions per month 

Mean richness of habitat-interactions per quadrat (+SE) per month in Avon-Heathcote 

estuary (A) and Duvauchelle bay (B) at high and low elevations. Locations within each 

estuary were pooled. Quadrat size = 0.0625 m2. 
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Figure 3.5.3.4. Seasonal survey: Quadrats - ‘         ’     ‘   h    ’  f h      -

interactions per season 

The mean number of interactions (A) and interaction-richness (B) (+SE) per quadrat 

contrasted between warmer summer vs. colder winter seasons in the Avon Heathcote Estuary 

(AHE) and Duvauchelle Bay (DUV) at high and low elevation. Quadrat size = 0.0625 m2. 
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Figure 3.5.3.5. Seasonal survey: Quadrats – ‘  mm      p      ’  f h      -interactions 

Principle coordinate analysis for seasonal quadrat communities. The first letter in the legend 

represents season (S =summer, W= winter), followed by elevation (H = high, L = Low) and 

estuary (AHE = Avon Heathcote and DUV=Duvauchelle Bay).  Bray-Curtis similarity matrix 

of square root transformed community data with a dummy variable of one was used. Pearson 

correlation coefficient was set to > 0.20 and overlay vectors numbers represents habitat-user-

on-habitat-former: 1: Amphibola crenata-Mud, 2: Austrovenus stutchburyi-Mud, 3: Ulva-

Austrovenus stutchburyi, 4: Diloma-Mud, 5: Ulva-Diloma, 6: Cominella glandiformis-Mud , 

7: Micrelenchus tenebrosus -Ulva, 8: Ulva-Dead shell, 9: Diloma-Dead shell, 10: Notoacmea 

helmsi-Dead shell, 11: Notoacmea helmsi-Diloma, 12: Micrelenchus tenebrosus-Dead shell, 

13: Elminius modestus-Dead shell, 14 : Micrelenchus tenebrosus-Zostera muelleri. 
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Figure 3.5.4. Seasonal survey: cores 

Figure 3.5.4.1. Seasonal survey: Cores - abundance and richness of habitat-users 

Mean abundance m-2+ SE (A) and richness m-2 + SE (B) of invertebrates in the Avon Heathcote 

estuary in high (black) and low (grey) elevations in summer (S) and winter (W) in the absence 

and presence of the seagrass Zostera muelleri (SG) and seaweed Ulva spp. (SW). Locations 

within each estuary were pooled. Bare = mud cores without any habitat-forming foundation 

species. Sampling cores were 0.0064 m2  
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Figure 3.5.4.2. Seasonal survey: Cores - community pattern of habitat-users 

Principle coordinate analysis for seasonal core communities. The first letter in the legend 

represent season (S =summer, W= winter), follow by elevation (H = high, L = Low) and 

habitat type (blank = bare, G = seagrass, W = seaweed, GW = co-occurring seagrass and 

seaweed). Color-coding: summer high = Black, low = grey; Winter high = dark blue, low = 

light blue solid fill. Solid symbols represent high elevation with open symbols representing 

low elevation. Bray-Curtis similarity matrix of square root transformed community data with 

a dummy variable of one was used. The correlation coefficient was set to >0.20 and the 

overlay vectors are abbreviated by numbers representing invertebrates in cores; 1: Errantia, 2: 

Macrophthalmus hirtipes, 3: Diloma subrostrata, 4: Diloma nigerrima, 5: Dosinia anus, 6: 

Halicarcinus whitei, 7: Macomona liliana, 8: Micrelenchus tenebrosus, 9: Notoacmea helmsi, 

10: Paphies australis, 11: Sedentaria.  
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3.6. Tables 

Table 3.6.1. Latitudinal survey: Quadrats  

Three-way permutational (M)ANOVA testing for effects of latitudinal region (north, central, 

south), elevation (high, low), and anthropogenic stress (low, moderate, high) on abundances 

(A), richness (B) and community structure (C) of unique habitat-interactions. Significant P-

values (p < 0.05) are in bold. 

Response Test Factors Df SS F P 

(A) Abundance  Region 2 18.010 2.248 0.1118 

  Elevation 1 8.916 5.381 0.0227 

  Stress 2 1.617 2.578 0.0818 

  Region x Elevation 2 11.820 1.116 0.3322 

  Region x Stress 4 121.563 5.022 <0.001 

  Elevation x Stress  2 9.170 1.986 0.1434 

  Region x Elevation x Stress  4 46.825 2.832 0.0294 

  Res 86 336.333          
(B) Richness  Region 2 18.010 2.303 0.1061 

  Elevation 1 8.916 2.280 0.1347 

  Stress  2 1.617 0.207 0.8136 

  Region x Elevation 2 11.820 1.511 0.2265 

  Region x Stress 4 121.563 7.771 <0.001 

  Elevation x Stress  2 9.170 1.172 0.3145 

  Region x Elevation x Stress  4 46.825 2.993 0.0230 

 Residuals 86 336.333   

(C) Community  Region 2 11074 2.797 <0.001 

 Elevation 1 2967.8 1.499 0.135 

 Stress  2 5819.9 1.470 0.081 

 Region x Elevation 2 6408.7 1.618 0.038 

 Region x Stress 4 20698 2.613 <0.001 

 Elevation x Stress  2 3123.9 0.789 0.7464 

 Region x Elevation x Stress  4 15685 1.980 <0.001 

 Residuals 86 1.70E+05                  
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Table 3.6.2. Latitudinal survey: Cores  

Four-way permutational (M)ANOVA testing for the effects of latitudinal region (north, 

central, south), elevation (high, low), presence/absence of seagrass, and presence/absence of 

seaweed on abundance (A), richness (B) and multivariate community structure (C) of 

invertebrates. Levine’s homogeneity test of variance was significant for community analysis 

which were therefore square root transformed. Euclidean distance was used in the 

resemblance matrix for richness and abundance and Bray-Curtis for community structure. 

Permutations were set to n = 4999. Estuaries within each region were pooled. Significant P-

values are in bold. 

Response Test Factors Df SS F P 

(A) Abundance Seagrass 1 277.46 1.296 0.256 

 Seaweed 1 2998.9 14.003 <0.001 

 Elevation 1 3230.1 15.082 <0.001 

 Latitude 2 918.31 2.144 0.125 

 Seagrass x Seaweed 1 236.73 1.105 0.304 

 Seagrass x Elevation  1 62.68 0.293 0.594 

 Seagrass x Latitude 2 1116.1 2.606 0.071 

 Seaweed x Elevation 1 150.18 0.701 0.417 

 Seaweed x Latitude 2 1086 2.535 0.074 

 Elevation x Latitude 2 1815.3 4.238 0.012 

 Seagrass x Seaweed x Elevation 1 6.6973 0.031 0.853 

 Seagrass x Seaweed x Latitude 2 134.9 0.315 0.741 

 Seagrass x Elevation x Latitude 2 279.42 0.652 0.540 

 Seaweed x Elevation x Latitude 2 7.0151 0.016 0.983 

 
Seagrass x Seaweed x Elevation x Latitude 2 203.93 0.476 0.626 

 Residuals 193 41333                   

(B) Richness  Seagrass 1 14.318 3.421 0.063 

 Seaweed 1 43.225 10.327 0.001 

 Elevation 1 35.862 8.568 0.005 

 Latitude 2 59.287 7.083 0.001 

 Seagrass x Seaweed 1 0.004 0.001 0.976 

 Seagrass x Elevation  1 2.737 0.654 0.424 

 Seagrass x Latitude 2 3.390 0.405 0.674 

 Seaweed x Elevation 1 1.148 0.274 0.616 

 Seaweed x Latitude 2 1.985 0.237 0.792 

 Elevation x Latitude 2 29.635 3.540 0.036 

 Seagrass x Seaweed x Elevation 1 1.208 0.289 0.585 

 Seagrass x Seaweed x Latitude 2 2.865 0.342 0.707 

 Seagrass x Elevation x Latitude 2 37.458 4.475 0.015 

 Seaweed x Elevation x Latitude 2 0.726 0.087 0.919 

 Seagrass x Seaweed x Elevation x Latitude 2 2.094 0.250 0.784 

 
Residuals 193 807.800                   

(A) Community Seagrass 1 5015.400 3.517 0.002 
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Seaweed 1 7386.100 5.179 <0.001 

 
Elevation 1 13530.000 9.487 <0.001 

 
Latitude 2 54114.000 18.972 <0.001 

 
Seagrass x Seaweed 1 556.470 0.390 0.902 

 
Seagrass x Elevation  1 1192.200 0.836 0.583 

 
Seagrass x Latitude 2 3395.400 1.190 0.280 

 
Seaweed x Elevation 1 1823.700 1.279 0.270 

 
Seaweed x Latitude 2 3685.600 1.292 0.197 

 
Elevation x Latitude 2 6084.200 2.133 0.008 

 
Seagrass x Seaweed x Elevation 1 780.280 0.547 0.801 

 
Seagrass x Seaweed x Latitude 2 2144.900 0.752 0.735 

 
Seagrass x Elevation x Latitude 2 3632.300 1.273 0.219 

 
Seaweed x Elevation x Latitude 2 2659.100 0.932 0.531 

 
Seagrass x Seaweed x Elevation x Latitude 2 2286.4 0.8016 0.681 

 
Residuals 193 2.75E+05                  
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Table 3.6.3. Seasonal survey: Quadrats  

Three-way permutational (M)ANOVA testing effects of season (summer, winter), elevation 

(high, low), and estuary (Avon Heathcote, Duvauchelle Bay) on abundances (A), richness (B) 

and community structure (C) of unique habitat-interactions. Euclidean distance was used in 

the resemblance matrix for richness and abundance and Bray-Curtis for community structure. 

Permutations were set to 4999. Locations within estuaries were pooled. Significant P-values 

(p < 0.05) are in bold. 

Response Test Factors Df SS F P 

(A) Abundance  Season  1 17892.159 18.787 <0.001 

  Elevation 1 27354.791 28.722 <0.001 

  Estuary 1 263700.318 276.884 <0.001 

  Season x Elevation 1 3078.199 3.232 0.0725 

  Season x Estuary 1 15509.876 16.285 <0.001 

  Elevation x Estuary 1 32933.687 34.580 <0.001 

  Season x Elevation x Estuary 1 255.514 0.268 0.6046 

  Residuals 1156 1100959.186     

(B) Richness  Season  1 158.623 17.738 <0.001 

 Elevation 1 165.419 18.498 <0.001 

 Estuary 1 6722.649 751.754 <0.001 

 Season x Elevation 1 24.849 2.779 0.0958 

 Season x Estuary 1 99.552 11.132 <0.001 

 Elevation x Estuary 1 245.085 27.406 <0.001 

 Season x Elevation x Estuary 1 0.176 0.020 0.8885 

 Residuals 1156 10337.664   

(C) Community  Season  1 31339 14.162 <0.001 

  Elevation 1 55604 25.127 <0.001 

  Estuary 1 4.74E+05 214.08 <0.001 

  Season x Elevation 1 17612 7.9591 <0.001 

  Season x Estuary 1 12439 5.6213 <0.001 

  Elevation x Estuary 1 53740 24.285 <0.001 

  Season x Elevation x Estuary 1 12668 5.7247 <0.001 

  Residuals 1156 2.56E+06                  
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Table 3.6.4. Seasonal survey: Cores  

Four-way permutational (M)ANOVA testing for the effects of season (summer, winter), 

elevation (high, low), presence/absence of seagrass, and presence/absence of seaweed on 

richness (A), abundance (B) and multivariate community structure (C) of invertebrates in the 

Avon Heathcote estuary.  Levine’s homogeneity test of variance was significant for the 

community analysis and data were square root transformed prior to analysis. Euclidean 

distance was used in the resemblance matrix for richness and abundance and Bray-Curtis for 

community structure. Permutations were set to 4999. Locations within the estuary were 

pooled. Significant P-values are in bold. 

Response Test Factors Df SS F P 

(A) Abundance Seagrass 1 1873.100 6.315 0.014 

 Seaweed 1 8056.400 27.159 <0.001 

 Elevation 1 55.682 0.188 0.680 

 Season 1 1288.000 4.342 0.038 

 Seagrass x Seaweed 1 26.914 0.091 0.776 

 Seagrass x Elevation  1 144.250 0.486 0.500 

 Seagrass x Season 1 566.790 1.911 0.176 

 Seaweed x Elevation 1 16.409 0.055 0.833 

 Seaweed x Season 1 1129.900 3.809 0.058 

 Elevation x Season 1 376.410 1.269 0.283 

 Seagrass x Seaweed x Elevation 1 118.230 0.399 0.552 

 Seagrass x Seaweed x Season 1 1009.100 3.402 0.070 

 Seagrass x Elevation x Season 1 5.500 0.019 0.898 

 Seaweed x Elevation x Season 1 172.850 0.583 0.459 

 Seagrass x Seaweed x Elevation x Season 1 172.850 0.583 0.461 

 Residuals 31 9195.800   

(B) Richness Seagrass 1 33.960 16.622 0.001 

 Seaweed 1 52.545 25.720 <0.001 

 Elevation 1 0.990 0.485 0.493 

 Season 1 14.727 7.209 0.016 

 Seagrass x Seaweed 1 8.909 4.361 0.047 

 Seagrass x Elevation  1 14.727 7.209 0.012 

 Seagrass x Season 1 2.444 1.197 0.283 

 Seaweed x Elevation 1 0.505 0.247 0.623 

 Seaweed x Season 1 1.636 0.801 0.381 

 Elevation x Season 1 22.000 10.768 0.002 

 Seagrass x Seaweed x Elevation 1 5.838 2.858 0.107 

 Seagrass x Seaweed x Season 1 0.020 0.010 0.917 

 Seagrass x Elevation x Season 1 16.990 8.316 0.005 

 Seaweed x Elevation x Season 1 0.505 0.247 0.615 

 Seagrass x Seaweed x Elevation x Latitude 1 1.636 0.801 0.374 

 Residuals 31 63.333                   

(A) Community Seagrass 1 3482.400 3.522 0.003 

 Seaweed 1 8740.700 8.839 <0.001 
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 Elevation 1 1924.100 1.946 0.084 

 Season 1 2522.800 2.551 0.024 

 Seagrass x Seaweed 1 3087.300 3.122 0.009 

 Seagrass x Elevation  1 764.460 0.773 0.589 

 Seagrass x Season 1 2388.500 2.415 0.033 

 Seaweed x Elevation 1 1334.800 1.350 0.263 

 Seaweed x Season 1 1662.000 1.681 0.138 

 Elevation x Season 1 2606.300 2.636 0.020 

 Seagrass x Seaweed x Elevation 1 478.270 0.484 0.803 

 Seagrass x Seaweed x Season 1 1647.700 1.666 0.144 

 Seagrass x Elevation x Season 1 3254.200 3.291 0.007 

 Seaweed x Elevation x Season 1 1934.900 1.957 0.084 

 Seagrass x Seaweed x Elevation x Latitude 1 1352.300 1.368 0.237 

 Residuals 31 30654.000                  
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Chapter 4: General discussion 
In this thesis, I quantified the distribution and abundances of estuarine foundation species 

(Chapter 2) and their associated communities (Chapter 3) across latitudinal and seasonal 

gradients. Analyses of distribution of foundation species were done based on drone images 

(landscape scales) and close-up digital photos (small scales) whereas effects on associated 

ecological communities were evaluated from core and quadrat data. Sites sampled in the 

seasonal and latitudinal surveys were selected based on previous work done at the same sites 

(Siciliano 2018, Foster 2019) using similar methodologies to enable detections of future long-

term changes and possible impacts from hot summers, like the 2017/2018 New Zealand 

marine heatwave (Brandolino 2018, Thomsen et al. 2019a, Salinger et al. 2020). 

  

4.1. Latitudinal distribution of foundation species  

The effects of latitude affected dead shell and Zostera more than seaweeds. Zostera varied 

most across the latitudinal gradient (southern > central> northern, see Fig. 4.7.1 and table 

4.8.1 for latitudinal and seasonal results and comparison to previous work see (Foster 2019, 

Siciliano et al. 2019)). At the landscape scale, 67% of photos had co-occurring seagrass and 

seaweed highlighting that these types of primary producers are ubiquitous in estuaries 

(Boström et al. 2006, Lyons et al. 2014). The pattern of dead shells (northern > central 

>southern) was opposite to the pattern for Zostera, and also found in  Foster (2019). 

However, this study did not find differences in Ulva cover across latitudes, whereas Foster 

(2019) found seaweeds being most common in southern estuaries. These results are also 

contrasting several other studies that have shown higher seaweed abundances at higher 

latitudes (Santelices 1980, Santelices and Marquet 1998, Kerswell 2006, Keith et al. 2014, 

Guillemin et al. 2016, Foster 2019). The results for Zostera was consistent with previous 

work (Inglis 2003, Turner and Schwarz 2006). The finding that Zostera have higher cover in 

the southern estuaries may be because of different anthropogenic pressures (Turner 1996, 

Turner and Schwarz 2006, Turner et al. 2007), less thermal stress (Madeira et al. 2012, 

Thomson et al. 2015, Hughes et al. 2018, Oliver et al. 2018c, Kendrick et al. 2019) as high 

temperature can cause physiological stress to seagrasses ( ads et al. 201 ,  ’Mara and  ong 

2016, Armstrong et al. 2020).  
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4.2. Latitudinal pattern in habitat-Interactions and invertebrates 

I found that abundances, richness, and multivariate community structure of habitat-

interactions was affected by stress, elevation level and latitude, where most habitat-

interactions occurred at low elevations (Fig. 4.7.2). This pattern may occur because the 

foundation species often are more abundant and larger at lower elevation (thereby providing 

more habitat, see also Fig. 3.5.1) and because abiotic stress are reduced at lower elevations 

for most estuarine animals (Grant and McDonald 1979, Mitchell 1980, Shumway and 

Marsden 1982, Omori et al. 1998, Bertness et al. 2001, Jones et al. 2005, Marsden and Knox 

2008).  Importantly, molluscs like Micrelenchus, Notoacmea, Diloma, Austrovenus, and dead 

shells accounted for much of the data-variability highlighting the importance shell-producing 

animals in estuarine systems (Gutiérrez et al. 2003, Foster 2019). Deposition of dead shells 

on sediment surface provided habitat across spatiotemporal scales as found in a few other 

studies (Grange 1979, Gagné et al. 2008, Summerhayes et al. 2009, Ellis et al. 2017, Foster 

2019), where shells can ameliorate desiccation stress and provide refugia from predators 

(Thomsen et al. 2016, Foster 2019).  Overall, I quantified 575 interactions in the latitudinal 

survey (23% in northern estuaries, 45% in central estuaries and 32% in southern estuaries) 

where 25% were accounted for by Micrelenchus tenebrosus and 21% by Notoacmea helmsi 

alone. Little research have been done on these two taxa (Jones et al. 2005) but my results 

matches findings by Foster (2019), highlighting that these taxa should be studied more to 

better understand the ecology of estuaries on the South Island. 

The habitat-interaction results were supported by results from sediment cores that showed 

that M. tenebrosus was found in high densities in seaweed and seagrass habitats, likely 

because these primary producers provide food for grazing, relief from predators, and at high 

tidal elevations also lower desiccation stress (Norkko 1998, Norkko et al. 2000, Cardoso et al. 

2004, Thomsen et al. 2010a). My results also support a growing number of studies that have 

shown higher invertebrate abundances when seaweed and seagrass co-occur, probably 

because the two primary producers provide supplementary resources (Hooks et al. 1976, Gore 

et al. 1981, Pihl and Rosenberg 1982, Schneider and Mann 1991, Holmquist 1997, Thomsen 

et al. 2012b, Thomsen et al. 2013).  Previous work (Siciliano 2018) that sampled the same 

sites in the same estuaries found relatively similar results, with more invertebrates in seaweed 

and seagrass habitats. However, Siciliano (2018) found higher biodiversity in northern 

estuaries, contrasting my results that showed higher biodiversity in southern and central low 

elevation sites, perhaps because I sampled in winter but Siciliano sampled in spring and fall. 
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Seagrass and seaweed habitats had strong positive effect on biodiversity, but on longer time 

scales seagrass provide a more stable habitat, because it has perennial roots and rhizomes and 

year-round production blades provide a more stable cover (Inglis 2003, Turner and Schwarz 

2006, Foster), and therefore more stable habitat ameliorations (Grant and McDonald 1979, 

Omori et al. 1998, Bertness et al. 2001, Turner and Schwarz 2006, Turner 2007, Berthelsen et 

al. 2018). I noted that seagrass patches often were sparser with shorter leaves in the intertidal 

zone suggesting that the habitat-amelioration effect may be weaker here (Turner 1996, van 

Houte-Howes et al. 2004, Turner and Schwarz 2006).  Out of 3933 counted invertebrates in 

the latitudinal cores, the two most common taxa - Austrovenus stutchburyi and M. tenebrosus 

were found in 24 and 23% respectively – once again highlight the importance of shell-

forming species in estuaries (Johnson 1957, Trewin and Welsh 1976, Bailey et al. 1994, 

Gutiérrez et al. 2003, Summerhayes et al. 2009, Thomsen et al. 2016, Foster 2019, Beal et al. 

2020). 

 

4.3. Seasonal distribution of foundation species  

There was relatively large variation in cover of Zostera and Ulva across seasons, but little 

variation in cover of dead shells. More specifically, both the landscape and close-up surveys 

found that Zostera where more abundant in winter but seaweed more abundant in summer as 

seen in other seasonal studies from this region (Siciliano 2018, Foster 2019). Temperature 

affects seagrass biogeochemical processes, reproductive strategies, dispersal pattern and 

overall health and is – with changing light conditions – the factor that drive seasonal changes 

in temperate seagrass beds (Bulthuis 1987, Johnson et al. 2003, Boström et al. 2006, Lee et 

al. 2007, Collier and Waycott 2014, Arias-Ortiz et al. 2018, Strydom et al. 2020).  For 

example, Thom et al. (2014) found that temperature was the main drivers of variation in 

cover of Zostera marina  in the Pacific Northwest and that temperature effects can be 

exacerbated during El Niño years (Thom et al. 2003, Thom et al. 2014). Furthermore, Moore 

et al. (2012) found negative synergistic impact on abundance of Zostera associated with small 

temperature increases and low light availability in the Chesapeake Bay, where deeper beds 

located close to the open ocean were least affected (Moore et al. 2012, Moore et al. 2014). 

Therefore, even small temperature increases (e.g., coupled with southern oscillation events 

and anthropogenic stress) could explain pattens shown in this study. 

By contrast, Ulva was most abundant in summer months. Similar seasonal effects occur for 

many other estuarine seaweeds, typically attributed to a combination of high temperature, 
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high light and high nutrient levels that stimulate rapid growth and bloom formations 

(Raffaelli et al. 1998, Thomsen and McGlathery 2007, Marsden and Knox 2008, Abreu et al. 

2011, Zhang et al. 2016).  More specifically, similar patterns have been found in several other 

studies from the same area (Murphy 2006, Alexander et al. 2008, Foster 2019), documenting 

that Ulva cover consistently is higher in spring and summer. Importantly, Ulva recruits were 

often observed attached to cockle shells, suggesting that bivalves facilitate seaweed by 

providing attachment space for early life-stages (Callow et al. 2000, Genzer and Efimenko 

2006, Alexander et al. 2008). 

 

4.4. Seasonal pattern in habitat-Interactions and invertebrates  

Overall, this study quantified 25,288 habitat-interactions across seasons in the two estuaries. 

There was a strong difference between the two estuaries with Micrelenchus tenebrosus and 

Diloma subrostrata. accounting for more than a quarter of all interactions and being abundant 

in the Avon Heathcote Estuary (Chapter 3, Fig. 3.5.3.5, Fig. 3.5.4.2). D. subrostrata and M. 

tenebrosus are endemic trochid gastropods that are common across elevational levels because 

they can tolerate high desiccation and thermal stress (Logan 1976, Mitchell 1980, Miller and 

Poulin 2001). These gastropods feed on macroalgae and benthic diatoms, where the former is 

more common on organic rich sediments and the latter more common in seagrass beds 

(Logan 1976, Powell 1979, Mitchell 1980, Hayward et al. 1999, Miller and Poulin 2001, 

Engels 2011). M. tenebrosus can also, as found here, be highly abundant on Ulva fronds 

(Murphy 2006, Thomsen et al. 2016, Siciliano 2018, Foster 2019). Differences in abundance 

of the two species across season could arise from differences in life history characteristics 

and recruitment (Rainer 1981, Holland et al. 1987, Platell and Potter 1996, Foster 2019). D. 

subrostrata and M. tenebrosus can also be biogenic habitat-formers themselves for cryptic 

taxa like bryozoan and small red alga (Thomsen et al. 2016, Foster 2019), and supporting 

studies from around the world that also has found that snails often facilitate other estuarine 

species (Schmitt et al. 1983, Voight and Walker 1995, Wahl 1996, Creed 2000, Chan and 

Chan 2005, Thieltges and Buschbaum 2007, Thomsen et al. 2010b, Wernberg et al. 2010b, 

Thyrring et al. 2013, Thyrring et al. 2015, Thomsen et al. 2016, Foster 2019). Thus, D. 

subrostrata and M. tenebrosus can function as mobile refugia for small invertebrates and 

seaweed and reduce desiccation stress in the upper intertidal zone (Thomsen et al. 2007, 

Wernberg et al. 2010b, Thyrring et al. 2013, Foster 2019).   
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Seagrass and seaweed supported higher abundances and diversity of invertebrates compared 

to mud cores as shown in many other studies (Boström and Bonsdorff 2000, Cummins et al. 

2004, Boström et al. 2006, Thomsen 2010, Thomsen et al. 2012a, Lyons et al. 2014, Siciliano 

2018). I also found greater richness and abundance at lower tidal elevations where abiotic 

stress is lower (Grant and McDonald 1979, Mitchell 1980, Lowell 1984, Boström et al. 2006, 

Bible and Sanford 2016). Richness (but not abundances) of invertebrates in cores was also 

higher when seaweed and seagrass co-occurred – a result that support many facilitation 

cascade studies that have shown positive impacts on biodiversity when foundation species 

cooccur (Altieri et al. 2007, Thomsen 2010, Angelini et al. 2011, Bishop et al. 2012, Dijkstra 

et al. 2012, Bishop et al. 2013, Angelini et al. 2015, Siciliano 2018, Thomsen et al. 2018b, 

Gribben et al. 2019, Crotty and Angelini 2020, Ravaglioli et al. 2021). Seasonal changes to 

seagrass density and leaf sizes can also affect invertebrate biodiversity (Laugier et al. 1999, 

Meling-López and Ibarra-Obando 1999, Guidetti et al. 2002, Lee et al. 2007, Siciliano et al. 

2019), although invertebrates can adjust to such changes in habitat structure (Webster et al. 

1998, Frost et al. 1999, Boström and Bonsdorff 2000). Battley et al. (2011) found that dense 

Zostera muelleri beds on the Farewell Spit New Zealand, was inhabited by 37 taxa, whereas 

only three taxa were found in adjacent sand and very sparse seagrass beds.  Although I found 

positive effects of Ulva on invertebrate biodiversity, the same seaweed can, when occurring 

in in thick mats, negatively affect invertebrates through hypoxia and smothering (Norkko 

1998,  affaelli et al. 1998, Marsden and Bressington 2009, Vaquer‐Sunyer and Duarte 2011, 

Lyons et al. 2014).  Overall, the abundance of invertebrates associated with foundation 

species where higher in winter than summer, contrasting several seasonal seagrass-

invertebrate studies (Heck 1977,  łodarska-Kowalczuk et al. 2014) that have suggested that 

more abundant and larger seagrass over summer facilitate more invertebrates. However, in 

New Zealand Zostera are often less abundant in summer and thereby provide less habitat 

(Turner and Schwarz 2006, Turner 2007). Furthermore, very hot summer can have negative 

impact on invertebrates and can therefore partly explain why I found more invertebrates in 

the winter cores (Allison 2004, Hopkin et al. 2006, Donner 2011, Sorte et al. 2011, Sunday et 

al. 2011, Madeira et al. 2012, Fraser et al. 2014, Smale et al. 2015, Thomson et al. 2015, 

Brandolino 2018, Chandrapavan et al. 2019, Fedaeff 2019, Kendrick et al. 2019, Miranda et 

al. 2019, Kim et al. 2020, Strydom et al. 2020). 
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4.5.  General results 

A key result from this study was that surface deposited dead shells were relatively common 

in all estuaries (Chapter 2) and that they modified and controlled many habitat-interactions 

(Chapter 3). For example, dead shell accounted for the highest abundance of interactions of 

any cover type across seasons. Dead shells can provide refugium for habitat-users from 

predators and abiotic stressors (Kidwell and Jablonski 1983, Kidwell 2002, Casebolt and 

Kowalewski 2018, Foster 2019). Most research on estuarine foundation species in New 

Zealand has focused on seagrasses (Turner and Schwarz 2006, Turner 2007, Jones et al. 

2008, Nelson et al. 2015, Lohrer et al. 2016, Thomsen et al. 2016, Plew et al. 2020). 

However, understanding how estuarine communities are impacted by dead shell deposits 

should be explored in future studies. Another important result from the study was the regional 

differences observed between core samples. This contrast results from the North Island (de 

Juan and Hewitt (2011)). This study did not find regional differences in benthic communities, 

but that small scale habitat fragmentation had stronger effects. However, this study only 

sampled a smaller region.  Differences between regions (Hanski 1982, de Juan and Hewitt 

2011, Smale et al. 2017, Qin et al. 2020) and  estuary types (Hume et al. 2007, Hume et al. 

2016) characterized by different environmental factors (Berthelsen et al. 2020, Plew et al. 

2020) highlight why baseline studies done across spatiotemporal scales are important. It is an 

important goal to understand how climate changes, heatwaves, eutrophication, and other 

anthropogenic stressor, affect estuaries, and standardized data collections across scales can 

help to achieve this goal (Caughlan and Oakley 2001, Nichols and Williams 2006, Berthelsen 

et al. 2018, Berthelsen et al. 2020). 

 

4.6. Conclusion  

Ulva and Zostera and highest cover in the southern region, dead shells in the northern 

estuaries, Ulva had highest cover in summer and Zostera and dead shells in winter. These 

three types of foundation species provided important habitat for invertebrates across latitudes, 

estuaries, seasons, elevation levels and sites. Interactions observed between these foundation 

species and habitat-users were generally lower compared to similar sampling done a few 

years before the hot summers of 2017/18 and 2018/19. Finally, I conclude that dead shells, a 

type of habitat that is poorly studied, are common across estuaries and that these shell 

deposits provide important habitat for many other species.
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4.7. Figures 

Figure 4.7.1. Foundation species change across latitudes. 

The map shows general patterns in abundances of dead shells, the seaweed Ulva spp., and the 

seagrass Zostera muelleri, across latitudes (North, Central, South) and elevation levels (high 

and low) (see chapter 2 for details). 
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Figure 4.7.2. Habitat former and habitat-user interaction seasonal change. 

Summary diagram highlighting changes to foundation species and habitat-interactions across seasons (left to write) and elevation levels (top to 

bottom). The top row reflects the relative abundance of the foundation and the bottom row (squares) the interactions between foundation species 

and habitat-users. Colour of the squares = most common interactions involving dead shell (blue), Austrovenus stutchburyi (yellow), Ulva (light 

green) and Zostera (dark green). High to low tidal elevation is indicated by the blue line and the separate summer and winter seasons (see 

Chapter 3 for details).  
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4.8. Tables 

Table 4.8.1. Comparing key results from surveys done before and after the 2017/2018 hottest summer on record.  

Comparing results from surveys done before (Siciliano 2018; Foster 2019) and after (this study) the 2017/2018 hot summer. 

Bold rows highlight when results were similar between the different surveys. FS = foundation species, Inv. = Invertebrates. Core 

Abundance/Richness = invertebrates in core samples. Cover Type represents quadrat percent cover of Zostera, dead shells, or Ulva, or Zostera 

and Ulva cooccurring.  

 

Survey Type Test Type  Cover Type/Core Type Post-Heatwave Pre-Heatwave Study  

Latitudinal  Quadrat FS Cover Zostera South > Central > North South > Central > North  Foster (2019)  

Latitudinal  Quadrat FS Cover Dead shell North > Central > South North > Central > South Foster (2019)  

Latitudinal  Quadrat FS Cover Ulva South = North = Central South > North > Central Foster (2019)  

Latitudinal  Core Inv. Abundance Bare South > North > Central  North > Central > South Siciliano (2018) 

Latitudinal  Core Inv. Richness Bare Central > North >South North > Central > South Siciliano (2018) 

Latitudinal  Core Inv. Abundance Zostera South > Central > North South > Central > North  Siciliano (2018) 

Latitudinal  Core Inv. Richness Zostera North > South > Central North > Central > South Siciliano (2018) 

Latitudinal  Core Inv. Abundance Ulva South > Central > North Central > South > North  Siciliano (2018) 

Latitudinal  Core Inv. Richness Ulva Central > South > North  North > Central > South Siciliano (2018) 

Latitudinal  Core Inv. Abundance Zostera + Ulva Central > South > North  Central > South > North  Siciliano (2018) 

Latitudinal  Core Inv. Richness Zostera + Ulva South > North > Central  North > Central > South Siciliano (2018) 

Seasonal Quadrat FS Cover Zostera Winter > Summer Winter > Summer Foster (2019)  

Seasonal Quadrat FS Cover Dead shell Summer > Winter Summer > Winter Foster (2019)  

Seasonal Quadrat FS Cover Ulva Summer > Winter Summer > Winter Foster (2019)  

Seasonal Core Inv. Abundance Bare Winter > Summer Summer > Winter Siciliano (2018) 

Seasonal Core Inv. Richness Bare Winter > Summer Summer > Winter Siciliano (2018) 

Seasonal Core Inv. Abundance Zostera Summer > Winter Winter > Summer Siciliano (2018) 

Seasonal Core Inv. Richness Zostera Winter > Summer Summer > Winter Siciliano (2018) 

Seasonal Core Inv. Abundance Ulva Winter > Summer Summer = Winter Siciliano (2018) 

Seasonal Core Inv. Richness Ulva Winter > Summer Summer = Winter Siciliano (2018) 

Seasonal Core Inv. Abundance Zostera + Ulva Summer > Winter Summer = Winter Siciliano (2018) 

Seasonal Core Inv. Richness Zostera + Ulva Winter > Summer Winter > Summer Siciliano (2018) 
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