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1 Sparsest Cut

1.1 Approximation Algorithm for Sparsest Cut

Stage 0: Solve the relaxation of the sparsest cut problem. As it a linear program, it can
be solved in polynomial time.
Stage 1: Embed the metric d found by the LP into l1 with distortion O(log n). This also
can be done in polynomial time by Bourgains theorem. So exists f : V → l1 such that for
every u, v ∈ V

d(u, v) ≤ ||f(u)− f(v)|| ≤ O(log n)d(u, v).

Therefore,
∑

(u,v)∈E

‖f(u)− f(v)‖1 ≤ O(log n)LP and
∑k

i ‖f(si)− f(ti)‖1 = 1 where LP is

the solution found by the linear programming relaxation.

Lemma 1 Every n-point metric d̃ that embeds isometrically into l1 can be written as a pos-
itive combination of cut metrics τi. I.e., there exists αi > 0 such that d̃(x, y) =

∑
αiτi(x, y)

for every x, y ∈ V . Furthermore, such αi can be found in polynomial time and the number
of αi > 0 is at most

(
n
2

)
.

We now use Lemma 1 for the second stage of the approximation algorithm.
Stage 2: Write the distance d̃ from the embedding as d̃ =

∑
αiτi(x, y) for τi cut metrics.

We now show that at least one of the cut metrics τi yields the desired approximation.

Claim 2 There exists j∗ such that the objective OBJ |d=τj∗ ≤ OBJ |d=d̃, i.e.,
∑

τj∗ (u,v)

τj∗ (si,ti)
≤

∑
d̃(u,v)

d̃(si,ti)
.

Proof The proof is a generalization of the following. ∀a1, . . . , am, b1, . . . , bm > 0 min
l

al
bl
≤

∑
al∑
bl

. Assume, towards contradiction, that min
l

al
bl

>
∑

al∑
bl

. We get that b1

∑
al∑
bl

< a1. Simi-

larly bi

∑
al∑
bl

< ai for every 1 ≤ i ≤ m. Therefore,
∑
l

al =
∑
i

bi

∑
al∑
bl

<
∑
l

al, a contradiction.

Finally, τj∗ gives us S∗G ⊆ V whose value = OBJ |d=τj∗ ≤ OBJ |d=d∗ ≤ O(log n)LP ≤
O(log n)OPT .

Refinement: We can improve the approximation ratio to O(log k) by having one side
of distortion guarantee only for demand pairs, i.e., d(u, v) ≤ ‖f(u) − f(v)‖ only for the k
demand pairs and ‖f(u)− f(v)‖ ≤ Dd(u, v) for all pairs.
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Theorem 3 (Aumann-Rabani, Linial-London-Rabinovich95) Sparsest cut can be ap-
proximated in poly-time within factor O(log k).

2 Minimum Bisection

The input of the Minimum Bisection problem is a graph G = (V, E) such that |V | = n.
The goal is to find a cut (S, S̄) such that |S| = |S̄| = n/2 so as to minimize e(S, S̄). This
problem is known to be NP-hard.

Recall that the sparsest-cut problem with uniform demands is the search of a cut S that
minimizes e(S,S̄)

|S||S̄| . Note that e(S,S̄)
|S|·|S̄|

∼= e(S,S̄)
min{|S|,|S̄|}·n , up to a factor of 2.

We now show a poly-time algorithm that finds a 2
3 -balanced cut S of cost e(S, S̄) ≤

O(log n) · b∗G where b∗G is the optimal cost of the minimum bisection problem on the graph
G.

Algorithm 2/3 − balanced − cut(G = (V, E))

1. Set Galg ← (V, E), denote by Valg the set of vertices of the graph Galg

2. While |Valg| ≤ 2n
3

• use O(log n) approximation algorithm for the sparsest-cut with uniform demands
problem on Galg to find a cut (S, S̄), where |S| ≤ |S̄|.

• remove S from Galg.

3. return Valg, the vertices of Galg.

Claim 4 The set of vertices returned by the algorithm Valg satisfies n
3 ≤ |Valg| ≤ 2n

3 .

Proof At the beginning of the last iteration |Valg| ≥ 2n
3 and we remove at most half the

vertices from Valg (since we remove the smaller side of the cut).
Denote by b∗G the optimal cost of the minimum bisection problem and by S∗G the optimal

cut that achieves the cost b∗G where |S∗G| = n/2.

Claim 5 The cost of Valg is at most O(log n)b∗G.

Proof Let S` be the set removed in iteration `. Let S∗` be the set that best minimizes
e(S′`,S̄

′
`)

|S′`|
in iteration `. Where S̄′` is the complement of the cut S′` in the graph of iteration `.

The set Valg in iteration `, denoted by V `
alg, contains at least 2n

3 nodes, therefore S∗G∩V `
alg >

n
2 − n

3 = n
6 and also S̄∗G ∩ V `

alg > n
6 . We get that e(S∗` ,S̄∗` )

|S∗` | ≤ b∗G
n/6 and as we use a log n-

approximation algorithm we now get e(S`,S̄`)
|S`| ≤ O(log n) e(S`∗ ,S̄∗` )

|S∗` | ≤ O(log n) b∗G
n/6 . Hence

e(Valg, V̄alg) ≤
∑
`

e(S`, S̄`) ≤ O(log n) b∗G
n/6 ·

∑
`

|S`| ≤ O(b∗G log n).
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Theorem 6 (Leighton-Rao 88) There is a poly-time algorithm that finds a 2
3 -balanced

cut S of cost e(S, S̄) ≤ O(log n) · b∗G where b∗G is the optimal cost of the minimum bisection
problem on the graph G.

3 Distortion Lower Bounds

We now show a specific n-point space such that embedding this space to l2 requires distortion
of at least

√
log n.

Lemma 7 (Short diagonals) Let x1, x2, x3, x4 be points in l2. Then ‖x1 − x3‖2 + ‖x2 −
x4‖2 ≤ ‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x3 − x4‖2 + ‖x4 − x1‖2.

Proof Observe that is suffices to prove it for x1, x2, x3, x4 ∈ R. For points xi in some Rd,
simply apply the inequality on each coordinate and then add these inequalities together.
So consider x1, x2, x3, x4 ∈ R, ‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x3 − x4‖2 + ‖x4 − x1‖2 − ‖x1 −
x3‖2 − ‖x2 − x4‖2 = |x1 − x2 + x3 − x4|2 ≥ 0.

Theorem 8 (Enflo69) Let G = (V, E) be the discrete cube {0, 1}m and shortest-path dis-
tance dG(x, y) = #(bits i such that xi 6= yi). Then embedding dG into l2 requires distortion
≥ √

m =
√

log |V |.

Remark: The above is optimal. The identity mapping: x → x has distortion
√

m.
Proof Consider V = {0, 1}m. For x ∈ V , let x̄ ∈ {0, 1}m be the complement of x. We
will show that for every f : V → l2:

Ex∈V [‖f(x)− f(x̄)‖2] ≤ m · E(x,y)∈E [‖f(x)− f(y)‖2]. (1)

This would be enough to prove the lemma. By 1,

Ex∈V [‖f(x)− f(x̄)‖2] ≤ m ·E(x,y)∈E [‖f(x)− f(y)‖2] ≤ m ·E(x,y)∈E [dG(x, y)2] ≤ m · 1 = m.

So there exists a point x such that ‖f(x)− f(x̄)‖ ≤ √
m = dG(x,x̄)√

m
.

We now prove equation 1. We prove it by induction. For m = 2, use the short diagonal
Lemma (divided by 2). Assume the claim holds for m′ < m and consider m′ = m. Let x be
a point in {0, 1}m−1. Apply the short diagonals lemma to x0, x1, x̄0, x̄1. We get ‖f(x0)−
f(x̄1)‖2 + ‖f(x1)− f(x̄0)‖2 ≤ ‖f(x0)− f(x1)‖2 + ‖f(x1)− f(x̄1)‖2 + ‖f(x̄1)− f(x̄0)‖2 +
‖f(x̄0) − f(x0)‖2. Finally, by summing on all x′s and using the induction hypothesis we
get the desired inequality.
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