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1 Sparsest Cut

1.1 Approximation Algorithm for Sparsest Cut

Stage 0: Solve the relaxation of the sparsest cut problem. As it a linear program, it can
be solved in polynomial time.
Stage 1: Embed the metric d found by the LP into /; with distortion O(logn). This also
can be done in polynomial time by Bourgains theorem. So exists f : V — [; such that for
every u,v € V

d(u,v) < [[f(u) = f(0)|] < O(log n)d(u,v).
Therefore, > ||f(u) — f(v)]1 < O(logn)LP and Zf | f(si) = f(ti)]|1 = 1 where LP is

(u,v)EE
the solution found by the linear programming relaxation.

Lemma 1 Fvery n-point metric d that embeds tsometrically into Iy can be written as a pos-
itive combination of cut metrics ;. Le., there exists i > 0 such that d(z,y) = 3 a;7i(z, y)
for every x,y € V. Furthermore, such «; can be found in polynomial time and the number
of a; > 0 is at most (}).

We now use Lemma [1/ for the second stage of the approximation algorithm.
Stage 2: Write the distance d from the embedding as d = ) a;7(x,y) for 7; cut metrics.
We now show that at least one of the cut metrics 7; yields the desired approximation.

Claim 2 There exists j* such that the objective OBJ|q=r.. < OBJ|,_g, i.e., L7 wn)

Tj* (Si,ti)
3 d(uyw)
J(si,ti) :
Proof The proofis a generalization of the following. Vai,...,am,b1,...,bp, >0 mlin Z—ll <

S . e Ya S -
S5 Assume, towards contradiction, that I’IlllIl b S We get that by 3, < a1 Simi

larly bi% < a; for every 1 <1i < m. Therefore, > a; = > bi% < Y ay, a contradiction.
l % l
|
Finally, 7j« gives us S, C V whose value = OBJ|d:Tj* < OBJ|g=g» < O(logn)LP <
O(logn)OPT.
Refinement: We can improve the approximation ratio to O(logk) by having one side

of distortion guarantee only for demand pairs, i.e., d(u,v) < ||f(u) — f(v)| only for the k
demand pairs and || f(u) — f(v)|| < Dd(u,v) for all pairs.
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Theorem 3 (Aumann-Rabani, Linial-London-Rabinovich95) Sparsest cut can be ap-
proximated in poly-time within factor O(logk).

2 Minimum Bisection

The input of the Minimum Bisection problem is a graph G = (V, E) such that |V| = n.
The goal is to find a cut (S, S) such that |S| = |S| = n/2 so as to minimize e(S,S). This
problem is known to be NP-hard.

Recall that the sparsest-cut problem with uniform demands is the search of a cut .S that

e(S,5) e(5,5) ~ e(S.5)
minimizes \SHS\ Note that & ISI1S] — min{|SISTFn’

We now show a poly-time algorithm that finds a %—balanced cut S of cost e(S,S) <
O(logn) - b, where by, is the optimal cost of the minimum bisection problem on the graph

G.

up to a factor of 2.

Algorithm 2/3 — balanced — cut(G = (V, E))
1. Set Gy < (V, E), denote by V4 the set of vertices of the graph G

2. While [V < 22

e use O(logn) approximation algorithm for the sparsest-cut with uniform demands
problem on Ggq4 to find a cut (S, 5), where |S| < [S].

e remove S from G-

3. return V4, the vertices of G .

Claim 4 The set of vertices returned by the algorithm Vg satisfies § < |Vag| < %”

Proof At the beginning of the last iteration |[Vg4| > 2” and we remove at most half the
vertices from Vg, (since we remove the smaller side of the cut). H

Denote by bf; the optimal cost of the minimum bisection problem and by S¢, the optimal
cut that achieves the cost bf, where |S&| =n/2.

Claim 5 The cost of Vag is at most O(log n)b,.

Proof Let Sy be the set removed in iteration £. Let S; be the set that best minimizes
e(Sg:57)
EA
The set V4 in iteration £, denoted by Va% > contains at least %" nodes, therefore S, ﬂVat}g >
— 3 = % and also §G N Valg & We get that e(%;g) < :Z—;GG and as we use a logn-
approximation algorithm we now get % < O(logn) e(ﬁ‘g;’f‘”*) < O(logn)TG Hence

e(Valg,Valg) < ; e(Sy, S¢) < O(log n)n/6 ; |Se| < O(bg; logn).

in iteration £. Where 5_% is the complement of the cut S; in the graph of iteration .

n
2
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Theorem 6 (Leig_hton—Rao 88) There is a poly-time algorithm that finds a %-balanced
cut S of cost (S, 8) < O(logn) - b where b, is the optimal cost of the minimum bisection
problem on the graph G.

3 Distortion Lower Bounds

We now show a specific n-point space such that embedding this space to I requires distortion

of at least /logn.

Lemma 7 (Short diagonals) Let x1, 22,13, 24 be points in ly. Then |lx1 — z3|*> + ||2g —
wal? < llon — @ol® + oz — @s]® + [los — 2al|® + [l2a — 2|

Proof Observe that is suffices to prove it for z1, z2, z3, 24 € R. For points z; in some R,
simply apply the inequality on each coordinate and then add these inequalities together.
So consider 1,72, 3,74 € R, ||z1 — 22||® + |22 — 23]|% + |23 — 24]|® + |24 — 21> — ||21 —
1‘3”2 — H.%'Q — $4H2 = ]a:l — X2 + X3 — 1'4’2 >0.1

Theorem 8 (Enflo69) Let G = (V, E) be the discrete cube {0,1}™ and shortest-path dis-
tance dg(xz,y) = #(bits i such that x; # y;). Then embedding dg into ly requires distortion

= /log|V|.

Remark: The above is optimal. The identity mapping: = — z has distortion /m.
Proof Consider V = {0,1}". For x € V, let € {0,1}™ be the complement of x. We
will show that for every f:V — la:

Esevll|f(z) = F@)7] < m - B yenlllf (@) = F)I)- (1)

This would be enough to prove the lemma. By (1,

Evevl[l|f(x) = f@)IIP] < m- B yerll f(2) = @] < m- B yeplda(e,y)?) <m-1=m

So there exists a point z such that ||f(z) — f(Z)| < v/m = wff)

We now prove equation [1. We prove it by induction. For m = 2, use the short diagonal
Lemma (divided by 2). Assume the claim holds for m’ < m and consider m’ = m. Let x be
a point in {0,1}™~!. Apply the short diagonals lemma to 20, 1,70, 21. We get || f(20) —
FEDIP + | fwl) — F@O)2 < If(0) — f(z1)|2 + | f(@1) — F@DI? + [I£(21) — FZ0)]° +
| f(z0) — f(x0)||?>. Finally, by summing on all 2’s and using the induction hypothesis we
get the desired inequality.

|
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