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Abstract: We recall some of the existing subharmonicity results of separately subharmonic functions, and state
the corresponding generalized counterparts for separately quasi-nearly subharmonic functions, thus giving partial
generalizations of certain results of Arsove and of Cegrell and Sadullaev. Moreover, we improve a result of
Kołodziej and Thornbiörnson concerning the subharmonicity of a function subharmonic in the first variable and
harmonic in the second.
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1 Introduction

1.1 Separately subharmonic functions
Wiegerinck [27], see also [28], Theorem 1, p. 246, has
shown that a separately subharmonic function need
not be subharmonic. On the other hand, Armitage
and Gardiner [1], Theorem 1, p. 256, showed that a
separately subharmonic functionu on a domainΩ of
Rm+n, m≥ n≥ 2, is subharmonic providedφ(log+ u+)
is locally integrable, whereφ : [0,+∞)→ [0,+∞) is an
increasing function such that

+∞∫
1

s(n−1)/(m−1)(φ(s))−1/(m−1) ds< +∞. (1)

For related previous results of Lelong, Avanissian, Ar-
sove and Riihentaus, see e.g. [10], [11], [12], [4], [3],
[8], [16] and the references therein. One of these pre-
vious results was ours:

Theorem 1 ([16], Theorem 1, p. 69) LetΩ be a do-
main in Rm+n, m,n≥ 2. Let u : Ω → [−∞,+∞) be
such that

(a) for each y∈ Rn the function

Ω(y) 3 x 7→ u(x,y) ∈ [−∞,+∞)

is subharmonic,

(b) for each x∈ Rm the function

Ω(x) 3 y 7→ u(x,y) ∈ [−∞,+∞)

is subharmonic,

(c) for some p> 0 there is a function v∈ L p
loc(Ω)

such that u≤ v.

Then u is subharmonic.

Though the cited result of Armitage and Gardiner
includes our Theorem 1, and in fact their result is even
“almost” sharp, we present below in Theorem 4 a gen-
eralization to Theorem 1. This is justified because of
two reasons. First, ourL p

loc integrability condition,
p > 0, is, unlike the condition of Armitage and Gar-
diner (1), very simple, and second, our generalization
to Theorem 1 is stated for quasi-nearly subharmonic
functions, and as such, it is very general, see2.1. be-
low.

1.2 Functions subharmonic in one variable
and harmonic in the other

An open problem is, whether a function, which is sub-
harmonic in one variable and harmonic in the other, is
subharmonic. For results on this area, see e.g. [3],
[28], [7] and [9] and the references therein. We con-
sider here two results. First Theorem 2 below, a result
of Arsove [3], Theorem 2, p. 622, and again, but with
a different proof, of Cegrell and Sadullaev [7], Theo-
rem 3.1, p. 82, and second, Theorem 3 below, a result
of Kołodziej and Thornbiörson [9], Theorem 1, p. 463.

Theorem 2 LetΩ be a domain inRm+n, m,n≥ 2. Let
u : Ω → R be such that

(a) for each y∈ Rn the function

Ω(y) 3 x 7→ u(x,y) ∈ R

is subharmonic,
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(b) for each x∈ Rm the function

Ω(x) 3 y 7→ u(x,y) ∈ R

is harmonic,

(c) there is a nonnegative functionϕ ∈ L1
loc(Ω) such

that−ϕ ≤ u.

Then u is subharmonic.

Arsove’s proof is brief and it is based on mean
value operators, [3], p. 625. Cegrell and Sadullaev
use Poisson modification in their proof. Unawere of
Arsove’s result (and proof), we gave in [20] a detailed
proof, based on mean value operators, which now, be-
cause of [3], p. 625, should, more or less, be consid-
ered just an elaboration of Arsove’s argument. On the
other hand, we give below in Theorem 5 a concise
counterpart to a corollary of Arsove and of Cegrell and
Sadullaev, [7], Corollary, p. 82, that is, Theorem 2 in
the caseϕ = 0.

Kołodziej and Thorbïornson gave the following
result. Their proof uses the above result of Arsove
and of Cegrell and Sadullaev, see [7], proof of Theo-
rem 3.2, p. 83.

Theorem 3 ([9], Theorem 1, p. 463) LetΩ be a do-
main inRm+n, m,n≥ 2. Let u: Ω → R be such that

(a) for each y∈ Rn the function

Ω(y) 3 x 7→ u(x,y) ∈ R

is subharmonic andC 2,

(b) for each x∈ Rm the function

Ω(x) 3 y 7→ u(x,y) ∈ R

is harmonic.

Then u is subharmonic and continuous.

Below in Theorem 6 we give a generalization
to the above result of Kołodziej and Thornbiörnson.
Instead of the standard Laplacians ofC 2 functions
we use generalized Laplacians, that is the Blaschke-
Privalov operators.

2 Definitions and Notation

2.1 Quasi-nearly subharmonic functions
Our notation is rather standard, see e.g. [17], [18],
[19], [20] and [8].

Let D be a subdomain of the Euclidean spaceRN,
N ≥ 2. A Lebesgue measurable functionu : D →

[0,+∞) is quasi-nearly subharmonic, if u ∈ L1
loc(D)

and if there is a constantK = K(N,u,D) > 0 such that

u(x)≤ K
rN

∫
B(x,r)

u(y)dmN(y) (2)

for any ballBN(x, r) ⊂ D. For the Lebesgue measure
in RN, N ≥ 2, we usemN. (Below m will be used
also for the dimension of the Euclidean spaceRm, but
this will surely cause no confusion.) We writeνN for
the Lebesgue measure of the unit ballBN(0,1) in RN,
thusνN = mN(BN(0,1)). This function class of quasi-
nearly subharmonic functions is natural, it has impor-
tant and interesting properties and, at the same time, it
is large, see e.g. [13], [17], [14], [18] and [19]. We re-
call here only that it includes, among others, nonneg-
ative subharmonic functions, nonnegative nearly sub-
harmonic functions (see e.g. [8]), functions satisfying
certain natural growth conditions, especially certain
eigenfunctions, and polyharmonic functions. Also,
any Lebesgue measurable functionu : D → [m,M],
where 0< m≤M < +∞, is quasi-nearly subharmonic.

Constants will be denoted byC andK. They will
be nonnegative and may vary from line to line.

2.2 Harnack functions
As a counterpart to nonnegative harmonic functions,
we recall the definition of Harnack functions, see [26],
p. 259. A continuous functionu : D → [0,+∞) is a
Harnack function, if there are constantsλ ∈ (0,1) and
C = C(λ)≥ 1 such that

max
z∈B(x,λr)

u(z)≤C min
z∈B(x,λr)

u(z)

wheneverB(x, r) ⊂ D. It is well-known that for each
compact setF in D there exists a smallest constant
C(F)≥C depending only onN, λ, C andF such that
for all u satisfying the above condition,

max
z∈F

u(z)≤C(F) min
z∈F

u(z).

One sees easily that Harnack functions are quasi-
nearly subharmonic. Also the class of Harnack func-
tions is very wide. It includes, among others, nonneg-
ative harmonic functions as well as nonnegative solu-
tions of some elliptic equations. Also, any continuous
functionu : D → [m,M], where 0< m≤ M < +∞, is
a Harnack function. See [26], pp. 259, 263.

2.3 Permissible functions
A function ψ : [0,+∞) → [0,+∞) is permissible, if
there exists an increasing (strictly or not), convex
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function ψ1 : [0,+∞) → [0,+∞) and a strictly in-
creasing surjectionψ2 : [0,+∞) → [0,+∞) such that
ψ = ψ2◦ψ1 and such that the following conditions are
satisfied:

(a) ψ1 satisfies the∆2-condition.

(b) ψ−1
2 satisfies the∆2-condition.

(c) The functiont 7→ ψ2(t)
t is quasi-decreasing, i.e.

there is a constantC = C(ψ2) > 0 such that

ψ2(s)
s

≥C
ψ2(t)

t

for all 0≤ s≤ t.

See also [14], Lemma 1 and Remark 1. Recall
that a functionϕ : [0,+∞)→ [0,+∞) satisfies the∆2-
condition, if there is a constantC=C(ϕ)≥ 1 such that
ϕ(2t)≤Cϕ(t) for all t ∈ [0,+∞).

3 Separately Subharmonic Func-
tions

The following gives a counterpart to Theorem 1, see
also [20], Theorem 1. Observe that, as pointed out
in [20], Remark 3.2, the measurability assumption is
now necessary, unlike in Theorem 1 above.

Theorem 4 LetΩ be a domain inRm+n, m,n≥ 2. Let
u : Ω → [0,+∞) be a Lebesgue measurable function
such that

(a) for each y∈ Rn the function

Ω(y) 3 x 7→ u(x,y) ∈ [0,+∞)

is quasi-nearly subharmonic,

(b) for each x∈ Rm the function

Ω(x) 3 y 7→ u(x,y) ∈ [0,+∞)

is quasi-nearly subharmonic,

(c) there exists a non-constant permissible function
ψ : [0,+∞)→ [0,+∞) such thatψ◦u∈ L1

loc(Ω).

Then u is quasi-nearly subharmonic.

Proof: Using the generalized mean value inequality
((2) above), first in the first variable and then in the
second, one sees thatψ ◦ u is locally bounded inΩ.
Sinceψ is permissible, it follows that alsou is locally
bounded inΩ. With the aid of Fubini’s Theorem one
then sees thatu is quasi-nearly subharmonic. See [20],
proof of Theorem 1, for details. �

4 The Result of Arsove and of
Cegrell and Sadullaev

Then a counterpart to Arsove’s and Cegrell’s and
Sadullaev’s Corollary of their result, Theorem 2
above, see [7], Corollary, p. 82. See also [20], The-
orem 2.

Theorem 5 LetΩ be a domain inRm+n, m,n≥ 2. Let
u : Ω → [0,+∞) be such that

(a) for each y∈ Rn the function

Ω(y) 3 x 7→ u(x,y) ∈ [0,+∞)

is quasi-nearly subharmonic,

(b) for each x∈ Rm the function

Ω(x) 3 y 7→ u(x,y) ∈ [0,+∞)

is a Harnack function.

Then u is quasi-nearly subharmonic.

Proof: It is well-known that u is Lebesgue mea-
surable. Let(a,b) ∈ Ω and R > 0 be such that
Bm+n((a,b),R) ⊂ Ω. Choose(x0,y0) ∈ Bm(a, R

4)×
Bn(b, R

4) arbitrarily. Sinceu(·,y0) is quasi-nearly sub-
harmonic, one has

u(x0,y0)≤
K

(R
4)m

∫
Bm(x0,

R
4 )

u(x,y0)dmm(x).

On the other hand, since the functionsu(x, ·), x ∈
Bm(a, R

2), are Harnack functions inBn(b, R
2), there is

a constantC = C(n,λ,Cλ,R) (hereλ andCλ are the
constants in2.2) such that

1
C
≤ u(x,y0)

u(x,b)
≤C

for all x∈ Bm(a, R
4). See e.g. [5], proof of 3.6, pp. 48–

49. Therefore

u(x0,y0)≤
K

(R
4)m

∫
Bm(x0,

R
4 )

Cu(x,b)dmm(x)

≤ C ·K
(R

4)m

∫
Bm(a, R

2 )

u(x,b)dmm(x)

≤ K
Rm

∫
Bm(a, R

2 )

u(x,b)dmm(x) < ∞.

Thus u is locally bounded above inBm(a, R
4) ×

Bn(b, R
4), and therefore the result follows from The-

orem 1 above. �
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5 The Result of Kołodziej and
Thornbiörnson

5.1 Generalized Laplacians
In our generalization to the cited result of Kołodziej
and Thorbïornson, we use the generalized Laplacian,
defined with the aid of the Blaschke-Privalov opera-
tors, see e.g. [22], [21], [15], [23], [24] and [25].
Let D be a domain inRN, N ≥ 2, and f : D → R,
f ∈ L1

loc(D). We write

∆∗ f (x) :=

= limsup
r→0

2(N+2)
r2

[ 1
νNrN

∫
BN(x,r)

f (x′)dmN(x′)− f (x)
]
,

∆∗ f (x) :=

= liminf
r→0

2(N+2)
r2

[ 1
νNrN

∫
BN(x,r)

f (x′)dmN(x′)− f (x)
]
.

If ∆∗ f (x) = ∆∗ f (x), then write∆ f (x) := ∆∗ f (x) =
∆∗ f (x). If f ∈ C 2(D), then

∆ f (x) = (
N

∑
j=1

∂2 f

∂x2
j

)(x),

the standard Laplacian with respect to the variablex=
(x1, . . . ,xN). More generally, ifx ∈ D and f ∈ t1

2(x),
i.e. f has anL1 total differential atx of order 2, then
∆ f (x) equals with the pointwise Laplacian off at x,
i.e.

∆ f (x) =
N

∑
j=1

D j j f (x).

HereD j j f represents a generalization of the usual∂2 f
∂x2

j
,

j = 1, . . . ,N. See e.g. [6], p. 172, [24], p. 369, and
[25], p. 29.

Recall that there are functions which are notC 2

but for which the generalized Laplacian is neverthe-
less continuous. The following function gives a sim-
ple example:

f (x) =


−1, whenxN < 0,

0, whenxN = 0,

1, whenxN > 0.

If f is subharmonic onD, it follows from [22],
p. 451 (see also [21], Lemma 2.2, p. 280, and [15],
Theorem 2.26, p. 52) that∆∗ f (x) = ∆∗ f (x) for almost
all x∈ D.

Below the following notation is used. LetΩ be a
domain inRm+n, m,n≥ 2, andu : Ω → R. If y∈ Rn

is such that the function

Ω(y) 3 x 7→ f (x) := u(x,y) ∈ R

is in L1
loc(Ω(y)), then we write∆∗

1u(x,y) := ∆∗ f (x),
∆1∗u(x,y) := ∆∗ f (x), and∆1u(x,y) := ∆ f (x).

5.2 A generalization to Kołodziej’s and
Thornbiörnson’s result

In [20], Theorem 3, we presented a generalization to
the cited result of Kołodziej and Thornbiörnson, The-
orem 3 above. Our result, and also its proof, was per-
haps rather technical and long. Therefore we prefer to
give here just a corollary. Our corollary will be con-
cise and natural and already it contains the result of
Kołodziej and Thornbiörnson. Also the proof, namely
the latter part of it, will now be shorter than in [20],
proof of Theorem 3.

Theorem 6 LetΩ be a domain inRm+n, m,n≥ 2. Let
u : Ω → R be such that

(a) for each y∈ Rn the function

Ω(y) 3 x 7→ u(x,y) ∈ R

is continuous and subharmonic,

(b) for each x∈ Rm the function

Ω(x) 3 y 7→ u(x,y) ∈ R

is harmonic,

(c) for each y∈ Rn the function

Ω(y) 3 x 7→ ∆1u(x,y) ∈ R

is defined and continuous.

Then u is subharmonic.

Proof: Let (x0,y0) ∈ Ω and letr0 > 0 be such that
Bm(x0, r0)×Bn(y0, r0) ⊂ Ω. It is sufficient to show
thatu | Bm(x0, r0)×Bn(y0, r0) is subharmonic. We di-
vide the proof into several steps.
Step 1.Construction of an auxiliar set G.

For eachk∈ N write

Ak := {x∈Bm(x0, r0) : −k≤u(x,y)≤ k ∀y∈Bn(y0, r0)}.

ClearlyAk is closed, and

Bm(x0, r0) =
+∞⋃
k=1

Ak.

Write

G :=
+∞⋃
k=1

intAk.

It follows from Baire’s Theorem thatG is dense in
Bm(x0, r0).
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Step 2.The functions∆1ru(x, ·) (see the definition be-
low), x∈ G, 0 < r < rx := d(x,Bm(x0, r0) \G), are
nonnegative and harmonic on Bn(y0, r0).

For each(x,y) ∈ G×Bn(y0, r0) and each 0< r <
rx, write

∆1ru(x,y) :=

=
2(m+2)

r2

[ 1
νmrm

∫
Bm(x,r)

u(x′,y)dmm(x′)−u(x,y)
]

=
2(m+2)

r2 · 1
νmrm

∫
Bm(0,r)

[
u(x+x′,y)−u(x,y)

]
dmm(x′).

Sinceu(·,y) is subharmonic,∆1ru(x,y) is defined and
nonnegative. SinceBm(x, r)⊂G andAk ⊂Ak+1 for all
k = 1,2, . . . , Bm(x, r)⊂ intAN for someN ∈N. There-
fore

−N ≤ u(x′,y)≤ N

for all x′ ∈ Bm(x, r) andy∈ Bn(y0, r0), hence

−2N ≤ u(x+x′,y)−u(x,y)≤ 2N (3)

for all x′ ∈ Bm(0, r) andy ∈ Bn(y0, r0). To show that
∆1ru(x, ·) is continuous, pick an arbitrary sequence
y j → ỹ0, y j , ỹ0 ∈ Bn(y0, r0), j = 1,2, . . . . Using then
(3), Lebesgue Dominated Convergence Theorem and
the continuity ofu(x, ·), one gets

lim j→∞∆1ru(x,y j) =

= lim
j→∞

2(m+2)
νmrm+2

∫
Bm(x,r)

[
u(x′,y j)−u(x,y j)

]
dmm(x′)

=
2(m+2)
νmrm+2

∫
Bm(0,r)

lim
j→∞

[u(x+x′,y j)−u(x,y j)
]
dmm(x′)

=
2(m+2)
νmrm+2

∫
Bm(0,r)

[
u(x+x′, ỹ0)−u(x, ỹ0)

]
dmm(x′)

= ∆1ru(x, ỹ0).

It remains to show that∆1ru(x, ·) satisfies the mean
value equality. For that purpose takeBn(ỹ0,ρ) such
thatBn(ỹ0,ρ)⊂ Bn(y0, r0). Because of (3) we can use

Fubini’s Theorem. Thus

1
νnρn

∫
Bn(ỹ0,ρ)

∆1ru(x,y)dmn(y) =

=
1

νnρn

∫
Bn(ỹ0,ρ)

{2(m+2)
r2 · 1

νmrm×

×
∫

Bm(0,r)

[
u(x+x′,y)−u(x,y)

]
dmm(x′)}dmn(y)

=
2(m+2)

r2 · 1
νmrm×

×
∫

Bm(0,r)

{ 1
νnρn

∫
Bn(ỹ0,ρ)

[
u(x+x′,y)−u(x,y)

]
dmn(y)}dmm(x′)

=
2(m+2)
νmrm+2

∫
Bm(0,r)

[
u(x+x′, ỹ0)−u(x, ỹ0)

]
dmm(x′)

= ∆1ru(x, ỹ0).

Step 3. The functions∆1u(x, ·) : Bn(y0, r0) → R, x∈
Bm(x0, r0), are defined, nonnegative and harmonic.

By definition

∆1u(x,y) := lim
r→0

∆1ru(x,y).

By Step 2 the functions∆1ru(x, ·), x∈ G, 0 < r < rx,
are nonnegative and harmonic inBn(y0, r0). Using
then e.g. [2], Lemma 1.5.6 and Theorem 1.5.8, pp. 16-
17, one sees that the functions∆1u(x, ·), x ∈ G, are
nonnegative and harmonic. From this it follows, be-
cause of the assumption (c), and again with the aid
of [2], Lemma 1.5.6 and Theorem 1.5.8, pp. 16-17,
that also the functions∆1u(x, ·), x∈Bm(x0, r0)\G, are
nonnegative and harmonic.
Step 4.For each x∈ Bm(x0, r0) the functions

Bn(y0, r0)3 y 7→ v(x,y) :=
∫

GBm(x0,r0)(x,z)∆1u(z,y)dmm(z)∈R

and

Bn(y0, r0) 3 y 7→ h(x,y) := u(x,y)+v(x,y) ∈ R

are harmonic. Above and below GBm(x0,r0)(x,z) is the
Green function of the ball Bm(x0, r0), with x as a pole.

With the aid of Lebesgue Dominated Conver-
gence Theorem, say, one sees easily that for each
x ∈ Bm(x0, r0) the functionv(x, ·) is continuous. Us-
ing then Fubini’s Theorem one sees easily that for
eachx ∈ Bm(x0, r0) the functionv(x, ·) satisfies also
the mean value equality, and thus is harmonic. That
also the functionh(x, ·) is harmonic, follows then from
the assumption (b).
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Step 5.For each y∈ Bn(y0, r0) the function

Bm(x0, r0) 3 x 7→ h(x,y) := u(x,y)+v(x,y) ∈ R

is harmonic.
With the aid of the version of Riesz’s Decomposi-

tion Theorem, given in [21], 1.3, Theorem II, p. 279,
and p. 278, too (see also [23], Theorem 1, p. 499), for
eachy∈ Bn(y0, r0) one can write

u(x,y) = h(x,y)−v(x,y)

where

v(x,y) :=
∫

GBm(x0,r0)(x,z)∆1u(z,y)dmm(z)

andh(·,y) is the least harmonic majorant ofu(·,y) |
Bm(x0, r0). Herev(·,y) is continuous and superhar-
monic onBm(x0, r0).
Step 6.The use of the results of Lelong and of Avanis-
sian.

By Steps 4 and 5 we know thath(·, ·) is sepa-
rately harmonic onBm(x0, r0)× Bn(y0, r0). By Le-
long’s result [11], Théorème 11, p. 554,h(·, ·) is
harmonic and thus locally bounded onBm(x0, r0)×
Bn(y0, r0). Therefore alsou(·, ·) is locally bounded
above onBm(x0, r0)×Bn(y0, r0). But then it follows
from Avanissian’s result [4], Théorème 9, p. 140, that
u(·, ·) is subharmonic onBm(x0, r0)×Bn(y0, r0). �
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