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On the Subharmonicity of Separately Subharmonic Functions
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Abstract: We recall some of the existing subharmonicity results of separately subharmonic functions, and state
the corresponding generalized counterparts for separately quasi-nearly subharmonic functions, thus giving partia
generalizations of certain results of Arsove and of Cegrell and Sadullaev. Moreover, we improve a result of
Kotodziej and Thornbiérnson concerning the subharmonicity of a function subharmonic in the first variable and
harmonic in the second.
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1 Introduction (c) for some p> 0 there is a function & £ (Q)

. ) such that i< v.
1.1 Separately subharmonic functions

Wiegerinck [27], see also [28], Theorem 1, p. 246, has
shown that a separately subharmonic function need  Though the cited result of Armitage and Gardiner

not be subharmonic. On the other hand, Armitage ncludes our Theorem 1, and in fact their result is even
and Gardiner [1], Theorem 1, p. 256, showed that a «aimost” sharp, we present below in Theorem 4 a gen-

Then u is subharmonic.

separately subharmonic functioron a domairQ of eralization to Theorem 1. This is justified because of
R™™, m>n> 2, is subharmonic providep(log* u*) two reasons. First, our. integrability condition,

is locally integrable, wher@: [0, +) — [0, +-c0) is an p> 0, is, unlike the condition of Armitage and Gar-
increasing function such that diner (1), very simple, and second, our generalization

to Theorem 1 is stated for quasi-nearly subharmonic
functions, and as such, it is very general, 8¢k be-
low.

~+oo
/ -0/ (M-1) (g(5)) V(M Dds< 4o, (1)
1

For related previous results of Lelong, Avanissian, Ar- 1.2 Functions subharmonic in one variable
sove and Riihentaus, see e.g. [10], [11], [12], [4], [3], and harmonic in the other

[8], [16] and the references therein. One of these pre- An gpen problem is, whether a function, which is sub-
vious results was ours: harmonic in one variable and harmonic in the other, is
subharmonic. For results on this area, see e.g. [3],
[28], [7] and [9] and the references therein. We con-
sider here two results. First Theorem 2 below, a result

Theorem 1 ([16], Theorem 1, p. 69) Le® be a do-
main in R™", mn>2 Let u: Q — [, +0) be

such that of Arsove [3], Theorem 2, p. 622, and again, but with
(a) for each ye R" the function a different proof, of Cegrell and Sadullaev [7], Theo-
rem 3.1, p. 82, and second, Theorem 3 below, a result
Q(y) 3 X — U(x,y) € [0, +w) of Kotodziej and Thornbitrson [9], Theorem 1, p. 463.
is subharmonic Theorem 2 LetQ be a domain iR™", mn> 2. Let

u: Q — R be such that

m :
(b) for each xc R™ the function (a) for each ye R" the function
Q(x) 2y U(x,y) € [—o0,+0) Q(y) 2 x— u(x,y) €R

is subharmonic, is subharmonic,
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(b) for each xc R™ the function
Q(x) oy~ u(xy) €R
is harmonic,

(c) there is a nonnegative functigne £1_(Q) such
that—¢ < u.

Then u is subharmonic.

Arsove’s proof is brief and it is based on mean
value operators, [3], p. 625. Cegrell and Sadullaev
use Poisson modification in their proof. Unawere of
Arsove’s result (and proof), we gave in [20] a detailed
proof, based on mean value operators, which now, be-
cause of [3], p. 625, should, more or less, be consid-
ered just an elaboration of Arsove’s argument. On the
other hand, we give below in Theorem 5 a concise
counterpart to a corollary of Arsove and of Cegrell and
Sadullaeyv, [7], Corollary, p. 82, that is, Theorem 2 in
the case = 0.

Kotodziej and Thorkibrnson gave the following
result. Their proof uses the above result of Arsove
and of Cegrell and Sadullaev, see [7], proof of Theo-
rem 3.2, p. 83.

Theorem 3 ([9], Theorem 1, p. 463) Le® be a do-
main inR™" mn> 2. Let u: Q — R be such that

(a) for each ye R" the function
Q(y) > x—u(x,y) € R
is subharmonic and’?,
(b) for each xc R™ the function
Q(x) 3y~ u(xy) eR
is harmonic.

Then u is subharmonic and continuous.

Below in Theorem 6 we give a generalization
to the above result of Kotodziej and Thornbiérnson.
Instead of the standard Laplacians ©f functions
we use generalized Laplacians, that is the Blaschke-
Privalov operators.

2 Definitions and Notation

2.1 Quasi-nearly subharmonic functions

Our notation is rather standard, see e.g. [17], [18],
[19], [20] and [8].

Let D be a subdomain of the Euclidean spm’:\é
N > 2. A Lebesgue measurable function D —

232

[0,+) is quasi-nearly subharmonidf u e £} (D)
and if there is a constat = K(N,u, D) > 0 such that

ux <y [ umdmy) @

B(x,r)

for any ballBN(x,r) c D. For the Lebesgue measure
in RN, N > 2, we usemy. (Below m will be used
also for the dimension of the Euclidean sp&® but
this will surely cause no confusion.) We writg for
the Lebesgue measure of the unit BY(0, 1) in RN,
thusvy = my(BN(0,1)). This function class of quasi-
nearly subharmonic functions is natural, it has impor-
tant and interesting properties and, at the same time, it
is large, see e.g. [13], [17], [14], [18] and [19]. We re-
call here only that it includes, among others, nonneg-
ative subharmonic functions, nonnegative nearly sub-
harmonic functions (see e.g. [8]), functions satisfying
certain natural growth conditions, especially certain
eigenfunctions, and polyharmonic functions. Also,
any Lebesgue measurable function D — [m,M],
where 0< m< M < +oo0, is quasi-nearly subharmonic.
Constants will be denoted yandK. They will
be nonnegative and may vary from line to line.

2.2 Harnack functions

As a counterpart to nonnegative harmonic functions,
we recall the definition of Harnack functions, see [26],
p. 259. A continuous function : D — [0,+) is a
Harnack functionif there are constantsc< (0,1) and
C=C(A) > 1 such that

max u(z) <C min u(2)
Z€B(X,Ar) ZEB(X,Ar)

wheneveB(x,r) C D. It is well-known that for each
compact sef in D there exists a smallest constant
C(F) > C depending only o, A, C andF such that
for all u satisfying the above condition,

rpe?:xu(z) <C(F) rzréanu(z).
One sees easily that Harnack functions are quasi-
nearly subharmonic. Also the class of Harnack func-
tions is very wide. It includes, among others, nonneg-
ative harmonic functions as well as nonnegative solu-
tions of some elliptic equations. Also, any continuous
functionu: D — [m,M], where 0< m< M < +oo, is
a Harnack function. See [26], pp. 259, 263.

2.3 Permissible functions

A function @ : [0, +) — [0,+) is permissible if
there exists an increasing (strictly or not), convex
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function gy : [0,4) — [0,+) and a stricty in- 4 The Result of Arsove and of

creasing surjectio); : [0,+o) — [0,+) such that
¥ = Y oY; and such that the following conditions are Cegre” and Sadullaev
satisfied: Then a counterpart to Arsove’'s and Cegrell’'s and

Sadullaev's Corollary of their result, Theorem 2

(@) Wy satisfies théz-condition. above, see [7], Corollary, p. 82. See also [20], The-

(b) " satisfies thép-condition. orem 2.
i W2(t) , o Theorem 5 LetQ be adomain iR™™", mn> 2. Let
(c) The functiont — 5= is quasi-decreasingi.e. U: Q — [0, +00) be such that

there is a constai@ = C(2) > 0 such that

t
LIst(S) >C wzf ) Q(y) 3 X U(x,y) € [0, +00)

(a) for each ye R" the function

forall0 <s<t. is quasi-nearly subharmonic,

See also [14], Lemma 1 and Remark 1. Recall (b) for each xc R™ the function
that a functiong : [0,4-c) — [0, 4-o0) satisfies the,-
condition, if there is a consta@t=C(¢) > 1 such that Q(x) 2y u(xy) € [0,+e0)
¢(2) =Co(t) forallt € [0, +e0). is a Harnack function.

. Then u is quasi-nearly subharmonic.
3 Separately Subharmonic Func- a Y

tions Proof: It is well-known thatu is Lebesgue mea-
surable. Let(a,b) € Q and R > 0 be such that
The following gives a counterpart to Theorem 1, see B™"((a,b),R) C Q. Choose(xo,Yo) € B™(a, §) x
also [20], Theorem 1. Observe that, as pointed out B"(b, %) arbitrarily. Sinceu(-,Yp) is quasi-nearly sub-
in [20], Remark 3.2, the measurability assumption is harmonic, one has
now necessary, unlike in Theorem 1 above.

K
u(Xo, < / u(x,yo)d X).
Theorem 4 LetQ be adomain iR™", mn > 2. Let (x0.Y0) (%)m . (%, Yo) dMMn(x)
u: Q — [0,+) be a Lebesgue measurable function B0, 3)
such that On the other hand, since the functiongx,-), x €
(a) for each ye R" the function BM(a, &), are Harnack functions iB"(b, §), there is
a constanC = C(n,A,C,,R) (hereA andC, are the
Q(y) 3 X u(x,y) € [0,+) constants ir2.2) such that
is quasi-nearly subharmonic, 1 < u(X, Yo) <C
C ~ u(x,b) —

(b) for each xc R™ the function

for all xc B™(a, §). See e.g. [5], proof of 3.6, pp. 48—
Q(x) 3y U(xy) € [0,+) 49. Therefore

is quasi-nearly subharmonic, K
f Y u(Xo, ¥o) < @ / u(x, b) dmp(x)
(c) there exists a non-constant permissible function 4 BM (%, %)
W: [0,+00) — [0, +o0) such thatpou € L (Q). C.K
o | <= / U(x,b) dmin(x)
Then u is quasi-nearly subharmonic. (Bym L
?
Proof: Using the generalized mean value inequality K
((2) above), first in the first variable and then in the < RM / U(x, b) dMin(x) < o0

second, one sees thdto u is locally bounded imQ. B"(a,§)

Sincey is permissible, it follows that alsois locally

bounded inQ. With the aid of Fubini’'s Theorem one  Thus u is locally bounded above iB™(a, ) x
then sees thatis quasi-nearly subharmonic. See [20], B"(b, 4), and therefore the result follows from The-
proof of Theorem 1, for details. O orem 1 above. O
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5 The Result of Kotodziej and is in L1.(Q(y)), then we writeAu(x,y) := A*f(x),

Thornbiérnson Az u(xy) := A f(x), andAgu(x,y) := Af(x).
5.1 Generalized Laplacians 5.2 A generalization to Kotodziej's and
In our generalization to the cited result of Kotodziej Thornbiérnson’s result

and Thorbdrnson, we use the generalized Laplacian,
defined with the aid of the Blaschke-Privalov opera-
tors, see e.g. [22], [21], [15], [23], [24] and [25].

In [20], Theorem 3, we presented a generalization to
the cited result of Kotodziej and Thornbiérnson, The-
Lo i orem 3 above. Our result, and also its proof, was per-
Let lee a domain inR™, N>2, andf : D — R, haps rather technical and long. Therefore we prefer to
f € Lige(D). We write give here just a corollary. Our corollary will be con-
A (x) = cise and natural and already it contains the result of
Kotodziej and Thornbiérnson. Also the proof, namely

— lim supz(sz) [ 1N / f(xX)dmy(X) — f(x)], the latter part of it, will now be shorter than in [20],
r—0 r UNIT proof of Theorem 3.
BN(x,r)
A f(X):= Theorem 6 LetQ be adomain iR™", mn > 2. Let
—|iminf2(N+2) 1 ) 1x u: Q — R be such that
=0 r2 [erN / ()dmy(x) — f(x)]. (a) for each ye R" the function
BN(x,r)
If A" F(x) = A f(x), then writeAf (x) i= A*F(x) = Qy) 5 x> ulxy) €R
A.f(x). If f € C%(D), then is continuous and subharmonic,
N aZf m i
Af(xX) = (z W)(X)’ (b) for each xc R™ the function

Q(x) >y~ u(xy) eR
the standard Laplacian with respect to the variaiie _ _

(X1,...,%). More generally, ifx € D and f € t3(x), is harmonic,

i.e. f has an.! total differential atx of order 2, then
Af(x) equals with the pointwise Laplacian dfat x,

ie. N Q(y) 3 x— Mu(x,y) € R
Af(X) = Zlej f(X).
=

(c) for each ye R" the function

is defined and continuous.

HereDj; f represents a generalization of the uégél Then u'is subharmonic.

j=1,...,N. See e.g. [6], p. 172, [24], p. 369,J and Proof: Let (xo,Yo) € Q and letro > 0 be such that

[25], p. 29. B™(Xo,0) X B'(Yo,ro) C Q. It is sufficient to show
Recall that there are functions which are 5t thatu | B™(xo,ro) x B"(yo,ro) is subharmonic. We di-

but for which the generalized Laplacian is neverthe- vide the proof into several steps.
less continuous. The following function gives a sim-  Step 1.Construction of an auxiliar set G.

ple example: For eachk € N write

-1, whenxy <0, A= {xeBM(xo,ro) : —k<u(x,y) <kV¥ye B"(yo,ro) }.
f(x) =40, whenxy=0,

Clearl is closed, and
1, whenxy > 0. YA

+00
If f is subharmonic o, it follows from [22], BM(Xo, o) = U Ar.
p. 451 (see also [21], Lemma 2.2, p. 280, and [15], k1
Theorem 2.26, p. 52) th&t* f (x) = A, f(x) for almost _
all x € D. Write o

Below the following notation is used. L€l be a G — U intAy.
domain inR™" mn>2,andu: Q - R. If yc R"
is such that the function

k=1
It follows from Baire’s Theorem thaG is dense in
Q(y) o2 x+— f(X) :=u(x,y) e R B™(Xo, o).
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Step 2.The functiong\;;u(X, ) (see the definition be- Fubini’s Theorem. Thus
low), xe G, 0 < r < ry:=d(x,BM(x0,r0) \ G), are
nonnegative and harmonic or'8po, o).

/ Aqru(x,y)dmy(y) =

n
For each(x,y) € G x B"(yo,ro) and each & r < ViR o)
I, Write 1 {Z(m—i— 2) 1 y
B vnp” 2 vy
Agru(X,y)
X+>( y) — u(x,y)]dmn(X) }dm(y)

2(m+2), 1 ux ,
= / (K, y)dm(x) — u(x,y)] o

(m+ 2) 1

2 I’TH— 2) v._rm
— ( S rm / u(x+x,y) —u(x,y)] dmpy(x). V r
"o / [u(x-+X.y) = ux y) | dm(y) ylmy ()
BM(0,r) "(So.p)
. . : : , 2(m+2) o .
Sinceu(+,y) is subharmonics u(x,y) is defined and = g2 / [u(x+X, ¥o) — u(x, ¥o) | dmm(X)
nonnegative. SincB™(x,r) C G andAx C Ax,1 for all m BT(0,r)
k=1,2,...,BM(x,r) C intAy for someN € N. There- — Agru(x, o)
fore IR
Step 3. The function®\u(x,-) : B"(yo,r0) — R, X €
-N<u(x,y) <N B™(xo,r0), are defined, nonnegative and harmonic.

By definition

for all X' € B™(x,r) andy € B"(yo,ro), hence Agu(x,y) := lim Ay u(x,y).
r—0

3) By Step 2 the functionAj u(x,-), X € G, 0<r < ry,

are nonnegative and harmonic BY(yo,ro). Using
thene.g. [2], Lemma 1.5.6 and Theorem 1.5.8, pp. 16-
17, one sees that the functioAsu(x,-), x € G, are
nonnegative and harmonic. From this it follows, be-
cause of the assumption (c), and again with the aid
of [2], Lemma 1.5.6 and Theorem 1.5.8, pp. 16-17,
that also the function&;u(x, -), x € B™(Xo,ro) \ G, are
nonnegative and harmonic.
Step 4.For each xe B™(Xp, o) the functions

—2N < u(x+x,y) —u(xy) < 2N

for all X € B™(0,r) andy € B"(yp,ro). To show that
Ajru(x,-) is continuous, pick an arbitrary sequence
Yi — Yo. ¥j, Yo € B"(Yo,t0), ] = 1,2,.... Using then

(3), Lebesgue Dominated Convergence Theorem and
the continuity ofu(x, -), one gets

M oA u(X,yj) =
et ) B"(0,10) 3 = V() 1= [ Ggnpeyro) (% DBa0(zY)dM(2) € R

. 2(m+4-2 '
= tim 2D [ fud,yp) )l dma(x)
m BM(x,r) and
2(m+2 .
= AMED [ imlutcroy) —uteyJdma)  BUo.ro) 3y hly) = uxy) - u(y) € B
m —00
5 5 Bron are harmonic. Above and belowskgy, ry) (X, 2) is the
_ (m+ 2) / [u(x+X,%0) — u(x, o) dmn(X) Green function of the ball'B(xo, o), with x as a pole.
Vit ™ With the aid of Lebesgue Dominated Conver-

m oﬂ .
BTN gence Theorem, say, one sees easily that for each

= A1rU(X,Yo). x € BM(xo,ro) the functionv(x,-) is continuous. Us-
ing then Fubini's Theorem one sees easily that for
eachx € BM(xo,ro) the functionv(x,-) satisfies also
It remains to show thaf\;ru(x,-) satisfies the mean  the mean value equality, and thus is harmonic. That
value equality. For that purpose taB& (o, p) such also the functiom(x, -) is harmonic, follows then from
thatB"(Yo,p) C B"(yo,ro). Because of (3) we can use the assumption (b).
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Step 5.For each ye B"(yo, o) the function
B™(X0,10) 2 X+ h(x,y) == u(x,y) +V(x,y) € R

is harmonic.

With the aid of the version of Riesz’s Decomposi-
tion Theorem, given in [21], 1.3, Theorem I, p. 279,
and p. 278, too (see also [23], Theorem 1, p. 499), for
eachy € B"(yp,ro) one can write

U(X, y) = h(X7 y) - V(X7 y)

where
V(6Y) 1= [ Ganpero (6 2B2u(zY)dMh(2)

andh(-,y) is the least harmonic majorant af-,y) |
BM(xo,ro0). Herev(-,y) is continuous and superhar-
monic onB™(Xo, o).

Step 6.The use of the results of Lelong and of Avanis-
sian.

By Steps 4 and 5 we know thét-,-) is sepa-
rately harmonic orB™(xo,ro) x B"(yo,ro). By Le-
long’s result [11], Théoréme 11, p. 55&(-,-) is
harmonic and thus locally bounded @&7'(xp,ro) X
B"(yo,r0). Therefore alsau(-,-) is locally bounded
above onB™(xo,ro) x B"(yo,ro). But then it follows
from Avanissian’s result [4], Théoréme 9, p. 140, that
u(-,-) is subharmonic oB™(xo,ro) x B"(yo,ro). 0O
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