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2 Preliminaries

2.1 Euclidean Jordan Algebras

We assume that the reader is familiar with the basic Euclidean Jordan algebra theory and
recall some concepts used in this paper from Euclidean Jordan algebras. Most of these can
be found in [2].

Throughout this paper, we let (V, ◦, ⟨·, ·⟩) denote a Euclidean Jordan algebra: V is a finite
dimensional vector space over R (the field of real numbers) with inner product ⟨x, y⟩ and
Jordan product x ◦ y. The symmetric cone of V is the cone of squares K := {x ◦x : x ∈ V }.
We use the notation x ≥ 0 (x > 0) when x ∈ K (respectively, x ∈ Ko (=interior (K))) and
x ≤ 0 (x < 0) when −x ≥ 0 (−x > 0).

An element c ∈ V such that c2 = c is called an idempotent in V ; it is a primitive
idempotent if it is nonzero and cannot be written as a sum of two nonzero idempotents. We
say that a finite set {e1, e2, . . . , er} of primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 if i ̸= j, and

r∑
1

ei = e,

where e is the unit element of V .
A Euclidean Jordan algebra is said to be simple if it is not a direct sum of two (non-trivial)

Euclidean Jordan algebras. It is well known that any nonzero Euclidean Jordan algebra is a
product of simple Euclidean Jordan algebras and every simple algebra is isomorphic to one
of the algebras given below:

(i) The algebra Sn of n × n real symmetric matrices with trace inner product and the
Jordan product X ◦ Y = 1

2 (XY + Y X);

(ii) The Jordan spin algebra Ln (n ≥ 3) quadratic forms in Rn with standard inner
product and the Jordan product

x ◦ y := (xT y, x1y2 + y1x2, · · ·, x1yn + y1xn)
T ;

(iii) The algebra Hn of all n × n complex Hermitian matrices with trace inner product
and X ◦ Y = 1

2 (XY + Y X);

(iv) The algebra Qn of all n × n quaternion Hermitian matrices with (real) trace inner
product and X ◦ Y = 1

2 (XY + Y X);

(v) The algebra O3 of all 3×3 octonion Hermitian matrices with (real) trace inner product
and X ◦ Y = 1

2 (XY + Y X).

The spectral decomposition Let V be a Euclidean Jordan algebra with rank r. Then,
for every x ∈ V , there exist a Jordan frame {e1, . . . , er} and real numbers λ1, . . . , λr such
that

x = λ1e1 + · · ·+ λrer. (2.1)

The numbers λi are called the eigenvalues of x.
Given (2.1), |x| =

∑r
i=1 |λi(x)|ei, the trace of x is defined by trace(x) :=

∑r
i=1 λi(x),

||x||1 :=
∑r

i=1 |λi(x)|, and ||x||F :=
√

⟨x, x⟩. Since the inner product is defined by ⟨x, y⟩ =
trace(x ◦ y), we have ||x||F =

√
trace(x ◦ x) =

√∑r
i=1 λ

2
i (x).
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The Peirce decomposition Fix a Jordan frame {e1, e2, . . . , er} in V . For i, j ∈ {1, 2, . . . , r},
define the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = Rei

and when i ̸= j,

Vij := {x ∈ V : x ◦ ei =
1

2
x = x ◦ ej}.

Then we have the following theorem.

Theorem 2.1 ([2], Theorem IV.2.1). The space V is the orthogonal direct sum of spaces
Vij (i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj ,
Vij ◦ Vjk ⊂ Vik if i ̸= k, and
Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

Thus, given a Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =

r∑
i=1

xiei +
∑
i<j

xij

where xi ∈ R and xij ∈ Vij . This expression is the Peirce decomposition of x with
respect to {e1, e2, . . . , er}.

For any given idempotent c ∈ V , we have the Peirce decomposition

V = V (c, 1)⊕ V (c,
1

2
)⊕ V (c, 0),

where

V (c, γ) := {x ∈ V : x ◦ c = γx},

for γ = 0, 1
2 , 1. Thus, given any element x ∈ V , we write the decomposition x = u+ v + w,

where u ∈ V (c, 1), v ∈ V (c, 1
2 ) and w ∈ V (c, 0).

The quadratic representation For a given a ∈ V , the quadratic representation Pa : V →
V are defined respectively by

Pa(x) := 2a ◦ (a ◦ x)− a2 ◦ x.

2.2 Majorization

Given a vector x = (x1, x2, . . . , xr) in IRr, we write x↓ := (x↓
1, x

↓
2, . . . , x

↓
r) for the vector

obtained by rearranging the components of x in the decreasing order. For two vectors
x = (x1, x2, . . . , xr) and y = (y1, y2, . . . , yr) in IRr, we say that x is majorized by y and write
x ≺ y if

k∑
1

x↓
i ≤

k∑
1

y↓i (k = 1, 2, . . . , r − 1)

and
r∑
1

x↓
i =

r∑
1

y↓i .



318 Q. MENG, J. TAO, G. WANG AND X. CHI

Theorem 2.2 ([1], Theorem II. 3.1). For x = (x↓
1, x

↓
2, . . . , x

↓
r) and y = (y↓1 , y

↓
2 , . . . , y

↓
r ) in

IRr and for any convex function ϕ : IR→ IR, the following two conditions are equivalent:

x ≺ y. (2.2)

r∑
1

ϕ(xi) ≤
r∑
1

ϕ(yi). (2.3)

Lemma 2.3 (Theorem 3.3.14, [4]). Let V = Sn or V = Hn. Let X,Y ∈ V . Then

k∑
1

σ↓
i (XY ) ≤

k∑
1

σ↓
i (X)σ↓

i (Y ) (k = 1, 2, . . . , n),

where σ↓
i (X), i = 1, 2, . . . , n are singular values of X written in the decreasing order.

Lemma 2.4. (Corollary 3.4.3, [4]) Let V = Sn or V = Hn. Let X,Y ∈ V . Then

k∑
1

σ↓
i (X + Y ) ≤

k∑
1

σ↓
i (X) +

k∑
1

σ↓
i (Y ) (k = 1, 2, . . . , n).

3 Main Results

First we give a proof of (1.1) by using a case-by-case analysis.

Theorem 3.1. Let V be any Euclidean Jordan algebra. Then for x, y ∈ V .

||x ◦ y||1 =

r∑
1

|λi(x ◦ y)| ≤ 1

2
(||x||2F + ||y||2F ).

Given an idempotent c ∈ V , let γ ∈ {0, 1
2 , 1} and define the eigenspaces

V (c, γ) := {x ∈ V : x ◦ c = γx}.

Theorem 3.2. Let V be a simple Euclidean Jordan algebra. For any x ∈ V , x = u+ v+w,
where u ∈ V (c, 1), v ∈ V (c, 1

2 ) and w ∈ V (c, 0). Then

||u||2F + ||w||2F ≤ ||x||2F .

Proof. Since λ↓(u+w) ≺ λ↓(x) (see Theorem 6.1, [6]), λ(u+w) = λ(u)∪λ(w), and f(t) = x2

is a convex function, by Theorem 2.2, we have ||u||2F + ||w||2F ≤ ||x||2F .

Proof of Theorem 3.1. First suppose that V is a simple Euclidean Jordan algebra. We prove
this by case-by-case analysis. We note that if x ◦ y ≥ 0, then tr(|x ◦ y|) = tr(x ◦ y). Since

x ◦ y ≤ 1

2
(x2 + y2) ⇒ λ↓

i (x ◦ y) ≤ 1

2
λ↓
i (x

2 + y2),

we have tr(|x ◦ y|) = tr(x ◦ y) ≤ 1
2 (tr(x

2) + tr(y2)) = 1
2 (||x||

2
F + ||y||2F ). If x ◦ y ≤ 0, then

tr(|x ◦ y|) = tr(−x ◦ y). Since

−x ◦ y ≤ 1

2
(x2 + y2) ⇒ λ↓

i (−x ◦ y) ≤ 1

2
λ↓
i (x

2 + y2),
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we have tr(|x ◦ y|) = tr(−x ◦ y) ≤ 1
2 (tr(x

2) + tr(y2)) = 1
2 (||x||

2
F + ||y||2F ). Therefore, we

consider the case of x ◦ y ̸≥ 0 and x ◦ y ̸≤ 0.
(i) When V = Sn or V = Hn, X ◦ Y = 1

2 (XY + Y X). Thus, by Lemma 2.3 and Lemma
2.4, we have

r∑
1

|λi(X ◦ Y )| = ||X ◦ Y ||1 =
1

2

n∑
1

σ↓
i (XY + Y X) ≤ 1

2

[
n∑
1

σ↓
i (XY ) +

n∑
1

σ↓
i (Y X)

]

≤
n∑
1

σ↓
i (X)σ↓

i (Y )

≤

[
n∑
1

(σ↓
i (X))2

]1/2 [ n∑
1

(σ↓
i (Y ))2

]1/2

= ||X||F ||Y ||F

≤ 1

2
(||X||2F + ||Y ||2F ).

(ii) When V = Qn, X ◦ Y = 1
2 (XY + Y X).

For an n × n quaternion matrix A, we write A = A1 + A2j, where A1, A2 are n × n

complex matrices. The complex adjoint matrix of A is defined by χA :=

[
A1 A2

−A2 A1

]
.

From Theorem 4.2 and Corollary 6.2 in [9], it is easy to verify that

χX◦Y =
1

2
(χXχY + χY χX) = χX ◦ χY , ||χX ||1 = 2||X||1, and ||χX ||2F = 2||X||2F .

Thus, by (i),

||χX◦Y ||1 ≤ 1

2
(||χX)||2F + ||χX)||2F ) ⇒ ||X ◦ Y ||1 ≤ 1

2
(||X||2F + ||Y ||2F ).

(iii) V = Ln,
Let x ◦ y = λ1(x ◦ y)f1 + λ2(x ◦ y)f2. Without loss of generality, we assume that

λ1(x ◦ y) ≥ 0 and λ2(x ◦ y) < 0. Now, let w = f1 − f2. Writing the Peirce decomposition of
y as y = y1f1 + y2f2 + y12, we have y ◦ w = y1f1 − y2f2. Thus,

||y ◦ w||2F = y21 + y22 ≤ (λ1(y))
2 + (λ2(y))

2 = ||y||2F ⇒ ||y ◦ w||F ≤ ||y||F .

Note that the first inequality follows by Corollary 4.6 in [3] and Theorem 2.2. Now,

2∑
1

|λi(x ◦ y)| = tr(|x ◦ y|) = ⟨|x ◦ y|, e⟩

= ⟨(x ◦ y) ◦ w, e⟩
= ⟨x, y ◦ w⟩
≤ ||x||F ||y ◦ w||F

≤ ||x||F ||y||F ≤ 1

2
(||x||2F + ||y||2F ).

(iv) V = O3.
Without loss of generality, we write the spectral decomposition of x ◦ y as x ◦ y =

λ1(x ◦ y)e1 + λ2(x ◦ y)e2 + λ3(x ◦ y)e3, where λ1(x ◦ y) := µ1 ≥ 0, λ2(x ◦ y) := µ2 ≥ 0, and
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λ3(x ◦ y) := −µ3 ≤ 0. Let w := e1 + e2 − e3. Then we have |x ◦ y| = w ◦ (x ◦ y). Since
{E1, E2, E3} is a Jordan frame in O3, where Ei is the matrix with one in the (i, i) slot and
zeros elsewhere, there exists an algebra automorphism Θ such that Θ(ei) = Ei, i = 1, 2, 3.
Thus, Θ(w) = E1 + E2 − E3. Now, let

W := Θ(w) =

 1 0 0
0 1 0
0 0 −1

 and Y := Θ(y) =

 f a b
ā g c
b̄ c̄ r

 .

Then we have

Θ(w ◦ y) = Θ(w) ◦Θ(y) =
1

2
(WY + YW ) =

 f a 0
ā g 0
0 0 −r

 .

Thus, the eigenvalues of w ◦ y are λ↓
1(Y11), λ

↓
2(Y11), and −r, where Y11 =

[
f a
ā g

]
. Hence,

||w ◦ y||2F = (λ↓
1(Y11))

2 + (λ↓
2(Y11))

2 + | − r| = ||Y11||2F + |r|2 ≤ ||Θ(y)||2F = ||y||2F .

Note that the inequality follows by Theorem 3.2. Hence, ||y ◦ w||F ≤ ||y||F . Now,

3∑
1

|λi(x ◦ y)| = tr(|x ◦ y|) = ⟨|x ◦ y|, e⟩

= ⟨(x ◦ y) ◦ w, e⟩
= ⟨x, y ◦ w⟩
≤ ||x||F ||y ◦ w||F

≤ ||x||F ||y||F ≤ 1

2
(||x||2F + ||y||2F ).

Now suppose that V is not simple, i.e., V = V1×V2× . . .×Vk, where each Vi is a simple
algebra. Since for x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk) ∈ V , xi, yi ∈ Vi,

x ◦ y = (x1 ◦ y1, x2 ◦ y2, . . . , xk ◦ yk),

r = rank(x) =

k∑
1

rank(xi), ||x||2F + ||y||2F =

k∑
1

(||xi||2F + ||yi||2F ),

and

trace(|x ◦ y|) =
r∑
1

λi(|x ◦ y|) =
k∑

i=1

∑
λj(|xi ◦ yi|) =

k∑
1

trace(|xi ◦ yi|),

we have ||x ◦ y||1 =
∑r

1 λi|x ◦ y| ≤ 1
2 (||x||

2
F + ||y||2F ).

In what follows, we extend (1.2) to the setting of Euclidean Jordan algebras.

Theorem 3.3. Let V be any Euclidean Jordan algebra. Let x, s ∈ intK and x ◦ s ∈ intK.
Then

∥(x ◦ s)− 1
2 ∥F ≥ ∥(Px1/2(s))−

1
2 ∥F .

The proof of the above result is based on several lemmas and theorems. First we recall
some results used in this paper.
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Lemma 3.4 (see Proposition III 5.3, [1]). Let A be an n× n complex matrix. Then

Re(λ(A)) ≺ λ(Re(A)),

where Re(A) = A+A∗

2 and λ(A) denotes the vector of eigenvalues of A.

Lemma 3.5 (see proof in Lemma 30, [5]). Let x, s ∈ intK. Then

λmax(x ◦ s) ≥ λmax(Px1/2(s)) and λmin(x ◦ s) ≤ λmin(Px1/2(s)).

Lemma 3.6. Let x, s ∈ V . Then

tr(Px1/2(s)) = tr(x ◦ s).

Proof. Since Px(e) = x2 for x ∈ V , we have

tr(Px1/2(s)) = ⟨Px1/2(s), e⟩ = ⟨s, Px1/2(e)⟩ = ⟨s, x⟩ = tr(x ◦ s).

This completes the proof.

Theorem 3.7. Let V be a simple Euclidean Jordan algebra. Let x, s ∈ intK and x◦s ∈ intK.
Then

λ(Px1/2(s)) ≺ λ(x ◦ s),

where λ(x) denotes the vector of eigenvalues of x.

Proof. We prove this by case-by-case analysis.

(i) V = Ln.

By Lemma 3.5 and Lemma 3.6, we have λ(Px1/2(s)) ≺ λ(x ◦ s).
(ii) V = Sn and V = Hn.

Since X ◦ S = XS+SX
2 , by Lemma 3.4, we have Re(λ(XS)) ≺ λ(X ◦ S). Since

X,S ∈ Hn
+, λi(XS) = λi(X

1/2X1/2S) = λi(X
1/2SX1/2) = λi(PX1/2(S)), where PX1/2(S) =

X1/2SX1/2. Thus, λ(PX1/2(S)) ≺ λ(X ◦ S).
(iii) V = Qn.

For an n × n quaternion matrix A, we write A = A1 + A2j, where A1, A2 are n × n

complex matrices. The complex adjoint matrix of A is defined by χA :=

[
A1 A2

−A2 A1

]
. It

is well known (e.g., Theorem 4.2, [9]) that χA is Hermitian if and only if A is Hermitian and
the eigenvalues of A coincide with the eigenvalues of χA (see Theorem 5.4 and Corollary
5.1, [9]) when A is Hermitian. Now, PX1/2(S) = X1/2SX1/2. By Theorem 4.2, [9], we have
χX1/2SX1/2 = χX1/2χSχX1/2 = (χX)1/2χS(χX)1/2 and χ(XS+SX)/2 = (χXχS + χSχX)/2.
Therefore, the result follows by Case (ii).

(iv) V = O3.

By Lemma 3.5 and Lemma 3.6, we have λ(Px1/2(s)) ≺ λ(x ◦ s). This completes the
proof.

Theorem 3.8. Let V be any Euclidean Jordan algebra. Let x, s ∈ intK and x ◦ s ∈ intK.
Then

tr(x−1 ◦ s−1) ≤ tr((x ◦ s)−1)).
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Proof. First suppose that V is a simple Euclidean Jordan algebra.
Taking f(t) = 1

t on (0, ∞), by Theorem 2.2 and Theorem 3.7, we have

r∑
i=1

1

λi(Px1/2(s))
≤

r∑
i=1

1

λi(x ◦ s)
.

Since 1

λi(Px1/2 (s))
= λi(Px1/2(s))−1 = λi(Px−1/2(s−1)) and 1

λi(x◦s) = λi(x ◦ s)−1, we have

tr(x−1 ◦ s−1) ≤ tr((x ◦ s)−1)).

Now suppose that V is not simple, i.e., V = V1×V2× . . .×Vk, where each Vi is a simple
algebra. Since for x = (x1, x2, . . . , xk) ∈ V , xi ∈ Vi,

trace(x) =
∑

λi(x) =

k∑
i=1

∑
λj(xi) =

k∑
1

trace(xi),

we have
tr(x−1 ◦ s−1) ≤ tr((x ◦ s)−1)).

This completes the proof.

Remark 3.9. When V = Ln, another proof of Theorem 3.8 was given in [8] (see the proof
of Lemma 2.6).

Proof of Theorem 3.3. Since

∥(x ◦ s)− 1
2 ∥2F = ⟨(x ◦ s)− 1

2 , (x ◦ s)− 1
2 ⟩

= ⟨(x ◦ s)−1, e⟩
= tr((x ◦ s)−1)),

and

∥(Px1/2(s))−
1
2 ∥2F = ⟨(Px1/2(s))−

1
2 , (Px1/2(s))−

1
2 ⟩

= ⟨(Px1/2(s))−1, e⟩
= ⟨Px−1/2(s−1), e⟩
= ⟨s−1, Px−1/2(e)⟩
= ⟨s−1, x−1⟩
= tr(s−1 ◦ x−1).

By Theorem 3.8, we have

∥(x ◦ s)− 1
2 ∥2F = tr((x ◦ s)−1))

≥ tr(s−1 ◦ x−1)

= ∥(P (x)
1
2 s)−

1
2 ∥2F ⇒ ∥(x ◦ s)− 1

2 ∥F
≥ ∥(Px1/2(s))−

1
2 ∥F .
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