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The microscopic foundation of the generalized equilibrium statistical mechanics based on
the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and
quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic
method based upon the use of the fundamental equation of thermodynamics and the statistical
deˇnition of the functions of the state of the system. It is shown that if the entropic index
ξ = 1/q − 1 in the microcanonical ensemble is an extensive variable of the state of the
system, then in the thermodynamic limit z̃ = 1/(q − 1)N = const the principle of additivity
and the zero law of thermodynamics are satisˇed. In particular, the Tsallis entropy of the
system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely
satisˇes all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the
thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem.
The principle of additivity and the Euler theorem are explicitly proved by using the illustration
of the classical microcanonical ideal gas in the thermodynamic limit.
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INTRODUCTION

The equilibrium statistical mechanics and thermodynamics are well deˇned
theories in modern physics [1, 2]. Applications of these theories are restricted
by investigation of the so-called thermodynamic or statistical systems which are
constrained by several rigid requirements [3]. One of the ˇrst attempts to con-
struct the generalized equilibrium statistical mechanics based on the mathematical
redeˇnition of the BoltzmannÄGibbs statistical entropy and the principles of the
information theory belongs to C. Tsallis [4]. Until recently, there has been a great
deal of interest in studying nonextensive thermodynamics due to its relevance in
many ˇelds of physics [5, 6]. However, many fundamental features regarding
the violation of the zero law of thermodynamics and the principle of additivity
remain unclear [7, 8]. Note that these difˇculties have resulted in the occurrence
of a large number of variants of the Tsallis generalized statistical mechanics [9].

The statistical mechanics investigates thermodynamic systems which are de-
ˇned solely by the speciˇcation of macroscopic variables on the basis of the
theory of probability and the microscopic laws of the classical and quantum me-
chanics. The evolution of the macroscopic system with a large number of degrees
of freedom is impossible to describe by only dynamic methods. Therefore, the
Gibbs idea of statistical ensembles is usually used [10]. All information about the
macrostate of the system is contained in the phase distribution function, which
evolves according to the Liouville equation, or in the statistical operator, whose
evolution with time is described by the von Neumann equation. To derive the
phase distribution function and the statistical operator is the primary goal of the
nonequilibrium statistical mechanics.

In particular, the equilibrium statistical mechanics implies that one uses the
Gibbs equilibrium statistical ensembles. In the state of thermodynamic equilib-
rium of the system, the phase distribution function and the statistical operator do
not depend on time. Therefore, they are functions only of the ˇrst integrals of
motion of the dynamic system. In this case, the mechanical laws and the Liou-
ville and von Neumann equations do not allow one to determine unequivocally
the equilibrium distribution function and the statistical operator [2, 10]. There-
fore, an obvious dependence of the equilibrium distributions on the macroscopic
variables of the state of the system is deˇned by introducing additional postu-
lates. The traditional way is based on the Gibbs postulate of the equiprobability
of the dynamic states of the isolated system [1]. The alternative way rests on the
Jaynes principle of a maximum of the information entropy [11]. The statistical
mechanics constructed on the Gibbs equilibrium distributions, which corresponds

1



to the BoltzmannÄGibbs statistical entropy, completely satisˇes all postulates of
the equilibrium thermodynamics.

Standard treatments of the Tsallis statistics point out that the entropic index
q is an additional intensive parameter, which has a ˇxed value for different ther-
modynamic systems [9]. This concept leads to shortcomings of thermodynamics
and needs to be reconsidered. As shown further, these problems can be resolved
by the assumption that the parameter ξ = 1/q − 1 is the extensive argument of
the statistical entropy.

The paper is organized as follows. In the second section, the Gibbs equi-
librium statistical ensembles in quantum and classical mechanics are considered.
In the third section, the principal prepositions of the equilibrium thermodynamics
are resumed. In the fourth section, the deˇnitions of the information and statis-
tical entropies are given. The microcanonical equilibrium distribution function
and statistical operator are deduced in the ˇfth section. In the sixth section, the
performance of the thermodynamic principles in the microcanonical ensemble of
the Tsallis statistics are proved. The developed formalism is exempliˇed in the
seventh section by treating the classical microcanonical ideal gas.

1. EQUILIBRIUM STATISTICAL ENSEMBLES

In the present section, we review the basic postulates of the microscopic
foundation of the statistical mechanics and the dynamic methods describing the
quantum and classical many-body systems [2,10].

Evolution with time of the macroscopic system with a large number of degrees
of freedom can never be explained by purely dynamical laws by virtue of several
reasons [10]. First of all, for classical systems there exists an uncertainty of
the initial states. A small discrepancy in the initial conditions results eventually
in a large uncertainty of a ˇnal dynamic state. It is the subject of the so-
called chaotic dynamics. Secondly, the real systems are not completely isolated.
Therefore, some degrees of freedom and external in	uences are not included in
the equations of motion. Thus, in classical mechanics a macrostate of a system
is imperfectly known at the microscopic level. The system can be found in any
dynamic state compatible with the external macroscopic conditions. Therefore, for
the macroscopic system it is possible to maintain only the probabilistic description
of dynamic processes. For this reason, in the statistical mechanics the Gibbs idea
of statistical ensembles is straightforward. The macroscopic state of the system
is represented as a set of a large number of copies of the dynamic system under
identical macroscopic conditions. Each system of the ensemble is represented by
a point in phase space (x, p), which moves along its own trajectory, according
to the Hamilton equations of motion. Note that in the classical mechanics a
dynamic state of the system with f degrees of freedom is deˇned by a point
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(x, p) = (x1, . . . , xf , p1, . . . , pf ) in the 2f -measured phase space Γ, i.e. by a
set of the generalized coordinates (x) = (x1, . . . , xf ) and the momenta (p) =
(p1, . . . , pf ).

Any physical observable A of the macroscopic system is represented as the
expectation value 〈A〉t of the dynamic variable A(x, p, t):

〈A〉t =
∫

A(x, p, t)�(x, p, t)dΓ, (1)

where �(x, p, t) is the phase distribution function which is proportional to the
density of probability distribution of systems of the ensemble in phase space.
The distribution function must satisfy the normalization condition∫

�(x, p, t)dΓ = 1. (2)

Here dΓ is an inˇnitesimal element of phase space and dw(x, p, t) = �(x, p, t)dΓ
is a probability to ˇnd the system of the ensemble in an element dΓ near a
phase point (x, p) at the moment of time t. For a dynamic variable A(x, p, t) the
equation of motion is given by

dA

dt
=

∂A

∂t
+ {A, H}, (3)

where {ϕ1, ϕ2} is the Poisson bracket for two arbitrary phase functions ϕ1, ϕ2.
The evolution with time of a phase distribution function is governed by

∂�

∂t
= {H, �}, (4)

called the Liouville equation, with the initial conditions �(x, p, t)|t=t0 = �(x, p, t0).
The number of points of phase space representing systems of the statistical en-
semble remains unchanged in time during the Hamiltonian evolution. All points
located at the moment of time t in an element of phase space dΓ appear at the
moment of time t′ in some other element dΓ′. According to Liouville theorem,
the volume of a region in phase space remains constant in the process of move-
ment of phase points. Therefore, the phase distribution function is constant along
the phase trajectories, �(x, p, t) = �(x′, p′, t′); besides, the total time derivative
of the distribution function is equal to zero, d�/dt = 0. So that to ˇnd the expec-
tation value of an observable (1) it is necessary to solve the Hamilton equations
for each phase point (x, p) of the ensemble and ˇnd solutions of the equation of
motion (3) for a dynamic variable A(x, p, t) and of the Liouville equation (4).

The description of the quantum many-body system based on the Schréodinger
equation is a hopeless task for several reasons [2, 10]. Indeed, the exact solu-
tions of the Schréodinger equation for most physical systems cannot be obtained
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explicitly. The macroscopic system is experimentally impossible to be prepared
in a pure quantum state. Moreover, a real system is not completely isolated.
Thus, in the Hamiltonian it is impossible to take into account the contribution
of all degrees of freedom connected with the external in	uences. Therefore, to
describe the quantum systems the mixed states are considered. A macrostate
thus appears as a set of possible microstates, which are set up by state vectors
|Ψr(t)〉, r = 1, 2, . . ., each with its own probability wr for its occurrence. The
probabilities are positive and normalized,∑

r

wr = 1, wr � 0. (5)

Note that in the quantum mechanics a dynamic state of the quantum system is
deˇned by a vector of state |Ψ(t)〉, which is an element of the abstract Hilbert
space EH. A vector of state is normalized to unity. The evolution with time of the
dynamic state is determined by the Schréodinger equation with the Hamiltonian
H , which is the linear hermitian operator acting on the vectors of state |Ψ(t)〉. In
the quantum mechanics, the dynamic variables are represented by linear hermitian
operators A acting on the elements of the Hilbert space. Note that the dynamic
states |Ψ(t)〉 represent pure quantum states.

The expectation value of any dynamic variable A is deˇned by the following
expression:

〈A〉t = Tr [A�(t)], (6)

where �(t) is the statistical operator which allows one to determine the expectation
value of a physical observable regardless of the choice of the set of quantum states
{|Ψr(t)〉}:

�(t) =
∑

r

wr|Ψr(t)〉〈Ψr(t)|. (7)

The statistical operator is normalized to unity:

Tr �(t) = 1, (8)

it is hermitian �†(t) = �(t) and is positive, i.e. has no negative eigenvalues as
probabilities wr � 0 are eigenvalues of the statistical operator, �(t)|Ψr(t)〉 =
wr|Ψr(t)〉. The evolution with time of a statistical operator is governed by

∂�(t)
∂t

=
1
ı�

[H, �(t)], (9)

called the von Neumann equation. Here, the brackets designate the commutator
of two operators. The von Neumann equation allows one to ˇnd the statistical
operator at any time t if it is known during some initial moment t0. The equation
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of motion for a dynamic variable At, which explicitly depends on time, can be
written as

dAt

dt
=

∂At

∂t
+

1
ı�

[At, Ht]. (10)

Further, we shall touch upon the issue concerning the microscopic foundation
of the equilibrium statistical mechanics based on the Gibbs idea of the equilibrium
statistical ensembles. In the state of thermal equilibrium of the macroscopic sys-
tem, the phase distribution function and the statistical operator should not depend
on the time t. Therefore, for classical and quantum equilibrium distributions �eq

the Liouville and von Neumann equations, respectively, become

{H, �eq} = 0, [H, �eq] = 0. (11)

From these equations it follows that the equilibrium distribution function and the
statistical operator are the ˇrst integrals of motion and, consequently, they must
depend only on the ˇrst integrals of motion of the system. Moreover, if these
quantities are unequivocal and additive, then there exist only four such integrals
of motion: energy H , the total momentum vector P, the total angular momentum
vector M, and the number of particles N . In an equilibrium state, the total
momentum and the total angular momentum are equal to zero, and they cannot be
taken into account if the system is in a motionless vessel. Thus, for the classical
and quantum systems with the ˇxed number of particles the phase distribution
function and the statistical operator results in the expressions

�eq(x, p) ≡ �eq(H(x, p)), �eq ≡ �eq(H), (12)

which are normalized to unity. The expectation value of an observable for the
classical and quantum system, respectively, are given by the following formulae:

〈A〉 =
∫

A(x, p)�eq(x, p)dΓ, 〈A〉 = Tr [A�eq]. (13)

Note that the mechanical laws and the Liouville or von Neumann equations
do not determine unequivocally the equilibrium distribution function and the
equilibrium statistical operator. To express the equilibrium distributions from the
independent variables of state, the introduction of additional postulates is required.
A traditional way to construct the equilibrium distributions is based on the Gibbs
postulate of the equiprobability of all accessible dynamic states of the isolated
system [1]. An alternative way for this is based on the statistical deˇnition
of the entropy and the use of the Jaynes principle explored in the information
theory [11]. In the present study, we suggest a new method based on the laws of
the equilibrium thermodynamics.
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2. EQUILIBRIUM THERMODYNAMICS

As already mentioned, the obvious dependence of the equilibrium distribu-
tion function and the statistical operator from the macroscopic variables of state
will have to be justiˇed eventually by considerations based on equilibrium ther-
modynamics. Therefore, in this section, we brie	y recall the general laws of
the macroscopic thermodynamics and give the deˇnition to the thermodynamic
entropy.

The thermodynamic systems, which are the object of the equilibrium ther-
modynamics, are formed by the contents of a geometrical volume of macroscopic
dimensions, the boundary of which separates the outside world from the sys-
tem [12]. The type of interaction between the system and the external envi-
ronment is determined by the exchanges of energy (heat and work) and matter
through the boundaries of this system or its macroscopic parts. Mathematically,
the macroscopic state of the thermodynamic system is ˇxed by the set of inde-
pendent variables of state. The functions of the state of the system depend on
the variables of state and characterize the global properties of this system. In
thermodynamics, there are variables which have mechanical analogues and which
have only speciˇcally thermodynamic character. The work δW is connected with
a change of mechanical parameters of the system. On the other hand, the heat
transfer through heat-conducting walls is concerned with a change of speciˇcally
thermodynamic parameters of the system, δQ = CdT , where C is the heat capac-
ity. The thermodynamic system is given completely by the equations of state and
the caloric equation. Note that in the equilibrium thermodynamics the system at
all time passes through the equilibrium states as a quasi-static reversible process.

Thermodynamic systems must satisfy some obligatory conditions [3]. First,
these are the systems of a large number of particles interacting with each other and
with external ˇelds. Usually, the scale of measurement of the number of particles
in the system is the Avogadro number N0. Thus, the number of particles of
the system is limited not only from below N � 1 but also from above. The
macroscopic system is commensurable with the researcher and his experimental
devices of the laboratory sizes for which the ratio N/N0 is a ˇnite number.
Systems of the scale of the universe or its parts cannot be thermodynamic. Second,
for every thermodynamic system the zero law of thermodynamics is fulˇlled, i.e.
for such a system there exists a state of thermal equilibrium, which eventually is
reached by the system at the ˇxed external conditions. In the macroscopic theory,
the zero principle is a generalization of daily experience and supervision over the
thermodynamic systems. It is necessary to note two important properties of the
state of thermal equilibrium. First, this is a dynamic state. In the system there
exist a chaotic thermal motion of particles and a different sort of 	uctuation of
both the parameters of state of the system and the 	uxes of particles, energy,
etc. However, these 	uctuations are so small that the system practically does not
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leave the state of equilibrium. Second, for the equilibrium state the property of
transitivity is valid. This property guaranties the existence of the special thermal
measure, the temperature T , which is a general characteristic of all thermodynamic
systems in equilibrium contact and which does not depend on the place and the
method of measurements.

Third, for thermodynamic systems the principle of additivity is valid: all
variables belong to two classes of additivity, according to the reaction of a
given physical one to the division of the equilibrium system into the equilibrium
macroscopic parts, for example, into two parts

System(1 + 2) −→ System(1) + System(2). (14)

The extensive variables can be split into two parts, and they should be proportional
to the actual amount of matter present:

F1+2 = F1 + F2. (15)

On the other hand, the intensive variables have to keep its values and cannot
depend on the size of the system

φ1+2 = φ1 = φ2. (16)

As an example, we may consider the thermodynamic systems which may be
ˇxed in terms of the macroscopic variables of state T, V, N . In this case, the
thermodynamic principle of additivity is implemented if intensive quantities are
functions of intensive arguments, and extensive variables are proportional to
the number of particles of the system multiplied by the intensive quantity. Such
dependence of extensive and intensive variables is provided by the thermodynamic
limit [3]. In this respect, all expressions have to be exposed to a formal limiting
procedure N → ∞, V → ∞, v = V/N = const, and only main asymptotics on
N should be kept. Then the extensive variables F can be written (α > 0)

F(T, V, N)
∣∣∣ N→∞

v=const
= N(f(T, v) + O(N−α)) as= Nf(T, v), (17)

whereas the intensive variables φ take the following form:

φ(T, V, N)
∣∣∣ N→∞

v=const
= φ(T, v) + O(N−α) as= φ(T, v), (18)

where v = V/N is the speciˇc volume and f = F/N is the speciˇc F . Note
that the thermodynamic limit is a one-limiting procedure. The transitions not
coordinated among themselves N → ∞ and V → ∞ have no physical sense, as
in this case we would get results for either the superdense system or the empty
one.
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Fourth, in relation to the thermodynamic systems the ˇrst, the second and
the third principles of thermodynamics are fulˇlled, being the mathematical basis
of the macroscopic theory. The ˇrst principle postulates the energy conservation
law. In an open system, the energy dE supplied by the exterior is equal to the
sum of the heat δQ, the mechanical work δW , performed at the boundaries of
the system, and the exchange of matter dEmat with the environment

dE = δQ − δW + dEmat, (19)

where δW = pdV + Xdz; z = (z1, . . . , zk) and V are the ®thermodynamic
coordinates¯; X = (X1, . . . , Xk) and p play the role of the associated ®forces¯,
dEmat = µdN is the change of energy due to the exchange of matter, and
µ = {µi}, N = {Ni} are the chemical potentials and the number of particles
for each kind i, respectively. The second principle of thermodynamics in the
axiomatic formulation of R. J. Clausius postulates the existence of a function of
state, called entropy, which is given by the explicit formula

dSth =
δQ

T
(20)

and which possesses the following properties: the entropy of the system is an
extensive property, conjugate to the temperature T . The second principle is not
the general law of nature. This one is fair only in relation to the thermodynamic
systems. The absolute value of entropy is determined from the third law of
thermodynamics or the Nernst theorem, according to which, in the Planck rigid
formulation, the entropy of the system tends to zero as T → 0:

lim
T→0

Sth = 0. (21)

The ˇrst and the second principles of thermodynamics for the quasi-static re-
versible processes can now be combined to give the fundamental equation of
thermodynamics:

TdSth = dE + pdV + Xdz − µdN, (22)

where the differential sign dF of any quantity F is understood as a macroscopic
inˇnitesimal change of this measure at transition of the system from equilibrium
state 1 to equilibrium state 2, dF = dF2 − dF1.

The second law of thermodynamics for nonequilibrium states, also formulated
by R. J. Clausius, refers to the irreversible processes in which the change in
entropy satisˇes the inequality

dSth >
δQ′

T
, (23)

where δQ′ is the heat absorbed by the system which passes through nonequilib-
rium states such that dSth = Sth2 − Sth1. This principle gives the direction of
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a real process allowing one to investigate the properties of equilibrium states as
extreme ones [3]. For the irreversible transformation 1 → 2, we have

δQ = TdSth > δQ′ = dE′ + p′dV + X ′dz − µ′dN, (24)

where the prime designates the quantities corresponding to irreversible processes.
In particular, in this respect, we shall consider the isolated system set up by the
variables of the state (E, V, z, N). The inˇnitesimal changes of the variables of
the state are dE = dE′ = 0, dV = 0, dz = 0, dN = 0. Thus the right-hand side
of inequality (24) is equal to zero, and the irreversible processes lead to increase
of entropy (absolute temperature T is always positive):

dSth > 0, (25)

which will grow until the system at the ˇxed values of (E, V, z, N) does not
achieve the equilibrium state, in which the entropy is maximal Smax = Sequilibrium

= Sth(E, V, z, N). Note that a necessary condition of an extremum of the ther-
modynamic entropy is a condition of thermal equilibrium, (δSth)EV zN = 0, and
a maximum of this extremum expresses a condition of stability of the state of
thermal equilibrium, (δ2Sth)EV zN < 0. Here variations are made on those para-
meters of the system which can accept nonequilibrium values under the speciˇed
ˇxed conditions.

3. TSALLIS INFORMATION AND STATISTICAL ENTROPY

Historically, the theory of information borrowed many concepts from the
statistical mechanics. Now it is a well deˇned theory, and, following Jaynes, its
postulates are widely applied as initial in the statistical mechanics [10].

Let us deˇne the Tsallis information entropy, which recently has received
wide popularity due to the property of nonextensivity and which is used for
construction of the so-called generalized statistical mechanics [4, 9]. Let {pi}
be the discrete distribution of probabilities for W independent elementary events
satisfying the condition

W∑
i=1

pi = 1. (26)

Then the Tsallis information entropy for statistical distributions {pi} is deˇned in
the following manner [4]:

Sinf = −k
W∑
i=1

pi − pq
i

1 − q
, (27)
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where k is the Boltzmann constant and q ∈ R is the real parameter accepting
values 0 < q < ∞. Note that the extension to arbitrary continuous distribution of
probabilities is straightforward. In the limit q → 1 we come to the well-known ex-

pression for the BoltzmannÄGibbsÄShannon entropy, S
(BGS)
inf = −k

∑W
i=1 pi ln pi.

Note that the information entropy (27) is known as HavrdaÄCharvatÄDar
oczyÄ
Tsallis entropy (see [13]). However, in this paper, we shall use the short name
for it.

The information entropy is considered to be a measure of uncertainty of
information concerning the statistical distribution {pi}. The entropy Sinf � 0,
and it is zero for q > 0 when one of the probabilities pi is equal to unit and
all the others are equal to zero, i.e., when we have certainty of information. On
the other hand, for the ˇxed number of events W entropy Sinf has an extremum
equal to Sinf = k[W 1−q − 1]/[1 − q] (a maximum for q > 0 and a minimum for
q < 0) when these events are equiprobable, pi = 1/W . This limiting case has the
maximal uncertainty and, hence, contains a minimum of information about results
of the experiment. The function Sinf is convex (concave) for q > 0 (q < 0) that is
a basis for the thermodynamic stability. If two systems 1 and 2 are independent in

the viewpoint of the theory of probability (p(1+2)
ij = p

(1)
i × p

(2)
j ), then the Tsallis

information entropy is nonextensive:

S
(1+2)
inf = S

(1)
inf + S

(2)
inf + (1 − q)

1
k

S
(1)
inf S

(2)
inf . (28)

In the case when q < 1, q = 1 or q > 1, the function Sinf is superextensive,
extensive, and subextensive, respectively [5].

Let us introduce for further convenience a new representation for the Tsallis
information entropy

Sinf = kξ

W∑
i=1

pi(1 − p
1/ξ
i ), (29)

where a new parameter ξ is expressed through the variable q in the following
form:

ξ =
1

q − 1
. (30)

Thus, the parameter ξ takes the values −∞ � ξ � −1 for 0 < q � 1 and
0 < ξ � ∞ for 1 � q < ∞. In particular, in the limiting case for the value of
the parameter q = 1, we have ξ = ±∞.

In the classical mechanics the Tsallis statistical entropy for a continuous
random variable can be written as

S(t) = kξ

∫
�(x, p, t)[1 − �1/ξ(x, p, t)]dΓ, (31)

10



where �(x, p, t) is the phase distribution function normalized to unity (2). In
the quantum mechanics, the Tsallis statistical entropy is expressed through the
statistical operator �(t) describing the mixed quantum states:

S(t) = kξTr {�(t)[1 − �1/ξ(t)]}. (32)

In particular, calculating a trace in the diagonal representation, where 〈n|�(t)|n′〉 =
wn(t)δnn′ , the Tsallis entropy can be expressed through the probabilities wn(t):

S(t) = kξ
∑

n

wn(t)[1 − w1/ξ
n (t)]. (33)

Let us show that the Tsallis statistical entropy is not additive. For this purpose,
we assume that the distribution function �(1+2)(x1, p1, x2, p2, t) describes two
independent classical ensembles with the distribution functions �(1)(x1, p1, t) and
�(2)(x2, p2, t). Using the normalization conditions for the distribution functions
�(1)(t) and �(2)(t) and taking into account the factorization relation �(1+2)(t) =
�(1)(t)�(2)(t) valid for two independent classical ensembles, we obtain

S(1+2)(t) = S(1)(t) + S(2)(t) − 1
kξ

S(1)(t)S(2)(t), (34)

where the statistical entropy for each system is expressed in the form (31) with the
corresponding distribution function and an inˇnitesimal element of phase space.

In a quantum case, nonadditivity of the statistical entropy (34) is proved
similarly. Note that in this case the statistical operator �(1+2)(t) describing two
independent mixed quantum ensembles is the direct product of the respective
statistical operators, �(1+2)(t) = �(1)(t)

⊗
�(2)(t).

It is easy to show that the Tsallis statistical entropy suffers from grave
shortcoming. The statistical entropy S(t) against the thermodynamic one ST in
the isolated system does not depend on time and, hence, cannot grow at relaxation
of the system to the equilibrium. Let us prove this statement. As the total time
derivative t from the phase distribution function is equal to zero, d�/dt = 0, valid
from the Liouville equation (4) and Liouville theorem, the total time derivative
from the classical entropy (31) yields immediately the equality

dS(t)
dt

= kξ

∫
d�(x, p, t)

dt
[1 − (1 +

1
ξ
)�1/ξ(x, p, t)]dΓ = 0. (35)

For the quantum ensembles, the Tsallis statistical entropy does not depend on
time. Note that for the Gibbs statistical entropy this problem is inherent as
well [10].

11



4. MICROCANONICAL ENSEMBLE

In this section, the microcanonical distribution function and the statistical
operator will be expressed through the variables of state of the isolated system
(E, V, z, N). Let us consider the equilibrium statistical ensemble of the closed
energetically isolated systems of N particles at the constant volume V and the
thermodynamic coordinate z. It is supposed that all systems have identical energy
E within ∆E � E.

To begin with, we turn to instances of the classical case. The Tsallis equi-
librium statistical entropy (31) represents a function of the parameter ξ and a
functional of the equilibrium phase distribution function �eq(x, p):

S(ξ, {�eq}) = kξ

∫
D

�eq(x, p)(1 − �1/ξ
eq (x, p))dΓN , (36)

where dΓN = dxdp is an inˇnitesimal element of phase space. Let the phase
distribution function �eq(x, p) be distinct from zero only in the region of phase
space D, which is deˇned by inequalities E � H(x, p) � E + ∆E and be
normalized to unity: ∫

D

�eq(x, p)dΓN = 1. (37)

The phase distribution function depends on the ˇrst additive integrals of motion
of the system. In particular, it is a function of the Hamiltonian, �eq(x, p) =
�eq(H(x, p)). Moreover, the Hamilton function H(x, p) has the parametrical de-
pendence upon the number of particles N and volume V of the system. However,
it is not a function from the variables ξ and z, i.e. the microstates of the system
are independent of the quantities ξ, z.

For an isolated system, in the state of thermal equilibrium the thermody-
namic entropy Sth(E, V, z, N) has its maximal value. Hence, the fundamental
equation of thermodynamics (22) for the quasiequilibrium processes is imple-
mented. Changes of the variables of state at transition from one equilibrium
state to another nearby state are equal to zero, dE = 0, dV = 0, dz = 0 and
dN = 0. Therefore, from the basic equation of thermodynamics (22) it follows
immediately that the thermodynamic entropy at the ˇxed values of E, V, z, N is
constant (see (25)):

(dSth)EV zN = 0. (38)

To express the phase distribution function �eq(x, p) through the variables of state
(E, V, z, N), let us replace the equilibrium thermodynamic entropy Sth of the
macroscopic system with the Tsallis statistical one (36), Sth(E, V, z, N) ⇐⇒
S(ξ, {�eq}), and substitute it in Eq. (38). Taking into account Eqs. (37) and (38),
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one ˇnds

dS =
∂S

∂ξ
dξ +

∫
D

δS

δ�eq
d�eq dΓN = 0, (39)

∫
D

d�eq dΓN = 0, (40)

where the symbol d before the functions S, ξ and �eq is the total differential in
variables (E, V, z, N). One should note that the unequivocal conformity between
statistical and thermodynamic entropies is satisˇed for the case where the para-
meters ξ and {�eq} are the functions of the variables of state (E, V, z, N) of the
isolated system. The Hamiltonian H(x, p) and the microstates of the system do
not depend on the variables ξ and z. Then, the parameter ξ is a function of z:

ξ =
1

q − 1
= z. (41)

Since dξ = 0 and d�eq = 0, we get the solutions to the system of Eqs. (39) and
(40):

δS(z, {�eq})
δ�eq

= kα, (42)

where α is a certain constant, and k is the Boltzmann constant, which was
introduced for convenience. Substituting Eq. (36) into (42), we obtain

�1/z
eq (x, p; E, V, z, N) =

z − α

z + 1
. (43)

The parameter α has been eliminated by using Eqs. (36) and (37):

�eq(x, p; E, V, z, N) =
[
1 − S

kz

]z

. (44)

Equations (44) and (37) together give[
1 − S

kz

]−z

=
∫
D

dΓN =
∫

∆(H(x, p) − E)dΓN ≡ W (E, V, N), (45)

where ∆(ε) is the function distinct from zero only in the interval 0 � ε � ∆E,
where it is equal to unit. The statistical weight W (E, V, N) is meant as a
dimensionless phase volume, i.e. the number of dynamic states inside a layer
∆E. Based on this, we get the equipartition probability from Eq. (44) as a
function of the thermodynamic ensemble variables, energy E, volume V , number
of particle N , and parameter z [10]:

�eq(x, p; E, V, z, N) = W−1(E, V, N)∆(H(x, p) − E). (46)

13



Thus, using Eq. (45), we can write the entropy as (cf. [4, 14])

S(E, V, z, N) = kz[1 − W−1/z(E, V, N)] = kz[1 − e−SG(E,V,N)/kz], (47)

where SG is the Gibbs entropy [1,10] for the microcanonical ensemble (E, V, N):

SG(E, V, N) = k ln W (E, V, N). (48)

The quantum microcanonical ensemble and the corresponding equilibrium
distribution function are in some respects analogous to the familiar classical ones.
Let the probability distribution for quantum states of the system be different from
zero only in the layer E � Ei � E + ∆E and be normalized to unity:∑

i

wi = 1, E � Ei � E + ∆E. (49)

The Tsallis equilibrium statistical entropy is a function of the parameter ξ and
probabilities {wi}:

S(ξ, {wi}) = kξ
∑

i

wi(1 − w
1/ξ
i ). (50)

By using Eqs. (38) and (49) the quantum microcanonical distribution is found
from a maximum principle of thermodynamic entropy of the isolated system
(E, V, z, N):

dS =
∂S

∂ξ
dξ +

∑
i

∂S

∂wi
dwi = 0, (51)

∑
i

dwi = 0, (52)

where the symbol d is the total differential in variables (E, V, z, N) and the
statistical entropy depends on the parameters ξ and {wi}. The parameter ξ is
equal to a variable z, ξ = z. For the ˇxed variables of state (E, V, z, N), we
have dE = 0, dV = 0, dz = 0, and dN = 0. Then, the system of Eqs. (51) and
(52) will have the solution if the following equality is fulˇlled:

∂S(z, {wi})
∂wi

= kα. (53)

Substituting Eq. (50) into (53), we get

w
1/z
i (E, V, z, N) =

z − α

z + 1
= const, E � Ei � E + ∆E. (54)
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The parameter α has been excluded by means of Eqs. (49), (50), and (54):

wi(E, V, z, N) =
[
1 − S

kz

]z

. (55)

Substituting Eq. (55) into (49), we obtain

[
1 − S

kz

]−z

=
∑

i

∆(Ei − E) ≡ W (E, V, N). (56)

The statistical weight W (E, V, N) is equal to the number of quantum states in
the layer ∆E. The quantum microcanonical distribution (55) becomes

wi(E, V, z, N) = W−1(E, V, N)∆(Ei − E). (57)

The statistical operator corresponding to the microcanonical distribution of prob-
abilities of quantum states (57) can be written as [10]

�eq(E, V, z, N) = W−1(E, V, N)∆(H − E), (58)

where the operator function ∆(H−E) is determined in the diagonal representation
by the matrix elements 〈k|∆(H − E)|k′〉 = ∆(Ek − E)δkk′ . The quantum
statistical entropy is calculated similarly to the classical one (47) with statistical
weight (56). Note that the classical and quantum microcanonical distributions (46)
and (57) are extreme equilibrium ones which correspond to a maximum of the
Tsallis statistical entropy [4]. The distribution functions (46) and (57) obtained
by the thermodynamic method described here are identical with ones obtained by
the Jaynes principle. The index q for the Jaynes principle is a ˇxed parameter
and does not depend on the variables of state of the system. In this case, the
Tsallis statistics does not satisfy the zero law of thermodynamics [8].

5. THERMODYNAMICS OF MICROCANONICAL ENSEMBLE

It is well-known from the conventional statistical mechanics that in the ther-
mal equilibrium the Gibbs entropy of the microcanonical ensemble is an extensive
variable, and it has all peculiarities of the thermodynamic entropy in the thermo-
dynamic limit [3, 10]. Mathematically, this implies that the Gibbs entropy SG is
a homogeneous function of variables E, V and N of the ˇrst order, i.e. one has
the following property [12]:

SG(λE, λV, λN) = λSG(E, V, N), (59)
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where λ is a certain constant. After substitution of Eq. (48) into (59), it is easy
to check up that the statistical weight W must satisfy the following requirement:

W (λE, λV, λN) = Wλ(E, V, N). (60)

Taking into account Eqs. (47) and (59), one ˇnds the following peculiarity of the
Tsallis entropy

S(λE, λV, λz, λN) = λS(E, V, z, N), (61)

which shows that the Tsallis entropy in the microcanonical ensemble is a homo-
geneous function of variables E, V, z, N of the ˇrst order. In other words, it is
extensive. It is essential to make clear that the homogeneity property of quantities
(59)Ä(61) is realized only in the thermodynamic limit.

Differentiating Eq. (61) with respect to λ, and putting λ = 1, we obtain the
well-known Euler theorem for the homogeneous functions:

E

(
∂S

∂E

)
V,z,N

+ V

(
∂S

∂V

)
E,z,N

+ z

(
∂S

∂z

)
E,V,N

+ N

(
∂S

∂N

)
E,V,z

= S. (62)

Using the thermodynamic relations following from the fundamental equation of
thermodynamics (22) in case of the isolated thermodynamic system (E, V, z, N)(

∂S

∂E

)
V,z,N

=
1
T

,

(
∂S

∂V

)
E,z,N

=
p

T
,

(
∂S

∂z

)
E,V,N

=
X

T
,

(
∂S

∂N

)
E,V,z

= − µ

T
,

(63)

we get the Euler theorem [12]:

TS = E + pV + Xz − µN. (64)

Applying the differential operator with respect to the ensemble variables (E, V, z, N)
on Eq. (64), we obtain the fundamental equation of thermodynamics

TdS = dE + pdV + Xdz − µdN (65)

and the GibbsÄDuhem relation [12]

SdT = V dp + zdX − Ndµ. (66)

Equation (66) means that the variables T , µ, X and p are not independent. The
fundamental equation of thermodynamics (65) provides the ˇrst principle

δQ = dE + pdV + Xdz − µdN (67)
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and the second law of thermodynamics

dS =
δQ

T
. (68)

Here δQ is a heat transfer by the system to the environment for quasi-static
transition of the system from one equilibrium state to another nearby state.

Let us investigate the homogeneity properties of the variables T, p, µ and
X . Substituting Eq. (47) into (63), we obtain the following expressions for the
temperature T [8]:

T (E, V, z, N) = TG(E, V, N) W 1/z(E, V, N) = TG(E, V, N) eSG(E,V,N)/kz

(69)
and the variable X

X(E, V, z, N) = kTG(E, V, N)[eSG(E,V,N)/kz − 1 − SG(E, V, N)/kz]. (70)

The pressure and the chemical potential of the system are equivalent with the
pressure pG and the chemical potential µG of the Gibbs statistics, respectively,
p(E, V, z, N) = pG(E, V, N) and µ(E, V, z, N) = µG(E, V, N). These equations
were derived by using the thermodynamical relations for the temperature TG, the
pressure pG and the chemical potential µG of the Gibbs statistics, and taking into
account Eq. (48):

1
TG

=
(

∂SG

∂E

)
V,N

,
pG

TG
=

(
∂SG

∂V

)
E,N

, −µG

TG
=

(
∂SG

∂N

)
E,V

. (71)

The Gibbs quantities TG, pG, µG are the homogeneous functions of the variables
of state (E, V, N) of the zero order. This can be proved by using Eqs. (71) and
(59). Then, a combination of Eqs. (69) and (59) allows us to write the relation
for the temperature T :

T (λE, λV, λz, λN) = T (E, V, z, N). (72)

Similarly to Eq. (72), the relations for the pressure p(λE, λV, λz, λN), the chem-
ical potential µ(λE, λV, λz, λN), and the variable X(λE, λV, λz, λN) are ful-
ˇlled. Thus, the temperature T , the pressure p, the chemical potential µ, and
quantity X are the homogeneous functions of the variables E, V, z, N of the zero
order. So they are intensive variables [12].

Let us prove in more detail the thermodynamic principle of additivity [3]. For
instance, we assume that λ = 1/N and introduce the following speciˇc variables:

ε =
E

N
, v =

V

N
, z̃ =

z

N
=

1
(q − 1)N

. (73)
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Thus, Eqs. (61) and (72) for the entropy and the temperature of the system, by
using (73) with respect to λ = 1/N , can be rewritten as

s(ε, v, z̃) =
1
N

S(E, V, z, N) (74)

and

T (ε, v, z̃) = T (E, V, z, N), (75)

where s(ε, v, z̃) is the speciˇc entropy, s = S/N , which depends only on the
intensive variables ε, v and z̃. For the pressure p, the chemical potential µ, and
X , we have equations similar to that for the temperature (75). So, comparing
Eqs. (74) and (75) with the thermodynamic equations (17) and (18), we conclude
that the entropy S is an extensive variable, as it is proportional to the number
of particles N multiplied by an intensive variable s, but the temperature T , the
pressure p, the chemical potential µ, and X are intensive variables.

Let us divide the system into two parts (1 and 2) and require that the total
number of particles of the system should be equal to the sum of the number of
particles of each subsystem separately and the speciˇc quantities (73) should be
equal among themselves

N1+2 = N1+N2, ε1+2 = ε1 = ε2, v1+2 = v1 = v2, z̃1+2 = z̃1 = z̃2.
(76)

Then, the variables E, V and z are extensive. Taking into account Eq. (76), one
ˇnds

s1+2(ε1+2, v1+2, z̃1+2) = s1(ε1, v1, z̃1) = s2(ε2, v2, z̃2). (77)

Multiplying it by the ˇrst equation from (76) and using (74), we get

S1+2(E1+2, V1+2, z1+2, N1+2) = S1(E1, V1, z1, N1) + S2(E2, V2, z2, N2). (78)

Thus, in the microcanonical ensemble the Tsallis entropy is an extensive variable.
Furthermore, Eqs. (75) and (76) allow us to write

T1+2(E1+2, V1+2, z1+2, N1+2) = T1(E1, V1, z1, N1) = T2(E2, V2, z2, N2). (79)

So, in the thermodynamic limit, the zero law of thermodynamics and the ther-
modynamic principle of additivity (see. (17) and (18)) for the Tsallis statistics in
the microcanonical ensemble are valid. Here, the thermodynamic limit denotes
the limiting statistical procedure N → ∞ at ε = const, v = const, and z̃ = const
with keeping the main asymptotics on N . Note that the correct thermodynamic
limit, (q − 1)N = const, for the Tsallis statistics has already been discussed in
the paper of Botet et al. [15, 16].
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The dependence of the heat capacity (left) and the temperature (center) on the speciˇc
z̃ = z/N for the classical ideal gas of N nucleons at the values of the speciˇc energy
ε = 50 MeV and the speciˇc volume v = 3/ρ0. The temperature as a function of the
speciˇc energy (right) for the different values of z̃ = −1, −10, 10, and 1 (the curves
1, 2, 3, and 4, respectively) at v = 3/ρ0. The dashed line corresponds to the Gibbs

statistics

6. THE PERFECT GAS

The thermodynamic principle of additivity can thoroughly be investigated
in the framework of a classical nonrelativistic ideal gas. In the microcanonical
ensemble (E, V, z, N), the statistical weight (45) of the perfect gas of N identical
nucleons is given by [17]

W (E, V, N) =
V N

N !

∫
d3p1 . . . d3pN

(2π�)3N
δ

(
N∑

i=1

�p2
i

2m
− E

)
=

=
V N

N !

( m

2π�2

) 3
2N E

3
2N−1

Γ(3
2N)

, (80)

where m is the nucleon mass. In the thermodynamic limit (N � 1, ε = E/N =
const, v = V/N = const) from Eq. (80), it follows immediately that [3]

W 1/N (E, V, N) = v

(
mεe5/3

3π�2

)3/2

≡ w(ε, v). (81)

So Eq. (81) proves relation (60) for the statistical weight W with λ = 1/N . Then,
the Tsallis entropy (47) is reduced to

S(E, V, z, N) = Ns(ε, v, z̃), s(ε, v, z̃) = kz̃
[
1 − w−1/z̃

]
. (82)
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Comparing Eq. (82) with (17), we conclude that the Tsallis entropy is an extensive
variable. Note that in the limit z̃ → ±∞, we obtain the formula for the Gibbs
speciˇc entropy [16]:

s(ε, v, z̃)|z̃→±∞ = k ln w ≡ sG(ε, v). (83)

Substituting (82) into (63), we get

T (E, V, z, N) =
2
3

ε

k
w1/z̃ ≡ T (ε, v, z̃). (84)

The temperature (84) is a function of the speciˇc variables ε, v and z̃. Therefore,
it is an intensive variable by virtue of Eq. (18). In the limit z̃ → ±∞, we obtain
the well-known formula for the Gibbs statistics

T (ε, v, z̃)|z̃→±∞ =
2
3

ε

k
= TG(ε, v). (85)

In a similar way, the pressure p, the chemical potential µ, and X become

p(E, V, z, N) =
2
3

ε

v
≡ p(ε, v, z̃), (86)

µ(E, V, z, N) =
2
3
ε

[
5
2
− ln w

]
≡ µ(ε, v, z̃), (87)

X(E, V, z, N) = −2
3
ε

[
1 +

1
z̃

ln w − w1/z̃

]
≡ X(ε, v, z̃). (88)

Note that the pressure p and the chemical potential µ for the classical ideal gas
in the microcanonical ensemble do not depend on the parameter z̃, and they are
equal to respective quantities of the Gibbs statistics. Then, Eqs. (82), (84), and
(86)Ä(88) yield the Euler theorem (64) in terms of the speciˇc variables

Ts = ε + pv − µ + Xz̃. (89)

In the limit z̃ → ±∞, the pressure p and the chemical potential µ remain
unchanged but the variable X(ε, v, z̃) = 0. So, by the example of the classical
ideal gas the principle of additivity for the Tsallis statistics is proved. The Euler
theorem (64) or (89) shows that in the Tsallis statistics the quantities z = 1/(q−1)
and X should be the variable of the state and the associated ®force¯, respectively.

At this point one important quantity must be noted, the heat capacity CV =
1/(∂T/∂E)V,z,N . In the framework of the ideal gas of N nucleons it can be
written as

CV =
3
2
kNw−1/z̃

(
1 +

3
2

1
z̃

)−1

. (90)
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Figure shows the speciˇc heat (left) and the temperature (center) vs. the parameter
z̃. The calculations are done for the system of nucleons at the speciˇc energy
ε = 50 MeV and the speciˇc volume v = 3/ρ0, where ρ0 = 0.168 fm−3. It is of
great interest that both the heat capacity and the temperature sharply change their
shape in the region of small values of z̃ and considerably defer from their Gibbs
limit, which in the ˇgure is indicated by arrows. In the region of −3/2 < z̃ < 0,
the heat capacity is negative. It is remarkable that such a behaviour has really
been caused by the decrease of the temperature with ε. This dependence can be
seen even better in right panel of Figure which shows the temperature vs. the
speciˇc energy of the system for different values of the parameter z̃.

7. CONCLUSIONS

In this paper, we have explored the microscopic foundation of the gener-
alized equilibrium statistical mechanics based on the Tsallis statistical entropy.
The viewpoint utilized here considers that the microcanonical ensemble is most
convenient to analyze the fundamental questions of the statistical mechanics. We
summarize our main principles.

Here, the Gibbs idea of the statistical ensembles deˇned within the frame-
work of the quantum and classical mechanics was used. In this approach, the
equilibrium phase distribution function and the statistical operator do not depend
on time, and they are functions of the additive ˇrst integrals of motion of the
system by virtue of performance of Liouville and von Neumann equations. Addi-
tionally, these main quantities are functions of the macroscopic variables of state
of the system. To derive the distribution functions, in contrast with the Jaynes
principle, the new thermodynamic method based on the fundamental equation
of thermodynamics and statistical deˇnition of the functions of the state of the
system was given.

In this paper, we have made the following claim. The index ξ of the Tsallis
entropy should be an extensive variable of the state of the system. As a result of
this assumption, we obtain that in the microcanonical ensemble the Tsallis entropy
represents the homogeneous function of the variables E, V, z, N of the ˇrst order.
The temperature of the system is an intensive variable, and, consequently, the
zero law of thermodynamics is satisˇed. Other functions of state of the system
are either extensive or intensive. Thus, in the thermodynamic limit, z̃ = 1/(q −
1)N = const, in the Tsallis statistics the thermodynamic principle of additivity
is carried out. Note that the Tsallis information entropy is nonextensive because
the parameter ξ is a certain intensive constant. Also it is necessary to note that
the Tsallis statistical entropy as well as the Gibbs one has an essential lack. Both
the entropies do not depend on time while the thermodynamic entropy grows up
to achieve its maximal value in the state of thermal equilibrium. The extensive
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property of the Tsallis entropy in the microcanonical ensemble yields the Euler
theorem which permits one to ˇnd the fundamental equation of thermodynamics
and the GibbsÄDuhem relation. Thus, the ˇrst and the second principles of
thermodynamics are fulˇlled. Note that in the limit, z̃ → ±∞, all expressions of
the Tsallis statistics take the form of the conventional Gibbs statistical mechanics.
So the Tsallis statistical mechanics in the microcanonical ensemble satisˇes all
postulates of the equilibrium thermodynamics.

Finally, the classical nonrelativistic ideal gas of N identical nucleons in the
microcanonical ensemble was considered to illustrate the principles which were
elucidated in the general theory. It has been shown that in the thermodynamic
limit the statistical weight, the entropy, the temperature, and other quantities are
the homogeneous functions of the ˇrst and zero order of the variables of state,
respectively. Note that for ideal gas the Euler theorem was accomplished and in
the limit, z̃ → ±∞, all expressions resembled ones of the Gibbs statistics.
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