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DEFORMATIONS OF THE HEISENBERG ALGEBRA

INSIDE gl(3,K)

by Yaël Frégier

Abstract. We study non-trivial deformations of the natural embedding of
the Lie algebra h1 of lower triangular matrices (the Heisenberg Lie algebra)
into gl(3, K), where K = R or C. Our first result is the calculation of the first
cohomology space H1(h1; gl(3, K)). We prove that there are no obstructions
for integrability of infinitesimal deformations and, furthermore, give an
explicit formula for the most general deformation.

1. Introduction. The Heisenberg algebra h1 is the Lie algebra of three
by three lower triangular matrices. It is a very important algebra in Physics
since it encodes the commutation relations of the momentum and position
operators on which Quantum Physics is based. One striking property of h1 is
the fact that there is only one way to represent it (up to unitary equivalence)
via self-adjoint operators on a separable Hilbert space. This is the content of
Stone-Von Neumann theorem. As a corollary, one gets the equivalence between
Heisenberg and Schroedinger pictures (matrix algebra versus wave Mechanics)
of Quantum Physics.

We would like to know more about this algebra. There is a standard
embedding

(1.1) ρ : h1 ↪→ gl(3,K),

where K = R or C. Since many interesting features of objects can be discov-
ered by deforming them (see for example Quantum Groups), it is natural to
want to determine all the possible deformations of this embedding. The theory
of deformations of Lie structures (algebras and morphisms) is now a classical
subject (see e.g. [4, 8, 11]). However, a new concept of miniversal deforma-
tions of Lie algebras has been introduced in [1]. It is of course inspired by the
notion of universal unfolding in singularity theory. While Fialowski and Fuchs
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developed this notion for Lie algebras, the case of Lie algebra homomorphisms
has been recently considered in [9, 10].

In this paper we will completely describe the miniversal deformation of the
embedding (1.1).

2. Deformations of homomorphisms. Let ρ : h → g be a homomor-
phism of Lie algebras. A deformation of ρ is an expression of the type

(2.1) ρ(t) = ρ0 +
∞∑

m=1

ρm(t),

where t = (t1, . . . , tr) are the parameters of the deformation and each term
ρm(t) is a linear map from h to g homogeneous in t of degree m. Note that
t1, . . . , tr can be considered as real (or complex) parameters, or as generators
of a commutative associative algebra (cf. [1]), upon the context.

The deformation must be a Lie homomorphism for every value of the pa-
rameter t, i.e. satisfy:

(2.2) ρ(t)([X,Y ]) = [ρ(t)(X), ρ(t)(Y )]

for every X,Y ∈ h.
Equivalent deformations and the first cohomology. The standard

Chevalley–Eilenberg differential is given, in the case of a linear map m from h
to g, by the following formula:

(2.3) δ1m(X,Y ) = m([X,Y ])− [ρ(X),m(Y )] + [ρ(Y ),m(X)].

Let us expand formula (2.2) as a series in t, the first order term is of the form

(2.4) ρ1(t) =
r∑

i=1

ti ρ
i
1.

From (2.2) one obtains δρi
1 = 0, that is, each map ρi

1 is a one-cocycle.
Two deformations ρ(t) and ρ′(t) are equivalent if there exists an inner

automorphism I(t) : g⊗K[t1, . . . , tr] −→ g⊗K[t1, . . . , tr] of the form

I(t) = exp

 ∑
1≤i≤r

ti adAi +
∑

1≤i,j≤r

titj adAij + . . .

 ,

where Ai, Aij , . . . are some elements of g, such that the relation I(t) ◦ ρ(t) =
ρ′(t) is satisfied.

Moreover, one can check that the first order terms ρi
1 and ρ′i1 differ by a

coboundary, i.e. ρ′i1 = ρi
1 +δAi. It follows that infinitesimal deformation of the

homomorphism ρ are classified by the first cohomology space H1(h; g).
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Cup-product and Maurer–Cartan equation. The standard cup-pro-
duct (or Nijenhuis–Richardson product) of linear maps a, b : h→ g is the linear
map [[a, b]] : h⊗ h→ g defined by

[[a, b]](X,Y ) = [a(X), b(Y )]− [a(Y ), b(X)].

Put φ(t) = ρ(t)− ρ0, the morphism equation (2.2) reads

(2.5) δφ(t)− 1
2

[[φ(t), φ(t)]] = 0

(see [8, 11]). This equation is called the Maurer–Cartan equation (or the
deformation equation).

Developing the Maurer–Cartan equation (2.5), one gets

(2.6) δρm(t) =
1
2

∑
i+j=m

[[ρi(t), ρj(t)]]

for each m. The right hand side of this equation is always a 2-cocycle for any m
(cf., e.g., [3]). The equation admits a solution if and only if it is a coboundary.
The cohomology class of the 2-cocycle in the right hand side of (2.6) is an
obstruction for prolongation of the deformation to the order m.

Construction of the miniversal deformation. We are interested in
deformations up to equivalence, hence, we will set r = dimH1(h; g) and choose
the basis [c1], . . . , [cr] of H1(h; g), where c1, . . . , cr are non-trivial 1-cocycles on
h with coefficients in g. We then put

ρi
1 = ci.

The construction of the miniversal deformation goes as follows. Assume,
by induction, that we constructed the deformation (2.1) to the order m − 1.
To construct the m-th order term, one has to solve the equation (2.6). The
right hand side of (2.6) is an element of Z2(h; g) ⊗ Km[t1, . . . , tr]; if this is a
coboundary then there exists a solution of (2.6).

The solution of (2.6) can be chosen arbitrarily up to the equivalence and
reparametrization. Indeed, if ρm(t) and ρ′m(t) are two solutions, then their
difference is a 1-cocycle

3. The main results. We formulate here the main results of this paper,
all proofs will be given in Section 4.

The first group of cohomology. One determines H1(h1, gl(3,K)) in
order to know the dimension of the parameter space, i.e. the number of infin-
itesimal generators of the deformation. We then give an expression for these
generators.

Theorem 3.1. Dim H1(h1, gl(3,K))=4.
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We give a basis of this cohomology space. Let eij ∈ gl(3,K) be the standard
basis of gl(3,K), namely (eij)kl = δikδjl. Denote B the natural basis of h1:

X = e21, Y = e31, Z = e32

and let X∗, Y ∗, Z∗ be the dual basis in h∗1. The basis of H1(h1, gl(3,K)) is
given by the classes of the following 1-cocycles.

(3.1)

ρ1 = X∗ ⊗ e32,

ρ2 = Z∗ ⊗ e21,

ρ3 = Z∗ ⊗ (e11 + e22 + e33),

ρ4 = X∗ ⊗ (e11 + e22 + e33).

An expression for the miniversal deformation. We will apply the
algorithm described in Section 2 to the 1-cocycles (3.1). The result is an
explicit formula for the miniversal deformation. Its expression involves the
2-cocycle ρ12 := X∗⊗ e21 +Z∗⊗ e32 and the function θ(t1, t2) :=

∑∞
n=1 θnt

n
1 t

n
2 ,

with θ1 := 1 and θn := −1
2(
∑

i+j=n,i<j θiθj + 1
2θ

2
n
2
).

Theorem 3.2. Up to equivalence and reparametrisation, the miniversal
deformation of ρ is given by the formula

(3.2) ρ̃(t1, t2, t3, t4) := ρ+ t1 ρ
1 + t2 ρ

2 + t3 ρ
3 + t4 ρ

4 + θ(t1, t2) ρ12,

in other terms:

ρ̃(t1, t2, t3, t4)

0 0 0
a 0 0
c b 0


=

 bt3 + at4 0 0
a+ bt2 + aθ(t1, t2) bt3 + at4 0

c b+ at1 + bθ(t1, t2) bt3 + at4

 .

Note that no obstruction to the integrability appears, and hence the parameter
space is the free commutative algebra K[t1, t2, t3, t4]. In other words, there are
no relations on the parameters of the deformation.

Towards higher dimensional generalizations. The symmetry and sim-
plicity of the result (3.2) gives the hope to generalize it to higher dimensions.
It should be possible to rewrite (3.2) in terms of root systems, and hence give
a conceptual formulation more likely to be generalized.

4. Proofs of the main results. The proofs consist in applying the meth-
ods described in Section 2. When choices are to be made, we always try to
make choices that preserve the symmetry of the problem.
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4.1. Proof of Theorem 3.1. The proof consists in two steps. We first
calculate the space of 1-cocycles and then determine its subspace of cobound-
aries.

Computation of Z1(h1, gl(3,K)).
Let us calculate explicitly the expression of the differential δ1 defined by

the formula (2.3). We will then determine its kernel.

Lemma 4.1. A basis of Z1 is given by the vectors:

e1 = X∗ ⊗ e32,

e2 = Z∗ ⊗ e21,

e3 = X∗ ⊗ e11 +X∗ ⊗ e22 +X∗ ⊗ e33,

e4 = Z∗ ⊗ e11 + Z∗ ⊗ e22 + Z∗ ⊗ e33,

e5 = Z∗ ⊗ e31,

e6 = Y ∗ ⊗ e31 +X∗ ⊗ e21,

e7 = Y ∗ ⊗ e32 +X∗ ⊗ e22 −X∗ ⊗ e11,

e8 = X∗ ⊗ e31,

e9 = Z∗ ⊗ e32 + Y ∗ ⊗ e31,

e10 = X∗ ⊗ e23 + Y ∗ ⊗ (e33 − e11)− Z∗ ⊗ e12,

e11 = Z∗ ⊗ e33 +
1
2
Z∗ ⊗ e11 −

1
2
Y ∗ ⊗ e21.

Let Φ be a one cochain on h1 with coefficients in gl(3,K). Let us denote
its coordinates in the basis B := {X∗ ⊗ eij , Y ∗ ⊗ ekl, Z

∗ ⊗ emn} by:

(Φ11
X , . . . ,Φ

33
X︸ ︷︷ ︸

Φ(X)

, Φ11
Y , . . . ,Φ

33
Y︸ ︷︷ ︸

Φ(Y )

, Φ11
Z , . . . ,Φ

33
Z︸ ︷︷ ︸

Φ(Z)

).

Using these coordinates, one can rewrite the coboundary operator δ1. One has

δ1Φ(X,Y ) = Φ([e21, e31])− [e21,Φ(Y )] + [e31,Φ(X)]

= −[e21,
3∑

i,j=1

Φij
Y eij ] + [e31,

3∑
i,j=1

Φij
Xeij ]

= −
3∑

i,j=1

Φij
Y [e21, eij ] +

3∑
i,j=1

Φij
X [e31, eij ]

which gives

δ1Φ(X,Y ) = −
3∑

j=1

Φ1j
Y e2j +

3∑
i=1

Φi2
Y ei1 +

3∑
j=1

Φ1j
X e3j −

3∑
i=1

Φi3
Xei1.
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Similarly,

δ1Φ(X,Z) = −
3∑

i,j=1

Φij
Y eij −

3∑
j=1

Φ1j
Z e2j +

3∑
i=1

Φi2
Z ei1 +

3∑
j=1

Φ2j
X e3j −

3∑
i=1

Φi3
Xei2

and

δ1Φ(Y,Z) = −
3∑

j=1

Φ1j
Z e3j +

3∑
i=1

Φi3
Z ei1 +

3∑
j=1

Φ2j
Y e3j −

3∑
i=1

Φi3
Y ei2.

We now want to express the linear operator δ1 in a matrix form. Since δ1Φ
is a 2 cochain, it can be decomposed in the basis

B′ := {X? ∧ Y ? ⊗ eij , X? ∧ Z? ⊗ eij , Y ? ∧ Z? ⊗ eij}.

More precisely,

δ1Φ =
3∑

i,j=1

(
(δ1Φ)ij

X,Y X
? ∧ Y ? + (δ1Φ)ij

X,Z X
? ∧ Z? + (δ1Φ)ij

Y,Z Y
? ∧ Z?

)
⊗eij .

Applying δ1Φ to (X,Y ) one gets

δ1Φ(X,Y ) =
3∑

i,j=1

(δ1Φ)ij
X,Y eij .

One can then identify the first nine coefficients (δ1Φ)ij
X,Y , 1 ≤ i, j ≤ 3 which

correspond to the first nine rows of matrix of δ1 in the bases B and B′ .
Applying the same procedure to (δ1Φ)ij

X,Z and (δ1Φ)ij
Y,Z , one finally gets a

(27× 27)-matrix, see Appendix 5. In order to determine the kernel of δ1, one
has to find a maximal free subfamily among the column vectors of the matrix
of δ1. Dependence relations among remaining vectors will then give the kernel.
Details of these computations can also be found in Appendix 5. This completes
the proof of Lemma 4.1.

Computation of B1(h1, gl(3,K)).
The space of coboundaries B1(h1, gl(3,K)) is the image of gl(3,K) by the

operator δ0 :
∧0 −→

∧1 defined by

δ0(A)(a) = [A, a],

where a ∈ h1 and A ∈ gl(3,K).



71

Proceeding as above, one has for A = (Aij) with i, j = 1, 2, 3

δ0A(X) = −[e21,
3∑

i,j=1

Aijeij ]

= −
3∑

j=1

A1je2j +
3∑

i=1

Ai2ei1,

δ0A(Y ) = −
3∑

j=1

A1je3j +
3∑

i=1

Ai3ei1,

δ0A(Z) = −
3∑

j=1

A2je3j +
3∑

i=1

Ai3ei2.

The matrix of this operator is given in Appendix 5. A basis of the image is as
follows.

δ11 = −X? ⊗ 21− Y ? ⊗ 31,
δ12 = X? ⊗ (11− 22)− Y ? ⊗ 32,
δ13 = −X? ⊗ 23 + Y ? ⊗ (11− 33) + Z? ⊗ 12,
δ21 = −Z? ⊗ 31,
δ22 = X? ⊗ 21− Z? ⊗ 32,
δ23 = Y ? ⊗ 21 + Z? ⊗ (22− 33),
δ32 = X? ⊗ 31.

Computation of H1(h1, gl(3,K)).
The dimension of Z1(h1, gl(3,K)) is 11, the one of B1(h1, gl(3,K)) is 7.

Hence the quotient space H1(h1, gl(3,K)) has dimension 11− 7 = 4. One can
check, see Appendices 5-5, that the first four elements e1, e2, e3, e4 are inde-
pendent modulo B1(h1, gl(3,K)). Their classes form a basis of H1. Theorem
3.1 is proved.

4.2. Proof of Theorem 3.2. We will show that every infinitesimal defor-
mation is integrable. In other words, there are no obstructions to integrability.

Integrability at order 2.
One needs to evaluate the cup-products [[ρi, ρj ]], 1 ≤ i, j ≤ 4 of the cocy-

cles (3.1). It turns out that the only non vanishing term is the coboundary:

[[ρ1, ρ2]] = X∗ ∧ Z∗ ⊗ e31 = δ1(
1
2

(X? ⊗ e21 + Z? ⊗ e32)).

Let us choose

ρ12 =
1
2

(X? ⊗ e21 + Z? ⊗ e32)
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and ρij = 0 otherwise. One extends the deformation to the order 2. The
equation (2.6) is satisfied to the second order.

Integrability at any order.
The key point, allowing an induction, is the fact that all the non vanishing

cup-products are of the form [[ρ12, ρ12]], hence the deformation can be extended
by means of ρ12, and one is again in the same situation, enabling to pursue
the induction.

More precisely: let us suppose (induction hypothesis) that up to order
m the deformation is given by ρ̃(t1, t2, t3, t4) := ρ + t1 ρ

1 + t2 ρ
2 + t3 ρ

3 +
t4 ρ

4 +
∑m

k=1 θkt
k
1t

k
2ρ

12. Solving the deformation equation (2.6) at order m is
equivalent to find a 1-cocycle ρm+1 such that

δ1ρm+1 =
( ∑

i+j=m+1,i<j

θiθj +
1
2
θ2

m+1
2

)
[[ρ12, ρ12]]

(θm+1
2

meaning zero when not defined i.e. when m even). An easy computation

shows that [[ρ12, ρ12]] = −1
2 [[ρ1, ρ2]], hence, by the previous computation, it

suffices to set ρm+1 := θm+1ρ
12 with θm+1 := −1

2(
∑

i+j=m+1,i<j θiθj + 1
2θ

2
m+1

2

).

Theorem 3.2 is proved.

5. Appendix. In this appendix we have moved the details of the deter-
mination of the expression of the boundary operator, of its kernel and of its
image.

Computations appearing in proof of Theorem 3.1. We first need
an expression of the boundary operator with which we can compute, i.e. as a
matrix.

Computing δ1.
The columns of the matrix of δ1 in the bases B and B′ are given by the

decomposition in B′ of the vectors

δX
ij = δ1(X? ⊗ eij), δY

ij = δ1(Y ? ⊗ eij), δZ
ij = δ1(Z? ⊗ eij),

we can, doing the identification explained in Section 4.1, give their explicit
description. The first fourteen elements of this family write:

δX
11 = X? ∧ Y ? ⊗ e31,

δX
12 = X? ∧ Y ? ⊗ e32,

δX
13 = X? ∧ Y ? ⊗ (e33 − e11)−X? ∧ Z? ⊗ e12,
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δX
21 = X? ∧ Z? ⊗ e31,

δX
22 = X? ∧ Z? ⊗ e32,

δX
23 = −X? ∧ Y ? ⊗ e21 +X? ∧ Z? ⊗ (e33 − e22),

δY
11 = −X? ∧ Y ? ⊗ e21 −X? ∧ Z? ⊗ e11,

δY
12 = X? ∧ Y ? ⊗ (e11 − e22)−X? ∧ Z? ⊗ e12,

δY
13 = −X? ∧ Y ? ⊗ e23 −X? ∧ Z? ⊗ e13 − Y ? ∧ Z? ⊗ e12,

δY
21 = −X? ∧ Z? ⊗ e21 + Y ? ∧ Z? ⊗ e31,

δY
22 = X? ∧ Y ? ⊗ e21 −X? ∧ Z? ⊗ e22 + Y ? ∧ Z? ⊗ e32,

δY
23 = −X? ∧ Z? ⊗ e23 + Y ? ∧ Z? ⊗ (e33 − e22),

δZ
13 = −X? ∧ Z? ⊗ e23 − Y ? ∧ Z? ⊗ (e33 − e11),

δZ
23 = Y ? ∧ Z? ⊗ e21.

They are independent since each these vectors has an underlined non van-
ishing component which vanishes for the other vectors. One can check that
the two following vectors are independent from the preceding ones.

δY
33 = −X? ∧ Z? ⊗ e33 − Y ? ∧ Z? ⊗ e32.

δZ
11 = −X? ∧ Z? ⊗ e21 − Y ? ∧ Z? ⊗ e31,

The remaining vectors

δX
31 = 0,

δX
32 = 0,

δX
33 = −X? ∧ Y ? ⊗ e31 −X? ∧ Z? ⊗ e32.

δY
31 = −X? ∧ Z? ⊗ e31,

δY
32 = X? ∧ Y ? ⊗ e31 −X? ∧ Z? ⊗ e32,

δZ
12 = −X? ∧ Z? ⊗ (e22 − e11)− Y ? ∧ Z? ⊗ e32,

δZ
21 = 0,

δZ
22 = X? ∧ Z? ⊗ e21,

δZ
31 = 0,

δZ
32 = X? ∧ Z? ⊗ e31,

δZ
33 = Y ? ∧ Z? ⊗ e31
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are linear combinations of the previous ones. More precisely, δX
31,δX

32,δZ
21 and

δZ
31 vanish and

δX
33 = −δX

22 − δX
11,

δY
31 = −δX

21,

δY
32 = −δX

22 + δX
11,

δZ
22 = −1

2
δZ

11 −
1
2
δY

21,

δZ
32 = −δY

31,

δZ
12 = −δY

11 + δX
23 + δY

33,

δZ
33 = −1

2
δZ

11 +
1
2
δY

21.

These relations are important since they give us the basis of Z1:

e1 = X∗ ⊗ e32,

e2 = Z∗ ⊗ e21,

e3 = X∗ ⊗ e33 +X∗ ⊗ e22 +X∗ ⊗ e11,

e′4 = Z∗ ⊗ e22 +
1
2
Z∗ ⊗ e11 +

1
2
Y ∗ ⊗ e21,

e5 = Z∗ ⊗ e31,

e6 = Y ∗ ⊗ e31 +X∗ ⊗ e21,

e7 = Y ∗ ⊗ e32 +X∗ ⊗ e22 −X∗ ⊗ e11,

e8 = X∗ ⊗ e31,

e9 = Z∗ ⊗ e32 + Y ∗ ⊗ e31,

e10 = X∗ ⊗ e23 + Y ∗ ⊗ (e33 − e11)− Z∗ ⊗ e12,

e11 = Z∗ ⊗ e33 +
1
2
Z∗ ⊗ e11 −

1
2
Y ∗ ⊗ e21.

These elements are in the kernel because of the preceding relations. In order
to obtain a symmetric formula (3.2), one replaces e′4 by e4 := e′4 + e11 =
Z∗ ⊗ e11 + Z∗ ⊗ e22 + Z∗ ⊗ e33.
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Computing δ0.
The matrix of δ0 is given by the following set of vectors:

δ11 = −X? ⊗ 21− Y ? ⊗ 31,
δ12 = X? ⊗ (11− 22)− Y ? ⊗ 32,
δ13 = −X? ⊗ 23 + Y ? ⊗ (11− 33) + Z? ⊗ 12,
δ21 = −Z? ⊗ 31,
δ22 = X? ⊗ 21− Z? ⊗ 32,
δ23 = Y ? ⊗ 21 + Z? ⊗ (22− 33),
δ32 = X? ⊗ 31

which are independent and

δ31 = 0,
δ33 = Y ? ⊗ 31 + Z? ⊗ 32,

which are linear combinations of the above ones. Indeed, δ31 = 0 and δ33 =
−δ11 + δ22.

Computing the basis of H1(h1, gl(3,K)).
The first four elements e1, e2, e3, e4 of the basis of the space of cocycles

Z1(h1, gl(3,K)) are linearly independent modulo the coboundaries, since each
of them has an underlined component which does not appear in the elements
of the basis of the space of coboundaries B1(h1, gl(3,K)).
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