
Is Adjunction Compositional?

Marcus Kracht ∗

Department of Linguistics, UCLA
PO Box 951543

405 Hilgard Avenue
Los Angeles, CA 90095–1543

USA
kracht@humnet.ucla.edu

Abstract

This paper shows that there is no compositional TAG for boolean expres-
sions. This indicates that adjunction cannot carry the weight of constructing
the semantics compositionally, in contrast to approaches based on discon-
tinuity instead (like Linear Context Free Rewrite Systems). Although the
proof is based on the assumption that the semantic functions are partial it
seems highly unlikely that allowing partial semantic functions will help.

1 Introduction
In recent years the idea of grammars based on adjunction has received growing
attention. Two schools of thought exist which both use the term adjunction: one
using tree adjunction (associated with the name Aravind Joshi) and another us-
ing string adjunction (associated with the name Solomon Marcus).1 A grammar

∗I am indebted to several reviewers for the journal for their criticism and also to Ben George
for many conversations about the topic of TAGs and compositionality. Remaining errors are my
own responsibility.

1Many differences exist, both across and within schools, and it is not possible to do justice to
all variants that exist. I have tried to make my results as general as I can.

1

based purely on adjunction views sentences not as being made from simpler con-
stituents, which are mostly of different nature; rather, it views sentences as being
derived from sentences through the insertion of material. Other grammars mix
adjunction with tree substitution. Most current versions of TAGs are of such a
mixed type. Recently, a series of proposals for computing semantic representa-
tions using TAGs has been put forward, of which I mention only [Gardent and
Parmentier, 2005], [Gardent and Kallmeyer, 2003] and [Frank and van Genabith,
2001]. [Kallmeyer and Joshi, 2003] even claim to have a compositional semantics.

This paper deals with pure adjunction grammars and the possibility of using
them to derive interpreted languages in a compositional fashion. The result will
be that for the languages that we are commonly interested in (natural languages,
independently motivated formal languages, programming languages) the pure ad-
junction grammars are unsuited. I hasten to add that this does not mean that the
mixed types can make any better use of adjunction. For the results below will in-
dicate that adjunction in general is of quite limited value for interpreted languages,
and thus to the extent that the grammars do the job as intended they must rely on
substitution instead.

The paper is structured as follows. The first section introduces interpreted lan-
guages and sketches how to turn context free grammars into interpreted gram-
mars, that is, grammars for interpreted languages. After that, in Section 3, I shall
introduce various kinds of adjunction grammars. Section 4 introduces the notion
of interpreted languages, interpreted grammars and compositional grammars. In
Section 5 I shall prove some basic results concerning the power of these grammars.
The examples are mostly artificial, showing that interpreted adjunction grammars
and interpreted context free grammars are not comparable in general. Finally, in
Section 6 I shall look at a basic interpreted language, that of boolean expressions.
The first negative result concerns unregulated TAGs: they cannot even generate
the interpreted language consisting of the variables (paired with their meanings).
This is because these grammars completely lack any control over the adjunction
sites. Section 7 contains the result that the language of boolean expressions has
no compositional TAG based only on adjunction. Section 8 provides a natural lan-
guage equivalent of the language of boolean expressions. In Section 9 I discuss
the consequences for natural language.

2

2 Context Free Languages
Before we begin the discussion of adjunction, we need to investigate briefly the sit-
uation in context free languages (CFLs). Formal details if needed will be supplied
in the subsequent sections. CFLs are formulated using rules like the following.

(1) S→ AS | AB | c

(The vertical bar allows to group together rules with identical left hand side.) If
seen as a production device we need to read it from left to right: replace the
symbol S in a string either by AS, or by AB, or by c. If no other rule expanding
S exists, then this is the only way one can rewrite S. Seen as an analysis rule it is
read from right to left: the string c may be seen as a string of category S; if ~x is a
string of category A and ~y a string of category S, then ~xa~y is a string of category S;
and so on. Seen in the latter way, the grammar divides the set of terminal strings
into classes, one for each nonterminal (plus the class of strings that do not belong
to any category). Notice however that the latter description treats the category as
implicit, while the first viewpoint treats it as explicit. In the production rules, the
nonterminals are parts of the strings, in the analysis rules they are not. This will
be important.

Rather than studying string languages, however, we want to study interpreted
languages.

Definition 1 (Interpreted Language) A sign is a pair 〈~x,m〉 such that ~x is a
string. In this connection, m is the meaning of the sign and ~x its exponent. An
interpreted language is a set of signs. Given an interpreted language L, the string
language of L is

(2) s[L] := {~x : there is m:〈~x,m〉 ∈ L}

A grammar for interpreted languages generates signs in place of strings; it is com-
positional if the functions act independently on the strings and the meanings. Be-
low we shall study grammars of this form. For interpreted rules we can in fact give
two formulations, corresponding to the derivational and the analytic perspective.
If we view rules as production devices, we must introduce variables in semantics
and view the rules as refinements on their meanings. This however is not the most
common interpretation. For semantics, one typically views rules as specifications
of how to compose a string (or structure) from simpler ones; given the meanings
of the composing elements, the meaning of the composed element is then derived

3

using some function. It is this viewpoint that we take here as well, although noth-
ing hinges on that choice. So, the first of the above rules (S→ AS) is now rendered
as follows. We introduce a binary function ρ, which acts on pairs of signs:

(3) ρ(〈~x,m〉, 〈~y, n〉) :=

〈~xa~y, f (m, n)〉 if ~x is of category A

and ~y of category S
undefined else

Here, f is a suitable function that generates the meaning of the complex expres-
sion. ~xa~y will of course be of category S. If several meanings exist we postulate
more rules, which act identically on the strings but produce different meanings.
Throughout this paper we shall make no assumption on the special character of
the semantic functions. Also, notice that the same syntactic operation can be
paired with several semantic functions, and conversely a given semantic function
with several syntactic operations. Notice also that the functions may be partial,
which is one way to account for the different syntactic and semantic categories
(see [Kracht, 2006] for a discussion of partiality and categorisation).

As it will turn out in the next section, adjunction grammars do not classify
the sets of strings they generate into categories. This is because string adjunction
grammars generate only sentential strings. Thus, in order to be able to compare
adjunction grammars and CFGs the interpreted languages do not contain any in-
dication of classification. Thus, we are once more led to adopt the analysis view-
point: rules tell us how plain strings can be composed, that is, strings that do not
contain any nonterminals.

Notice, however, that the two viewpoints are not identical. The analysis view
cannot dictate, for example, that a given string ~x has meaning m if used as a string
of category A, and another meaning m′ if used as a string of a different category B.
This is a disadvantage when dealing with natural languages where this situation
is not uncommon.2 On the other hand, if we are willing to take a slightly more
abstract view on strings (say, if we allow them to contain the category letter or
be implicitly typed strings, as proposed in [Kracht, 2003]) these things can be
accommodated.

2I should stress that despite appearance this problem can easily be dealt with. Categories can
be eliminated, see [Kracht, 2007]. But there is, as always, a price to pay.

4

3 Adjunction Grammars
In contrast to CFGs, adjunction grammars do not generate strings (or structures) of
arbitrary kind. Rather, they generate only one type of expression: sentences. The
basic mechanism of adjunction grammars is that of adjunction. From a semantic
viewpoint this contains the message that the only things one needs to specify is
sentential meanings and transformations thereof. I am not sure whether this is
an advantage, but I shall not comment further on this question. These grammars
generate strings (or trees) from other strings (trees) by means of a unary operation
of adjunction.3 Adjunction proceeds by inserting a given pair of strings at two
places in the host string. If 〈~u,~v〉 is such a pair, and ~x a string, then we first choose
a decomposition

(4) ~x = ~y1~y2~y3

Based on this decomposition the result is

(5) ~y1~u~y2~v~y3

This motivates the following definition.

Definition 2 (Sites and Adjunction) An adjunction site is a triple of strings σ =
〈~x, ~y,~z〉. We say that 〈~x,~z〉 is the context of σ and ~y the kernel. A locale is a set
of adjunction sites. An adjunction string is a pair α = 〈~u,~v〉. An adjunction rule
is a pair ρ = 〈α,Λ〉, where α is an adjunction string and Λ a locale. We write
~p→ρ ~q if there is a decomposition ~p = ~x~y~z with 〈~x, ~y,~z〉 ∈ Λ and ~q = ~x~u~y~v~z. For a
set R of rules we write ~p→R ~q if there is a rule ρ ∈ R such that ~p→ρ ~q. We write
→∗R for the reflexive transitive closure of→R.

Notice that for any given ~x there may be any number of ~y such that ~x →ρ ~y.
This is because a locale can have any number of sites that decompose ~x. (Of
course, for ~x of given length n there can be at most (n+1)(n+2)

2 many sites, but this
number evidently grows as n grows. Thus any number means that the number of
decompositions is not bounded uniformly for all ~x.)

This definition is far more general than used in standard contextual grammars,
which we call for want of a distinctive name factored. Thus, the standard version
of contextual grammar corresponds to what I call a factored contextual grammar.
(Cf. among other [Martı́n-Vide and Păun, 1998] for a definition of contextual
grammars.)

3The fact that these functions (or rather rules) are unary will have serious consequences.

5

Definition 3 (Factored Adjunction Rule) A string adjunction rule ρ = 〈α,Λ〉 is
called factored if there exist sets S of strings and C of pairs of strings such that

(6) Λ = {〈~x, ~y,~z〉 : 〈~x,~z〉 ∈ C, ~y ∈ S }

S is called the selector and C the context of ρ.

The factored grammars require that the kernels and the contexts are specified inde-
pendently from each other. Unfactored grammars allow to specify pairs of kernel
and context on an individual basis, thus allowing rules to be fine tuned to individ-
ual strings.

Definition 4 (String Adjunction Grammar) We call a string adjunction gram-
mar (SAG) a pair G = 〈B,R〉, such that B is a set of strings, and R a set of
adjunction rules. We write

(7) L(G) := {~y : there is ~x ∈ B : ~x→∗R ~y}

G is called factored if all rules from R are factored.

Tree adjoining grammars (TAGs) are based on tree adjunction. Here we shall give
a formulation in terms of string adjunction. This allows us to directly compare
the two approaches on the same class of languages, namely string languages. The
idea is that the string language is the result of applying a certain homomorphism.
We shall informally explain the idea. First we define tree codings. I shall use the
notation [· · ·]C to denote a tree with root node labeled C. The · · · will be filled
with a sequence of trees in the order they appear in the (ordered) tree. Strings are
considered to be trees of height 0. For a string ~x put

(8) γ(~x) := ~x

If [~x]A is a tree of height 1, then

(9) γ([~x]A) := (A~xA)

In general, for [C1 C2 . . . Cn]A, where Ci are trees of arbitrary height, put

(10) γ([C1 C2 . . . Cn]A) := (Aγ(C1)γ(C2) . . . γ(Cn)A)

We formulate tree adjunction in terms of string adjunction on the representing
string; there are however restrictions on how the rules and the adjunction string

6

can look like. We start with unregulated adjunction. An adjunction string must
have the form 〈~u,~v〉 such that for any ~y that codes a tree of category X, ~u~y~v also
codes a tree of category X. The locale of this rule is of the form

(11) ΛX := {〈~x, (X~yX),~z〉 : ~x, ~y,~z ∈ A∗}

This finishes the definition of unregulated TAGs. Unregulated TAGs are factored
contextual grammars. The string language they generate is obtained by applying
the following homomorphism:

(12) h(a) :=

ε if a = (,) or a a category symbol
a else

Regulated TAGs allow to additionally specify for each node which trees may be
adjoined to it. It is known that modulo innocuous modification, regulated TAGs
differ from unregulated TAGs only in that one may never adjoin twice to the same
node. (See [Kracht, 2003] for a proof. The transformation preserves the strings we
can generate (after applying h), so that we can always assume we have grammars
of this form.) To this end we introduce a symbol in the following way: the
adjunction strings have the form

(13) 〈 ~u , ~v 〉

where 〈~u,~v〉 is an admissible adjunction string for unregulated grammars. The
locales are contained in

(14) Λ = {〈~xc, (a~ya), c′~z〉 : c, c′ , , a ∈ A}

Here, a can only be a nonterminal. This says that adjunction cannot occur if the
constituent is flanked by . This in turn can only arise if it has been formed by
adjunction. The string language is obtained by applying

(15) h (a) :=

ε if a = (,), or a a category symbol
a else

Notice that TAGs are formulated using string adjunction, so they produce strings,
not trees, the only difference being that these strings are codes for trees. However,
the notion of a tree adjoining language is nevertheless a different one because the
symbols used for coding the trees must be discarded.

7

Definition 5 A string language L is a tree adjoining language if there is a TAG
G such that L = h [L(G)].

Notice that TAGs also use an operation of substitution. Substitution is the result of
adding a tree under a single nonterminal node. Substitution trees are not subject
to any restriction, but the label of the root must match that of x in order to be
substitutable there. Effectively, substitution can be subsumed under adjunction,
if some structural modifications are being made. We shall however not discuss
substitution any further.

4 Grammars for Interpreted Languages
In general, a grammar consists in a finite set of rules; a rule spells out a whole as a
complex of parts. Seeing this bottom up we can specify the rule as a function that
takes a complex and returns a whole. The complex is then simply a list of signs.
Thus, we arrive at a notion of grammar that consists in a finite set of functions
from signs to signs. So, f maps an n-tuple of signs to a sign.

(16) 〈σ0, . . . , σn−1〉 7→ f (σ0, . . . , σn−1)

The functions may be partial and they may even be indeterminate, that is, yield
multiple outputs. On the syntactic side we shall require that these functions op-
erate of the exponents irrespective of the meaning (this is certainly true for all
brands of adjunction grammars); if in addition the grammar is compositional it
also means that the functions operate on the meanings irrespective of the expo-
nents.

Definition 6 (Compositional Grammar) An n-ary compositional rule is a pair
f = 〈 f ε, f µ〉 such that for σi = 〈~xi,mi〉, i < n, we have

(17) f (σ0, . . . , σn−1) = 〈 f ε(~x0, . . . , ~xn−1), f µ(m0, . . . ,mn−1)〉

A compositional grammar is a finite set F of compositional rules.

We actually allow the functions to be indeterminate, that is, to yield several val-
ues. In that case, however, if a syntactic function is indeterminate, the meanings
should not depend on the particular choice. That is to say: if f ε yields values ~y•
and ~y◦ on the input 〈~x0, . . . , ~xn−1〉, and if f µ gives values n• and n◦ on the input
〈m0, . . . ,mn−1〉, then all combinations, 〈~y•, n•〉, 〈~y•, n◦〉, 〈~y◦, n•〉, and 〈~y◦, n◦〉 are
values of f of 〈σ0, . . . , σn−1〉. Likewise, if any of f µ, f ε is undefined, so is f .

8

Finally we come to the notion of a compositional adjunction grammar. As we
have indicated above, the syntactic operations are defined by a pair, giving a locale
and an adjunction pair. The locale is checking for possible adjunction sites, and
the adjunction string is what is inserted once a site has been found. These rules
are (or may be) indeterminate. They are however always unary.

Definition 7 (Compositional SAG) An interpreted string adjunction rule is a
pair h = 〈ρ, f 〉, where ρ is a string adjunction rule and f a relation between
meanings. We put

(18) 〈~x,m〉 7→h 〈~y, n〉

iff ~x →ρ ~y and m → f n. A compositional string adjunction grammar is a pair
〈U, F〉, where U is a finite set of signs and F a finite set of interpreted string
adjunction rules.

We note the following. Say that L is unambiguous if 〈~x,m〉, 〈~x, n〉 ∈ L implies
m = n. If L is unambiguous, then both f ε and f µ in the interpreted adjunction
rule can be assumed to be partial functions. The languages we consider here
are unambiguous, so we may from now on talk about (partial) functions rather
than relations. In this paper we shall not deal with the case where the semantic
functions are partial. This is because we are exploring the possibility of the syntax
doing a proper job. The situation where the semantic functions are partial is far
more complex and will be left out of consideration.

5 Some Basic Results
Let L be an interpreted language. Say that L has finite semantics if the number of
possible semantic values is bounded. The first result is actually of positive nature.
It establishes what can be done, given the full power of adjunction. We shall later
see that TAGs are far weaker than this.

Theorem 8 Let L be an interpreted language with finite semantics. If s[L] can
be generated by a string adjunction grammar, then there is an interpreted string
adjunction grammar for L.

Proof. Let G = 〈B,R〉 be a string adjunction grammar that generates s[L]. Let
S = {s0, · · · , sn−1} be the set of semantic values. Put

(19) B+ := (B × S) ∩ L

9

This set is finite. For each rule ρ = 〈αρ,Λρ〉 ∈ R with α = 〈~u,~v〉 and each i < n put

(20) Λρ,i := {〈~x, ~y,~z〉 ∈ Λρ : 〈~x~u~y~v~z, si〉 ∈ L}

Put ρi := 〈αρ,Λρ,i〉. For each i let hi(s) := si. The set of interpreted rules is now

(21) R+ := {〈ρi, hi〉 : ρ ∈ G, i < n}

This defines the new grammar G+ := 〈B+,R+〉. We need to show that G+ generates
L. It is clear that the string set it generates equals s[L], since Λρ =

⋃
i<nΛρ,i. So

we only need to show that the strings are associated with the right meanings.
Suppose for this purpose that 〈~w, si〉 ∈ L. Then there is a derivation of ~w in G.
If the derivation has length 0, ~w ∈ B. Hence 〈~x, si〉 ∈ B+. Now let the length be
> 0. We look at the last step of the derivation. It consists in applying the rule ρ
to a string ~w1. By definition there is a j such that 〈~w1, s j〉 ∈ L. Now, again by
definition, the rule ρi can be applied to this pair, and it yields 〈~w, si〉, as required.
Notice also that we cannot derive 〈~w, sk〉 unless this pair is in L, by definition of
the rules. �

Notice that this proof does not work if we require the rules to be factored.
The condition that L has finite semantics is necessary. To see this, let us take the
following example.

Example 1. Let ` : N → N be the following function: if n has the form 2k then
`(n) := k. Otherwise, `(n) := 1. Put

(22) L := {〈an, `(n)〉 : n ∈ N}

L has no adjunction grammar of any kind. To see this, notice that the rules consist
in adding a pair of strings at some points in the string. Let p be the maximum of
the combined lengths of the added strings. Then if an is produced from am in 1
step, then n ≤ m + p. We pick n = 2k and look at the last step that produces the
string. There is an adjunction step from am that delivers an. If k is large enough,
m is not of the form 2k. Thus we have the sign 〈am, 1〉. There are finitely many
semantic functions, one for each rule. These are all functions from N to N. Pick
a function f ∈ F; it is unary, by definition of TAGs. Thus, from the sign 〈am, 1〉
we can create the sign 〈an, `(n)〉 = 〈 f ε(am), f µ(1)〉. As F is finite, there are only
finitely many values f µ(1), but `(n) can be anything. Contradiction. ♠

This example can be refined somewhat. We can show two things: first, that
there exist genuine interpreted languages that can only be generated through ad-
junction. And second, that there exist interpreted CFLs whose sentences cannot be
derived by an interpreted adjunction grammar. Let’s start with the first example.

10

Example 2. Let b(~x) be the number of occurrences of the letter b in ~x, and a(~x)
the number of occurrences of the letter a.

(23) L := {〈~xc~xT
, `b(~x)(a(~x))〉 : ~x ∈ (a | b)∗}

This has an interpreted adjunction grammar. We define first the string rules.

ρ0 := 〈〈a, a〉, {〈ε, ancan, ε〉 : n ∈ N}〉(24)

ρ1 := 〈〈b, b〉, {〈~x, ~y, ~xT 〉 : ~x, ~y ∈ (a | b)∗}〉(25)

The base is c, from which everything is derived. Using ρ0, we derive the strings
ancan. Once we apply ρ1, ρ0 can no longer be applied. ρ1 inserts b into both
strings, at mirror places. The semantic functions accompanying these rules are

f0(n) := n + 1(26)
f1(n) := `(n)(27)

The base is 〈c, 0〉. Applying ρ0 n times we get 〈ancan, n〉. Applying ρ1 after that
we get the language L.

This language has no compositional CFG. For suppose G is such a grammar.
Assume that it has k rules. Let τ(p, n) be the following sequence: τ(p, 0) := p,
τ(p, n + 1) := 2τ(p,n). Then `(τ(p, n + 1)) = τ(p, n) for every n. The language
contains the signs

(28) σp,n := 〈aτ(p,n)bncbnaτ(p,n), p〉

Consider the last step generating σp,n. It must be formed from already existing
signs of L. The string function is concatenation. Since each sign has a string
containing c exactly once, σp,n is formed from a single sign σ = 〈~x,m〉 adding
strings to the left and right of ~x. It is easy to see that for large enough n, the strings
added consist entirely of as. So, we have a unary function symbol f such that

(29) σp,n = 〈 f ε(~x), f µ(m)〉

and f ε(~x) = ak~xak for some k. Thus, provided that n is large enough

(30) σ = 〈aτ(p,n)−kbncbnaτ(p,n)−k, 1〉

So, f ε(1) = p. However, p was arbitrarily chosen and we have only k many rules.
Contradiction. ♠

Notice that this example works also if we restrict the language to strings that
contain only one pair of bs.

11

Example 3.

(31) M :=
{〈am,m〉 : m ∈ N − {0}}

∪ {〈bm,m〉 : m ∈ N − {0}}
∪ {〈ambn, `(m) + `(n)〉 : m, n ∈ N − {0}}

Here is a CFG. The rules are

(32) S→ AB A→ aA | a B→ bB | b

This can be turned into an interpreted CFG as follows. There are five interpreted
rules. There are two zeroary rules: ρ0 := 〈a, 1〉, ρ1 := 〈b, 1〉.

ρ2(〈~x,m〉) :=

〈a~x,m + 1〉 if ~x ∈ a∗

undefined else
(33)

ρ3(〈~x,m〉) :=

〈b~x,m + 1〉 if ~x ∈ b∗

undefined else
(34)

ρ4(〈~x,m〉, 〈~y, n〉) :=

〈~x~y, `(m) + `(n)〉 if ~x ∈ a∗, ~y ∈ b∗

undefined else
(35)

The partial string functions implicitly define the categories. To see that there is no
adjunction grammar, we appeal to the fact that the rules are unary. Let G be such
a grammar, and let it have k rules. Choose s and t arbitrarily and let m = 2s and
n = 2t. For large enough s and t we cannot derive ambn by concatenating am and
bn. Rather, we have to derive it from a string of the form apbq where there is a k
(depending only on the grammar) such that m < p + k and n < q + k. Also, there
are a finite number of rules. Now, suppose the string has been derived from apbq.
We assume first that no adjunction rule inserts only as or only bs. The input sign
is then

(36) 〈apbq, `(p) + `(q)〉

where p < m and q < n. What can be shown is that there is some number—
namely 2—from which an unbounded number of different output meanings must
be computed. Then `(p) + `(q) = 2, but `(m) + `(n) = s + t. But s and t were
arbitrary. So, for every large enough number s + t we must have an f such that
f ε(1) = s+ t. But we have only k many functions. Contradiction. The case where
some rule inserts only as or only bs is somewhat more complex but uses the same
method. ♠

12

What these examples show is that the question whether a language has a com-
positional grammar clearly depends on the type of string functions one is prepared
to admit. Thus it is not possible to say that adjunction grammars are incorrect or
that context free grammars are incorrect. Thus the question rather is which of
these grammar types is suited for the languages that we are interested in. These
are, of course, natural languages, programming languages and formal languages.

6 Interpreted Boolean Expressions
To assess the question of the usefulness of adjunction we turn to a rather sim-
ple language, the language of boolean expressions. The alphabet consists of the
symbols

(37) A = {p, (,), 0, 1, ¬, ∧, ∨}

An index is a sequence of 0 and 1. A variable is a string of the form p~x, where ~x
is an index. ~z is a formula iff either

1. ~z is a variable or

2. ~z = (~x∧~y), where ~x and ~y are formulae, or

3. ~z = (~x∨~y), where ~x and ~y are formulae, or

4. ~z = (¬~x), where ~x is a formula.

The set of formulae is denoted by Form. This language is fairly simple. It is a
(somewhat unusual) version of boolean logic. The quirk we have added (to sim-
plify matters a little bit) is to enforce strict bracketing. This is a needless but useful
restriction. We deal with this language both in terms of string adjunction and in
terms of tree adjunction. When talking about tree adjunction we suppress how-
ever the additional tree coding (consisting of the nonterminal and the adjunction
prohibition), except for Example 4.

Definition 9 A valuation β is a function from the set of indices into 2 = {1, 0}. V
is the set of all valuations. The meaning [~x] of a formula ~x is defined as follows.

1. If ~x = p~y: [~x] := {β : β(~y) = 1}.

2. If ~x = (¬~y): [~x] := V − [~y].

13

3. If ~x = (~y∧~z): [~x] := [~y] ∩ [~z].

4. If ~x = (~y∨~z): [~x] := [~y] ∪ [~z].

The interpreted language is

(38) Bool := {〈~x, [~x]〉 : ~x ∈ Form}

It is easy to see that Bool has a compositional CFG.4 This grammar knows one
constant: ρ0 := 〈ε, ε〉. Furthermore, it has two unary rules ρ1 and ρ2 to construct
indices and ρ3 to make variables. An index is a string free of occurrences of p.

ρ1(〈~x, ~y〉) :=

〈~xa0, ~ya0〉 if ~x is an index
undefined else

(39)

ρ2(〈~x, ~y〉) :=

〈~xa1, ~ya1〉 if ~x is an index
undefined else

(40)

ρ3(〈~x, ~y〉) :=

〈pa~x, [~y]〉 if ~x is an index
undefined else

(41)

(Notice that one can only generate pairs of the form 〈~x, ~y〉where ~x = ~y, so the rules
appear to be more general than they actually are.) Similarly, there is one unary
function to create negated expressions and two binary functions for disjunction
and conjunction, respectively.

ρ4(〈~x,m〉) :=

〈(a¬a~xa),V − m〉 if ~x is not an index
undefined else

(42)

ρ5(〈~x,m〉, 〈~y, n〉) :=

〈(a~xa∧a~ya),m ∩ n〉 if ~x, ~y are not indices
undefined else

(43)

ρ6(〈~x,m〉, 〈~y, n〉) :=

〈(a~xa∨a~ya),m ∪ n〉 if ~x, ~y are not indices
undefined else

(44)

4This grammar produces an additional kind of string—the index—, which is not standardly as-
sumed in the syntax of propositional logic for the reason that the propositional letters are atomic.
It is possible (at the expense of using nonstandard semantic functions) to avoid postulating con-
stituents of type index, as we show below. However, it is more natural to use the grammar shown
here.

14

Notice that it is not necessary to explicitly code the category: there are two types
of strings, indices and other strings, and indices are easy to recognize.

The question is whether this language has a compositional adjunction grammar.
The simplest case we can imagine is the sublanguage of all variables, that is, the
set

(45) Var := {〈p~x, [p~x]〉 : ~x an index}

This language already raises difficulties for unregulated adjunction.

Theorem 10 There is no compositional unregulated TAG that generates Var.

Proof. Let G be an unregulated TAG based on p adjunction trees. We shall find
a string such that there are more than p sites where a tree can adjoin (no matter
what analysis is given), and that adjunction will lead to a different string in each
case. To this end let f be the longest yield of a tree in G. (Recall that the yield
of a tree is the string defined by the concatenation of its leaves.) For n large, pick
the string consisting of 2p + 3 repetitions of 1n02 f+1. For each of these blocks,
one continuous stretch of zeros has been introduced through adjunction of some
tree. Adjoining this tree again will increase the length of the continuous stretch of
zeros in this block. It may also add some other string elsewhere. We have in total
2p + 3 places where we can increase the stretch of zeros. It is not hard to see that
at least p + 1 such adjunctions must yield a different result. Contradiction. �

The problem is that variables are strings of unbounded length and therefore
have unboundedly many adjunction sites. TAGs by contrast allow to use adjunc-
tion prohibition and thereby allow to control the number of adjunction sites.

Example 4. Here is a TAG for Var. Strings are analysed as left branching, as if
they were bracketed as follows.

(46) (((((p)1)1)0)0)

The adjunction pairs are

(47) 〈 (S(S , 0S)S) 〉, 〈 (S(S , 1S)S) 〉

The base string is

(48) (SpS)

15

The derivation for (46) is as follows:

(49)

(SpS)

 (S(S (SpS) 1S)S)

 (S (S(S (S (SpS) 1S) 1S)S) S)

 (S (S (S(S (S (S (SpS) 1S) 1S) 0S)S) S) S)

 (S (S (S (S(S (S (S (S (SpS) 1S) 1S) 0S) 1S)S) S) S)

 S)

Apply the deletion homomorphism: (,), S and are all mapped to ε. This gives
us (46). ♠

Let us also define the following language. Let β be a valuation. Then let

(50) Varβ := 〈p~x, β(~x)〉

Then the languages Varβ have finite semantics and the string language can be gen-
erated by an unregulated adjunction grammar. Nevertheless, for certain choices of
β there exists no unregulated interpreted TAG for these languages. (For example,
choose β such that {~x : β(~x) = 1} is not recursive.) Contrast this with Theorem 8
which states that there is an adjunction grammar for this language. This shows
that adjunction grammars can generate interpreted languages for which there is
even no interpreted CFG.

7 There Are No TAGs for Boolean Expressions
In oder to show that a language has no grammar of a certain kind it is enough to
study a fragment in the following sense.

Definition 11 Let L ⊆ A∗ × M be an interpreted language and B ⊆ A. Then
L � B := L ∩ (B∗ × M) is the B-fragment of L.

For example, Var is the {0, 1, p}-fragment of Bool. In addition to Var we shall
study the following fragments of Bool:

(51)
Bool∧ := Bool � {0, 1, p, ∧}
Bool¬ := Bool � {0, 1, p, ¬}

Now assume G is a compositional grammar for L. Then for every f , let

(52) f � B := 〈 f ε � B, f µ〉

16

Here, f ε � B := f ε ∩ Bn+1, which is to say that (f ε � B)(~x0, · · · , ~xn−1) is de-
fined iff for all i < n ~xi ∈ B∗ and if f ε(~x1, · · · , ~xn) ∈ B∗. Now suppose further
that our grammar is additive, by which we mean to say that for every f ∈ G
f ε(~x0, · · · , ~xn−1) contains every letter of A at least as often as in the ~xi together.
Adjunction grammars certainly are additive. Then if all the ~xi are in B∗, so is
f ε(~x0, · · · , ~xn−1). Hence we have a grammar

(53) G � B := { f � B : f ∈ G}

Now, G � B generates a subset of L, by construction. Moreover, it only creates
signs from L � B. In fact, it generates exactly G � B. Namely, we show by
induction on the length of ~x that if 〈~x,m〉 in L � B then 〈~x,m〉 ∈ L(G � B). So
assume that the claim holds for all strings shorter than ~x. We have

(54) 〈~x,m〉 = 〈 f ε(~x1, · · · , ~xn), f µ(m1, · · · ,mn)〉

for some n. By assumption, f ε(~x1, · · · , ~xn) contains every letter at least as often
as the ~xi together. So, if letters from A − B do not occur in ~x, they do not occur in
any of the ~xi either. So we have 〈~xi,mi〉 ∈ L � B. They all have shorter length, the
induction hypothesis applies to them. It follows that

(55) 〈~x,m〉 = 〈(f ε � B)(~x1, · · · , ~xn), f µ(m1, · · · ,mn)〉

Thus 〈~xi,mi〉 ∈ L(G � B), showing 〈~x,m〉 ∈ L(G � B). (There is just one exception
to be handled, namely when f ε(~x1, · · · , ~xn) is identical to one of the ~xi. In that
case we do a subinduction on the number of steps.)

Proposition 12 Suppose that G is an additive compositional grammar for L. Then
G � B is an additive compositional grammar for L � B.

Thus if G is an adjunction grammar (unregulated TAG, TAG) so is G � B.
Call a literal a formula that contains no operation symbols other than ¬; more-

over, ¬ may occur at most once. Call a clause a formula made from literals using
only ∧. Put

(56) Cls := {〈~x, [~x]〉 : ~x is a clause}

Let us see how one might define a TAG for Cls. We start by giving a TAG for the
sublanguage Lit.

(57) Lit := {〈~x, [~x]〉 : ~x is a literal}

17

Lit can be generated in the following way. The base is given by:

B = {〈p, [p]〉, 〈(¬p), [(¬p)]〉}(58)

The adjunction operations are given by the adjunction strings α0 = 〈0, ε〉 and
α1 = 〈1, ε〉, both operating using the locale

(59) Λ = {〈~x, ε,~y〉 : ~x ∈ {p, (¬p}, ~y ∈ A∗}

(60) ρ0 = 〈α0,Λ〉, ρ1 = 〈α1,Λ〉

Thus, the operations will insert either a 0 or a 1 right after the p. Operations that
add only 0 or 1 shall be called index shifts.

The map ~y 7→ [p~y] is injective and has an inverse, which we denote by †. Let

(61)
g0(U) := [p0(U†)]

g1(U) := [p1(U†)]

Given a set of the form [p~y], we have

(62) g0([p~y]) = [p0([p~y]†)] = [p0~y]

The grammar is 〈B, {〈ρ0, g0〉, 〈ρ1, g1〉}〉. It generates the expressions by mirroring
the string substitution by an exchange in the variables to which the valuations ef-
fectively respond. Namely, the sets are always of the form the value of a particular
variable is 0 (or 1). That special variable is exchanged when the index changes.
This example can be upgraded to a grammar for Bool¬. What we need in addition
is the adjunction rule ρ2 := 〈〈(¬(¬,))〉,Λ′〉.

(63) Λ′ := {ε} × A∗ × {ε}

The accompanying semantic function is the identity i : m 7→ m.

Theorem 13 〈B, {〈ρ0, g0〉, 〈ρ1, g1〉, 〈ρ2, i〉}〉 is a compositional TAG for Bool¬.

Below we consider the fragment Bool∧. Here we consider briefly the language of
clauses. A clause is said to contain a given literal ` if ` is a substring of the clause
and not in the scope of ¬. (So, p01 is not contained in (p∧(¬p01)), but (¬p01)
is.) First of all notice that [~x] = ∅ if ~x contains both a literal and its negation.
It is this case that needs special attention. Notice that while the mapping from
syntax to semantics is unique, a given semantic value has infinitely many strings

18

that have it as their meaning. This is because we cannot tell whether a given literal
occurs once or twice or three times; we can at best determine whether it does or
does not occur. Second, the order of the literals cannot be recovered. And third the
associative structure cannot be recovered. So, there are two cases. Case 1. The
clause is consistent (its set of satisfying valuations is not empty). Then we can
determine exactly what literals occur in it. Case 2. The clause is not consistent.
Then we only know that it contains some literal and its negation. That’s all.

To make this more readily visible, we decide to represent the sets [~x] in the
following way. A p-set is a pair (U,U′) of sets of indices such that either (1)
U ∩ U′ = ∅ or (2) U = U′ = the set of all indices. The last value is denoted
by ?. If (1) obtains, the clause is consistent, and the set U indicates on which
variables the valuation must give 1; while the set U′ indicates on which variables
the valuation must give 0. If (2) obtains, no valuation exists.

Consider as before the operation that adds 0 right after an occurrence of p.
If nothing else is known, the output for the semantics is indeterminate. Let us
see why. In a clause of the form ((p0∧p1)∧(¬p01)) the index shift ρ0 can in
principle apply to three occurrences of variables. (Potentially, we could also insert
several digits, and at other places. Nothing of substance would change, though.)
The results are:

(64)
((p00∧p1)∧(¬p01))

((p0∧p01)∧(¬p01))

((p0∧p1)∧(¬p001))

The result of an index shift on the p-set (U,U′) depends on two additional condi-
tions: we have to choose which index is targeted, and second, whether the index
that is targeted belongs to a literal that occurs only once, or whether it belongs to a
literal that occurs twice. For consider that we target the index ~x and that ~x occurs
only once, say in U. Then the new p-set is ((U − {~x}) ∪ {0~x},U′). (This holds
if these sets are disjoint—if they are not, the result is ?.) If however the literal
occurs twice, then the result is rather (U ∪ {0~x},U′), since only one occurrence of
~x has been touched. Notice that we do not need to specify whether the index is in
U or in U′, since the two sets are disjoint.

Thus, given a p-set (U,U′) there are potentially as many outcomes as there are
members of U and U′ together. Since the grammar will have only a bounded
number of functions, this is a point where one will have to restrict the adjunction
sites via the locale.

A last case needs to be looked at. This is the case U = U′ = V . This case
means that there is a variable which occurs once plain and once negated. The

19

semantics does not give away which one it is nor how many times it occurs. Thus,
the result of an index shift can be almost anything. Again, given that the grammar
has only finitely many functions, the result of applying any of these functions to
(V,V) is any one of a fixed set H of p-sets. This in turn means that adjunction to
an inconsistent clause is severely limited, because it may not target any variable
which will remove the inconsistency unless the resulting clause belongs to one
specified by H.

We shall now enter the proof that there is no TAG for the conjunctive fragment,
It will proceed under the assumption that the semantic functions are total. So the
only source of partiality is the ban on adjunction. However, this ban is a force
to be reckoned with. Consider a grammar G and a big tree. If there is no ban
on adjunction it is clear that the number of adjunction sites must grow with the
length of the tree. In a TAG, however, adjunction sites can be closed in the course
of a derivation. Consider now how adjunction can be blocked. 5 Each adjunction
adds new nodes, to which one can potentially adjoin. Let n(T) be the number of
nodes to which one can adjoin, the adjunction balance. This is defined for center
trees and adjunction trees. If T is an adjunction tree with n(T) = 1 the number
of adjunction sites stays constant when adjoining T . (Each adjunction removes
one site.) Call T a plug if n(T) = 0. Adjoining a plug decreases the number of
adjunction sites. Suppose we have a tree T0, we adjoin a plug T at a node x, and
then adjoin to some node y some tree T ′. Then y , x, since adjunction prohibits
any further adjunction. Moreover, as T is a plug, y is not contained in T . So, y is
a node of T0, and we can actually adjoin T ′ to y before adjoining T to x, with the
same resulting tree.

Lemma 14 In a TAG, adjunction of a plug commutes with all other adjunctions.

It follows that if there is a derivation for some tree T , there is a derivation where
all plugs are added at the end. Moreover, the order in which the plugs are added
can be chosen arbitrarily.

Next we look in detail at the possible adjunction strings for the language. For
a string ~x an a symbol a, let]a(~x) denote the number of occurrences of a in ~x. It is
not difficult to see that in a string for Bool∧

(65)]((~x) =])(~x) =]∧(~x) =]p(~x) − 1

5The following passage appeals to our intuitions on trees. Of course we can use them despite
the fact that the TAGs are formulated as string adjunction grammars. We shall switch between
these viewpoints without warning.

20

Thus, for an adjunction string 〈~x, ~y〉 we must have

(66)]((~x~y) =])(~x~y) =]∧(~x~y) =]p(~x~y)

The number of 0s and 1s by contrast is unconstrained. For a given string call
]((~x) −])(~x) the balance of ~x. Let us say that ~x is semibalanced if the balance of
every prefix of ~x is nonnegative. An adjunction string 〈~x, ~y〉 is semibalanced if ~x~y
is.

Lemma 15 Every adjunction string for Bool is semibalanced.

Proof. Assume the contrary. Choose 〈~x, ~y〉 of minimal length such that it is not
semibalanced and there is ~r = ~u~x~v~y~w ∈ Bool as well as ~u~v~w ∈ Bool. Furthermore,
assume ~r of minimal length satisfying the previous. If ~x~y contains an occurrence
of (before an occurrence of) it must contain a subformula, and we may replace
that subformula in ~r by the letter p. This will constitute a shorter counterexample
in contradiction to our choice of 〈~x, ~y〉. So, we can assume that all the (follow
all the). Since ~r ∈ Bool it is itself semibalanced, and so the first occurrence of
) in ~x~y must be matched by a preceding (in either ~u or ~v. If another matching
pair of brackets intervenes between the previous one, we can reduce it by p, to
obtain a shorter example. So we can assume that the occurrence of (immediately
precedes the designated occurrence of). The newly added brackets are marked
by underlining. No other brackets intervene.

(67) · · · (· · ·) · · · (· · ·) · · ·

Then the original situation is this (fitting in arbitrary binary strings):

(68) (p001∧p11)

The closing bracket must be inserted after the second occurrence of p.

(69) (p001∧p1)∧(p01∧p1)

Now, however, the outer brackets are missing. Adjunction however can only in-
troduce one of them (for we must insert three discontinuous strings). �

The most powerful constraint comes from the following. Suppose you have a
tree T that can be adjoined at two places. Since the two adjunctions are the same
syntactic operation in a TAG, the resulting structures must have the same meaning
(see Definition 7). This constrains the adjunctions severely. For example: let v1 be

21

a variable having occurrences o1, o2, . . ., on (n > 2) of the same variable v1 such
that the same tree can be adjoined to each of them, giving us an occurrence of a
variable v2 , v1. After you have done one adjunction, v2 will have an occurrence
in the formula. Now you do the second adjunction: this removes the second occur-
rence of v1, and adds another occurrence of v2. The semantic function is identity.
After you have done n − 1 adjunctions, removing all but the last occurrence, the
final adjunction must however be accompanied by a semantic function that is not
the identity: the resulting formula does not contain v1 any more. It is however im-
possible to prevent the application of the rule that has the accompanying semantic
function the identity. (This argument works irrespective of the partiality of the
semantic functions.) Thus such a situation must be prevented.

We can get multiple occurrences as follows. Suppose there is an adjunction
tree T (basic or derived) such that

À adjunction is licit on the root node of T ,

Á and T introduces an entire formula to which adjunction is possible.

If we can show the existence of a tree T and a formula whose derivation uses T ,
then we have the desired contradiction. Now, if T does not satisfy À and Á then
either

(a) T disallows adjunction to its root node, or

(b) T fails to introduce even a single complete formula into either part of the
adjunction string, or

(c) whenever T chooses to introduce a complete formula in an adjunction string,
that formula cannot be adjoined to.

Note that Option (c) means that the variables introduced by T cannot be adjoined
to, that is, cannot grow in size.

Let G be a compositional TAG. We shall present some formulae such that a
grammar generating them must have a tree satisfying À and Á. The set of formulae
is the following. Call a formula ~x n-homogeneous of order p if either n = 0 and
~x is a variable of length > p or it is the conjunction of two n − 1-homogeneous
formulae of order p. We show the following, which will establish our main result:

Let G be a TAG for Bool∧. Then there is p and n and an n-homogeneous
formula of order p which is not derivable in G without a tree satisfy-
ing À and Á.

22

So, let us assume that ~x is n-homogeneous for some n and some order p. If n and
p are sufficiently large, the derivation cannot use trees of Type (c). For once such
a variable is introduced, it cannot grow in length.

Thus we can assume that all trees used in deriving ~x do not satisfy (c). We now
analyse in some depth the possible adjunction strings. Notice that the adjunction
strings must be semibalanced. Furthermore, we can restrict our attention to cases
in which just one of each brackets is introduced. For either (i) one part of the ad-
junction string contains a sequence (· · ·), and so a formula. Or (ii) the adjunction
string has the form 〈· · · (· · · (· · · , · · ·)· · ·) · · · 〉. In Case (i), we first introduce
the string without the subformula (just introducing p) and require adjunction (by
chosing an appropriate label) that will introduce the remainder. In Case (ii) we
pretty much do the same: the innermost brackets enclose a formula, and so do the
outermost brackets. We can perform the same adjunction in two stages.

Assume that this is so. This means that in underived adjunction strings, (is in
the left part,) in the right part. We distinguish two subcases: (I) ∧ is in the left
part, (II) ∧ is in the right part.

(Case I). ∧ is in the left part. Then the adjunction pair looks like this (ignoring
0, 1 and p):

(70) 〈· · · ∧ · · · (· · · , · · ·) · · ·〉

There can in fact be no symbol between ∧ and (as no binary string can occur
there. Furthermore, after a closing bracket a formula can contain only ∧ or). This
reduces the adjunction string to the following form:

(71) 〈· · · ∧(· · · , · · ·)〉

Since neither part of the adjunction string contains a complete formula, p must
occur right after (. (72) is the final form, where dots represent some binary string.

(72) 〈· · · ∧(p · · · , · · ·)〉

(Case II). ∧ is in the right part. Since neither part contains an entire formula, ∧
does not precede).

(73) 〈· · · (· · · , · · ·) · · · ∧ · · ·〉

(can only be preceded by (and ∧ in a formula; thus (is not preceded by anything.
Also, ∧ must follow) immediately. So, we are left with the following choices,
with dots representing binary strings:

(74) 〈(p · · · , · · ·)∧ · · ·〉 〈(· · · , · · ·)∧p · · ·〉

23

∧ is not followed by a binary symbol, so we get

(75) (α) 〈(p · · · , · · ·)∧〉 (β) 〈(· · · , · · ·)∧p · · ·〉

The type (α) is ruled out since it can nowhere be entered into a formula. To see
this, let 〈~u,~v, ~w〉 be the context. The result of adjunction is

(76) ~u(p · · ·~v· · ·)∧~w

What the brackets enclose in (76) is a formula. Also, ~w has a prefix ~x that is a
formula. ~v may not begin with · · ·) nor with · · · (, so it begins with · · · ∧. And it
ends likewise in p · · · or in). Since ~u~v~w is a formula and contain the sequence
~v~x, ~x cannot begin with a bracket, and so must be a variable. And ~v cannot end in
), neither can it end in (· · · . Contradiction. Thus only the Type (β) needs to be
considered. In this type, (cannot be followed by a binary string. So we are down
to the Case (77).

(77) 〈(, · · ·)∧p · · ·〉

In Case (I) there is an occurrence of ∧ that is not immediately preceded by a
closing bracket, and in Case (II) there is an occurrence of ∧ that is not followed
by an occurrence of an opening bracket.

Now that we know about their identity, let us check where these adjunction
strings can be inserted. In both cases it is easy to see that the kernel must contain
an occurrence of ∧. The occurrence of p in (77) cannot be separated by an opening
bracket from its preceding ∧. For if we did this, we would have to insert a closing
bracket at some later position. This can be only after the adjunction string (77),
thus forming crossing adjunction sites. Contradiction. Now let us look at (72).
Suppose that the left part begins with a proper binary string. Then ∧ is preceded
by some variable, and we can by the same argument not insert a closing bracket.
Thus, we are left with only the following case.

(78) 〈∧(p · · · , · · ·)〉

Let us now see how we can derive an n-homogeneous string of order p, p large
enough so that no trees of Type (c) can be used. The left periphery of this string
consists in n opening brackets, which cannot be derived using rules of the form
(78). Thus Type (b) with ∧ in the left part (Case I) is ruled out. Type (b) (Case
II) leads to (77) as the only possible adjunction string. But that cannot be used
either, since there must be an opening bracket between the occurrence of ∧ and p,

24

since the formula is homogeneous. So, only trees of Type (a) can be used at the
left periphery. They have this form.

(79) (∗) 〈(~x∧,)〉 (†) 〈(, ∧~x)〉

Here ~x must be a formula. Make n > pq where q is the number of nonterminals.
Then it is the Type (†) that we need for the left periphery since ~x contains less than
p symbols (and is not composed entirely of brackets). Now, if we have n opening
brackets, there are q adjunction sites stacked for (†) inside each other. One pair
of them has the same nonterminal, and from this we can get a (possibly derived)
adjunction tree satisfying À and Á.

Theorem 16 There is no compositional TAG for Bool∧.

8 A Natural Language Example
The boolean language might be deemed to be irrelevant. However, consider the
following transliteration into English:

(80)

t(p) = Jack sees a boy
t(() = ε
t()) = ε
t(0) = who sees a girl
t(1) = who sees a boy
t(∧) = who sees no one and
t(∨) = who sees no one or
t(¬) = it is not the case that

Now define

(81)
s(ε) := who sees no one.

s(aa~x) := t(a)a�as(~x)

This gives us, for example,

(82)
s((p0∧(¬p))) =Jack sees a boy who sees a girl who sees

no one and it is not the case that

Jack sees a boy who sees no one.

25

Consider the set B = { j} ∪ {b~x : ~x ∈ (0 | 1)∗} ∪ {g~x : ~x ∈ (0 | 1)∗}. Here j is Jack,
b~x is the boy number ~x and g~x the girl number ~x. Let U ⊆ (0 | 1)∗. Define R(U)
as follows.

(83) R(U) :=

{〈b0~x, g~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈g0~x, g~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈b1~x, b~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈g1~x, b~x〉 : ~x ∈ (0 | 1)∗}
∪ {〈 j, b~x〉 : ~x ∈ U}

What can be shown is that the translation of p~x is true in 〈B, j,R(U)〉 (with R(U)
interpreting the relation of seeing and j interprets the constant ‘Jack’) iff ~x ∈ U.
Thus it turns out that the boolean language can be translated letter by letter into
English preserving synonymy. Though the argument is not complete (for the rea-
son that the English examples do away with brackets and so introduce ambiguity),
it does serve to transfer Theorem 16 to English.

9 Discussion
A number of people including some reviewers have suggested that the proof is
not conclusive for various reasons. One is that TAGs allow adjunction at different
nodes. Thus we should make room for an infinite family of functions; whenever
T is an adjunction tree and α a node address, there will be a unary function fα,T
adjoining T at position α. Second, as I noted above, I have explicitly excluded
substitution from the list of operations. It could be added; however, since there
are grammars based on substitution which use no adjunction (such as CFGs), it
defeats the purpose to admit substitution into the list of admissible operations.
Another shortcoming, pointed out above, is that we did not allow semantic op-
erations to be partial. It would seem that relaxing our notion of grammar would
help the matter. Yet, I have not been able to actually find a compositional TAG
even when I allow partial semantic functions and infinite families. This is a strong
indication that adjunction is not suited for the purpose.

Another problem that needs to be addressed is the identity of the meanings.
Natural language semantics is fraught with difficulties, one of which is the prob-
lem of sense and reference. While that problem is a concern for the linguist, it
is only of secondary relevance to us. This is because the semantics is assumed
to be given at the outset, it is, if you will, empirical data. It is clear, though, that

26

the semantics can be traded for another one modulo bijection. All we need to
care about is whether or not two expressions are synonymous.6 Though I am per-
sonally convinced that Montague’s approach is more realistic (which assumes that
every sentence starts out denoting a proposition and only denotes a truth value in a
given possible world), nothing in particular hinges on that assumption. What I am
really arguing here is rather that whatever languages we see around us, natural or
formal, and whatever semantics we assume or diagnose them to have, adjunction
is less suitable than bottom up creation of constituents, as for example in CFGs.

It is worth pointing out that there has been quite a series of proposals of com-
puting semantic representations for TAGs, I mention here only [Gardent and Par-
mentier, 2005], [Gardent and Kallmeyer, 2003] and [Frank and van Genabith,
2001]. None of them have claimed their solution to be compositional, though.
Recently, [Kallmeyer and Joshi, 2003] have claimed to have obtained a compo-
sitional semantics for TAGs. On a closer inspection the fundamental difference
is that the semantics is computed bottom up from the derivation tree. However,
standard derivations of TAGs are shown top down: the intermediate trees are cen-
ter trees. Their yield is a string of the language in question. All other derivations
proceed by (at least partially) adjoining to adjunction trees, and this includes the
derivations proposed by [Kallmeyer and Joshi, 2003]. Thus, to the extent that the
latter manages to establish a compositional semantics, it must proceed via inter-
mediate trees of a different type.

There definitely are better ways to implement this idea. In fact, a more suitable
form is that of a 2-LCFRS. In this type of grammar nodes represent not single
strings (as in CFGs) but rather pairs of strings. This is because in tree terms, a

6As a reviewer points out, 2+2 and 2*2 are synonymous, but adding a 0 at the end of the first
digit yields 20+2 in the first and 20*2 in the second example, which breaks the synonymy. To
circumvent this s/he suggests to take expressions to be synonymous iff they can be substituted for
each other in every context preserving observable meaning. To make this possible we need to have
settled on a class of syntactic functions.

I find this suggestion puzzling. First, it requires a split between observable and what one might
call substitutional meaning. Two expressions are declared substitutionally synonymous iff they
can be substituted for each other in every context preserving observable meaning. Applied to the
above it means that 2*2 and 2+2 are observably but not substitutionally synonymous.

What I object to is the confusion between form and meaning in this definition. Why should
synonymy depend to surface syntax? What is the class of functions that we agree on beforehand?
And, finally, what does the added notion of substitutional synonymy achieve for us? It is suggested
that my notion of synonymy is based on substitution, but it is not. It is based on identity of
meaning. No grammar enters here. Also, the fact that I use substitution at the level of analysis
terms does not mean I am using adjunction at the surface syntax. One may of course consider
adjunction at the analysis level, but I am not certain we shall gain more insight into the matter.

27

lower closed portion of an adjunction history actually defines an adjunction tree,
which is a tree that has a single terminal x with category label identical to that of
the root.7 Given an adjunction tree T its yield is therefore of the form ~xA~y, where
A is a nonterminal and ~x and ~y are terminal strings. We now say that the pair that
corresponds to this node is 〈~x, ~y〉 and that its category is A.

The question is how we get that pair inductively by a bottom up procedure. Let
u be a node in the derivation tree with label α, which is a basic adjunction tree.
We assume that for each daughter v of u, the string pairs π(v) are known. We need
to find π(u). The daughters are each adjoined to different nodes of α. For each
node ν, we define two strings, `(ν) and r(ν). If ν is nonterminal, its category is the
category it has in T . The strings are defined as follows. If ν is terminal, then `(ν)
is the string under ν if ν is to the left of the distinguished leaf, and ε otherwise.
r(ν) is ε if ν is to the left of the distinguished leaf and the string in T otherwise.
If ν is nonterminal, two cases arise. (1) No tree has been adjoined to ν. Then
`(ν) = r(ν) = ε. (2) Some tree has been adjoined. Let ~xA~y be its yield. Then
`(x) := ~x and r(y) := ~y. A must match the category of ν. Now we define the string
pair as follows. Let νi, i = 1, . . . ,m, be an enumeration of the nodes such that (a)
if i < j then either νi to the left of ν j or νi > ν j. Then

(84) π(u) = 〈
m∏

i=1

`(νi),
1∏

i=m

r(νi)〉

This is the string pair associated with the node u. The arity of the rule is maximally
the number of nodes in the tree α. By collecting the rules corresponding to all
possible local trees in a derivation tree we get the desired 2-LCFRS.

10 Conclusion
The present paper has established that there is no compositional semantics for the
language of boolean expressions using only adjunction. Various remedies may
be added, but it seems to me that everything points in the same direction: that ad-
junction is unsuited to carry the weight of semantic analysis. Moreover, in view of
the fact that LCFRGs have the same weak generative strength as multicomponent
TAGs and have been shown to be useful and easy to manage in formulating com-
positional semantic analyses (see among other [Calcagno, 1995]) it seems that
adjunction should better be avoided when doing semantics.

7An exception is constituted by the root. Here the corresponding exponent is a actually best
considered a string.

28

I conclude the paper with some open questions.

(Q1) Does the language Bool of interpreted boolean expressions have a factored
string adjunction grammar?

(Q2) Does Bool have a string adjunction grammar with total semantic functions?

(Q3) Does Bool have a string adjunction grammar with partial semantic func-
tions?

(Q4) Does Bool have a TAG with partial semantic functions using infinitely many
rules?

For all of them I conjecture that the answer is negative.

References
[Calcagno, 1995] Mike Calcagno. A Sign–Based Extension to the Lambek Cal-

culus for Discontinuous Constituents. Bulletin of the IGPL, 3:555 – 578, 1995.

[Frank and van Genabith, 2001] Anette Frank and Josef van Genabith. LL-based
semantics for LTAG - and what it teaches us about LFG and LTAG. In Miriam
Butt and Tracy Holloway King, editors, Proceedings of the LFG’01 Confer-
ence, University of Hong Kong, 2001. CSLI Online Publications.

[Gardent and Kallmeyer, 2003] Claire Gardent and Laura Kallmeyer. Semantic
construction in Feature-Based TAG. In Proceedings of the 10th Meeting of the
European Chapter of the Association for Computational Linguistics, Budapest,
2003.

[Gardent and Parmentier, 2005] Claire Gardent and Yannick Parmentier. Large
scale semantic construction for tree adjoining grammar. In Proceedings of
Logical Aspects in Computational Linguistics. Springer, 2005.

[Kallmeyer and Joshi, 2003] Laura Kallmeyer and Aravind Joshi. Factoring
Predicate Argument and Scope Semantics: Underspecified Semantics with
LTAG. Research in Language and Computation, 1:3 – 58, 2003.

[Kracht, 2003] Marcus Kracht. The Mathematics of Language. Number 63 in
Studies in Generative Grammar. Mouton de Gruyter, Berlin, 2003.

29

[Kracht, 2006] Marcus Kracht. Partial Algebras, Meaning Categories and Alge-
braization. Theoretical Computer Science, 354:131–141, 2006.

[Kracht, 2007] Marcus Kracht. Lectures on interpreted languages and composi-
tionality. Manuscript, UCLA, 2007.

[Martı́n-Vide and Păun, 1998] Carlos Martı́n-Vide and Gheorghe Păun. Struc-
tured Contextual Grammars. Grammars, 1:33–55, 1998.

30

