EP3421728A1 - Stationary motor system and turbocharger and method for adapting a turbocharger and a stationary motor system - Google Patents

Stationary motor system and turbocharger and method for adapting a turbocharger and a stationary motor system Download PDF

Info

Publication number
EP3421728A1
EP3421728A1 EP18180501.1A EP18180501A EP3421728A1 EP 3421728 A1 EP3421728 A1 EP 3421728A1 EP 18180501 A EP18180501 A EP 18180501A EP 3421728 A1 EP3421728 A1 EP 3421728A1
Authority
EP
European Patent Office
Prior art keywords
turbocharger
turbine housing
turbine
support element
guide vanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18180501.1A
Other languages
German (de)
French (fr)
Other versions
EP3421728B1 (en
Inventor
Christian GEBING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
2g Energy AG
Original Assignee
2g Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2g Energy AG filed Critical 2g Energy AG
Publication of EP3421728A1 publication Critical patent/EP3421728A1/en
Application granted granted Critical
Publication of EP3421728B1 publication Critical patent/EP3421728B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to a method of adapting a turbocharger, in particular for use in a stationary engine system designed for a first operating point, the turbocharger comprising a turbine comprising a turbine wheel and a turbine housing, and a compressor. Furthermore, the invention comprises a method for optimizing a stationary engine system designed for a first operating point, in particular a combined heat and power plant, with at least one engine and a turbocharger.
  • the invention also includes a turbocharger, in particular for use in a stationary engine system, the turbocharger having a turbine comprising a turbine wheel and a turbine housing, and a compressor.
  • the invention comprises a stationary engine system, in particular a combined heat and power plant, with at least one engine and a turbocharger.
  • Turbochargers can be purchased as finished turbochargers.
  • Turbochargers have a compressor, which at a certain compressor speed brings a certain air mass flow to a certain pressure or increases the pressure by a certain factor, the pressure ratio.
  • Compressors each have a map within which they are operable. Within the map there are areas in which the compressor works very efficiently. The drive of the compressor takes place in a turbocharger by a gas flow, which flows through the turbine of the turbocharger. This gas flow is often the exhaust gas flow of an engine.
  • turbochargers In particular for engines up to approx. 300 kW, cast turbine housings are used. These are produced in large quantities. However, the housing shape results in a certain operating point under certain exhaust gas flow conditions. This operating point is characterized for example by a certain capacity, a certain speed or a certain efficiency. For example, if another operating point is desired, another turbocharger may be used. If no other turbocharger offered by the respective manufacturer can be used, it must be redesigned. This has been the case regularly for existing turbochargers for engines in a power range up to approx. 300 kW. For this purpose, new molds for at least the turbine housing must be created. For small quantities, however, this is not practical.
  • the object of the present invention is to provide a method for adapting a turbocharger to a specific operating state. It is the same Object of the present invention to provide a method for optimizing a stationary engine system. It is another object of the present invention to provide a turbocharger, which can be designed to quickly and easily to certain conditions. It is also an object of the present invention to adapt a stationary engine system to certain conditions.
  • the turbocharger which is suitable for engines of power up to 300 kW, is adjusted by removing material on the inside of the turbine housing to provide space for receiving vanes, introducing vanes into the turbine housing, and then mounting the turbocharger.
  • the guide vanes are preferably introduced into the turbine housing in an area in the direction of flow in front of the turbine wheel.
  • the guide vanes can direct a gas flow, in particular exhaust gases, specifically to the turbine wheel. As a result, the operating point of the turbine and thus of the turbocharger can be adjusted.
  • the arrangement of the guide vanes is designed as a function of the position relative to a screw flight of the turbine housing.
  • the turbine housing generally has a helix, in which the cross section from the inlet to the turbine housing is substantially always further reduced in order to ensure a uniform flow velocity of the gas flow in the screw despite the passage of a partial flow of the gas flow in the direction of the turbine wheel.
  • the Schenkengang can also have one or more sections widening.
  • a nozzle ring is introduced into the turbine housing on the sides of the turbine housing facing the compressor in the mounted state.
  • the nozzle ring is in this case a component which comprises at least one support element and guide vanes arranged thereon.
  • the use of a nozzle ring makes it particularly easy to introduce the vanes in the reworked turbine housing.
  • this introduction takes place from the side facing the compressor in the mounted state of the turbine housing.
  • the nozzle ring and the turbine housing can in this case be designed with a press fit, so that the nozzle ring, the turbine housing can be held non-positively.
  • the nozzle ring and the turbine housing may have a clearance fit with each other. Then the nozzle ring is fixed positively in the turbine housing.
  • the determination is preferably carried out by other parts of the turbocharger, such as the compressor or arranged between the compressor and turbine storage stock.
  • a determination of the nozzle ring can be realized within the turbocharger in a particularly simple manner.
  • the adaptation of the stationary motor system to a second operating point in a particularly simple manner possible.
  • the nozzle ring is secured against rotation in the turbine housing.
  • the orientation of the nozzle ring or the specified at the nozzle ring Guide vanes are guaranteed in the turbine housing. This increases the operational safety of the turbocharger and simplifies the adaptation.
  • a design of the turbocharger to be adapted takes place, in which it is particularly preferably checked that the flow velocities in the turbocharger are below the speed of sound.
  • the composition and temperature of the gas stream are determined.
  • the corresponding speed of sound can be determined within this gas stream.
  • the design in each relevant cross section the volume flow and thus the flow velocity in this cross section is determined.
  • the invention is also realized by a method in which a stationary engine system designed for a first operating point, in particular a combined heat and power plant comprising at least one engine and a turbocharger, is adapted for operation at a second operating point by adjusting the turbocharger as described above or below ,
  • Stationary engine systems usually become operated at a defined operating point and, unlike, for example, vehicle engine systems, can be designed for the desired operating point. For example, a certain power is required by the stationary engine system at this operating point.
  • the components of the stationary engine system, in particular the turbocharger can be designed accordingly, for example, to have a high efficiency at this operating point. Due to the simple and cost-effective adaptation of the turbocharger, the stationary motor system according to the invention, whose motor has a power of up to 300 kW, also has the corresponding advantages.
  • the arrangement of the guide vanes is preferably selected as a function of at least one operating parameter of the stationary engine system at the installation site.
  • the operating parameters which change as a function of the installation location can be, for example, the power of the stationary engine system available at the installation site, the fuel available there or the fuel composition, the air pressure, temperature, the required efficiency of the stationary engine system, or the emission limit values to be adhered to. Since a stationary engine is deployed at a particular point of deployment, an adaptation of the stationary engine system from the first operating point to a non-process-machined turbocharger may be adjusted to a second operating point specific to the installation site. Due to this adaptation of the stationary motor system, the operation of such a system at the site may even be possible or at least made more economical. If the stationary engine system with the Unprocessed turbocharger would not run at the intended site, it would not be the adjustment to a second operating point but corresponding to a system optimization for operation in a first operating point.
  • the engine of the stationary engine system should be operated with a certain boost pressure.
  • the boost pressure is provided by the compressor of the turbocharger, which has a specific compression ratio. If the engine system and turbocharger are designed to operate at normal pressure, operating the engine system at a different air pressure, for example, as a result of higher altitude installation, may result in lower boost pressures while maintaining the compression ratio. As a result, lower power, efficiency and / or other exhaust gas compositions of the stationary engine system are conceivable.
  • a desired speed of a compressor wheel can be determined via a compressor map of the compressor from the desired pressure ratio between ambient pressure and boost pressure and the required charge air flow. Since the compressor wheel is usually connected to the turbine wheel via a shaft in turbochargers, the setpoint speed of the turbine wheel is thus also defined. From the dimensions of the turbine wheel thus results in a desired peripheral speed of the turbine wheel. From the exhaust gas volume flow of the engine at the planned engine operating point and the setpoint speed the turbine wheel or the peripheral speed of the turbine wheel can thus calculate the necessary speed of the exhaust gas flow in the turbine of the turbocharger. This can be achieved by adapting the passage area in the turbine or in the turbine housing. According to the invention, the passage area is adapted by introducing guide vanes into the turbine housing.
  • the stationary engine system can be optimally adapted to a particular further, deviating from any existing original operating point of the stationary engine system operating point.
  • turbocharger is disassembled from the stationary engine system.
  • the turbocharger is then removed from the disassembled turbocharger or from a separately sourced but ready to use turbocharger.
  • turbocharger in which subsequently introduced and in particular immovably fixed guide vanes are arranged in the subsequently machined turbine housing of an otherwise operable turbocharger.
  • subsequently introduced and in particular immovably fixed guide vanes are arranged in the subsequently machined turbine housing of an otherwise operable turbocharger.
  • turbocharger according to the invention is adapted by means of the described method according to the invention.
  • the guide vanes are arranged in a region upstream of the turbine wheel in the turbocharger.
  • the arrangement in the flow direction in front of the turbine wheel ensures that the guide vanes specifically guide the exhaust gas flow in the desired manner to the turbine wheel of the turbine.
  • a guide vane is fixed to a respective support element and together with this support element forms a nozzle ring.
  • a nozzle ring may in this case comprise more than one support element with guide vanes arranged thereon.
  • the arrangement of the vanes on a support member facilitates the creation of a nozzle ring and the introduction of the vanes in the turbine housing of the turbocharger.
  • the vanes are fixed in the turbine housing with improved safety. This improves the reliability of the turbocharger at the new operating point.
  • the vanes are fixed in a direction parallel to a longitudinal central axis of the turbocharger extending on the support element.
  • the guide vanes can protrude into a flow channel in the turbocharger without the flow channel being changed by supporting elements. A change in the flow channel cross-section thus takes place exclusively through the guide vanes. This allows for easy adaptation of the turbocharger to a new operating point.
  • the extension of the support element in a direction parallel to the longitudinal central axis of the turbocharger is at least as large as the extent of the guide vanes in a direction parallel to the longitudinal central axis of the turbocharger.
  • the support member is wider than the vanes.
  • the nozzle ring can be securely fixed to the turbine housing. The operational safety of the turbocharger is improved.
  • the ratio of the diameter of the nozzle ring and the width of the nozzle ring is less than three. This ensures that the nozzle ring in relation to the diameter of the nozzle ring has a sufficient width to be securely fixed in the turbine housing of the turbocharger.
  • the nozzle ring can be made in one piece or in several parts.
  • the multi-part design can also replace the support element of the nozzle ring.
  • the nozzle ring or the support element can be composed of ring segments and / or of several rings. As a result, the reliability of the turbocharger is increased.
  • a fixed to a respective support member vane is integrally formed therewith.
  • Fixed here means that the guide vane is in particular detachably connected to the support element.
  • the nozzle ring with the guide vanes is made from a workpiece.
  • the guide vanes and the support element are separable from each other and a single vane has at least one Anformung, wherein the turbine housing has a at least one Anformung the vane receiving recess.
  • the guide vanes have at least two projections, in particular arranged on opposite sides of the guide vanes.
  • the guide vanes can be inserted against rotation and supported on both sides in the turbine housing.
  • the turbocharger on a support member having at least one Anformung the vane receiving a recess.
  • the guide vanes can be introduced into the turbine housing in a simplified manner and fixed in the turbine housing by means of the support element.
  • the projections of the guide vanes are non-circular.
  • the support element is designed as a ring.
  • a single ring as a support element is particularly stable and can be easily inserted into the turbine housing become.
  • the nozzle ring on a rotation, over which it can be secured against rotation in the turbine housing.
  • the arrangement of the vanes is adjusted as a function of position relative to a flight of the turbine housing.
  • possible deviations from an ideal helical flight geometry can be taken into account when the turbocharger is adapted.
  • the adaptation of the turbocharger is thus improved.
  • the support element has a shoulder directed in the installed state in the radial direction away from the longitudinal center axis of the turbocharger and forming a fitting surface. Over such a shoulder, the support element can be positioned precisely within the turbine housing. This makes it possible to realize a safe adaptation of the turbocharger. For example, assembling the turbocharger through the mating surface will cause the vanes to project far enough into the flow passage of the turbine shell or turbocharger without accidentally contacting parts of the turbocharger during assembly, which could damage the vanes.
  • the turbine housing has a housing fitting surface corresponding to the mating surface of the support element.
  • the interaction of the mating surface of the support element and the housing surface further improves the Possibility of positioning the support element within the turbine housing.
  • an adaptation of the turbocharger can be carried out particularly reliable.
  • the support element on several mating surfaces forming shoulders.
  • screws for fixing the nozzle ring or for mounting the turbine housing on the turbocharger can be passed between these shoulders.
  • an embodiment of the support element with multiple mating surfaces allows the installation of a nozzle ring even with limited space available within the turbine housing.
  • the support element has a bore provided with a bore for fixing the support element on the turbine housing.
  • the support member can be easily introduced and fixed to the turbine housing.
  • a fixation via a flange with holes allows a rotationally secure arrangement of the nozzle ring and arranged on the nozzle ring guide vanes in the turbine housing. This allows a reliable adaptation of the turbocharger to an alternative operating point.
  • a stationary engine system which has at least one engine and at least one turbocharger, wherein the turbocharger is designed according to the invention as described above or below.
  • the turbocharger is designed according to the invention as described above or below.
  • Fig. 1 shows a section through a turbocharger 2, which is designed for operation at a first operating point.
  • the turbocharger 2 has a turbine 4 and a compressor 6.
  • the turbine 4 comprises a turbine wheel 8 and a turbine housing 10.
  • the turbine wheel 8 is connected to a compressor wheel via a shaft.
  • the shaft is mounted in a storage stock, on which a compressor housing and the turbine housing 10 are arranged.
  • Fig. 2 shows a turbocharger 2, which is adapted according to the invention for operation at a second operating point.
  • a turbocharger 2 On the turbine housing 10 is inside material been removed.
  • a nozzle ring 12 comprising a support member 14 and vanes 16, is introduced.
  • the turbine housing 10 is mounted against the storage stock of the turbocharger 2.
  • Fig. 3 shows a flowchart of the processing of a turbocharger 2 for adaptation of the turbocharger for operation in an alternative operating point.
  • the adjustment process includes the steps of disassembling the turbine housing 10 and machining the turbine housing 10 by removing material inside the turbine housing 10. Then, a nozzle ring 12 is inserted into the turbine housing 10. The introduced into the turbine housing 10 nozzle ring 12 can be subsequently reworked. After cleaning the turbine housing 10, the turbine housing 10 is reassembled into the turbocharger 2 and the turbocharger 2 is installed on the engine. Not shown is the interpretation of the turbocharger and the system described below.
  • Fig. 4 shows a method for designing the arrangement of the vanes 16 in the turbine housing 10 of the turbocharger for operation in a stationary engine system depending on operating parameters of the engine or the stationary engine system. Accordingly, an adaptation of the stationary engine system. From the dimensions of the turbine housing 10, the possible dimensions for a nozzle ring 12. The exhaust gas temperatures of the engine in the turbocharger 2 are used for the selection of the material of the nozzle ring 12. Subsequently, essential parameters of the engine operation such as the necessary boost pressure, the necessary fresh air mass flow, the exhaust gas temperature and the exhaust gas mass flow certainly. This results in the desired parameters of the stationary engine system and in particular of the turbocharger 2. These include, in particular, the setpoint rotational speed of the turbine wheel 8 or of the compressor wheel.
  • the geometry of the guide vanes 16 and the arrangement of the guide vanes 16 in the turbine housing 10 is determined. Subsequently, it is checked whether the achieved actual values correspond to the nominal values. When the corresponding boost pressure and charge air mass flow is reached, the design is completed. Otherwise, a new calculation of the geometry of the vanes 16 is performed.
  • Fig. 5 shows the process of calculating the layout of the arrangement of the guide vanes 16 for the optimization of a stationary engine system. From the composition of the exhaust gas and the exhaust gas temperature, the speed of sound in the exhaust gas flow is determined. From the required power of the stationary engine system and the desired air ratio results in the necessary fuel flow and thus the standard volume flow of the exhaust gas. From the setpoint pressure after the compressor and the ambient conditions at the site results in the compression ratio of the compressor. From the compressor map results together with the desired compressor mass flow a target speed of the turbocharger. Furthermore, there is an exhaust back pressure upstream of the turbine. Thus, the operating volume flow of the exhaust gas can be determined in the turbine. From the peripheral speed of the turbine wheel, which depends on the diameter and the speed, there is the necessary flow velocity.
  • Fig. 6 shows a turbine housing 10 for a turbocharger, which is designed for operation at a second operating point.
  • a nozzle ring 12 is arranged in the turbine housing 10.
  • Fig. 7 is that in Fig. 6 illustrated turbine housing 10 shown in section.
  • the nozzle ring 12 is supported via the support element 14 on the subsequently machined region of the turbine housing 10, specifically on the side of the turbine housing 10 facing the compressor 6.
  • Fig. 8 time the turbine housing Fig. 6 in an alternative sectional view.
  • a worm gear 11 of the turbine housing 10 can be seen, whose cross-section decreases steadily from an inlet of the turbine housing 10.
  • FIG. 9 shows the in FIGS. 6, 7 and 8 used nozzle ring with the vanes 16 and the support member 14th
  • Fig. 10 shows an alternative embodiment of a turbine housing 10 with nozzle ring 12.
  • the nozzle ring 12 has a shoulder 18 with a mating surface 20 which rests against a corresponding housing fitting surface 22 of the turbine housing 10. Furthermore, the nozzle ring 12 has a flange 24. Over the flange 24 the nozzle ring 12 can be fixed to the turbine housing 10. A corresponding nozzle ring 12 is in Fig. 11 shown.
  • Fig. 12 shows an alternative embodiment of a turbine housing 10 with a nozzle ring 12.
  • fall shoulder 18 and flange 24 for fixing the nozzle ring 12 on the turbine housing 10 together.
  • the mating surface 20 is formed by the flange 24.
  • Fig. 13 shows an alternative nozzle ring 12 which can be introduced from a fresh air supply side into the turbine housing 10.
  • Fig. 14 shows a further embodiment of a nozzle ring 12.
  • the nozzle ring 12 has a plurality of shoulders 18 and a plurality of mating surfaces 20. Passages are present between the individual shoulders 18 or fitting surfaces 20. These are used to carry out screws between the shoulders 18 and the mating surfaces 20. This makes it possible to set a nozzle ring 12 on the turbine housing 10 even in tight spaces in the turbine housing 10.
  • Fig. 15 shows a support member 14 in the form of a ring.
  • the support member 14 serves to receive vanes 16, as shown in FIG Fig. 16 are shown.
  • the guide vanes 16 have projections 28 which can be accommodated in the recesses 26 of the support member 14.
  • the arranged on the opposite side of the vanes 16 Formations 28 can be found in corresponding recesses in the turbine housing 10 recording.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Verfahren zur Anpassung eines Turboladers, insbesondere zur Verwendung in einem für einen ersten Betriebspunkt ausgelegten Stationärmotorsystem, insbesondere eines Blockheizkraftwerkes, wobei der Turbolader (2) zumindest eine Turbine (4), umfassend ein Turbinenrad (8) und ein Turbinengehäuse (10), und einen Verdichter (6) aufweist, wobei am Turbinengehäuse (10) des Turboladers (2) innenseitig Material entfernt wird, um Raum für die Aufnahme von Leitschaufeln (16) zu schaffen, und Leitschaufeln (16) in das Turbinengehäuse (10) eingebracht werden, sowie anschließend der Turbolader (2) montiert wird sowie ein Turbolader, insbesondere zur Verwendung in einem Stationärmotorsystem, der eine Turbine (4), umfassend ein Turbinenrad (8) und ein Turbinengehäuse (10), und einen Verdichter (6) aufweist, wobei das nachträglich bearbeitete Turbinengehäuse (10) eines ansonsten betriebsfähigen Turboladers (2) nachgerüstete und insbesondere unbeweglich festgelegte Leitschaufeln (16) eingebracht sind und ein entsprechendes Stationärmotorsystem.

Figure imgaf001
Method for adapting a turbocharger, in particular for use in a stationary engine system designed for a first operating point, in particular a combined heat and power plant, wherein the turbocharger (2) comprises at least one turbine (4) comprising a turbine wheel (8) and a turbine housing (10), and a Compressor (6), wherein on the turbine housing (10) of the turbocharger (2) inside material is removed to provide space for receiving guide vanes (16), and guide vanes (16) are introduced into the turbine housing (10) and then the turbocharger (2) is mounted and a turbocharger, in particular for use in a stationary engine system comprising a turbine (4) comprising a turbine wheel (8) and a turbine housing (10), and a compressor (6), which subsequently machined turbine housing (10) of an otherwise operable turbocharger (2) retrofitted and in particular immovably fixed vanes (16) eingebr eight are and a corresponding stationary engine system.
Figure imgaf001

Description

Die Erfindung betrifft ein Verfahren zur Anpassung eines Turboladers, insbesondere zur Verwendung in einem für einen ersten Betriebspunkt ausgelegten Stationärmotorsystem, wobei der Turbolader eine Turbine, umfassend ein Turbinenrad und ein Turbinengehäuse, und einen Verdichter aufweist. Weiterhin umfasst die Erfindung ein Verfahren zur Optimierung eines für einen ersten Betriebspunktes ausgelegten Stationärmotorsystems, insbesondere eines Blockheizkraftwerkes, mit zumindest einem Motor und einem Turbolader.The invention relates to a method of adapting a turbocharger, in particular for use in a stationary engine system designed for a first operating point, the turbocharger comprising a turbine comprising a turbine wheel and a turbine housing, and a compressor. Furthermore, the invention comprises a method for optimizing a stationary engine system designed for a first operating point, in particular a combined heat and power plant, with at least one engine and a turbocharger.

Ebenfalls umfasst die Erfindung einen Turbolader, insbesondere zur Verwendung in einem Stationärmotorsystem, wobei der Turbolader eine Turbine, umfassend ein Turbinenrad und ein Turbinengehäuse, und einen Verdichter aufweist.The invention also includes a turbocharger, in particular for use in a stationary engine system, the turbocharger having a turbine comprising a turbine wheel and a turbine housing, and a compressor.

Schließlich umfasst die Erfindung ein Stationärmotorsystem, insbesondere eines Blockheizkraftwerkes, mit zumindest einem Motor und einem Turbolader.Finally, the invention comprises a stationary engine system, in particular a combined heat and power plant, with at least one engine and a turbocharger.

Turbolader können als fertige Turbolader bezogen werden. Turbolader weisen einen Verdichter auf, der bei einer bestimmten Verdichterdrehzahl einen bestimmten Luftmassenstrom auf einen bestimmten Druck bringt bzw. den Druck um einen bestimmten Faktor, das Druckverhältnis, erhöht. Verdichter weisen jeweils ein Kennfeld auf, innerhalb dessen sie betreibbar sind. Innerhalb des Kennfeldes gibt es Bereiche, in denen der Verdichter besonders effizient arbeitet. Der Antrieb des Verdichters erfolgt in einem Turbolader durch einen Gasstrom, der die Turbine des Turboladers durchströmt. Dieser Gasstrom ist häufig der Abgasstrom eines Motors.Turbochargers can be purchased as finished turbochargers. Turbochargers have a compressor, which at a certain compressor speed brings a certain air mass flow to a certain pressure or increases the pressure by a certain factor, the pressure ratio. Compressors each have a map within which they are operable. Within the map there are areas in which the compressor works very efficiently. The drive of the compressor takes place in a turbocharger by a gas flow, which flows through the turbine of the turbocharger. This gas flow is often the exhaust gas flow of an engine.

Für Turbolader, insbesondere für Motoren bis ca. 300 kW, werden gegossene Turbinengehäusen verwendet. Diese werden in großer Stückzahl hergestellt. Aus der Gehäuseform resultiert jedoch ein bestimmter Betriebspunkt bei bestimmten Abgasstrombedingungen. Dieser Betriebspunkt zeichnet sich zum Beispiel durch eine bestimmte Förderleistung, eine bestimmte Drehzahl oder einen bestimmten Wirkungsgrad aus. Wenn ein anderer Betriebspunktgewünscht ist, kann beispielsweise ein anderer Turbolader verwendet werden. Falls kein anderer, von den jeweiligen Herstellern angebotener Turbolader verwendet werden kann, muss dieser neu konstruiert werden. Dies ist bei den bestehenden Turbolader für Motoren in ein Leistungsbereich bis ca. 300 kW bisher regelmäßig der Fall. Hierzu müssen neue Gussformen für zumindest das Turbinengehäuse erstellt werden. Für kleine Stückzahlen ist dies jedoch wenig praktikabel. Es ergeben sich regelmäßig lange Vorlaufzeiten, da das Erstellen neuer Gussformen zeitaufwendig ist und die neu konstruierten Turbolader zunächst ausgetestet werden müssen. Zudem führt der mit dem vorbeschriebenen Vorgehen einhergehende Aufwand für die Erstellung neuer Gussformen sowie nachfolgende Tests regelmäßig zu signifikanten Kostensteigerungen für die nur in geringen Stückzahlen zu fertigenden Turbolader.For turbochargers, in particular for engines up to approx. 300 kW, cast turbine housings are used. These are produced in large quantities. However, the housing shape results in a certain operating point under certain exhaust gas flow conditions. This operating point is characterized for example by a certain capacity, a certain speed or a certain efficiency. For example, if another operating point is desired, another turbocharger may be used. If no other turbocharger offered by the respective manufacturer can be used, it must be redesigned. This has been the case regularly for existing turbochargers for engines in a power range up to approx. 300 kW. For this purpose, new molds for at least the turbine housing must be created. For small quantities, however, this is not practical. There are regular long lead times, because the creation of new molds is time-consuming and the newly designed turbocharger must first be tested. In addition, the expense associated with the above procedure for the creation of new molds and subsequent tests regularly leads to significant cost increases for the turbocharger to be produced only in small numbers.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren bereitzustellen um einen Turbolader auf einen bestimmten Betriebszustand hin anzupassen. Ebenfalls ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Optimierung eines Stationärmotorsystems bereitzustellen. Weiterhin ist es Aufgabe der vorliegenden Erfindung einen Turbolader bereitzustellen, der auf schnell und einfach auf bestimmte Bedingungen ausgelegt werden kann. Ebenfalls ist es Aufgabe der vorliegenden Erfindung, ein Stationärmotorsystem auf bestimmte Bedingungen anzupassen.The object of the present invention is to provide a method for adapting a turbocharger to a specific operating state. It is the same Object of the present invention to provide a method for optimizing a stationary engine system. It is another object of the present invention to provide a turbocharger, which can be designed to quickly and easily to certain conditions. It is also an object of the present invention to adapt a stationary engine system to certain conditions.

Die Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1, ein Verfahren gemäß Anspruch 7, sowie einen Turbolader nach Anspruch 10 oder Anspruch 25 sowie durch ein Stationärmotorsystem gemäß Anspruch 26 oder Anspruch 27 gelöst. Vorteilhafte Ausgestaltungen finden sich in den auf diese Ansprüche rückbezogenen Unteransprüchen sowie der nachfolgenden Beschreibung.The object is achieved by a method according to claim 1, a method according to claim 7, and a turbocharger according to claim 10 or claim 25 and by a stationary motor system according to claim 26 or claim 27. Advantageous embodiments can be found in the dependent claims on these claims and the following description.

Erfindungsgemäß wird der Turbolader, der für Motoren einer Leistung bis 300 kW verwendbar ist, angepasst, indem am Turbinengehäuse innenseitig Material entfernt wird, um Raum für die Aufnahme von Leitschaufeln zu schaffen, Leitschaufeln in das Turbinengehäuse eingebracht werden und anschließend der Turbolader montiert wird.In accordance with the present invention, the turbocharger, which is suitable for engines of power up to 300 kW, is adjusted by removing material on the inside of the turbine housing to provide space for receiving vanes, introducing vanes into the turbine housing, and then mounting the turbocharger.

Beim erfindungsgemäßen Verfahren wird am Turbinengehäuse Material entfernt. Über den dabei geschaffenen Raum können Leitschaufeln in das Turbinengehäuse eingebracht werden. Hierdurch wird der Betriebspunkt der Turbine und damit der Betriebspunkt des Turboladers verändert. Anschließend wird der Turbolader mit dem entsprechend modifizierten Turbinengehäuse und den in das Turbinengehäuse eingebrachten Leitschaufeln montiert. Dies geschieht üblicherweise, indem das Turbinengehäuse mit den anderen Teilen des Turboladers zum Turbolader montiert wird. Ein derart ausgebildeter Turbolader muss nur noch deutlich weniger ausführlich getestet werden, da wesentliche Elemente, insbesondere auf der Abgasseite bereits getestet wurden. Die Elemente auf der Verdichterseite zur Frischluftzufuhr werden durch das Verfahren nicht berührt. Der angepasste Turbolader kann somit schneller und insgesamt deutlich günstiger zur Verfügung gestellt werden.In the method according to the invention material is removed on the turbine housing. Over the space created thereby vanes can be introduced into the turbine housing. As a result, the operating point of the turbine and thus the operating point of the turbocharger is changed. Subsequently, the turbocharger with the correspondingly modified turbine housing and the introduced into the turbine housing vanes is mounted. This is usually done by the turbine housing is mounted with the other parts of the turbocharger to the turbocharger. Such a trained turbocharger only has to be tested much less extensively, as essential elements, especially on the exhaust side have already been tested. The elements on the compressor side for fresh air supply are not affected by the process. The adapted turbocharger can thus be made faster and overall much cheaper available.

Vorzugsweise werden die Leitschaufeln in einem Bereich in Strömungsrichtung vor dem Turbinenrad in das Turbinengehäuse eingebracht. Die Leitschaufeln können hier einen Gasstrom, insbesondere Abgase, gezielt auf das Turbinenrad leiten. Hierdurch kann der Betriebspunkt der Turbine und somit des Turboladers angepasst werden.The guide vanes are preferably introduced into the turbine housing in an area in the direction of flow in front of the turbine wheel. The guide vanes can direct a gas flow, in particular exhaust gases, specifically to the turbine wheel. As a result, the operating point of the turbine and thus of the turbocharger can be adjusted.

Vorteilhafterweise wird die Anordnung der Leitschaufeln in Abhängigkeit der Position relativ zu einem Schneckengang des Turbinengehäuses gestaltet. Das Turbinengehäuse weist in der Regel einen Schneckengang auf, bei dem der Querschnitt vom Eintritt in das Turbinengehäuse im Wesentlichen immer weiter verkleinert wird, um eine gleichmäßige Strömungsgeschwindigkeit des Gasstromes im Schneckengang trotz des Durchtretens eines Teilstroms des Gasstromes in Richtung des Turbinenrades zu gewährleisten. Der Schenkengang kann dabei auch eine oder mehrere Abschnittsweise Aufweitungen aufweisen. Durch eine entsprechend angepasste Verteilung bzw. eine angepasste Geometrie der Leitschaufeln in Abhängigkeit ihrer Position relativ zum Schneckengang und somit insbesondere in Umfangsrichtung um die Achse der Welle können Änderungen des notwendigen Querschnittsverlaufs des Schneckengangs in Folge der Nachbearbeitung oder Abweichungen vom idealen Verlauf der Querschnittsänderung im Schneckengang berücksichtigt werden. Hierdurch kann die Anpassung des Turboladers verbessert erfolgen.Advantageously, the arrangement of the guide vanes is designed as a function of the position relative to a screw flight of the turbine housing. The turbine housing generally has a helix, in which the cross section from the inlet to the turbine housing is substantially always further reduced in order to ensure a uniform flow velocity of the gas flow in the screw despite the passage of a partial flow of the gas flow in the direction of the turbine wheel. The Schenkengang can also have one or more sections widening. By a correspondingly adapted distribution or adapted geometry of the guide vanes as a function of their position relative to the flight and thus in particular in the circumferential direction about the axis of the shaft changes of the necessary cross-sectional profile of the Worm gear as a result of reworking or deviations from the ideal course of the change in cross section in the flight are considered. As a result, the adaptation of the turbocharger can be improved.

Bevorzugt wird ein Düsenring auf der im montierten Zustand dem Verdichter zugewandten Seiten des Turbinengehäuses in das Turbinengehäuse eingebracht. Der Düsenring ist hierbei ein Bauteil, das zumindest ein Stützelement sowie daran angeordnete Leitschaufeln umfasst. Die Verwendung eines Düsenringes ermöglicht es, die Leitschaufeln besonders einfach in das nachbearbeitete Turbinengehäuse einzubringen. Mit Vorteil erfolgt diese Einbringung von Seiten einer im montierten Zustand dem Verdichter zugewandten Seite des Turbinengehäuses. Der Düsenring und das Turbinengehäuse können hierbei mit einer Presspassung ausgeführt werden, so dass der Düsenring das Turbinengehäuse kraftschlüssig gehalten werden kann. Alternativ können der Düsenring und das Turbinengehäuse eine Spielpassung zueinander aufweisen. Dann wird der Düsenring formschlüssig im Turbinengehäuse festgelegt. Die Festlegung erfolgt dabei vorzugsweise durch andere Teile des Turboladers, wie den Verdichter oder einen zwischen Verdichter und Turbine angeordneten Lagerstock. So kann eine Festlegung des Düsenringes innerhalb des Turboladers auf besonders einfache Weise realisiert werden. Hierdurch ist die Anpassung des Stationärmotorsystems an einen zweiten Betriebspunkt auf besonders einfache Weise möglich.Preferably, a nozzle ring is introduced into the turbine housing on the sides of the turbine housing facing the compressor in the mounted state. The nozzle ring is in this case a component which comprises at least one support element and guide vanes arranged thereon. The use of a nozzle ring makes it particularly easy to introduce the vanes in the reworked turbine housing. Advantageously, this introduction takes place from the side facing the compressor in the mounted state of the turbine housing. The nozzle ring and the turbine housing can in this case be designed with a press fit, so that the nozzle ring, the turbine housing can be held non-positively. Alternatively, the nozzle ring and the turbine housing may have a clearance fit with each other. Then the nozzle ring is fixed positively in the turbine housing. The determination is preferably carried out by other parts of the turbocharger, such as the compressor or arranged between the compressor and turbine storage stock. Thus, a determination of the nozzle ring can be realized within the turbocharger in a particularly simple manner. As a result, the adaptation of the stationary motor system to a second operating point in a particularly simple manner possible.

Besonders vorteilhaft wird der Düsenring verdrehsicher im Turbinengehäuse festgelegt. Hierdurch kann die Ausrichtung des Düsenrings bzw. der am Düsenring festgelegten Leitschaufeln im Turbinengehäuse gewährleistet werden. Dies erhöht die Betriebssicherheit des Turboladers und vereinfacht die Anpassung.Particularly advantageously, the nozzle ring is secured against rotation in the turbine housing. As a result, the orientation of the nozzle ring or the specified at the nozzle ring Guide vanes are guaranteed in the turbine housing. This increases the operational safety of the turbocharger and simplifies the adaptation.

Vorzugsweise erfolgt eine Auslegung des anzupassenden Turboladers, bei der besonders vorzugsweise überprüft wird, dass die Strömungsgeschwindigkeiten im Turbolader unterhalb der Schallgeschwindigkeit liegen. Hierzu werden die Zusammensetzung und Temperatur des Gasstroms bestimmt. Damit kann die entsprechende Schallgeschwindigkeit innerhalb dieses Gasstromes bestimmt werden. Anschließend wird bei der Auslegung in jeden relevanten Querschnitt der Volumenstrom und somit die Strömungsgeschwindigkeit in diesem Querschnitt bestimmt. Anschließend wird überprüft, ob die so berechnete Strömungsgeschwindigkeit unterhalb der Schallgeschwindigkeit des Gasstromes liegt. Wenn die Strömungsgeschwindigkeit im Turbolader die Schallgeschwindigkeit des Gasgemisches übersteigt, sind die Auslegungsmethoden nicht länger verwendbar. Dann ist unter Umständen der gewünschte Betriebspunkt nicht mit diesem Turbolader erreichbar. Entweder muss dann ein anderer Turbolader als Ausgangspunkt für die Anpassung verwendet werden oder als zweiter Betriebspunkt ein vom ursprünglich angedachten Betriebspunkt abweichender Betriebspunkt gewählt werden.Preferably, a design of the turbocharger to be adapted takes place, in which it is particularly preferably checked that the flow velocities in the turbocharger are below the speed of sound. For this purpose, the composition and temperature of the gas stream are determined. Thus, the corresponding speed of sound can be determined within this gas stream. Subsequently, in the design in each relevant cross section, the volume flow and thus the flow velocity in this cross section is determined. Subsequently, it is checked whether the thus calculated flow velocity is below the speed of sound of the gas flow. If the flow rate in the turbocharger exceeds the speed of sound of the gas mixture, the design methods are no longer usable. Then the desired operating point may not be achievable with this turbocharger. Either a different turbocharger must then be used as a starting point for the adaptation or as a second operating point an operating point deviating from the originally planned operating point can be selected.

Die Erfindung wird auch durch ein Verfahren verwirklicht, bei dem ein für einen ersten Betriebspunkt ausgelegtes Stationärmotorsystem, insbesondere eines Blockheizkraftwerkes, umfassend zumindest einen Motor und einen Turbolader, für einen Betrieb in einem zweiten Betriebspunkt angepasst wird, indem der Turbolader wie vor oder nachbeschrieben angepasst wird. Stationärmotorsysteme werden üblicherweise bei einem definierten Betriebspunkt betrieben und können, anders als beispielsweise Fahrzeugmotorsysteme, auf den gewünschten Betriebspunkt hin ausgelegt werden. Beispielsweise ist in diesem Betriebspunkt eine bestimmte Leistung vom Stationärmotorsystem gefordert. Die Komponenten des Stationärmotorsystems, insbesondere der Turbolader, können entsprechend ausgelegt werden, um beispielsweise in diesem Betriebspunkt einen hohen Wirkungsgrad aufzuweisen. Durch die einfache und kostengünstige Anpassung des Turboladers kommen auch dem erfindungsgemäßen Stationärmotorsystem, dessen Motor eine Leistung bis 300 kW aufweist, die entsprechenden Vorteile zu.The invention is also realized by a method in which a stationary engine system designed for a first operating point, in particular a combined heat and power plant comprising at least one engine and a turbocharger, is adapted for operation at a second operating point by adjusting the turbocharger as described above or below , Stationary engine systems usually become operated at a defined operating point and, unlike, for example, vehicle engine systems, can be designed for the desired operating point. For example, a certain power is required by the stationary engine system at this operating point. The components of the stationary engine system, in particular the turbocharger, can be designed accordingly, for example, to have a high efficiency at this operating point. Due to the simple and cost-effective adaptation of the turbocharger, the stationary motor system according to the invention, whose motor has a power of up to 300 kW, also has the corresponding advantages.

Bevorzugt ist die Anordnung der Leitschaufeln in Abhängigkeit von zumindest einem Betriebsparameter des Stationärmotorsystems am Aufstellungsort gewählt. Die sich in Abhängigkeit des Aufstellungsortes ändernden Betriebsparameter können beispielsweise die am Aufstellungsort zur Verfügung zu stellende Leistung des Stationärmotorsystems, der dort zur Verfügung stehende Treibstoff bzw. die Treibstoffzusammensetzung, der Luftdruck, Temperatur, der geforderte Wirkungsgrad des Stationärmotorsystems, oder einzuhaltende Emissionsgrenzwerte sein. Da ein Stationärmotor an einem bestimmten Aufstellungspunkt aufgestellt wird, kann eine Anpassung des Stationärmotorsystems von dem ersten Betriebspunkt mit einem nicht nach dem Verfahren bearbeiteten und insofern unbearbeiteten Turbolader auf einen zweiten Betriebspunkt, der spezifisch für den Aufstellungsort ist, angepasst werden. Durch diese Anpassung des Stationärmotorsystems kann der Betrieb eines solchen Systems am Aufstellungsort unter Umständen überhaupt erst ermöglicht oder zumindest wirtschaftlicher gestaltet werden. Sofern das Stationärmotorsystem mit dem unbearbeiteten Turbolader an dem vorgesehenen Aufstellungsort nicht laufen würde, würde es sich nicht um die Anpassung an einen zweiten Betriebspunkt sondern entsprechend um eine Systemoptimierung für einen Betrieb in einem ersten Betriebspunkt handeln.The arrangement of the guide vanes is preferably selected as a function of at least one operating parameter of the stationary engine system at the installation site. The operating parameters which change as a function of the installation location can be, for example, the power of the stationary engine system available at the installation site, the fuel available there or the fuel composition, the air pressure, temperature, the required efficiency of the stationary engine system, or the emission limit values to be adhered to. Since a stationary engine is deployed at a particular point of deployment, an adaptation of the stationary engine system from the first operating point to a non-process-machined turbocharger may be adjusted to a second operating point specific to the installation site. Due to this adaptation of the stationary motor system, the operation of such a system at the site may even be possible or at least made more economical. If the stationary engine system with the Unprocessed turbocharger would not run at the intended site, it would not be the adjustment to a second operating point but corresponding to a system optimization for operation in a first operating point.

Besonders vorteilhaft wird ein Verdichtungsverhältnis des Verdichters in Abhängigkeit von Umgebungsbedingungen, insbesondere des Luftdrucks, am Aufstellungsort des Stationärmotors festgelegt. Der Motor des Stationärmotorsystems soll mit einem bestimmten Ladedruck betrieben werden. Der Ladedruck wird vom Verdichter des Turboladers bereitgestellt, der ein bestimmtes Verdichtungsverhältnis aufweist. Wenn das Motorsystem und der Turbolader für einen Betrieb bei Normaldruck ausgelegt sind, kann es bei einem Betrieb des Motorsystems bei einem anderen Luftdruck, beispielsweise in Folge einer Aufstellung in höheren Lagen, bei gleichbleibendem Verdichtungsverhältnis zu niedrigeren Ladedrücken kommen. Als Folge davon sind eine geringere Leistung, ein anderer Wirkungsgrad und/oder andere Abgaszusammensetzungen des Stationärmotorsystems denkbar. Wenn die Umgebungsbedingungen am Aufstellungsort bekannt sind, kann über ein Verdichterkennfeld des Verdichters aus dem gewünschten Druckverhältnis zwischen Umgebungsdruck und Ladedruck und dem erforderlichen Ladeluftstrom eine Solldrehzahl eines Verdichterrades bestimmt werden. Da bei Turboladern üblicherweise das Verdichterrad über eine Welle mit dem Turbinenrad verbunden ist, ist somit auch die Solldrehzahl des Turbinenrades festgelegt. Aus den Abmessungen des Turbinenrades ergibt sich somit eine gewünschte Umfangsgeschwindigkeit des Turbinenrades. Aus dem Abgasvolumenstrom des Motors im geplanten Motorbetriebspunkt und der Solldrehzahl des Turbinenrades bzw. der Umfangsgeschwindigkeit des Turbinenrades lässt sich so die notwendige Geschwindigkeit des Abgasstroms in der Turbine des Turboladers berechnen. Diese kann durch eine Anpassung der Durchtrittsfläche in der Turbine bzw. im Turbinengehäuse erreicht werden. Erfindungsgemäß wird die Durchtrittsfläche durch das Einbringen von Leitschaufeln in das Turbinengehäuse angepasst. Somit kann das Stationärmotorsystem optimal auf einen insbesondere weiteren, vom gegebenenfalls vorhandenen ursprünglichen Betriebspunkt des Stationärmotorsystems abweichenden Betriebspunkt angepasst werden.Particularly advantageously, a compression ratio of the compressor in dependence on environmental conditions, in particular the air pressure, set at the site of the stationary engine. The engine of the stationary engine system should be operated with a certain boost pressure. The boost pressure is provided by the compressor of the turbocharger, which has a specific compression ratio. If the engine system and turbocharger are designed to operate at normal pressure, operating the engine system at a different air pressure, for example, as a result of higher altitude installation, may result in lower boost pressures while maintaining the compression ratio. As a result, lower power, efficiency and / or other exhaust gas compositions of the stationary engine system are conceivable. If the ambient conditions at the site are known, a desired speed of a compressor wheel can be determined via a compressor map of the compressor from the desired pressure ratio between ambient pressure and boost pressure and the required charge air flow. Since the compressor wheel is usually connected to the turbine wheel via a shaft in turbochargers, the setpoint speed of the turbine wheel is thus also defined. From the dimensions of the turbine wheel thus results in a desired peripheral speed of the turbine wheel. From the exhaust gas volume flow of the engine at the planned engine operating point and the setpoint speed the turbine wheel or the peripheral speed of the turbine wheel can thus calculate the necessary speed of the exhaust gas flow in the turbine of the turbocharger. This can be achieved by adapting the passage area in the turbine or in the turbine housing. According to the invention, the passage area is adapted by introducing guide vanes into the turbine housing. Thus, the stationary engine system can be optimally adapted to a particular further, deviating from any existing original operating point of the stationary engine system operating point.

Wenn das Stationärmotorsystem bereits mit einem montierten Turbolader geliefert wird, wird im Verfahren der Turbolader vom Stationärmotorsystem demontiert. Von dem so demontierten Turbolader oder von einem separat bezogenen, aber betriebsfertig zusammengebauten Turbolader wird anschließend das Turbinengehäuse entfernt.If the stationary engine system is already supplied with a mounted turbocharger, in the process the turbocharger is disassembled from the stationary engine system. The turbocharger is then removed from the disassembled turbocharger or from a separately sourced but ready to use turbocharger.

Gelöst wird die eingangs gestellte Aufgabe auch mit einem erfindungsgemäßen Turbolader, bei dem in dem nachträglich bearbeiteten Turbinengehäuse eines ansonsten betriebsfähigen Turboladers nachträglich eingebrachte und insbesondere unbeweglich festgelegte Leitschaufeln angeordnet sind. Durch diese nachträglich in ein nachträglich bearbeitetes Turbinengehäuse eingebrachten Leitschaufeln ist der Turbolader an einen anderen als den ursprünglichen Betriebspunkt angepasst. Die Anpassung kann so auf eine einfache Art und Weise nachträglich erfolgen.The object stated in the introduction is also achieved with a turbocharger according to the invention, in which subsequently introduced and in particular immovably fixed guide vanes are arranged in the subsequently machined turbine housing of an otherwise operable turbocharger. Through these subsequently introduced into a subsequently machined turbine housing vanes of the turbocharger is adapted to a different than the original operating point. The adaptation can be done in a simple way subsequently.

Insbesondere ist ein erfindungsgemäßer Turbolader wie vor- oder nachbeschrieben mittels des beschriebenen erfindungsgemäßen Verfahrens angepasst.In particular, a turbocharger according to the invention, as described above or below, is adapted by means of the described method according to the invention.

Mit Vorteil sind die Leitschaufeln in einem Bereich in Strömungsrichtung vor dem Turbinenrad in dem Turbolader angeordnet. Durch die Anordnung in Strömungsrichtung vor dem Turbinenrad ist sichergestellt, dass die Leitschaufeln den Abgasstrom gezielt in der gewünschten Weise auf das Turbinenrad der Turbine leiten.Advantageously, the guide vanes are arranged in a region upstream of the turbine wheel in the turbocharger. The arrangement in the flow direction in front of the turbine wheel ensures that the guide vanes specifically guide the exhaust gas flow in the desired manner to the turbine wheel of the turbine.

Vorzugsweise ist eine Leitschaufel an einem jeweiligen Stützelement festgelegt und bildet mit diesem Stützelement zusammen einen Düsenring aus. Ein Düsenring kann hierbei mehr als ein Stützelement mit daran angeordneten Leitschaufeln umfassen. Die Anordnung der Leitschaufeln an einem Stützelement vereinfacht das Erstellen eines Düsenrings und das Einbringen der Leitschaufeln in das Turbinengehäuse des Turboladers. Die Leitschaufeln sind im Turbinengehäuse mit verbesserter Sicherheit festgelegt. Dies verbessert die Betriebssicherheit des Turboladers im neuen Betriebspunkt.Preferably, a guide vane is fixed to a respective support element and together with this support element forms a nozzle ring. A nozzle ring may in this case comprise more than one support element with guide vanes arranged thereon. The arrangement of the vanes on a support member facilitates the creation of a nozzle ring and the introduction of the vanes in the turbine housing of the turbocharger. The vanes are fixed in the turbine housing with improved safety. This improves the reliability of the turbocharger at the new operating point.

Vorteilhafterweise sind die Leitschaufeln in einer Richtung parallel zu einer Längsmittelachse des Turboladers erstreckt an dem Stützelement festgelegt. Durch diese Anordnung können die Leitschaufeln in einen Strömungskanal im Turbolader hineinragen, ohne dass der Strömungskanal durch Stützelemente verändert wird. Eine Änderung des Strömungskanalquerschnitts erfolgt somit ausschließlich durch die Leitschaufeln. Dies ermöglicht eine einfache Anpassung des Turboladers auf einen neuen Betriebspunkt.Advantageously, the vanes are fixed in a direction parallel to a longitudinal central axis of the turbocharger extending on the support element. By virtue of this arrangement, the guide vanes can protrude into a flow channel in the turbocharger without the flow channel being changed by supporting elements. A change in the flow channel cross-section thus takes place exclusively through the guide vanes. This allows for easy adaptation of the turbocharger to a new operating point.

Vorzugsweise ist die Erstreckung des Stützelementes in eine Richtung parallel zur Längsmittelachse des Turboladers mindestens so groß wie die Erstreckung der Leitschaufeln in eine Richtung parallel zur Längsmittelachse des Turboladers. Somit ist im Düsenring das Stützelement breiter als die Leitschaufeln. Hierdurch kann der Düsenring sicher am Turbinengehäuse festgelegt werden. Die Betriebssicherheit des Turboladers wird verbessert.Preferably, the extension of the support element in a direction parallel to the longitudinal central axis of the turbocharger is at least as large as the extent of the guide vanes in a direction parallel to the longitudinal central axis of the turbocharger. Thus, in the nozzle ring, the support member is wider than the vanes. As a result, the nozzle ring can be securely fixed to the turbine housing. The operational safety of the turbocharger is improved.

Vorzugsweise ist das Verhältnis aus Durchmesser des Düsenrings und Breite des Düsenrings kleiner als drei. Hierdurch ist sichergestellt, dass der Düsenring im Verhältnis zum Durchmesser des Düsenrings eine ausreichende Breite aufweist, um sicher im Turbinengehäuse des Turboladers festgelegt zu werden. Der Düsenring kann hierbei einteilig oder mehrteilig ausgeführt sein. Die Mehrteilige Ausführung kann sich dabei auch auf das Stützelement des Düsenringes ersetzten. Der Düsenring bzw. das Stützelement kann dabei aus Ringsegmenten und/oder aus mehreren Ringen zusammengesetzt sein. Hierdurch wird die Betriebssicherheit des Turboladers erhöht.Preferably, the ratio of the diameter of the nozzle ring and the width of the nozzle ring is less than three. This ensures that the nozzle ring in relation to the diameter of the nozzle ring has a sufficient width to be securely fixed in the turbine housing of the turbocharger. The nozzle ring can be made in one piece or in several parts. The multi-part design can also replace the support element of the nozzle ring. The nozzle ring or the support element can be composed of ring segments and / or of several rings. As a result, the reliability of the turbocharger is increased.

In einer bevorzugten Ausführungsform ist eine an einem jeweiligen Stützelement festgelegte Leitschaufel einstückig mit diesem ausgebildet. Festgelegt bedeutet hierbei, dass die Leitschaufel mit dem Stützelement insbesondere lösbar verbunden ist. In einer einstückigen Ausformung wird der Düsenring mit den Leitschaufeln aus einem Werkstück gefertigt. Somit werden eine hohe Haltbarkeit des Düsenrings im Turbolader und damit eine hohe Betriebssicherheit sichergesellt.In a preferred embodiment, a fixed to a respective support member vane is integrally formed therewith. Fixed here means that the guide vane is in particular detachably connected to the support element. In a one-piece molding, the nozzle ring with the guide vanes is made from a workpiece. Thus, a high durability of the nozzle ring in the turbocharger and thus a high level of operational safety are assured.

In einer alternativen Ausgestaltung sind die Leitschaufeln und das Stützelement voneinander trennbar und eine einzelne Leitschaufel weist mindestens eine Anformung auf, wobei das Turbinengehäuse eine die mindestens eine Anformung der Leitschaufel aufnehmende Ausnehmung aufweist. Hierdurch können die Leitschaufein sehr kompakt in das Turbinengehäuse eingebracht werden. Die an der Innenseite des Turbinengehäuses zu entfernende Materialmenge wird durch ein solches Vorgehen minimiert. Auch bei einem geringen zur Verfügung stehenden Bauraum kann so eine entsprechende Anpassung des Turboladers erfolgen.In an alternative embodiment, the guide vanes and the support element are separable from each other and a single vane has at least one Anformung, wherein the turbine housing has a at least one Anformung the vane receiving recess. As a result, the Leitschaufein can be very compact introduced into the turbine housing. The amount of material to be removed on the inside of the turbine housing is minimized by such a procedure. Even with a small available space can be done so a corresponding adjustment of the turbocharger.

Besonders bevorzugt weisen die Leitschaufeln mindestens zwei insbesondere an gegenüberliegenden Seiten der Leitschaufeln angeordnete Anformungen auf. Somit können die Leitschaufeln verdrehsicher und beidseitig abgestützt in das Turbinengehäuse eingebracht werden. Bevorzugt weist der Turbolader ein Stützelement auf, das mindestens eine Anformung der eine Leitschaufel aufnehmenden Ausnehmung aufweist. Hierdurch können die Leitschaufeln vereinfacht in das Turbinengehäuse eingebracht und mittels des Stützelementes in dem Turbinengehäuse festgelegt werden.Particularly preferably, the guide vanes have at least two projections, in particular arranged on opposite sides of the guide vanes. Thus, the guide vanes can be inserted against rotation and supported on both sides in the turbine housing. Preferably, the turbocharger on a support member having at least one Anformung the vane receiving a recess. As a result, the guide vanes can be introduced into the turbine housing in a simplified manner and fixed in the turbine housing by means of the support element.

In einer bevorzugten Ausführungsform sind die Anformungen der Leitschaufeln unrund. Durch eine unrunde Ausführung der Anformungen können die Leitschaufeln gegen ein Verdrehen gesichert in das Turbinengehäuse eingebracht werden. Mit Vorteil ist das Stützelement als Ring ausgebildet. Ein einzelner Ring als Stützelement ist besonders stabil und kann einfach in das Turbinengehäuse eingebracht werden. Bevorzugt weist der Düsenring eine Verdrehsicherung auf, über die er verdrehsicher im Turbinengehäuse festgelegt werden kann. Hierdurch kann die Ausrichtung der Leitschaufeln im Turbinengehäuse festgelegt und so zuverlässig an einen alternativen Betriebspunkt angepasst werden.In a preferred embodiment, the projections of the guide vanes are non-circular. By a non-circular execution of the projections, the guide vanes can be secured against twisting introduced into the turbine housing. Advantageously, the support element is designed as a ring. A single ring as a support element is particularly stable and can be easily inserted into the turbine housing become. Preferably, the nozzle ring on a rotation, over which it can be secured against rotation in the turbine housing. As a result, the orientation of the guide vanes in the turbine housing can be determined and thus reliably adapted to an alternative operating point.

Vorteilhafterweise ist die Anordnung der Leitschaufeln als Funktion der Position relativ zu einem Schneckengang des Turbinengehäuses angepasst. Hierdurch kann mit der Anordnung der Leitschaufeln bei Anpassen des Turboladers möglichen Abweichungen von einer idealen Schneckenganggeometrie Rechnung getragen werden. Die Anpassung des Turboladers ist somit verbessert.Advantageously, the arrangement of the vanes is adjusted as a function of position relative to a flight of the turbine housing. As a result, with the arrangement of the guide vanes, possible deviations from an ideal helical flight geometry can be taken into account when the turbocharger is adapted. The adaptation of the turbocharger is thus improved.

Bevorzugt weist das Stützelement eine im eingebauten Zustand in radialer Richtung von der Längsmittelachse des Turboladers weg gerichtete und eine Passfläche ausbildende Schulter auf. Über eine solche Schulter kann das Stützelement präzise innerhalb des Turbinengehäuses positioniert werden. Dies ermöglicht es, eine sichere Anpassung des Turboladers zu realisieren. So wird beispielsweise beim Zusammenbau des Turboladers durch die Passfläche erreicht, dass die Leitschaufeln weit genug in den Strömungskanal des Turbinengehäuses bzw. des Turboladers hineinragen, ohne beim Zusammenbau versehentlich mit Teilen des Turboladers in Kontakt zu kommen, wodurch die Leitschaufeln beschädigt werden könnten.Preferably, the support element has a shoulder directed in the installed state in the radial direction away from the longitudinal center axis of the turbocharger and forming a fitting surface. Over such a shoulder, the support element can be positioned precisely within the turbine housing. This makes it possible to realize a safe adaptation of the turbocharger. For example, assembling the turbocharger through the mating surface will cause the vanes to project far enough into the flow passage of the turbine shell or turbocharger without accidentally contacting parts of the turbocharger during assembly, which could damage the vanes.

Besonders bevorzugt weist das Turbinengehäuse eine zur Passfläche des Stützelementes korrespondieren Gehäusepassfläche auf. Das Zusammenspiel aus Passfläche des Stützelementes und Gehäusepassfläche verbessert noch einmal die Möglichkeit der Positionierung des Stützelementes innerhalb des Turbinengehäuses. Somit kann eine Anpassung des Turboladers besonders zuverlässig durchgeführt werden.Particularly preferably, the turbine housing has a housing fitting surface corresponding to the mating surface of the support element. The interaction of the mating surface of the support element and the housing surface further improves the Possibility of positioning the support element within the turbine housing. Thus, an adaptation of the turbocharger can be carried out particularly reliable.

In einer besonders bevorzugten Ausgestaltung weist das Stützelement mehrere Passflächen ausbildende Schultern auf. Insbesondere können zwischen diesen Schultern Schrauben zum Festlegen des Düsenringes bzw. zur Montage des Turbinengehäuses am Turbolader hindurchgeführt werden. Somit ermöglicht eine Ausgestaltung des Stützelementes mit mehreren Passflächen den Einbau eines Düsenringes auch bei begrenztem zur Verfügung stehendem Bauraum innerhalb des Turbinengehäuses.In a particularly preferred embodiment, the support element on several mating surfaces forming shoulders. In particular, screws for fixing the nozzle ring or for mounting the turbine housing on the turbocharger can be passed between these shoulders. Thus, an embodiment of the support element with multiple mating surfaces allows the installation of a nozzle ring even with limited space available within the turbine housing.

In einer bevorzugten Ausführung weist das Stützelement einen mit Bohrung versehenen Flansch zur Festlegung des Stützelementes am Turbinengehäuse auf. Durch einen am Stützelement vorgesehenen Flansch kann das Stützelement auf einfache Weise am Turbinengehäuse eingebracht und fixiert werden. Insbesondere ermöglicht eine Fixierung über einen Flansch mit Bohrungen eine verdrehsichere Anordnung des Düsenrings und der am Düsenring angeordneten Leitschaufeln im Turbinengehäuse. Dies ermöglicht eine zuverlässige Anpassung des Turboladers an einen alternativen Betriebspunkt.In a preferred embodiment, the support element has a bore provided with a bore for fixing the support element on the turbine housing. By a provided on the support member flange, the support member can be easily introduced and fixed to the turbine housing. In particular, a fixation via a flange with holes allows a rotationally secure arrangement of the nozzle ring and arranged on the nozzle ring guide vanes in the turbine housing. This allows a reliable adaptation of the turbocharger to an alternative operating point.

Ebenfalls wird die eingangs gestellte Aufgabe gelöst durch Stationärmotorsystem, welches zumindest einen Motor und zumindest einen Turbolader aufweist, wobei der Turbolader wie vor oder nachbeschriebenen erfindungsgemäß ausgebildet ist. Die mit diesen Ausbildungen einhergehenden Vorteile kommen ebenfalls dem erfindungsgemäßen Stationärmotorsystem zu.Likewise, the object stated at the outset is solved by a stationary engine system which has at least one engine and at least one turbocharger, wherein the turbocharger is designed according to the invention as described above or below. The Advantages associated with these embodiments also accrue to the stationary motor system according to the invention.

Schließlich wird die eingangs gestellte Aufgabe gelöst durch ein Stationärmotorsystem, welches nach dem vor- und/oder nachbeschriebenen erfindungsgemäßen Verfahren angepasst ist. Die mit dem erfindungsgemäßen Anpassen einhergehenden Vorteile kommen ebenfalls dem erfindungsgemäßen Stationärmotorsystem zu.Finally, the object stated at the outset is solved by a stationary motor system, which is adapted according to the pre and / or post-described method according to the invention. The advantages associated with the adjustment according to the invention also apply to the stationary motor system according to the invention.

Nachfolgend werden gleichwirkende Elemente der Erfindung mit einer einheitlichen Bezugsziffer versehen, sofern dieses sinnvoll ist. Die nachfolgend beschriebenen Merkmale der Ausführungsbeispiele können auch in anderen Merkmalskombinationen als dargestellt und in Kombination mit den Merkmalen eines der unabhängigen Ansprüche Gegenstand der Erfindung sein.Hereinafter, equivalent elements of the invention are provided with a common reference number, if this is meaningful. The features of the exemplary embodiments described below may also be the subject of the invention in other combinations of features than illustrated and in combination with the features of one of the independent claims.

In den schematischen Abbildungen zeigt:

Fig. 1
einen Schnitt durch einen Turbolader, ausgelegt für den Betrieb in einem ersten Betriebspunkt,
Fig. 2
einen Schnitt durch einen Turbolader mit eingebrachten Leitschaufeln, ausgelegt für einen Betrieb in einem zweiten Betriebspunkt,
Fig. 3
eine schematische Darstellung eines Verfahrens zur Anpassung eines Turboladers,
Fig. 4
eine schematische Darstellung eines Verfahrens zur Auslegung eines Turboladers eines Stationärmotorsystems für einen Betrieb in einem zweiten Betriebspunkt,
Fig. 5
ein Verfahrensdiagramm zur Bestimmung der Anordnung der Leitschaufeln in einem Turbinengehäuse,
Fig. 6
ein Turbinengehäuse mit eingebrachten Leitschaufeln für einen Betrieb eines Turboladers in einem zweiten Betriebspunkt,
Fig. 7
einen Schnitt durch ein Turbinengehäuse nach Fig.6 in einer die Längsmittelachse des Turboladers enthaltenen Ebene,
Fig. 8
einen Schnitt durch ein Turbinengehäuse nach Fig. 6 in einer senkrecht zur Längsmittelachse des Turboladers ausgerichteten Ebene,
Fig. 9
einen Düsenring mit Stützelement und Leitschaufeln,
Fig. 10
eine weitere Ausführungsform eines Turbinengehäuses mit eingebrachtem Düsenring mit Passfläche und Flansch,
Fig. 11
ein Düsenring mit Passfläche und Flansch nach Fig. 10,
Fig. 12
eine weitere Ausführungsform eines Düsenringes mit einem Flansch,
Fig. 13
eine weitere Ausführungsform eines Düsenringes, der von einer dem Verdichter abgewandten Seite des Turbinengehäuse in das Turbinengehäuse einbringbar ist,
Fig. 14
eine weitere Ausführungsform eines Düsenringes mit mehreren Schultern und Passflächen,
Fig. 15
ein Stützelement zur Aufnahme einzelner, trennbarer Leitschaufeln,
Fig. 16
eine einzelne Leitschaufel zur Verwendung mit Stützelement nach Fig. 15.
In the schematic figures shows:
Fig. 1
a section through a turbocharger, designed for operation in a first operating point,
Fig. 2
a section through a turbocharger with introduced guide vanes, designed for operation in a second operating point,
Fig. 3
a schematic representation of a method for adjusting a turbocharger,
Fig. 4
a schematic representation of a method for designing a turbocharger of a stationary engine system for operation in a second operating point,
Fig. 5
a process diagram for determining the arrangement of the guide vanes in a turbine housing,
Fig. 6
a turbine housing with introduced guide vanes for operation of a turbocharger at a second operating point,
Fig. 7
a section through a turbine housing after Figure 6 in a plane containing the longitudinal central axis of the turbocharger,
Fig. 8
a section through a turbine housing after Fig. 6 in a plane aligned perpendicular to the longitudinal center axis of the turbocharger,
Fig. 9
a nozzle ring with support element and vanes,
Fig. 10
a further embodiment of a turbine housing with an inserted nozzle ring with mating surface and flange,
Fig. 11
a nozzle ring with mating surface and flange after Fig. 10 .
Fig. 12
a further embodiment of a nozzle ring with a flange,
Fig. 13
a further embodiment of a nozzle ring which can be introduced from a side facing away from the compressor of the turbine housing in the turbine housing,
Fig. 14
Another embodiment of a nozzle ring with multiple shoulders and mating surfaces,
Fig. 15
a support element for receiving individual, separable guide vanes,
Fig. 16
a single vane for use with support element Fig. 15 ,

Fig. 1 zeigt einen Schnitt durch einen Turbolader 2, der für einen Betrieb in einem ersten Betriebspunkt ausgelegt ist. Der Turbolader 2 weist eine Turbine 4 und einen Verdichter 6 auf. Die Turbine 4 umfasst ein Turbinenrad 8 und ein Turbinengehäuse 10. Das Turbinenrad 8 ist über eine Welle mit einem Verdichterrad verbunden. Die Welle ist in einem Lagerstock gelagert, an dem ein Verdichtergehäuse und das Turbinengehäuse 10 angeordnet sind. Fig. 1 shows a section through a turbocharger 2, which is designed for operation at a first operating point. The turbocharger 2 has a turbine 4 and a compressor 6. The turbine 4 comprises a turbine wheel 8 and a turbine housing 10. The turbine wheel 8 is connected to a compressor wheel via a shaft. The shaft is mounted in a storage stock, on which a compressor housing and the turbine housing 10 are arranged.

Fig. 2 zeigt einen Turbolader 2, der erfindungsgemäß für einen Betrieb in einem zweiten Betriebspunkt angepasst ist. Am Turbinengehäuse 10 ist innenseitig Material entfernt worden. In das Turbinengehäuse 10 ist ein Düsenring 12, umfassend ein Stützelement 14 und Leitschaufeln 16, eingebracht. Das Turbinengehäuse 10 ist gegen den Lagerstock des Turboladers 2 montiert. Fig. 2 shows a turbocharger 2, which is adapted according to the invention for operation at a second operating point. On the turbine housing 10 is inside material been removed. In the turbine housing 10, a nozzle ring 12, comprising a support member 14 and vanes 16, is introduced. The turbine housing 10 is mounted against the storage stock of the turbocharger 2.

Fig. 3 zeigt ein Ablaufdiagramm der Bearbeitung eines Turboladers 2 zur Anpassung des Turboladers für einen Betrieb in einem alternativen Betriebspunkt. Das Anpassungsverfahren umfasst die Schritte einer Demontage des Turbinengehäuses 10 und die Bearbeitung des Turbinengehäuses 10 durch Entfernen von Material innenseitig am Turbinengehäuse 10. Anschließend wird ein Düsenring 12 in das Turbinengehäuse 10 eingebracht. Der in das Turbinengehäuse 10 eingebrachte Düsenring 12 kann anschließend nachbearbeitet werden. Nach einer Reinigung des Turbinengehäuses 10 wird das Turbinengehäuse 10 wieder zum Turbolader 2 zusammengesetzt und der Turbolader 2 am Motor verbaut. Nicht dargestellt ist die nachfolgend beschriebene Auslegung des Turboladers und des Systems. Fig. 3 shows a flowchart of the processing of a turbocharger 2 for adaptation of the turbocharger for operation in an alternative operating point. The adjustment process includes the steps of disassembling the turbine housing 10 and machining the turbine housing 10 by removing material inside the turbine housing 10. Then, a nozzle ring 12 is inserted into the turbine housing 10. The introduced into the turbine housing 10 nozzle ring 12 can be subsequently reworked. After cleaning the turbine housing 10, the turbine housing 10 is reassembled into the turbocharger 2 and the turbocharger 2 is installed on the engine. Not shown is the interpretation of the turbocharger and the system described below.

Fig. 4 zeigt ein Verfahren zur Auslegung der Anordnung der Leitschaufeln 16 im Turbinengehäuse 10 des Turboladers für einen Betrieb in einem Stationärmotorsystem in Abhängigkeit von Betriebsparametern des Motors bzw. des Stationärmotorsystems. Entsprechend erfolgt eine Anpassung des Stationärmotorsystems. Aus den Abmessungen des Turbinengehäuses 10 ergeben sich die möglichen Abmessungen für einen Düsenring 12. Die Abgastemperaturen des Motors im Turbolader 2 werden für die Auswahl des Materials des Düsenrings 12 herangezogen. Anschließend werden wesentliche Parameter des Motorbetriebs wie der notwendige Ladedruck, der notwendige Frischluftmassenzustrom, die Abgastemperatur sowie der Abgasmassenstrom bestimmt. Hieraus ergeben sich die Sollparameter des Stationärmotorsystems und insbesondere des Turboladers 2. Diese umfassen insbesondere die Solldrehzahl des Turbinenrades 8 bzw. des Verdichterrades. In einem folgenden Prozess wird die Geometrie der Leitschaufeln 16 sowie die Anordnung der Leitschaufeln 16 im Turbinengehäuse 10 bestimmt. Anschließend wird überprüft, ob die erreichten Istwerte den Sollwerten entsprechen. Wenn der entsprechende Ladedruck und Ladeluftmassenstrom erreicht wird, ist die Auslegung beendet. Andernfalls wird eine neue Berechnung der Geometrie der Leitschaufeln 16 durchgeführt. Fig. 4 shows a method for designing the arrangement of the vanes 16 in the turbine housing 10 of the turbocharger for operation in a stationary engine system depending on operating parameters of the engine or the stationary engine system. Accordingly, an adaptation of the stationary engine system. From the dimensions of the turbine housing 10, the possible dimensions for a nozzle ring 12. The exhaust gas temperatures of the engine in the turbocharger 2 are used for the selection of the material of the nozzle ring 12. Subsequently, essential parameters of the engine operation such as the necessary boost pressure, the necessary fresh air mass flow, the exhaust gas temperature and the exhaust gas mass flow certainly. This results in the desired parameters of the stationary engine system and in particular of the turbocharger 2. These include, in particular, the setpoint rotational speed of the turbine wheel 8 or of the compressor wheel. In a following process, the geometry of the guide vanes 16 and the arrangement of the guide vanes 16 in the turbine housing 10 is determined. Subsequently, it is checked whether the achieved actual values correspond to the nominal values. When the corresponding boost pressure and charge air mass flow is reached, the design is completed. Otherwise, a new calculation of the geometry of the vanes 16 is performed.

Fig. 5 zeigt den Ablauf der Berechnung der Auslegung der Anordnung der Leitschaufeln 16 für die Optimierung eines Stationärmotorsystems. Aus der Zusammensetzung des Abgases und der Abgastemperatur wird die Schallgeschwindigkeit im Abgasstrom bestimmt. Aus der geforderten Leistung des Stationärmotorsystems und dem gewünschten Luftverhältnis ergibt sich der notwendige Treibstoffstrom und damit die Normvolumenstrom des Abgases. Aus dem Solldruck nach dem Verdichter und den Umgebungsbedingungen am Aufstellungsort ergibt sich das Verdichtungsverhältnis des Verdichters. Aus dem Verdichterkennfeld ergibt sich zusammen mit dem Sollverdichtermassenstrom eine Solldrehzahl des Turboladers. Weiterhin ergibt sich ein Abgasgegendruck vor der Turbine. Damit kann der Betriebsvolumenstrom des Abgases in der Turbine bestimmt werden. Aus der Umfangsgeschwindigkeit des Turbinenrades, die vom Durchmesser und der Drehzahl abhängt, ergibt sich die notwendige Anströmgeschwindigkeit. Mit dem Betriebsvolumenstrom ergibt sich daraus die Durchtrittsfläche am Einlass der Turbine. Diese Fläche wird über die Anordnung von Leitschaufeln einer gewissen Stärke und Ausrichtung innerhalb des Turbinengehäuses realisiert. Während dieser Auslegung wird an kritischen Punkten überprüft, ob die Strömungsgeschwindigkeiten unterhalb der jeweils herrschenden Schallgeschwindigkeit liegen. Fig. 5 shows the process of calculating the layout of the arrangement of the guide vanes 16 for the optimization of a stationary engine system. From the composition of the exhaust gas and the exhaust gas temperature, the speed of sound in the exhaust gas flow is determined. From the required power of the stationary engine system and the desired air ratio results in the necessary fuel flow and thus the standard volume flow of the exhaust gas. From the setpoint pressure after the compressor and the ambient conditions at the site results in the compression ratio of the compressor. From the compressor map results together with the desired compressor mass flow a target speed of the turbocharger. Furthermore, there is an exhaust back pressure upstream of the turbine. Thus, the operating volume flow of the exhaust gas can be determined in the turbine. From the peripheral speed of the turbine wheel, which depends on the diameter and the speed, there is the necessary flow velocity. With the operating volume flow, this results in the passage area at the inlet of the turbine. This area is governed by the arrangement of vanes of a certain thickness and orientation within the turbine housing realized. During this design it is checked at critical points whether the flow velocities are below the respectively prevailing speed of sound.

Fig. 6 zeigt ein Turbinengehäuse 10 für einen Turbolader, der für einen Betrieb in einem zweiten Betriebspunkt ausgelegt ist. Im Turbinengehäuse 10 ist eine Düsenring 12 angeordnet. In Fig. 7 ist das in Fig. 6 dargestellte Turbinengehäuse 10 geschnitten dargestellt. Der Düsenring 12 stützt sich über das Stützelement 14 am nachträglich bearbeiteten Bereich des Turbinengehäuses 10 ab und zwar auf der dem Verdichter 6 zugewandten Seite des Turbinengehäuses 10. Fig. 8 zeit das Turbinengehäuse nach Fig. 6 in einer alternativen Schnittdarstellung. Hier ist ein Schneckengang 11 des Turbinengehäuses 10 erkennbar, dessen Querschnitt sich von einem Einlass des Turbinengehäuses 10 stetig verkleinert. Die Schaufeln des Düsenrings können anders als dargestellt in Umfangsrichtung insbesondere hinsichtlich Ihrer Schaufelfläche und dem Anstellwinkel variierend angeordnet werden, um dem sich verjüngenden Schneckenkanal Rechnung zu tragen. Fig. 9 zeigt den in Fig. 6, 7 und 8 verwendeten Düsenring mit den Leitschaufeln 16 und dem Stützelement 14. Fig. 6 shows a turbine housing 10 for a turbocharger, which is designed for operation at a second operating point. In the turbine housing 10, a nozzle ring 12 is arranged. In Fig. 7 is that in Fig. 6 illustrated turbine housing 10 shown in section. The nozzle ring 12 is supported via the support element 14 on the subsequently machined region of the turbine housing 10, specifically on the side of the turbine housing 10 facing the compressor 6. Fig. 8 time the turbine housing Fig. 6 in an alternative sectional view. Here, a worm gear 11 of the turbine housing 10 can be seen, whose cross-section decreases steadily from an inlet of the turbine housing 10. The blades of the nozzle ring can be arranged differently than shown in the circumferential direction, in particular with respect to your blade surface and the angle of attack varying to take into account the tapered screw channel. Fig. 9 shows the in FIGS. 6, 7 and 8 used nozzle ring with the vanes 16 and the support member 14th

Fig. 10 zeigt eine alternative Ausführungsform eines Turbinengehäuses 10 mit Düsenring 12. Der Düsenring 12 weist eine Schulter 18 mit einer Passfläche 20 auf, die an einer korrespondierenden Gehäusepassfläche 22 des Turbinengehäuses 10 anliegt. Weiterhin weist der Düsenring 12 einen Flansch 24 auf. Über den Flansch 24 kann der Düsenring 12 am Turbinengehäuse 10 festgelegt werden. Ein entsprechender Düsenring 12 ist in Fig. 11 dargestellt. Fig. 10 shows an alternative embodiment of a turbine housing 10 with nozzle ring 12. The nozzle ring 12 has a shoulder 18 with a mating surface 20 which rests against a corresponding housing fitting surface 22 of the turbine housing 10. Furthermore, the nozzle ring 12 has a flange 24. Over the flange 24 the nozzle ring 12 can be fixed to the turbine housing 10. A corresponding nozzle ring 12 is in Fig. 11 shown.

Fig. 12 zeigt eine alternative Ausführungsform eines Turbinengehäuses 10 mit einem Düsenring 12. Hier fallen Schulter 18 und Flansch 24 zur Festlegung des Düsenringes 12 am Turbinengehäuse 10 zusammen. Die Passfläche 20 wird durch den Flansch 24 ausgebildet. Fig. 12 shows an alternative embodiment of a turbine housing 10 with a nozzle ring 12. Here fall shoulder 18 and flange 24 for fixing the nozzle ring 12 on the turbine housing 10 together. The mating surface 20 is formed by the flange 24.

Fig. 13 zeigt ein alternatives Düsenring 12 der von einer Frischluftzufuhrseite in das Turbinengehäuse 10 einbringbar ist. Fig. 13 shows an alternative nozzle ring 12 which can be introduced from a fresh air supply side into the turbine housing 10.

Fig. 14 zeigt eine weitere Ausführungsform eines Düsenring 12. Der Düsenring 12 weist mehrere Schultern 18 sowie mehrere Passflächen 20 auf. Zwischen den einzelnen Schultern 18 bzw. Passflächen 20 sind Durchgänge vorhanden. Diese dienen der Durchführung von Schrauben zwischen den Schultern 18 bzw. den Passflächen 20. Hierdurch ist es möglich, auch bei beengten Platzverhältnissen im Turbinengehäuse 10 einen Düsenring 12 am Turbinengehäuse 10 festzulegen. Fig. 14 shows a further embodiment of a nozzle ring 12. The nozzle ring 12 has a plurality of shoulders 18 and a plurality of mating surfaces 20. Passages are present between the individual shoulders 18 or fitting surfaces 20. These are used to carry out screws between the shoulders 18 and the mating surfaces 20. This makes it possible to set a nozzle ring 12 on the turbine housing 10 even in tight spaces in the turbine housing 10.

Fig. 15 zeigt ein Stützelement 14 in Form eines Ringes. Im Stützelement 14 sind Ausnehmungen 26 angeordnet. Das Stützelement 14 dient zur Aufnahme von Leitschaufeln 16, wie sie in Fig. 16 dargestellt sind. Die Leitschaufeln 16 weisen Anformungen 28 auf, die in den Ausnehmungen 26 des Stützelementes 14 Aufnahme finden können. Die auf der gegenüberliegenden Seite der Leitschaufeln 16 angeordneten Anformungen 28 können in entsprechenden Ausnehmungen im Turbinengehäuse 10 Aufnahme finden. Fig. 15 shows a support member 14 in the form of a ring. In the support member 14 recesses 26 are arranged. The support member 14 serves to receive vanes 16, as shown in FIG Fig. 16 are shown. The guide vanes 16 have projections 28 which can be accommodated in the recesses 26 of the support member 14. The arranged on the opposite side of the vanes 16 Formations 28 can be found in corresponding recesses in the turbine housing 10 recording.

Claims (17)

Verfahren zur Anpassung eines Turboladers, insbesondere zur Verwendung in einem für einen ersten Betriebspunkt ausgelegten Stationärmotorsystem, insbesondere eines Blockheizkraftwerkes, wobei der Turbolader (2) zumindest eine Turbine (4), umfassend ein Turbinenrad (8) und ein Turbinengehäuse (10), und einen Verdichter (6) aufweist, dadurch gekennzeichnet, dass am Turbinengehäuse (10) des Turboladers (2) innenseitig Material entfernt wird, um Raum für die Aufnahme von Leitschaufeln (16) zu schaffen, und Leitschaufeln (16) in das Turbinengehäuse (10) eingebracht werden, sowie anschließend der Turbolader (2) montiert wird, wobei insbesondere die Leitschaufeln (16) in einen Bereich in Strömungsrichtung vor dem Turbinenrad (8) in das Turbinengehäuse (10) eingebracht werden.Method for adapting a turbocharger, in particular for use in a stationary engine system designed for a first operating point, in particular a combined heat and power plant, wherein the turbocharger (2) comprises at least one turbine (4) comprising a turbine wheel (8) and a turbine housing (10), and a Compressor (6), characterized in that on the turbine housing (10) of the turbocharger (2) inside material is removed to provide space for receiving guide vanes (16), and guide vanes (16) introduced into the turbine housing (10) and then the turbocharger (2) is mounted, wherein in particular the guide vanes (16) are introduced into an area in the flow direction in front of the turbine wheel (8) in the turbine housing (10). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Düsenring (12) auf der im montierten Zustand dem Verdichter (6) zugewandten Seite des Turbinengehäuses (10) in das Turbinengehäuse (10) eingebracht wird.A method according to claim 1, characterized in that a nozzle ring (12) on the in the assembled state the compressor (6) facing side of the turbine housing (10) is introduced into the turbine housing (10). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Düsenring (12) verdrehsicher im Turbinengehäuse (10) festgelegt wird.Method according to one of the preceding claims, characterized in that the nozzle ring (12) is secured against rotation in the turbine housing (10). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Auslegung des anzupassenden Turboladers erfolgt und bei der Auslegung überprüft wird, dass die Strömungsgeschwindigkeiten im Turbolader (2) unterhalb der Schallgeschwindigkeiten liegen.Method according to one of the preceding claims, characterized in that an interpretation of the turbocharger to be adapted takes place and in the design it is checked that the flow velocities in the turbocharger (2) are below the speed of sound. Verfahren zur Optimierung eines insbesondere für einen ersten Betriebspunkt ausgelegten Stationärmotorsystems, insbesondere eines Blockheizkraftwerkes, umfassend zumindest einen Motor und zumindest einen Turbolader (2), dadurch gekennzeichnet, dass das Stationärmotorsystem für einen Betrieb in einem insbesondere zweiten Betriebspunkt angepasst wird, indem der Turbolader (2) nach einem Verfahren gemäß einem der Ansprüche 1 bis 4 angepasst und montiert wird.Method for optimizing a stationary engine system designed in particular for a first operating point, in particular a combined heat and power plant comprising at least one engine and at least one turbocharger (2), characterized in that the stationary engine system is adapted for operation at a particularly second operating point by the turbocharger (2 ) is adapted and mounted according to a method according to one of claims 1 to 4. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Anordnung der Leitschaufeln (16) in Abhängigkeit von zumindest einem Betriebsparameter des Stationärmotorsystems am Aufstellungsort gewählt wird, wobei insbesondere ein Verdichtungsverhältnis des Verdichters (6) in Abhängigkeit von Umgebungsbedingungen, insbesondere des Luftdrucks, am Aufstellungsort des Stationärmotorsystems festgelegt wird.A method according to claim 5, characterized in that the arrangement of the guide vanes (16) is selected in dependence on at least one operating parameter of the stationary engine system at the site, wherein in particular a compression ratio of the compressor (6) in dependence on ambient conditions, in particular the air pressure, at the site of the Stationary motor system is set. Turbolader, insbesondere zur Verwendung in einem Stationärmotorsystem, der eine Turbine (4), umfassend ein Turbinenrad (8) und ein Turbinengehäuse (10), und einen Verdichter (6) aufweist, dadurch gekennzeichnet, dass in das nachträglich bearbeitete Turbinengehäuse (10) eines ansonsten betriebsfähigen Turboladers (2) nachgerüstete und insbesondere unbeweglich festgelegte Leitschaufeln (16) eingebracht sind, wobei insbesondere die Leitschaufeln (16) in einem Bereich in Strömungsrichtung vor dem Turbinenrad (8) in dem Turbolader (2) angeordnet sind.A turbocharger, in particular for use in a stationary engine system, comprising a turbine (4) comprising a turbine wheel (8) and a turbine housing (10), and a compressor (6), characterized in that in the subsequently machined turbine housing (10) of a otherwise serviceable turbocharger (2) retrofitted and in particular immovably fixed guide vanes (16) are introduced, wherein in particular the guide vanes (16) in a region in the flow direction in front of the turbine wheel (8) in the turbocharger (2) are arranged. Turbolader nach Anspruch 7, dadurch gekennzeichnet, dass eine Leitschaufel (16) an einem jeweiligen Stützelement (14) festgelegt ist und mit diesem zusammen einen Düsenring (12) ausbilden, wobei insbesondere die Leitschaufeln (16) in einer Richtung parallel zu einer Längsmittelachse (15) des Turboladers (2) erstreckt an dem Stützelement (14) festgelegt sind, wobei insbesondere die Erstreckung des Stützelementes (14) in einer Richtung parallel zur Längsmittelachse (15) des Turboladers (2) mindestens so groß ist wie die Erstreckung der Leitschaufeln (16) in einer Richtung parallel zur Längsmittelachse (15) des Turboladers (2).Turbocharger according to claim 7, characterized in that a guide blade (16) is fixed to a respective support element (14) and together with this form a nozzle ring (12), wherein in particular the guide vanes (16) in a direction parallel to a longitudinal central axis (15 ) of the turbocharger (2) are fixed to the support element (14), wherein in particular the extent of the support element (14) in a direction parallel to the longitudinal center axis (15) of the turbocharger (2) is at least as large as the extension of the guide vanes (16 ) in a direction parallel to the longitudinal central axis (15) of the turbocharger (2). Turbolader nach Anspruch 8, dadurch gekennzeichnet, dass das Verhältnis aus Durchmesser des Düsenringes (12) und Breite des Düsenringes (12) kleiner als drei ist.Turbocharger according to claim 8, characterized in that the ratio of the diameter of the nozzle ring (12) and the width of the nozzle ring (12) is less than three. Turbolader nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass eine an einem jeweiligen Stützelement (14) festgelegte Leitschaufel (16) einstückig mit diesem ausgebildet ist.Turbocharger according to Claim 8 or 9, characterized in that a guide blade (16) fixed to a respective support element (14) is formed integrally therewith. Turbolader nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Leitschaufeln (16) und das Stützelement (14) voneinander trennbar sind und eine einzelne Leitschaufel (16) mindestens eine Anformung (28) aufweist und das Turbinengehäuse (10) mindestens eine Anformung (28) der Leitschaufel (16) aufnehmende Ausnehmung (26) aufweist.Turbocharger according to one of claims 8 to 10, characterized in that the guide vanes (16) and the support element (14) are separable from each other and a single vane (16) at least one Anformung (28) and the turbine housing (10) at least one Anformung (28) of the vane (16) receiving recess (26). Turbolader nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass das Stützelement (14) als Ring ausgebildet ist.Turbocharger according to one of claims 8 to 11, characterized in that the support element (14) is formed as a ring. Turbolader nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass das Stützelement (14) eine im eingebauten Zustand in radialer Richtung von der Längsmittelsachse (15) des Turboladers (2) weggerichtete und eine Passfläche (20) ausbildende Schulter (18) aufweist, wobei insbesondere das Turbinengehäuse (10) eine zur Passfläche (20) des Stützelementes (14) korrespondierende Gehäusepassfläche (22) aufweist, wobei insbesondere das Stützelement (14) mehrere Passflächen (20) ausbildende Schultern (18) aufweist.Turbocharger according to one of claims 8 to 12, characterized in that the support element (14) in the installed state in the radial direction of the longitudinal central axis (15) of the turbocharger (2) directed away and a mating surface (20) forming shoulder (18), wherein in particular the turbine housing (10) has a housing surface (22) corresponding to the mating surface (20) of the support element (14), wherein in particular the support element (14) has shoulders (18) forming a plurality of mating surfaces (20). Turbolader nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass das Stützelement (14) einen mit Bohrungen versehenen Flansch (24) zur Festlegung des Stützelementes (14) am Turbinengehäuse (10) aufweist.Turbocharger according to one of claims 7 to 13, characterized in that the support element (14) has a flange provided with bores (24) for fixing the support element (14) on the turbine housing (10). Turbolader nach einem der Ansprüche 7 bis 14, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 4.Turbocharger according to one of claims 7 to 14, produced by a process according to one of claims 1 to 4. Stationärmotorsystem, insbesondere eines Blockheizkraftwerkes, umfassend zumindest einen Motor und zumindest einen Turbolader (2), dadurch gekennzeichnet dass der Turbolader (2) nach einem der Ansprüche 7 bis 15 ausgebildet ist.Stationary engine system, in particular a combined heat and power plant comprising at least one engine and at least one turbocharger (2), characterized in that the turbocharger (2) is designed according to one of claims 7 to 15. Stationärmotorsystem nach Anspruch 16, hergestellt nach einem Verfahren gemäß einem der Ansprüche 5 oder 6.Stationary engine system according to claim 16, produced by a method according to one of claims 5 or 6.
EP18180501.1A 2017-06-28 2018-06-28 Stationary motor system and turbocharger and method for adapting a turbocharger and a stationary motor system Active EP3421728B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017114397.1A DE102017114397A1 (en) 2017-06-28 2017-06-28 Method for adapting a turbocharger and a stationary engine system as well as turbocharger and stationary engine system

Publications (2)

Publication Number Publication Date
EP3421728A1 true EP3421728A1 (en) 2019-01-02
EP3421728B1 EP3421728B1 (en) 2021-09-29

Family

ID=62837608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18180501.1A Active EP3421728B1 (en) 2017-06-28 2018-06-28 Stationary motor system and turbocharger and method for adapting a turbocharger and a stationary motor system

Country Status (2)

Country Link
EP (1) EP3421728B1 (en)
DE (1) DE102017114397A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19703033A1 (en) * 1997-01-29 1998-07-30 Asea Brown Boveri Exhaust gas turbine of a turbocharger
DE102010064047A1 (en) * 2010-12-23 2012-06-28 Man Diesel & Turbo Se Fluid flow machine has housing with fluid guiding housing and bearing housing that is connected with fluid guiding housing, where impeller is mounted in fluid guiding housing over central impeller shaft in rotating manner
EP2733311A1 (en) * 2012-11-16 2014-05-21 ABB Turbo Systems AG Nozzle ring

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011152454A1 (en) * 2010-06-01 2013-08-01 株式会社Ihi Fixed-wing turbocharger
DE102015211173A1 (en) * 2015-06-17 2016-07-14 Mtu Friedrichshafen Gmbh Blade assembly, radial engine and turbocharger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19703033A1 (en) * 1997-01-29 1998-07-30 Asea Brown Boveri Exhaust gas turbine of a turbocharger
DE102010064047A1 (en) * 2010-12-23 2012-06-28 Man Diesel & Turbo Se Fluid flow machine has housing with fluid guiding housing and bearing housing that is connected with fluid guiding housing, where impeller is mounted in fluid guiding housing over central impeller shaft in rotating manner
EP2733311A1 (en) * 2012-11-16 2014-05-21 ABB Turbo Systems AG Nozzle ring

Also Published As

Publication number Publication date
DE102017114397A1 (en) 2019-01-03
EP3421728B1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
EP2733311B1 (en) Nozzle ring
EP3040560B1 (en) Housing device for a stage of a multi-stage compressor and a method for producing a housing device
EP2048326A2 (en) Twin-scroll exhaust turbo charger
DE102014204468A1 (en) Gas turbine combustor and method for its production
DE112011103045T5 (en) Method for producing a turbocharger
EP1816401B1 (en) Turbomachine
DE10238658A1 (en) Compressor, especially, for exhaust turbocharger for IC engines has adjusting ring with adjusting elements to charge diffuser body guide blades at a distance to blade shaft
EP1843009A1 (en) Stator vane segment for a turbomachine, associated manufacturing method and turbomachine
EP3176386B1 (en) Inner shroud assembly, corresponding inner shroud, inner casing and turbomachine
DE102014224920A1 (en) Device for recontouring a gas turbine blade
WO2017045738A1 (en) Turbine wheel for a turbine of an exhaust gas turbocharger
WO2018215179A1 (en) Method for finish-machining a channel in a workpiece
DE102017104087A1 (en) Method for producing a housing of a screw compressor
EP3421728B1 (en) Stationary motor system and turbocharger and method for adapting a turbocharger and a stationary motor system
EP2767678A1 (en) Bucket wheel and method for fabricating a bucket
DE102015216306A1 (en) Variable turbine geometry vane, method of manufacturing a vane and turbocharger with a vane
WO2016184550A1 (en) Radial compressor and exhaust-gas turbocharger of an internal combustion engine
DE3151414A1 (en) Radial flow turbine
EP3426432A1 (en) Device and method for re-contouring a gas turbine blade
DE102010062968A1 (en) Radial compressor for exhaust gas turbocharger for fuel cell system of combustion engine in motor car, has axial spacer attached to intake guide such that spacer measures distance between intake guide and bearing housing
DE102014214980A9 (en) Exhaust gas turbocharger for an internal combustion engine
DE102015006457A1 (en) Radial compressor, in particular for an exhaust gas turbocharger of an internal combustion engine
DE102004031986A1 (en) Exhaust-gas turbocharger for internal combustion engine, has three studs arranged at fixed-blade carrier in circumferential direction and pass through notches formed in bearing housing to form bayonet lock for connecting carrier at housing
EP3034837B1 (en) Coolant air supply device for a gas turbine
EP3929407A1 (en) Modular nozzle ring for a turbine stage of a flow engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190628

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20201109

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210222

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434360

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007231

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007231

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230623

Year of fee payment: 6

Ref country code: FR

Payment date: 20230622

Year of fee payment: 6

Ref country code: DE

Payment date: 20230315

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230425

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230609

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230616

Year of fee payment: 6

Ref country code: GB

Payment date: 20230627

Year of fee payment: 6

Ref country code: CH

Payment date: 20230702

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929