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Abstract

The aim of this article is to give a quick but complete proof of Abel’s theorem on
insolvability of quintic polynomials along a geodesic path. As prerequisites, we assume
that the reader is familiar with the notion of quotient rings and first homomorphism
theorem. We refer the reader to my article ”How to work with quotient rings?” for
confidence building.

Definition 1. A field L is said to be an extension field of the field F if there exists an injective
homomorphism from F to L. We denote this by L/F . (Note that the notation L/F does not
denote the ‘quotient set’.)

Note that any field F is an extension field of itself. If L is an extension field of F we can
view F as a subfield of L.

Ex. 2. Suppose σ : F → L is a non-zero field homomorphism then σ is injective.

If L is an extension field of F then L can be viewed as a vector space over F . We denote
the dimension of L over F by [L : F ]. When this is finite, it is called the degree of the
extension L/F .

Definition 3. A field extension L/F is said to be a finite extension if the degree [L : F ] <∞.

Example 4. (i) F/F (ii) C/R

Theorem 5 (Tower Law). Let F ⊂ E ⊂ L be fields. Then [L : F ] = [L : E][E : F ].

Proof. If {xi}i∈I is a basis for E/F and {yj}j∈J is a basis for L/E then {xiyj}(i,j)∈I×J is a
basis for L/F .

Definition 6. Consider a field extension L/F . Let S ⊂ L. A smallest subring (subfield)
which contains S and F is said to be the subring (subfield) generated by S over F and is
denoted by F [S] (respectively F (S)). If S is finite set, say S = {α1, . . . , αk} then F [S]
(respectively F (S)) is denoted by F [α1, . . . , αk] (respectively F (α1, . . . , αk)).

Ex. 7. The field of quotients of F [S] = F (S).
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Definition 8. A field extension L/F is said to be finitely generated (over F ) if there exists a
finite subset S of L such that L is generated by S over F . If S = {α1, . . . , αk} then we have
L = F (α1, . . . , αk).

Ex. 9. Every finite extension is finitely generated.

Definition 10. Consider a field extension L/F . An element α in L is said to be algebraic
over F if there exists a non zero polynomial p(x) ∈ F [x] for which α is a root. If α is not
algebraic over F then we say α is transcendental over F .

Question is whether [F (α : F ] < ∞ or not. If it is finite, say, n, there exists
a nontrivial linear combination

∑n
0 cjα

j = 0. This motivates the definition of
algebraic elements. I suggest that this be rewritten.

If L = C and F = Q then α in C is called an algebraic number or a transcendental number
accordingly if α is algebraic or transcendental over Q.

Ex. 11. If the extension L/F is finite, then any element of L is algebraic over F .

Hint: Let [L : F ] = n. Let α be a element in L. Consider the set of n + 1 elements
{1, α, α2, ..., αn} which is linearly dependent.

Theorem 12. Let L/F be an arbitrary extension. Then the collection of elements of L that
are algebraic over F form a subfield K of L.

Proof. Suppose α and β are algebraic over F . Then α ± β, αβ, α/β(for β 6= 0), are all
algebraic. All of these elements lie in the extension F (α, β), which is finite over F by the
tower law, hence they are algebraic.1

Let L/F be an extension. Consider the evaluation map να : F [x] → L defined by
να(p(x)) = p(α). Then να is a ring homomorphism and also a vector space homomorphism.

Suppose α is algebraic over F . Then ker(να) 6= 0. Also, kerνα is an ideal in F [x]. Then
there exists a unique monic irreducible polynomial (Justify the words in italics.) p(x) such
that ker να = 〈p(x)〉. This polynomial p(x) is called the minimal polynomial of α over F
and is denoted by min(α, F ). By fundamental homomorphism theorem F [x]/ 〈min(α, F )〉 '
Image(να) = F [α]. Therefore F [α] = F (α). We have proved the following:

Theorem 13. Let α ∈ L be algebraic over F . Then there is a unique monic irreducible
polynomial min(α, F ) in F [x] which has α as a root. A polynomial f(x) ∈ F [x] has α as a
root if and only if min(α, F ) divides f(x) in F [x]. Also F [x]/ 〈min(α, F )〉 ' F (α).

Suppose α is transcendental over F . Then ker(να) = 0. Therefore F [x] ' F [α].

Ex. 14. Let L/F be an extension. If α is algebraic over F then prove that F (α)/F is a finite
extension and [F (α) : F ] = deg(min(α, F )). Also, if α is transcendental over F then prove that
F (α)/F is not a finite extension. (Hint: If α is algebraic over F then {1+I, x+I, . . . , xn−1+I}
is a basis for F [x]/I where I = 〈min(α, F )〉 and n is degree of the minimal polynomial.)

1Some more explanation will be needed for a beginner.
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Theorem 15 (Kronecker). Let F be a field and f(x) a polynomial in F [x]. Then there exists
a field extension L of F such that f(x) has a root in L.

Proof. We may assume that f(x) is an irreducible polynomial over F . The field L =
F [x]/ 〈f(x)〉 is an extension of F (why?) and the element x+ < f(x) > a root of f(x)
in L.2

Example 16. Consider the polynomial x2 +1 over R. Then it has a root in R[x]/
〈
x2 + 1

〉
'

C.

Ex. 17. Let f(x) be a polynomial in F [x]. Then show that there exists a field extension
which contains all the roots of f(x) over F .

Ex. 18. Let p1(x), p2(x), . . . , pk(x) be the polynomials in F [x]. Then show that there exists
a field extension of F which contains all the roots of these polynomials.

Definition 19. Let E/F be a field extension. A polynomial f(x) ∈ F [x] is said to split in
E[x] if f(x) can be written as a product of linear factors in E[x].

Definition 20 (Splitting field of a polynomial f(x) over F ). Let f(x) ∈ F [x]. An extension
E/F is said to be a splitting field of f(x) over F if (i) f(x) splits in E[x], (ii) E is the minimal3

field such that f(x) splits in E[x].

Theorem 21. Let f(x) ∈ F [x]. Then there exists a splitting field of f(x) over F . Also it is
a finite extension of F .

Ex. 22. Find a splitting field of (i) x2 + 1 over Q,R and (ii) x2 − 2 over Q,R.

Theorem 23. Let θ : F → F ′ be an isomorphism of fields. Then we can extend θ to an
isomorphism θ : F [x]→ F ′[x]. For, if f(x) = a0 +a1x+ . . .+anx

n define, θ(f(x)) = θ(f)(x),
where θ(f)(x) = θ(a0) + θ(a1)x+ . . .+ θ(an)xn.

F [x]
θ−−−−→ F ′[x]/ /

F
θ−−−−→ F ′

Let p(x) ∈ F [x] be irreducible, and let θ(p)(x) ∈ F ′[x]. Let α and β be roots of p(x) and
θ(p)(x) respectively, then there is a unique isomorphism θ1 : F (α)→ F ′(β) extending θ with
θ1(α) = β.

Proof. θ is an ring isomorphism(It is routine verification). Now, φ : F [x]/ 〈p(x)〉 → F ′[x]/ 〈θ(p)(x)〉
defined by φ(g+ 〈p〉) = θ(g) + 〈θ(p)〉 is an isomorphism (verify!). Note that θ(p)(x) is also an
irreducible polynomial over F ′. Since α and β be roots of p(x) and θ(p)(x) respectively, then
we have F (α) ' F [x]/ 〈p(x)〉 ' F ′[x]/ 〈θ(p)(x)〉 ' F ′(β). That is there exists a unique(?)
isomorphism θ1 from F (α) to F ′(β) extending θ with θ1(α) = β.

2Write down a detailed proof. Explicitly mention where p(x) goes to in the quotient and show how the
coset of x is a zero, as we did in the class.

3Explain what minimality means here.
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Ex. 24. Let E be a splitting field of an irreducible polynomial p(x) ∈ F [x]. Let α be a root
of p(x) in E. Then the number of embeddings (that is an injective homomorphism which is
an identity on F ) from F (α) to E is number of distinct roots of the polynomial p(x).

Theorem 25. Let F and F ′ be fields. Let θ be an isomorphism from F to F ′. Let E and
E′ be splitting fields of f(x) and θ(f)(x) over F and F ′ respectively then there exists an
isomorphism from E to E′.

Proof. Proof by strong4 induction on [E : F ]. Induction hypothesis: Suppose L/K is a
splitting field of g(x) over K, θ : K ' K ′ is an isomorphism from K to K ′ and L′ is a splitting
field of θ(g)(x) over K ′. Then there exists an isomorphism from L to L′ extending θ.5

If [E : F ] = 1 then there is nothing to prove. So assume that this result is true for all
k < n where n > 1. Let [E : F ] = n. Let p(x) be an irreducible factor of f(x). Let α be a
root of p(x) in E. Extend the isomorphism θ from F to F ′ to an isomorphism θ from F [x]
to F ′[x]. Now, φ : F [x]/ 〈p(x)〉 → F ′[x]/ 〈θ(p)(x)〉 defined by φ(g + 〈p〉) = θ(g) + 〈θ(p)〉 is
an isomorphism. Note that θ(p)(x) is also an irreducible polynomial over F ′. Let β be a
root of θ(p)(x) in E′. Then F (α) ' F [x]/ 〈p(x)〉 ' F ′[x]/ 〈θ(p)(x)〉 ' F ′(β). That is there
exists an isomorphism θ1 from F (α) to F ′(β) extending θ. 6 Note that [F (α) : F ] > 1,
[E : F (α)] < n and further E = E(α) and E′ = E′(β) are splitting fields of f(x) and θ(f)(x)
over F (α), F ′(β) respectively7 By induction hypothesis there exists an isomorphism ψ from
E to E′ which is extension of θ1. Hence the theorem follows.

Corollary 26 (Uniqueness of Splitting Fields). If f(x) ∈ F [x], then any two splitting fields
of f(x) over F are isomorphic by an isomorphism which is identity on F .

Definition 27. A field extension E/F is called normal extension if an irreducible polynomial
p(x) ∈ F [x] has a root in E then p(x) splits in E

Theorem 28. Let E/F by an finite extension. Then E/F is a normal extension iff E is the
splitting field of some polynomial p(x) ∈ F [x].

Proof. Let E/F be a normal extension. Since E/F is a finite extension, we let E = F (α1, · · · , αk).
Take p(x) =

∏n
i=1 min(αi, F ). Then E is the splitting field of p(x) over F (Why?).

Reason: αi ∈ E is a root of the irreducible polynomial min(αi, F ). Since E/F is normal,
all roots of min(αi, F ) lies in E. So, p(x) splits in E[x]. Clearly it the smallest field which
contains all αi’s.

For the converse part, assume that E is the splitting field of some p(x) ∈ F [x]. Let
g(x) ∈ F [x] be an irreducible polynomial and let α be a root of g(x) in E. Let β 6= α be
another root of g(x).

We claim β ∈ E. Note that F [α] ' F [β]. Since E is the splitting field of p(x) over F ,
we have E[α] is the splitting field of p(x) over F [α] (Why?) and E[β] is the splitting field of

4In my opinion, it is weak form, as the hypothesis is stronger than the one in the standard induction, but
the conclusion is the same!

5Note the change. This is crucial.
6Note the change.
7Perhaps, this needs explanation, as we found in the classroom.
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p(x) over F [β]. Now, F [α] ' F [β] =⇒ E[α] ' E[β]. But E[α] = E so that E ≈ E[β]. Thus
[E : E] = [E[β] : E] establishes our claim β ∈ E. Hence g(x) splits in E[x].

This last paragraph needs careful rewriting. Where does β live? Say that θ : F [α] →
F [β] is an isomorphism. Let θ1 : E[α] → E[β] be its extension etc. Also, in the last
part, in stead of relying upon E[α] = E etc, argue carefully with the tower law.

Definition 29. Let E/F be a field extension. The Galois group of E over F is defined by
Gal(E/F )= {σ : σ is an automorphism of E such that σ/F =id}. Verify that Gal(E/F ) is
a subgroup of the group of all automorphisms of E.

If f(x) ∈ F [x] has splitting field E, then the Galois group of f(x) is Gal(E/F ).

Ex. 30. Let f(x) ∈ F [x] and let E/F be an extension field. If σ ∈Gal(E/F ) then σ permutes
the roots of f(x) (in E)8. That is, if α ∈ E is a root of f(x), then show that σ(α) is also a
root of f(x).

Theorem 31. If f(x) ∈ F [x] has n distinct roots in its splitting field E, then Gal(E/F ) is
isomorphic to a subgroup of the symmetric group Sn.

Proof. Let X = {α1, . . . , αn} be the set of all the roots of f(x) in E. By the previous exercise
if σ ∈ Gal(E/F ), then σ(X) = X. The map from Gal(E/F ) to SX defined by σ 7→ σ/X is
easily seen to be a homomorphism and it is an injection(why?). Finally SX ' Sn.

Ex. 32. Find the Galois groups (i) of x2 + 1 over R, (ii) of x3 − 1 over Q, (iii) of x3 − 2 over
Q, and (iv) Gal(Q(ζ)/Q), where ζ is the primitive pth root of unity and p a prime.

Theorem 33. Let E be the splitting field of f(x) ∈ F [x] and if f(x) has simple roots (the
roots of f(x) are all distinct) then |Gal (E/F)| = [E : F ].

Proof. Proof by strong9 induction on [E : F ]. Induction hypothesis: Suppose L/K is the
splitting field of g(x) over K, all the roots of g(x) in L are distinct, θK ' K ′ is an isomorphism
from K to K ′ and L′ is the splitting field of θ(g)(x) over K ′. Then θ has exactly [L : K]
number of extensions from L to L′.

If [E : F ] = 1 then E = F and there is only one extension of σ, namely, σ itself. If
[E : F ] > 1, let p(x) be an irreducible factor of f(x), then deg p(x) > 1. Let α be a root of p(x)
in E. Then by Exercise 24 the number of embeddings from F (α) to E is equal to the degree
of p(x). Since E = E(α) is the splitting field of f(x) over F (α) and [E : F (α)] < [E : F ],
by induction for each embedding θ 10of F (α) to E we can get [E : F (α)] = [E : F ]/deg p(x)
number of extensions of θ11. Therefore we get at least [E : F ] number of automorphisms
which are identity on F . But any element in Gal(E/F ) is an embedding from F (α) to E12

so |Gal (E/F )| = [E : F ].

8Inserted: in E
9Same as the last remark on this issue!

10Inserted the map θ.
11Used the notation θ
12Perhaps, better to explain this, as this caused problems in the class.
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Definition 34 (Radical extension). An extension R/F is said to be a radical extension if
there exists a finite number of tower of fields F = R0 ⊆ R1 ⊆ R2 ⊆ . . . ⊆ Rk = R such that
for each i Ri+1 = Ri(αi), with αni

i ∈ Ri for some positive integer ni. If ni’s are all prime then
R/F is said to be prime radical extension.

If R = F (α) with αn ∈ F and F contains the nth root of unity, then R is the splitting
field of xn − αn over F .

Ex. 35. Any radical extension of F is a finite extension. (Hint: If R = F (α) with αn ∈ F ,
then α is a root of the polynomial xn − αn over F .)

Ex. 36. If R/F is a radical extension then R/F is a prime radical extension.(Hint: If αn ∈ F
and n = pm, where p is a prime, then there is a tower of fields F ⊆ F (αm) ⊆ F (α).)

Ex. 37. If R/F is a radical extension containing an extension E/F , then E/F is also radical
extension.13

Ex. 38. If L/E and E/F are radical extensions, then L/F is also a radical extension.

Ex. 39. Prove that any splitting field E/F of f(x) ∈ F [x] containing a radical extension
R/F is itself a radical extension.

Definition 40. If f(x) ∈ F [x], then f(x) is solvable by radicals over F if there is a radical
extension R/F which contains the splitting field E of f(x) over F .

Example 41. If f(x) = x2 + bx+ c ∈ Q[x]14, define F = Q(b, c) and E = F (
√
b2 − 4c). Then

E is the splitting field of f(x) over F and also E/F is a radical extension; therefore, f(x) is
solvable by radicals over F .

Theorem 42. Let F be a field of characteristic 0 and let E/F be a radical extension. Then
there exists an extension R/F such that (i) E ⊆ R, (ii) R is radical over F , (iii) R is normal
over F .

Proof. Since E/F is a radical extension there exists a radical tower F = E0 ⊆ E1 ⊆ E2 ⊆
. . . ⊆ Er = E. We prove the theorem by induction on r. If r = 0 then there is nothing
to prove. So assume that the result is true for all k < r. Using induction hypothesis for
r − 1, we have a radical extension L/Er−1 such that (i) Er−1 ⊆ L, (ii) L/F is radical and
(iii) L/F is normal. Since L/F is normal there exists a polynomial g(x) ∈ F [x] such that
L is the splitting field of g(x) over F . Note that, Er = Er−1(a) with an = b ∈ Er−1. Let
f(x) = min(a, L) and K is the splitting field of f(x) over L. Then (i) E = Er ⊆ K, (ii) K
radical over L, and (iii) K is the splitting field of the polynomial f(x)g(x) over F and hence
K/F is normal.15

Reasons: (i) Since a ∈ K and Er−1 ⊆ L ⊆ K, we have Er ⊆ K.

(ii) Since K = L(α1 = a, α2, . . . , αk), where αi’s are all roots of f(x) in L and f(x) divides
xn − b, we have αni ∈ L.

13Is this clear?
14Note the polynomial ring.
15A diagram as drawn in the class may be of help.
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(iii) Since g(x) splits in L and f(x) splits in K, L ⊆ K, we have f(x)g(x) splits in K.
Let K1 be the splitting field of f(x)g(x) over F then K1 ⊆ K. Since L is the splitting field
of g(x) over F we have L ⊆ K1 and also since K is the splitting field of f(x) over L, we have
K ⊆ K1. Hence K = K1.

Corollary 43. Let F be a field of characteristic 0 and let E/F be a radical extension. Then
there exists an extension R/F such that (i) E ⊆ R, (ii) R is prime radical over F , (iii) R is
normal over F .

Corollary 44. Let F be a field of characteristic 0 and let E/F be a radical extension. Then
there exists an extension R/F such that

(i) E ⊆ R,
(ii) R is normal over F
(iii) R/F is a prime radical extension such that F = E0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Er = R with

the properties
(a) for each j we have Ej = Ej−1(αj), α

pj
j ∈ Ej−1, where pj is a prime and

(b) if αj is not a pjth root of unity, then Ej−1 contains the pj th root of unity.

Definition 45 (Solvable group). A group G is said to be solvable if there exists a finite
sequence of subgroups of G such that (i) {e} = Gk ⊆ Gk−1 ⊆ . . . ⊆ G0 = G with each Gi+1

a normal subgroup of Gi and (ii) Gi/Gi+1 is an abelian group,

Ex. 46. Subgroup of a solvable group is solvable and also homomorphic image of a solvable
group is solvable.

Theorem 47. Let f(x) ∈ F [x] be solvable by radicals over a field F of characteristic 0, and
let E/F be its splitting field. Then Gal (E/F ) is a solvable group.

Proof. With out loss of generality we can assume that E/F is a prime radical extension such
that F = E0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ Er = E with the properties

(1) for each j we have Ej = Ej−1(αj), α
pj
j ∈ Ej−1, where pj is a prime and

(2) if αj is not a pjth root of unity, then Ej−1 contains the pj th root of unity.

Let, for each j, Gj := Gal (E/Ej). Then {e} = Gr ⊆ Gr−1 ⊆ . . . ⊆ G0=Gal(E/F ).
Consider the map ϕj : Gal (E/Ej−1) → Gal (Ej/Ej−1) defined by σ 7→ σ |Ej . Now we claim
that σ |Ej∈ Gal (Ej/Ej−1). Since Ej = Ej−1(αj) is the splitting field of the polynomial

xpj − βj over Ej−1, where α
pj
j = βj ∈ Ej−1. Then Ej/Ej−1 is a normal extension therefore

all the roots of xpj − βj belongs to Ej . Since σ(αj) is a root of xpj − βj , σ(αj) ∈ Ej . Thus
σ |Ej∈ Gal (Ej/Ej−1). So ϕj is well-defined. It is easily seen that ϕj is group homomorphism.
Also ϕj is onto. (Why?) ker(ϕj) = {σ ∈ Gj−1 : σ |Ej= id.} = Gj = Gal (E/Ej). By
fundamental theorem of homomorphism Gj−1/Gj ' Gal (Ej/Ej−1), which is a cyclic group
(verify!). Hence the theorem follows.

Ex. 48. The polynomial x5 − 6x + 3 ∈ Q[x] is irreducible over Q and it has exactly three
real roots and two complex roots in C. (Hint: Use Eisenstein’s criterion for irreducibility,
intermediate value theorem to say there are at least 3 real roots and Rolle’s theorem to
conclude that there are at most 3 real roots.)

Theorem 49 (Abel). There exists a quintic polynomial f(x) ∈ Q[x] that is not solvable by
radicals.
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Proof. Consider the polynomial f(x) = x5 − 6x + 3 ∈ Q[x]. Then f(x) is irreducible over Q
and it has exactly three real roots and two complex roots in C. Let E/Q be the splitting field
of f(x) contained in C, and let G=Gal(E/Q). If α is a root of f(x), then [Q(α) : Q]=5, and
so

[E : Q] = [E : Q(α)][Q(α) : Q] = 5[E : Q(α)].

By Theorem 33 |G| = [E : Q] is divisible by 5. Regarding G as a group of permutations on
the 5 roots, we note that G contains a 5-cycle (it contains an element of order 5, by Cauchy’s
theorem, and the only elements of order 5 in S5 are 5-cycles). The restriction of complex
conjugation, call it σ, for σ interchanges the two complex roots while it fixes the three real
roots. S5 is generated by any transposition and any 5-cycle (thanks to group theory), so that
G=Gal(E/Q)' S5 is not a solvable group (thanks to group theory) and Theorem 47 shows
that f(x) is not solvable by radicals.

Theorem 50.
Now the crucial point is that the Galois group Gal (f) of the polynomial f(x) is a
homomorphic image of Gal (R/F ) which is solvable. Hence we conclude that there
exist polynomials which are not solvable by radicals.
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