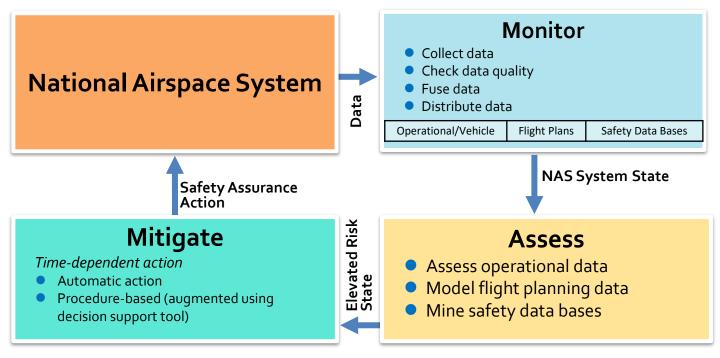


Integrated System-Wide Safety Tools and Methods

- Review the Ecosystem Goal definition
- Discuss the major barriers associated with the Goal
- Define the different ecosystem stakeholder roles (e.g., academia, industry, government, etc.) associated with achieving the Goal
- Suggest the priorities and sequencing for achieving the Goal



¹ Based on a range of publicly available industry projections; not a consensus view; aggressive

CNSi: Communication, Navigation, Surveillance, Information ₃ AML: AAM Maturity Level

In-Time System Wide Safety Assurance

Time Horizon

Pre-Flight In-Flight Post-Flight

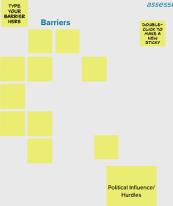
Risks

- Flight outside of approved airspace
- Unsafe proximity to air traffic, people on the ground, terrain or property
- Critical system failures (including loss of link, loss or degraded positioning system performance, loss of power, flight control failure and engine failure
- Loss-of-Control (i.e., envelope excursions)
- Physical/Environment Related Risks
 - Weather encounters (including wind gusts)
 - Threat by person-malicious
- Cyber-security related risks
- Those we have not yet identified...

Ecosystem Goal	Ecosystem Goal Statement
	Develop and implement an in-time aviation safety
Integrated System-	management system (IASMS) that continuously monitors
Wide Safety Tools	safety-related vehicle and airspace operational concerns and
& Methods, 2028	deviations in the NAS, assesses the collected data, and
	recommends or initiates safety assurance actions as necessary.

Transformed Airspace

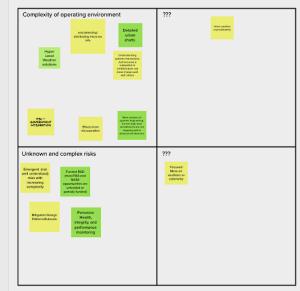
Integrated System-Wide Safety Tools and Methods


- Tomorrow's airspace is foreseen as increasingly complex with dynamic changes in scale and variety of operations.
- Safety Management Systems must adapt and evolve to analyze larger and highly variable sets of data.
- Advanced data analytics identify risks and inform or execute safety assurance actions in-time to mitigate risks and prevent incidents and accidents.
- New safety technologies and concepts offer an opportunity to augment existing SMS processes and enable them to be increasingly predictive and timely, while also improving accessibility to more operators large and small.

10

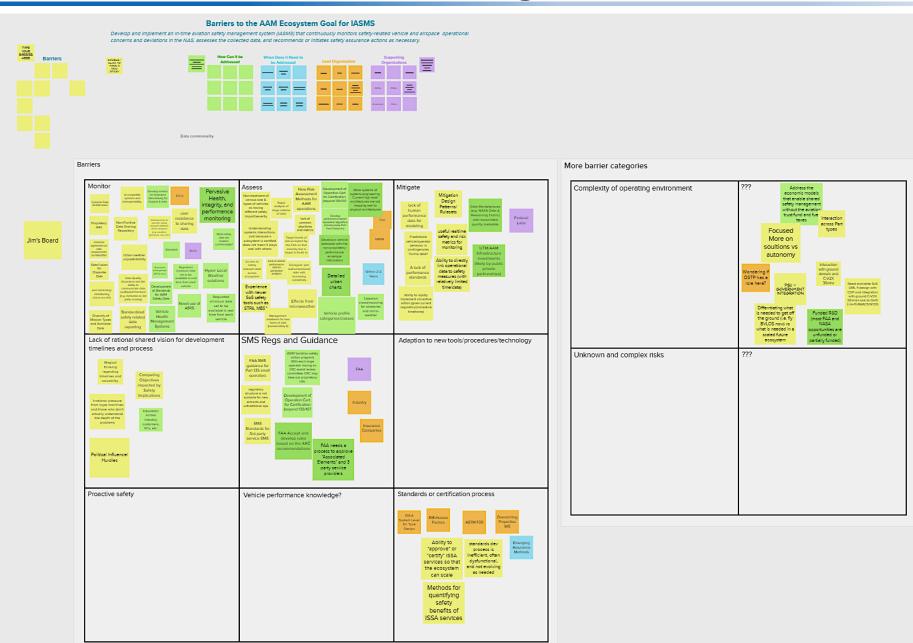


Develop and implement an in-time aviation safety management system (IASMS) that continuously monitors safety-related vehicle and airspace operational concerns and deviations in the NAS, assesses the collected data, and recommends or initiates safety assurance actions as necessary.



Competing Objectives Impacted by Safety 0

Best of register
How Can it be Addressed
When Does it Need to be Addressed
Lead Organizations
Supporting Organizations
Building Description
Building Descripion
Building Descripion
<



More barrier categories

Monitor-Assess-Mitigate Framework

Monitor				
Barriers	How Addressed	When Addressed		Supporting Orgs
Architecture Design	Develop metrics for federated data sharing for hazards & risks		SDOs	NASA
Incompatible systems and interoperability	Standards		RTCA	Academia
Common Data Architectures	Standards work groups (RTCA etc.)		SAE	
Infrastructure to monitor safety relevant attribute of the airspace (e.g., weather, spectrum, nav, etc.)	Development of Standards for AAM Safety Data			
Data	What safety data are treated confidentially?			
User resistance to sharing data	Pervasive Health, integrity, and performance monitoring			
Proprietary data	Novel use of ASRS			
Non-Punitive Data Sharing Repository				
Common agreement on data requirements for ISSA, PSU				
Data Fusion for Disparate Data				
Diversity of Mission Types and Available Data				
Standardized safety related data reporting				
Weather data	Hyper Local Weather solutions			
Urban weather unpredictability				
Data Quality Assurance and the ability to communicate data quality/performance (e.g., metadata or 3rd party scoring) and detecting/distributing micro-wx info				
	Vehicle data			
	Regulated minimum data set to be available in real time from each vehicle			
	Vehicle Health Management Systems			

Assess				
Barriers	How Addressed	When Addressed	Lead Org	Supporting Orgs
Data analysis	More systems of systems engineering. Current high-level architectures are not mapping well to physical architectures	Within 2-3 Years	NASA	
Management/databases for new forms of data (human/safety II)	Develop performance-based separation algorithms (moving away from fixed distances)		FAA	
New Risk Assessment Methods for AAM operations	Detailed urban charts			
Non-treatment of various size & types of vehicles as having different safety impact/severity	Develop a vehicle database with the non-proprietary performance envelope information			
Rapid analysis of large volume of data	Vehicle profile categories/classes			
Lack of common algorithms and metrics				
Experience with newer SoS safety tools such as STPA, MBSA				
Lack of vehicle performance data for predictive analytics				
Experience with newer SoS safety tools such as STPA, MBSA				
Data fusion				
Access to safety relevant data across ecosystem Effects from microweather	Establish crowd-sourcing for obstacles and micro-weather			
Understanding systems interactions. Just because a subsystem is certified does not mean it plays well with others				
Determination of acceptable risk				
Target levels of risk accepted by the FAA so that industry has a arget to build to	Development of Operation Cert for Certification (beyond 135/107			
Emergent (not well understood) risks with increasing complexity				

Mitigate				
Barriers	How Addressed	When Addressed	Lead Org	Supporting Orgs
System risk mitigation	Data Marketplaces (e.g., NASA			Federal Labs
	Data & Reasoning Fabric) with			
	associated quality metadata			
Mitigation Design Patterns/Rulesets	UTM/AAM Infrastructure			
	investments (likely by public			
	private partnerships)			
Useful real-time safety and risk metrics for				
monitoring				
Ability to directly link operational data to				
safety measures (with relatively limited				
time/data)				
A lack of performance standards				
Ability to rapidly implement corrective				
action (given current regulatory/procedure	2			
timeframe)				
Human performance				
ack of human performance data for				
nodeling				
Predictable vehicle/operator behavior in				
contingencies? is this data?				

Lack of rational shared vision for development timelines and process				
Barriers	How Addressed	When Addressed	Lead Org	Supporting Orgs
Magical thinking regarding timelines and solvability.	Education across industry, customers, VCs, etc.			
Competing Objectives impacted by Safety Implications				
Irrational pressure from hype machines and those who don't understand the depth of the problems				
Political Influence/Hurdles				

SMS Regs and Guidance				
Barriers	How Addressed	When Addressed	Lead Org	Supporting Orgs
FAA SMS guidance for Part 135	ASAP (aviation safety		Industry	FAA
small operators	action program) With			
	each large operator			
	having an ERC event			
	review committee. ERC			
	may take out			
	proprietary info.			
Regulatory structure is not	Development of		Insurance	
scalable for new entrants and	Operation Cert for		Companies	
untraditional ops	Certification (beyond			
	135/107			
SMS Standards for 3rd party	FAA Accept and			
service SMS	develop rules based on			
	the ARC			
	recommendations			
	FAA needs a process to			
	approve "Associated			
	Elements" and 3 party			
	service providers			

Standards/certification process				
Barriers	How Addressed	When Addressed	Lead Org	Supporting Orgs
Ability to "approve" or "certify"		Emerging	S18-Human Factors	
ISSA services so that the		Assurance		
ecosystem can scale		Methods		
Standards dev process is			Overarching Properties WG	
inefficient, often dysfunctional,				
and not evolving as needed				
Methods for quantifying safety			S18-A	
benefits of ISSA services				
			System Level for Type Design	
			ASTM F39	

Misc.				
Barriers	How Addressed	When Addressed	Lead Org	Supporting Orgs
Near-term solutions	Address the economic models that		Wondering if OSTP	
	enable shared safety management		has a role here?	
	without the aviation trust fund and			
	fuel taxes			
Differentiating what is needed to get				
off the ground (i.e., fly BVLOS now) vs	Funded R&D (most FAA and NASA			
what is needed in a scaled future	opportunities are unfunded or			
ecosystem	partially funded)			
Focused More on solutions vs				
autonomy				
Other considerations				
Interaction across Part types				
Interaction with ground domain and				
C-V2X 30mhz				
PSU - Government integration				
Need end-state SoS UML 4 design				
with COP and integration with ground				
C-V2X 30mhz-Look to DoD/Link-				
11/AWACS/NTDS				

KEY TAKEAWAYS

Many viewpoints and lots of information to digest -> Large variation in baseline education/knowledge within new entrant community regarding certification processes (airworthiness and operation) and how safety plays a role. -> Assumption and feasibility issues when approaching CAAs.

More time with specific application context (Vehicle type and Ops as Envisioned) is necessary to build out prototypical safety cases that can then be analyzed for common themes and general guidance for AAM SMS.

Large need for standards and guidance on how to implement *Safety Assurance* and *Risk Management* for new entrant operations. In particular, data exchange and requisite safety considerations based on type of operation/mission (piloted vs remotely piloted, environment, airspace, level of automation/autonomy).

NEXT STEPS

This is an iterative data gathering process...

- 1. Combine what we already have captured as barriers with information from this workshop
- 2. Can host additional workshops to continue filling in gaps in the assessment
- 3. Cross reference existing barriers analysis with this data gathering exercise for commonality and begin to establish some level of baseline validation of the barriers and related information

Back Up