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ABSTRACT: Sperm are guided through the female reproductive tract. A temperature difference of about 2°C exists between the storage
site and fertilization site of the mammalian oviduct, leading to the hypothesis that sperm can sense and swim towards the oocyte along a
rising temperature gradient, known as thermotaxis. Research over the past two decades has reported that sperm feature a sophisticated
thermal detection system to detect and track ambient temperature gradients. More recently, thermotaxis is expected to be added to the
microfluidic isolation method based on sperm tactic responses for sperm selection. In this article, mammalian sperm thermotaxis is dis-
cussed, explaining the underlying behavioural mechanisms and molecular basis, according to the latest research. Finally, this article explores

the possible application of sperm thermotaxis in ART.
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Introduction

Thermotaxis, or temperature-oriented cell motility, is a universal phe-
nomenon in biology. Lower organisms such as bacteria (Paulick et al.,
2017), nematodes (Kimata et al., 2012), parasites (Mok et al., 1986)
and Drosophilas (Ni et al., 2013) mostly exhibit a thermotactic re-
sponse to suitable temperatures. In recent years, mammalian sperma-
tozoa have also been found to have the ability to swim along positive
temperature gradients in vitro. Together with the temperature differen-
ces measured in the oviducts of pigs and rabbits (Hunter and Nichol,
1986; Bahat et al., 2003), Bahat et al. (2003) innovatively proposed
that thermotaxis may serve as a navigation mechanism to guide the
transport of mammalian sperm from the storage site (isthmus) to the
warmer fertilization site (ampulla).

Resulting from research efforts over the past two decades, scientists
have described multiple aspects of mammalian sperm thermotaxis.
The temperature difference within the female reproductive tract (FRT)
and its underlying mechanism have been explored. Temperature gradi-
ent detection and tracking methods for sperm have been described.
Furthermore, the temperature range for thermotactic behaviour and
the optimal temperature gradient has been researched, focusing on
the properties of the sperm temperature sensors. More recently, the
feasibility of applying thermotaxis to sperm selection in assisted
reproduction has been explored. This article addresses these topics by
synthesizing the currently available knowledge, focusing on the charac-
teristics of the recently discovered temperature sensors.

Thermotaxis at a glance

A temperature difference of about 1°C was initially measured across
the oviducts of pigs and rabbits through thermistor probes (Hunter
and Nichol, 1986; Bahat et al, 2003). This difference is ovulation-
dependent, with the temperature difference doubling to 2°C at ovula-
tion (Bahat et al., 2005). The enlarged temperature difference reflects
the vascular and lymphatic bed as well as muscle tissue activity. The
temperature difference is generated by a temperature drop at the
storage site. Theoretically, three mechanisms are involved: (i) an endo-
thermic effect through acid mucus glycoprotein hydration; (i) a
counter-current heat exchange in the ovarian vein at the storage site;
and (i) an ovulation-dependent change in blood supply (Bahat et al.,
2005; Eisenbach and Giojalas, 2006). For obvious reasons, data on
intratubal temperature differences in humans are not yet available.
However, human sperm thermotaxis has been the focus of extensive
research (Bahat and Eisenbach, 2010; Bahat et al., 2012; Li et al.,
2014; De Toni et al., 2016), along with that of boar (Martin-Hidalgo
et al.,, 2018; Rodriguez-Gil, 2019), rabbit (Bahat et al., 2003), mouse
(Perez-Cerezales et al., 2015a; Hamano et al., 2016; Ko et dl., 2018),
bull (Mondal et al., 2017) and stallion (Ruiz-Diaz et al., 2020) sperm,
which have been demonstrated to accumulate towards higher temper-
atures in various in vitro systems. Thus, thermotaxis has been recog-
nized as a general property of mammalian sperm. Furthermore, as in
the case of chemotaxis, only capacitated sperm are thermotactically
responsive, accounting for about 5-10% of the total (Bahat et al.,
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2003; Li et al., 2014). Human sperm can respond to temperature gra-
dients as low as 0.014°C mm~' over a wide range (29-41°C) (Bahat
et al., 2012). Such a wide effective temperature range and excellent
sensitivity suggest that sperm cells have a thermal detection system
comprising many sensors. The sensors detect different temperature
ranges and overlap to some extent. The optimal temperature gradient

"in a microflui-

for mouse sperm was determined to be 0.154°C mm™
dic chip when the temperature difference was 2°C, whereas the opti-
mal temperature gradient for human sperm was further narrowed to
about 0.07-0.15°C mm™" (Yan et al., 2021).

Thermotaxis has been proposed as one of the physiological mamma-
lian sperm navigation mechanisms (Bahat et al., 2003; Perez-Cerezales
et al, 2015b) (Fig. |A). Sperm movement from the isthmus to the am-
pulla towards the oocyte covers a considerable distance relative to its
body length, so appropriate guidance is required to locate the oocyte
(Suarez and Pacey, 2006). During this adventure, various biochemical
factors, such as compounds (Brenker et al., 2012) and cell interactions
(Suarez, 2016; Li et al., 2022) and physical information, such as temper-
ature (Bahat et al., 2003), fluid (Kantsler et al, 2014; Zaferani et dl.,
2021a) and the tube wall (Zaferani et al., 2021b; Li et al., 2022), in the
FRT provide directional cues for sperm guidance. Chemoattractants in
the follicular fluid, such as progesterone secreted by cumulus cells, may
facilitate sperm mobilization towards the oocyte, a process known as
chemotaxis (Sun et al., 2005; Teves et al., 2006). However, due to the
perturbations in oviductal peristalsis and fluid flow, a gradient of chemo-
attractants may only be effective when the sperm approaches the oo-
cyte (Cohen-Dayag et al., 1994; Hino and Yanagimachi, 2019). On the
other hand, thermotaxis can function over longer distances due to the
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stability of temperature gradients and the sperm’s sensitivity to minimal
temperature differences (Bahat et al., 2003). In addition, sperm also ex-
hibit counter-current swimming, which seems to be a completely pas-
sive fluid-dependent process called rheotaxis (Miki and Clapham, 2013;
Schiffer et al., 2020). A popular view is that long-range temperature gra-
dients and short-range chemoattractant gradients are sequentially in-
volved in sperm migration guidance, with passive rheotaxis playing a
decisive role (Bahat and Eisenbach, 2006; Miki and Clapham, 2013).

Behavioural mechanisms

Some groups have raised the possibility that thermotaxis could be a
consequence of rheological behaviour induced by thermal convection
(Miki and Clapham, 2013) or metabolic changes promoted by elevated
temperature (Chan et al., 1998; Miller et al, 2001; Marin-Briggiler
et al, 2002). However, these possibilities were demonstrated to be in-
correct (Bahat et al., 2012; Perez-Cerezales et al., 2015b). To explore
thermotaxis in the FRT environment, the underlying behavioural mech-
anisms need to be revealed, confirming whether temperature gradients
confer the ability to change the direction of sperm movement (Perez-
Cerezales et dl., 2015b). In chemotaxis, the capacitated sperm reorient
in the chemoattractant gradient by inhibiting their hyperactivation
events (an asymmetric, high-amplitude flagellar beating pattern)
(Armon and Eisenbach, 201 I), while in rheotaxis, the sperm responds
to shear flow mostly by rotating along its longitudinal axis (Zaferani
et al., 2021a). However, little is known about how sperm responds to
temperature differences, and the current research suggests that

Chemotaxis

cooler

Figure I. Thermotaxis navigation in mammalian sperm. (A) Sperm use thermotaxis to swim from the isthmus to the warmer ampulla, and
chemotaxis plays a role near the oocyte. (B) A behavioural model of thermotaxis. The black dashed line represents the trajectory of the sperm head,
and the red dashed line represents its average path. Part B is reprinted with permission from Boryshpolets et al. (2015).
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hyperactivation is involved. Boryshpolets et al. (2015) observed that
rapid positive temperature changes (from 31°C to 37°C) affect human
sperm behaviour in two ways: warming increases the linear velocity
and cooling increases the flagellar wave amplitude. The latter is essen-
tially an increase in hyperactivation and turning frequency. In other
words, the speed increases while the frequency of hyperactivation and
turn decreases along the positive temperature gradient. Furthermore,
similar to bacterial behaviour (Macnab and Koshland, 1972), one possi-
ble motility model for swimming sperm is that they turn and hyperacti-
vate more frequently at cooler temperatures, whereas their linear
velocity intensifies at higher temperatures (Boryshpolets et al., 2015).
This effect accumulates and persists, eventually resulting in linear swim-
ming along a positive temperature gradient (Fig. |B). The linear sperm
movement along a vertical isotherm was clearly observed in a micro-
fluidic chip, confirming that the change in velocity and direction is a re-
sult of temperature differences (Yan et al, 202l). It is worth
mentioning that mammalian sperm chemotaxis also involves hyperacti-
vation (Armon and Eisenbach, 201 ). Considering that both thermo-
taxis and chemotaxis are activated during capacitation, inhibition of
hyperactivation by temperature and chemoattractant gradients may be
a general directional means for capacitated sperm.

Molecular basis

Since its introduction in 2003, the molecular basis for thermotaxis and
its remarkable temperature sensitivity has been a subject of research
(Bahat et al., 2003). It is well-known that sperm navigation in the FRT is
regulated by a series of calcium-dependent events, including motility
hyperactivation, capacitation, acrosome reaction and chemotaxis
(Jimenez-Gonzalez et al., 2006). Temperature information may likewise
be coded into changes in intracellular Ca*™ concentration ([Ca®']),
which in turn activates the SAC/cAMP/PKA pathway to phosphorylate
proteins. This is crucial for sperm motility (Stock et al., 2013; Wachten
et al, 2017). Temperature-induced stimulation of sperm motility
requires calcium signals to be sent to the flagellum (Martin-Hidalgo
et al., 2018). Therefore, calcium signalling was considered in the molecu-
lar mechanisms of sperm thermotaxis. Previous studies of human sperm
thermotaxis had identified an obvious calcium pathway, in that tempera-
ture changes were described to activate phospholipase C (PLC), leading
to hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylgly-
cerol (DAG) and inositol trisphosphate (IP3). IP3 then binds to the ino-
sitol |,4,5-trisphosphate receptor (IP3R) on the calcium pool to release
Ca®", which regulates the flagellar beating waveform to control the
swimming path (Bahat and Eisenbach, 2010). Calcium signalling has thus
been postulated as the molecular basis of sperm thermotaxis. Based on
the current expression studies, combined with applied electrophysiologi-
cal, genetic and pharmacological approaches, it is possible to design a
profiling model of sperm thermotaxis, which is that thermosensory sig-
nalling cascades initiated by temperature sensors control thermotactic
behaviour in a calcium concentration-regulated manner.

Temperature sensors

Two families of membrane proteins are known to be responsible for
sensory transduction in eukaryotes: G protein-coupled receptors
(GPCRs) and ion channels (Cygankiewicz et al., 2014; Dalesio et dl.,

2018). Respectively, current studies are investigating the possibility of
opsins and thermosensitive transient receptor potential (thermoTRP)
channels as thermotaxis sensors (Fig. 2).

ThermoTRP

ThermoTRP is a highly temperature-sensitive subset of the non-
selective cation channel TRP superfamily, responsible for ambient tem-
perature detection and maintenance of body thermal homeostasis
(Patapoutian et al., 2003; Dhaka et al., 2006; Vandewauw et al., 2018).
Once regarded as the main, or even the only, molecular thermometer
of an organism, thermoTRP possesses temperature-sensing properties
sufficient to cover the physiological range (Cao et al., 2013; Kashio,
2021). Heat-activated transient receptor potential vanilloid (TRPV)|-4,
cold-activated transient receptor potential cation channel subfamily M
member 8 (TRPM8) and transient receptor potential cation channel
subfamily A member | (TRPAI) are classified as conventional
thermoTRPs. Several others, such as TRPM2-5 and transient receptor
potential channel 5 (TRPC5), also sense temperature (Vay et al.,
2012). Thermal stimulation induces gating after global conformational
changes of thermoTRPs to regulate sperm function with electrical sig-
nals (Chowdhury et al., 2014). Among them, TRPVI (Maccarrone
et al., 2005; Francavilla et al, 2009; Gervasi et al., 2011), TRPV4
(Hamano et dal., 2016; Kumar et al., 2016; Mundt et al, 2018) and
TRPM8 (De Blas et al., 2009; Martinez-Lépez et al., 201 |; Majhi et al.,
2015) are endogenously expressed in vertebrate sperm cells and are
currently strong candidates for sperm temperature receptors. TRPVI
and TRPM8 protect germ cells from heat stress and cold shock, re-
spectively, and TRPV4 is a necessary membrane depolarization channel
for sperm hyperactivation (Mizrak and van Dissel-Emiliani, 2008;
Borowiec et al, 2016; Mundt et al, 2018). The remaining
thermoTRPs, although also present in sperm, have not been tested in
thermotropic processes (Castellano et al., 2003; Majhi et al., 2020). In
2006, Hamano et al. (2016) proposed that TRPV4 is involved in sperm
thermotaxis, as the proportion of spermatozoa in spermatozoa with
Trpv4 knockout and following ruthenium red (TRPV antagonist) treat-
ment was significantly reduced. In the same year, De Toni et al. (2016)
observed that migration towards a temperature gradient enabled the
selection of sperm cells characterized by high TRPVI expression,
whereas pre-incubation with a TRPV| antagonist inhibited thermotaxis
in a manner that severely reduced calcium concentrations. Given the
complex regulation of TRPVI/TRPV4 in other aspects of sperm func-
tion such as cell migration, capacitation and acrosome responses, cau-
tion is still required in identifying TRPVI/TRPV4 as thermotaxis
temperature sensors (Waning et al., 2007; Xiao and Chen, 2022).
Interestingly, there is now a consensus that thermotaxis is not regu-
lated by a single receptor, as neither antagonism nor knockout of ei-
ther putative sensor completely eliminates sperm thermotaxis.

Opsins

Another group proposed as temperature sensors for sperm thermotaxis
are the GPCR opsins, inspired by the surprising breakthrough of rhodop-
sin in temperature discrimination in Drosophila (Minke and Peters, 201 1).
The dogma in the past held that opsins were restricted to light-exposed
tissues (eyes and skin), however, expression of opsins was detected in
other organs and exhibited light-independent effects (Leung and Montell,
2017; Moraes et al., 2021). The ability of Drosophila to select the opti-
mum temperature (18°C) within the comfort temperature range (18—
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Figure 2. A molecular model of mammalian sperm thermotaxis. ThermoTRPs and opsins initiate a PLC signalling cascade that controls thermo-
taxis in a calcium-regulated manner. Blue and yellow arrows indicate sodium and calcium currents, and red arrows indicate thermal signals. The red numbers
indicate thermoTRPs thermotransduction steps: (1) TRPVI/TRPV4 are activated by thermal signal or hydrolysis of PIP2; (2) membrane depolarization; and
(3) calcium channel opening. Yellow numbers indicate the opsins thermotransduction steps: (1) opsins receive thermal signal; (2) G protein activation;
(3) PLC activation; (4) downstream TRP channels opening. See text for details. thermoTRPs, thermosensitive transient receptor potential; PLC,
phospholipase C; VGCC, voltage-gated calcium channel; IP3R, inositol |,4,5-trisphosphate receptor; [Ca®']i, intracellular Ca®" concentration;
PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; PDE, phosphodiesterase; PKA, protein kinase A; PKC, protein kinase C.

24°C), and the change in thermal preference exhibited by third instar lar-
vae, result from the activation of TRP channels by an enzymatic cascade
initiated by rhodopsin (Shen et al., 201 |; Sokabe et dl., 2016). Rhodopsin
and various opsins (melanopsin, encephalopsin and neuropsin) were re-
cently discovered in mammalian spermatozoa by gRT-PCR, western
blotting and immunocytochemistry (Perez-Cerezales et al, 2015a).
Rhodopsin is mainly located in the head of human sperm and the tail of
mouse sperm. To investigate whether opsins act as temperature sensors
for sperm, Perez-Cerezales et al. (2015a) first demonstrated the involve-
ment of GPCRs in thermotaxis, with a temperature gradient-dependent
accumulation in sperm being inhibited by m| 19k, a G protein inhibitor.
Moreover, the use of hydroxylamine, a nucleophile that disrupts opsin
function, resulted in an inhibition of thermotaxis. Another study observed
enrichment of rhodopsin in a subset of spermatozoa selected by ther-
motaxis, supporting opsins as markers of thermotaxis (Pérez-Cerezales
et al, 2018). It was recently recorded that rhodopsin and melanopsin
co-localize in mammalian sperm cells (Roy et al., 2020). The thermotac-
tic activity of sperm in mice with knockout of either rhodopsin or mela-
nopsin was reduced by 70% and 50%, respectively (Perez-Cerezales
et al, 2015a; Roy et al., 2020). This finding is more pronounced than the
expected effect of knocking out a single protein. A plausible explanation

is that, as in the retina, opsins are organized in sperm cells in paracrystal-
line arrays of dimers (Fotiadis et al., 2003; Perez-Cerezales et dl., 2015a).
This structure is so delicately adapted to construct thermal detection of
sperm that removal of individual proteins can lead to disruption of the
array system. Moreover, the cooperation of the two opsins is recapitu-
lated in Drosophila, and Drosophila expressing melanopsin can reverse the
RhI (rhodopsin) knockout defect in thermal sensory recognition (Shen
et al, 201 I). However, rhodopsin and melanopsin appear to be involved
in two distinct thermotaxis mechanisms, corresponding to the transdu-
cin/cyclic nucleotides and PLC pathways, respectively (see next subsec-
tion) (Roy et al., 2020). The study demonstrates that the extraordinary
thermal recognition of sperm relies on multiple opsins, potentially initiat-
ing G protein-coupled signalling cascades similar to that on visual cells.
These signalling cascades have an amplifying effect, granting sperm cells
the ability to sense tiny temperature differences.

Thermosensory signalling cascades

Sperm possess far sharper temperature sensations than Drosophila,
responding to very small differences (<0.0006°C) between the head and
tail of the cell (Bahat et al, 2012). This ability, in addition to the
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requirement that temperature sensors have a large molecular composi-
tion, means that thermosensory signalling cascades may have to amplify
small temperature differences to the optimum. Such cascades are evident
in vision as well as in the thermotaxis of invertebrates, and mammalian
sperm may be no exception (Fu and Yau, 2007; Kwon et al., 2008).

In one case, PLC is activated by opsin-coupled G proteins, and
TRPs act as downstream transduction channels. In melanopsin knock-
out mouse sperm, application of the general phosphodiesterase (PDE)
inhibitors caffeine and 3-isobutyl-1-methylxanthine (IBMX) and the
specific PDE5/6 inhibitor sildenafil both partially inhibited thermotaxis
(Perez-Cerezales et al., 2015a; Roy et al., 2020). It has also been indi-
cated that rhodopsin expression leads to changes in the intracellular
cyclic nucleotide content of sperm through the G./PDE pathway, with
effects that closely match the behavioural responses of vertebrate rods
and cones to light (Fu and Yau, 2007). Notably, rhodopsin in
Drosophila senses temperature differences via G4/PLC rather than G/
PDE, but rhodopsin in sperm does not appear to be involved in the
PLC cascade (Roy et al., 2020). Instead, mammalian sperm melanop-
sins are functionally similar to invertebrate (Drosophila) opsins, activat-
ing downstream TRP channels through a pathway coupled to Go/PLC
and hydrolysis of PIP2 (Roy et al., 2020). These TRPs are most likely
TRPC family members represented by TRPC3, as both the TRPC in-
hibitor SKF96365 and the TRPC3 inhibitor Pyr3 reduce the amount of
sperm accumulating in the warmer compartment (Panda et al., 2005;
Perez-Cerezales et al., 2015a). In addition, opsin cascade downstream
signalling appear to modulate many important events associated with
thermotaxis, including the control of thermoTRP thermosensitivity
(Kaneko and Szallasi, 2014), capacitation (Li et al., 2021) and hyperacti-
vation (Fujinoki, 2013), through DAG/protein kinase C (PKC) and
cAMP/protein kinase A (PKA) pathway-dependent phosphorylation
rather than dephosphorylation.

Alternatively, thermoTRP acts as the primary temperature sensor,
mediated by PLC activation and the triggering of action potential.
Thermal activation of thermoTRP leads to membrane depolarization
and Ca®* influx. It has been demonstrated in human sperm that
temperature-sensitive TRPV4 mediates Na*t influx to induce sperm
membrane depolarization when exposed to the warm FRT, which is
necessary to facilitate gating of ion channels (Mundt et al, 2018).
TRPVI also acts as a depolarizing channel and opens voltage-gated cal-
cium channels (VGCCs), because activation of TRPVI causes a tran-
sient rise in sperm [Ca®"], an effect that is severely inhibited in the
absence of extracellular sodium or the presence of the VGCC inhibi-
tor verapamil (Bernabo et al, 2010; De Toni et al, 2016).
Furthermore, a temperature-dependent [Ca”]i increase mediated by
TRPM8 in the 21~23°C range was directly detected in sperm (De
Blas et al., 2009). The above results imply that the release of internal
Ca®" stores and/or subsequent opening of new calcium channels
(VGCCs or store-operated calcium channels (SOCCs)) are the main
consequences of thermoTRP sensing of thermal stimuli. Indeed, the
extracellular calcium chelator EGTA and the intracellular calcium chela-
tor BAPTA abolish thermotaxis of bull sperm (Mondal et al., 2017).
Coincidentally, the most likely additional candidate calcium channel is
the non-temperature-sensitive TRPC3. TRPC3 is not only a SOCC
but also activated by DAG and Ca*" downstream of PLC (Wang
et al., 2020). There may be sequential activation events between
opsins and thermoTRPs, and the complex crosstalk between the two
systems on thermotaxis remains to be further investigated.

Thermotaxis-driven
microfluidics in ART

Sperm entering the FRT are subjected to rigorous selection, allowing
only the best candidate from the millions of ejaculated gametes to
complete fertilization (Suarez and Pacey, 2006). However, the harsh
elimination mechanisms lead to infertility issues in men with astheno-
zoospermia. Infertility is estimated to affect nearly 10% of men world-
wide, with abnormal semen parameters being the leading cause of
male infertility (Barratt et al., 2017). Embryologists use ART to select
the fertile and healthy sperm subpopulations to overcome the barriers
of FRT and fertilize an oocyte. IVF and IUl retain the cumulus and
zona pellucida selection, while ICSI directly bypasses all natural selec-
tion processes. Therefore, to reduce the genetic risk of paternal geno-
mic defects, sperm selection from semen samples is critical for ART.
The microfluidic lab-on-a-chip device developed in the past fifteen
years can establish a laminar flow field that strictly simulates sperm mi-
gration in the FRT and avoids the generation of reactive oxygen spe-
cies and DNA fragmentation in the centrifugation step of traditional
sorting techniques (Nosrati et al., 2017).

Applying thermotaxis to ART is a relatively new idea that is recently
being tested on microfluidic chips (Li et al., 2014; Pérez-Cerezales
et al, 2018). The basic principle of thermotaxis-driven microfluidics is
to place sperm in a microchannel that allows free swimming and to
use a microheater to apply a lateral temperature gradient in the chan-
nel, thereby selecting and trapping thermotactic sperm in specific
branches (Li et al., 2014; Karbalaei and Cho, 2018; Ko et al., 2018;
Yan et al., 2021). Li et al. (2014) first designed a microfluidic device uti-
lizing a gas-liquid interface valve to isolate branches. Migration of hu-
man spermatozoa was demonstrated in four preset temperature
gradients: 34.0-35.3°C, 35.0-36.3°C, 36.0-37.3°C and 37.0-38.3°C.
Despite the on-chip device validating sperm thermotaxis, it was unable
to replicate the complex natural selection of FRT. As demonstrated in
microfluidics, sperm sorting platforms need to simultaneously combine
the molecular characteristics of fertile sperm and their response to ex-
ternal stimuli. In terms of sperm strategy responses, temperature gra-
dients can be used as a new parameter to enhance microfluidic
systems along with chemotaxis and rheotaxis. Indeed, fully integrated
biomimetic microfluidic devices have recently been developed, enabling
the simultaneous assessment and quantification of chemotaxis and
thermotaxis (Ko et al, 2018; Yan et al, 2021). The microfluidic chip
combining thermotaxis and chemotaxis collected more sperm than
when thermotaxis or chemotaxis was applied alone (Ko et al., 2018).
It is worth mentioning that no statistical association was observed be-
tween thermotaxis and chemotaxis, which may be explained by the
fact that different mechanisms drive the two strategy responses.

Sperm selection by thermotaxis contributes to improved ART out-
comes. Studies have shown that mouse, human and stallion sperm
subpopulations selected by thermotaxis have higher DNA integrity and
looser chromatin compared to unselected sperm (Pérez-Cerezales
et al., 2018; Ruiz-Dfaz et dl., 2020). In mice, the use of thermotactically
selected sperm significantly increased blastocyst production rates and
embryo quality for ICSI (Pérez-Cerezales et al., 2018). However, the
actual application of thermotaxis to improve human ART requires sup-
port from more extensive clinical studies.
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Conclusions

This article reviews all the current knowledge since the introduction of
mammalian sperm thermotaxis, reviews aspects of thermotaxis naviga-
tion and sperm temperature sensing mechanisms based on temporal
cues, and highlights their potential for use in clinical procedures.
Although two other guiding mechanisms, chemotaxis and rheotaxis,
are well described, many aspects of thermotaxis remain unknown.
Sperm cell function is temperature-dependent, creating difficulties dis-
tinguishing between thermotaxis and ambient temperature effects.
Furthermore, the molecular mechanisms of thermotaxis are complex
and appear to result from an extensive intersection of intracellular sig-
nalling pathways. It is now known that at least two classes of opsins
and thermoTRPs make up the sperm thermal detection system.
However, establishing thermoTRP members as thermotaxis tempera-
ture sensors requires further research. The role of ion channels in
temperature sensing and sperm cell migration remains unclear. On the
other hand, considering that thermotaxis is limited to capacitated
sperm, it would be very interesting to investigate the mechanism be-
hind the acquisition of thermotaxis.
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