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Abstract.—In popular use of Bayesian phylogenetics, a default branch-length prior is almost universally applied without
knowing how a different prior would have affected the outcome. We performed Bayesian and maximum likelihood (ML)
inference of phylogeny based on empirical nucleotide sequence data from a family of lichenized ascomycetes, the Psoraceae,
the morphological delimitation of which has been controversial. We specifically assessed the influence of the combination
of Bayesian branch-length prior and likelihood model on the properties of the Markov chain Monte Carlo tree sample,
including node support, branch lengths, and taxon stability. Data included two regions of the mitochondrial ribosomal RNA
gene, the internal transcribed spacer region of the nuclear ribosomal RNA gene, and the protein-coding largest subunit of
RNA polymerase II. Data partitioning was performed using Bayes’ factors, whereas the best-fitting model of each partition
was selected using the Bayesian information criterion (BIC). Given the data and model, short Bayesian branch-length priors
generate higher numbers of strongly supported nodes as well as short and topologically similar trees sampled from parts of
tree space that are largely unexplored by the ML bootstrap. Long branch-length priors generate fewer strongly supported
nodes and longer and more dissimilar trees that are sampled mostly from inside the range of tree space sampled by the ML
bootstrap. Priors near the ML distribution of branch lengths generate the best marginal likelihood and the highest frequency
of “rogue” (unstable) taxa. The branch-length prior was shown to interact with the likelihood model. Trees inferred under
complex partitioned models are more affected by the stretching effect of the branch-length prior. Fewer nodes are strongly
supported under a complex model given the same branch-length prior. Irrespective of model, internal branches make up a
larger proportion of total tree length under the shortest branch-length priors compared with longer priors. Relative effects
on branch lengths caused by the branch-length prior can be problematic to downstream phylogenetic comparative methods
making use of the branch lengths. Furthermore, given the same branch-length prior, trees are on average more dissimilar
under a simple unpartitioned model compared with a more complex partitioned models. The distribution of ML branch
lengths was shown to better fit a gamma or Pareto distribution than an exponential one. Model adequacy tests indicate
that the best-fitting model selected by the BIC is insufficient for describing data patterns in 5 of 8 partitions. More general
substitution models are required to explain the data in three of these partitions, one of which also requires nonstationarity.
The two mitochondrial ribosomal RNA gene partitions need heterotachous models. We found no significant correlations
between, on the one hand, the amount of ambiguous data or the smallest branch-length distance to another taxon and, on
the other hand, the topological stability of individual taxa. Integrating over several exponentially distributed means under
the best-fitting model, node support for the family Psoraceae, including Psora, Protoblastenia, and the Micarea sylvicola group,
is approximately 0.96. Support for the genus Psora is distinctly lower, but we found no evidence to contradict the current
classification. [Branch-length prior; lichen-forming ascomycetes; model adequacy; node support; Psoraceae; rogue taxa.]

Bayesian phylogenetic inference has repeatedly been
reported to overestimate posterior probabilities of trees
and nodes, sometimes even in simulation experiments
with a known evolutionary model (summarized by
Alfaro and Holder 2006; Yang 2006, p. 177–179; Wróbel
2008). As pointed out by Yang and Rannala (2005) and
Yang (2006, 2008), likelihood model violations and the
impact of priors are the only two likely explanations
(disregarding programming errors) for spuriously high
posterior probabilities. Overly simple likelihood models
have been shown to cause overestimated posterior prob-
abilities (Buckley 2002; Lemmon and Moriarty 2004),
whereas modest overfitting seems to be less problematic
(Huelsenbeck and Rannala 2004; Brown and Lemmon
2007). The widely applied uniform prior on tree topolo-
gies has been suggested to cause an undue correlation
between clade size and their posterior probabilities
(Pickett and Randle 2005; Randle and Pickett 2006, 2010).
However, such a correlation is perhaps better explained

by homoplasy in the data (Brandley et al. 2009). The
tendency for the a priori equiprobable binary compo-
nent trees of a star tree to have unequal posterior proba-
bilities has been referred to as the “star-tree paradox.” It
is currently unclear, however, whether this phenomenon
is caused by the branch-length prior (Lewis et al. 2005;
Yang and Rannala 2005; Yang 2007), some other intrinsic
property of Bayesian phylogenetics (Steel and Matsen
2007; Susko 2008), or if it at all exists (Kolaczkowski and
Thornton 2006).

In Bayesian phylogenetics, the branch-length prior
seems to be particularly problematic (Yang and Rannala
2005; Alfaro and Holder 2006; Yang 2006; Kolaczkowski
and Thornton 2007; Yang 2008). In the most popular
software implementation, MrBayes version 3 (Ronquist
and Huelsenbeck 2003; Altekar et al. 2004), branch
lengths are assumed to be everywhere nonzero and
conform either to a uniform or to exponential distri-
bution. Disallowing zero-length branches (polytomies),
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thereby forcing a choice between fully resolved trees
even in the face of minimal support from the data, has
been suggested as a possible explanation for excessive
posterior probabilities (Lewis et al. 2005). There is agree-
ment that branch-length priors do indeed affect not only
the branch lengths themselves but also posterior proba-
bilities of trees and clades (Svennblad et al. 2006; Britton
et al. 2007; Kolaczkowski and Thornton 2009) and that a
misspecified prior can cause overly optimistic posterior
probabilities (Lewis et al. 2005; Yang and Rannala 2005;
Yang 2006; Kolaczkowski and Thornton 2007; Yang
2007).

Unfortunately, this is as far as consensus goes. Warn-
ing flags have been hoisted because of concerns that
posterior probabilities may be exaggerated unless the
branch-length prior is assumed to be either very short
(Yang and Rannala 2005; Yang 2006, 2008) or, on the
other hand, long (Kolaczkowski and Thornton 2007).
This is indeed a conundrum to practitioners of Bayesian
phylogenetics, who are primarily interested in phy-
logenetic topology estimates from empirical data. In
practice, users tend to resort to the default branch-
length priors without considering how the conclusions
could have been affected by a different prior. However,
available software for Bayesian inference of phylogeny
makes use of very different priors. The default branch-
length prior in MrBayes version 3 is an exponential dis-
tribution with mean 0.1 (Ronquist et al. 2009), whereas
PhyloBayes version 3 (Lartillot et al. 2009) applies a
gamma distribution seeded by exponential hyperpriors
on the shape and scale parameters. PHYCAS version 1
(Lewis et al. 2009) uses separate exponential distribu-
tions on the lengths of external and internal branches,
each seeded by an inverse gamma hyperprior. Finally,
BayesPhylogenies (Pagel and Meade 2004; Meade and
Pagel 2008) makes use of an exponential distribution
with mean 1 that cannot be modified by the user. Em-
pirical data suggest that true branch lengths are indeed
exponentially distributed in most cases (Venditti et al.
2010).

We performed Bayesian and maximum likelihood
(ML) phylogenetic inference based on DNA sequence
data from a family of lichenized ascomycetes, the Pso-
raceae. This family belongs to the most species-rich
order of lichenized ascomycetes, the Lecanorales as de-
limited by Miadlikowska et al. (2006). Psoraceae was
originally described by Zahlbruckner (1898) and in-
cluded at the time only two genera, the type genus
Psora (the name of which derives from the Greek word
meaning “itch”), the scale lichens, and Toninia, the blis-
ter lichens. Both genera form crusts of “scales” or “blis-
ters” on soil or rock, but otherwise lack similarities.
Toninia is currently considered a member of another
family in the same order, the Ramalinaceae (Lumbsch
and Huhndorf 2007). After the synonymization of the
Psoraceae with the huge Lecideaceae by Zahlbruckner
(1908), the name fell into disuse until its resurrection by
Hafellner (1984). In its most recent interpretation, the
Psoraceae includes the two species-rich genera Psora
and Protoblastenia (around 30 and 15 species, respec-

tively; Timdal 2002; Kainz 2004) and the small genera
Eremastrella (3 species; Index Fungorum in November
2010, http://www.indexfungorum.org), Glyphopeltis (2),
Psorula (1), and Protomicarea (1), the latter included with
a question mark. The current delimitation is mostly
based on habitat requirements (on soil or rock crevices),
a scale-like habit, and a certain morphology of the api-
cal apparatus of the ascus, the spore-producing organ
in ascomycetes (see Ekman et al. 2008, Fig. 1c–e for il-
lustrations). Unfortunately, these traits are in no way
unique to the suggested members of the family, making
the delimitation, or even the existence, of this family
uncertain.

The primary aims of this investigation were to 1) es-
timate the phylogeny of the Psoraceae and related taxa
in a Bayesian context and 2) assess the sensitivity of
the posterior tree sample, node support, and branch
lengths to the combination of branch-length prior and
likelihood model. The claim that Bayesian integration
over a prior distribution of branch lengths might confer
an increased risk of topological bias and inconsistency
in challenging situations (Kolaczkowski and Thornton
2009) prompted us to compare results from our Bayesian
analyses with ML analyses, including estimates of boot-
strap node support.

MATERIALS AND METHODS

Taxon Selection

We selected for this study members of all genera be-
longing to the Psoraceae as delimited by Lumbsch and
Huhndorf (2007), except the monotypic Protomicarea.
We also included a selection of representatives from the
Pilocarpaceae, Ramalinaceae, and Sphaerophoraceae (in
the sense of Lumbsch and Huhndorf 2007). Earlier stud-
ies have found these three families to be closely related
to the Psoraceae (Andersen and Ekman 2005; Ekman
et al. 2008). The reason for including Romjularia lurida,
treated as a member of the Lecideaceae by Lumbsch and
Huhndorf (2007), is that it has been classified in Psora
(e.g., Wirth 1980; Santesson 1984) and that thallus mor-
phology and ascus structure are similar to Psora (Timdal
1984). A close relationship between R. lurida and Psorula
rufonigra has been suggested on morphological grounds
(Timdal 1984), which prompted us to also include the
latter. Micarea sylvicola and M. bauschiana were included
because molecular phylogenies have suggested them to
be closely related to Psora (Andersen and Ekman 2005;
Ekman et al. 2008). In these studies, taxon sampling
in Psora and related taxa was sparse. Badimia dimidiata
was included on account of its reported Psora-like ascus
structure (Lücking et al. 1994) and because Andersen
and Ekman (2005) could not rule out a close relationship
with the Psoraceae. Lecidoma demissum was included as
the outgroup. This monotypic genus belongs in the
Lecideaceae according to the molecular phylogeny of
Miadlikowska et al. (2006) and the subsequent taxo-
nomic classification by Lumbsch and Huhndorf (2007).

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/60/4/541/1609032 by guest on 24 April 2024

http://www.indexfungorum.org


2011 EKMAN AND BLAALID—PSORACEAE 543

TABLE 1. Species included in this study

Species Family Source mrSSU mrLSU ITS RPB1

Badimia dimidiata Pilocarpaceae Costa Rica, Lücking 1601 (BG) AY567774 EF521311 NA NA
Bilimbia sabuletoruma Ramalinaceae Norway, Ekman 3091 (BG) AY567721 NA NA AY756413
Catillaria contristansb (not classified) Norway, Andersen 92 (BG) AY567733 NA NA AY756394
Eremastrella crystallifera Psoraceae South Africa, Crespo MAF66b (BG) EF524307 EF521297 NA EF524327
Glyphopeltis ligustica Psoraceae South Africa, Brusse 4947 (UPS) AY756399 NA NA NA
Lecania cyrtella Ramalinaceae Sweden, Ekman 3017 (BG) AY567720 NA NA NA
Lecidoma demissum Lecideaceae Norway, Tønsberg 28480 (BG) EF524305 EF521298 NA NA
Micarea adnata Pilocarpaceae Norway, Andersen 48 (BG) AY567751 NA NA AY756388
M. bauschiana Pilocarpaceae Norway, Andersen 83 (BG) AY567770 NA NA NA
M. erratica Pilocarpaceae Sweden, Arup 99192 (hb. U. Arup, Lund) AY567737 NA NA AY756390
M. sylvicola Pilocarpaceae Sweden, Ekman 3629 (BG) AY567768 NA AY756331 AY756392
Protoblastenia calva Psoraceae Norway, Edvardsen and Ekman NO6 (BG) NA EF521308 EF524319 EF524338
P. terricola Psoraceae Norway, Edvardsen and Ekman NO7 (BG) NA EF521310 NA NA
P. incrustans Psoraceae Norway, Edvardsen and Ekman NO5(BG) NA EF521309 NA NA
P. rupestris Psoraceae Norway, Edvardsen and Ekman NO8 (BG) NA EF521299 EF524318 EF524329
P. siebenhaariana Psoraceae Norway, Bratli 2135 (O) NA EF521312 NA NA
Psora brunneocarpa Psoraceae Mexico, Timdal SON69/04 (O) NA EF521301 EF524310 EF524330
P. californica Psoraceae United States, Timdal SON139/01 (O) EF524292 EF521302 EF524322 EF524334
P. cerebriformis Psoraceae United States, Rui and Timdal 59937 (O) EF524293 EF521303 EF524325 EF524335
P. decipiens Psoraceae Greenland, Timdal 10078 (O) AY567772 NA EF524326 EF524337
P. globifera Psoraceae Greenland, Timdal 10/49 (O) EF524294 EF521304 EF524323 EF524331
P. hyporubescens Psoraceae United States, Bratt and Timdal 7052 (O) EF524295 NA EF524311 NA
P. icterica Psoraceae United States, Timdal US211/01 (O) NA EF521300 EF524316 NA
P. nipponica Psoraceae United States, Timdal US212/12 (O) NA NA EF524312 EF524336
P. nitida Psoraceae Mexico, Timdal SON33/06 (O) EF524296 NA EF524313 NA
P. pacifica Psoraceae United States, Rosentreter 14580 (O) EF524297 NA EF524314 EF524332
P. peninsularis Psoraceae Mexico, Timdal SON32/07 (O) EF524298 NA EF524320 NA
P. pruinosa Psoraceae Mexico, Timdal SON32/06 (O) EF524299 NA NA EF524333
P. rubiformis Psoraceae Greenland, Timdal 10080 (O) EF524308 EF521307 NA NA
P. russellii Psoraceae Mexico, Timdal SON31/03 (O) EF524300 NA EF524321 NA
P. tenuifolia Psoraceae Russia, Haugan and Timdal YAK17/26 (O) EF524303 NA EF524309 NA
P. testacea Psoraceae Greece, Rui and Timdal TH06/04 (O) EF524301 EF521305 EF524315 NA
P. tuckermanii Psoraceae United States, Rui and Timdal US240/05 (O) EF524304 EF521306 EF524317 NA
P. vallesiaca Psoraceae Greece, Rui and Timdal 7993 (O) EF524291 NA EF524324 NA
Psorula rufonigra Psoraceae United States, Nordin 5265 (UPS) AY756405 NA NA AY756411
Romjularia luridac Lecideaceae Norway, Tønsberg 32055 (BG) NA NA NA EF524328
Sphaerophorus globosus Sphaerophoraceae Iceland, Högnabba 101 (UPS) AY256751 NA NA AY756424

Notes: GenBank accession numbers for each of the 4 genes and voucher specimens on which the sequences are based are provided.
Newly obtained sequences are marked in bold. Abbreviations of public herbaria in which vouchers are deposited follow Index Herbariorum
(http://sciweb.nybg.org/science2/IndexHerbariorum.asp). NA= genes for which data were not available; hb = private herbarium. The famil-
ial classification follows Lumbsch and Huhndorf (2007) with the exceptions listed in the footnotes.
aBilimbia sabuletorum was not classified to family in the Lecanoromycetes by Lumbsch and Huhndorf (2007), whereas it was treated (under the
name Myxobilimbia) as a member of the Ramalinaceae by Ekman (2004).
bCatillaria belongs in the Catillariaceae (Lumbsch and Huhndorf 2007), but Catillaria contristans is distantly related to the type and is not a
member of that genus (Fletcher and Coppins 2009).
cThe genus Romjularia was not described at the time Lumbsch and Huhndorf (2007) was published. When describing the genus, Timdal (2007)
classified it in the “Porpidiaceae,” a family that was considered a synonym of the Lecideaceae by Lumbsch and Huhndorf (2007).

Among a total of 37 species included in the study, new
sequences were obtained from 27 (Table 1).

DNA Extraction, Polymerase Chain Reaction Amplification,
and Editing

We obtained DNA sequences from four regions of
three different genes, the largest subunit of the RNA
polymerase II gene (RPB1), the internal transcribed
spacer (ITS) region (including ITS1, 5.8S, and ITS2) of
the nuclear ribosomal RNA gene, and the small and
large subunits of the mitochondrial ribosomal RNA
gene (referred to here as mrSSU and mrLSU, respec-
tively). DNA was extracted using the DNeasy Plant
Mini Kit TM (Qiagen) from 3 to 4 apothecia per spec-
imen. Polymerase chain reaction (PCR) amplification

was performed using the primer pairs ML3A (Printzen
2002) and ML4 (White et al. 1990) for the mrLSU,
mrSSU1 (Zoller et al. 1999) and MSU7 (Zhou and
Stanosz 2001) for the mrSSU, ITS1F and ITS4 (White
et al. 1990) for the ITS, and gRPB1-A and fRPB1-C
(Matheny et al. 2002) for the RPB1. The PCR mixture (50
μL) consisted of 1× PCR buffer (Applied Biosystems),
1.5 mM MgCl2 (Applied Biosystems), 800 μM total de-
oxynucleotide triphosphates (Promega), 0.7 μM of each
primer, 1.5 U of AmpliTaq DNA polymerase (Applied
Biosystems), and a variable amount of extracted DNA.
The following PCR cycling parameters were used to
amplify mrSSU, mrLSU, and ITS: an initial hold at 94 ◦C
for 4 min followed by 6 cycles including denaturizing at
94 ◦C for 1 min, annealing at 62 ◦C for 1 min (decreasing
by 1 ◦C every cycle), and polymerization at 72 ◦C for 1
min 45 s, then 34 cycles including an initial hold at 94 ◦C
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for 30 s, annealing at 56 ◦C for 30 s, and polymerization
at 72 ◦C for 1 min 45 s, and finally a hold at 72 ◦C for
10 min. The following PCR cycling parameters were
used to amplify RPB1: an initial hold at 94 ◦C for 2 min
followed by 7 cycles including denaturizing at 94 ◦C for
1 min, annealing at 61 ◦C for 1 min 30 sec (decreasing by
1 ◦C every cycle) and polymerization at 72 ◦C for 1 min
45 sec (increasing by 0.5 ◦C each cycle), then 33 cycles
including an initial hold at 94 ◦C for 1 min, annealing at
56 ◦C for 1 min 30 sec, then polymerization at 72 ◦C for
2 min (increasing by 3 sec every cycle) and finally a hold
at 72 ◦C for 10 min. PCR products were electrophoresed
in a 0.5% agarose gel and visualized using ethidium
bromide. Samples were cleaned from redundant primer
using 1 μL of EXOSAP-IT (USB Corporation) for every 5
μL of PCR product. Direct sequencing of PCR products
was performed in both directions using the Big Dye Ter-
minator kit version 3.1 (Applied Biosystems) with the
PCR primers. Sequencing reactions were cleaned using
Agencourt CleanSEQ (Agencourt Bioscience) according
to the manufacturer’s protocol. Sequences were assem-
bled and edited using Sequencher version 4.6 (Gene
Codes Corporation).

Sequence Alignment

Sequences were aligned using Sequence Alignment
and Modeling System version 3.4 (Hughey and Krogh
1996; Durbin et al. 1998), followed by manual adjust-
ments and manual exclusion of ambiguously aligned
positions (see Morrison 2009a, 2009b, for a justification
of manual interventions in the alignment process). All
excluded alignment regions were associated with se-
quence length variation that required (often numerous)
gaps to be inserted. One intron at the beginning of the
RPB1 sequence was excluded; only open reading frames
were used in subsequent analyses. The final matrix was
submitted to TreeBASE (http://www.treebase.org/)
and filed under matrix accession number M5064 (as part
of study number S2635). It consisted of 37 species and
2711 unambiguously aligned positions, 665 of which
belonged to RPB1 (starting with a second codon posi-
tion), 341 to the ITS region (103 to ITS1, 160 to 5.8S, and
78 to ITS2), 793 to the mrSSU, and 912 to the mrLSU.
The amount of ambiguous data, including gaps, unse-
quenced terminal ends of sequenced genes, and partial
and entire unsequenced gene regions, ranged from 3%
to 76% per taxon, with a median of 53% (first to third
quartile ranging from 36% to 59%). When data were
missing from entire unsequenced gene regions, this
was always caused by technical difficulties obtaining
PCR products or unambiguous sequences from the PCR
products.

Model Selection

Models of potential partitions.—We used the Bayesian in-
formation criterion (BIC) as implemented in ModelTest
3.7 (Posada and Crandall 1998) to choose among 56 re-

versible, stationary, homogeneous, and homotachous
models for 1) the entire data set, 2) for each of the four
gene regions (RPB1, ITS, mrSSU, and mrLSU), and 3)
for each of the subdivisions of RPB1 (first, second, and
third codon positions) and ITS (ITS1, 5.8S, and ITS2).
Alignment length was used as sample size. We chose
the BIC over the more widely used Akaike informa-
tion criterion (AIC) for three reasons. First of all, the
AIC (unlike the BIC) makes the somewhat unrealistic
assumption that candidate models are all close to the
true model (Sullivan and Joyce 2005). Second, the AIC
has been claimed to introduce redundant model param-
eters (Abdo et al. 2005). Finally, we aimed for consis-
tency and consequently conducted model selection in
a Bayesian context in accordance with the subsequent
phylogenetic analyses. Because of model choice restric-
tions imposed by the Bayesian phylogenetic software
(MrBayes 3.2), models with three, four, or five substitu-
tion rates were approximated with a six-rate model. The
choice of increasing rather than reducing the number of
parameters was motivated by the reported tendency of
Bayesian phylogenetic inference to overestimate confi-
dence when the model is underfitted (Huelsenbeck and
Rannala 2004).

Partitioning scheme.—Following Brandley et al. (2005),
the degree of partitioning of the data set (1, 4, or 8 par-
titions) was determined using Bayes’ factors (Kass and
Raftery 1995) with the model likelihood represented by
its harmonic mean (Newton and Raftery 1994). Bayes’
factors and the BIC are expected to provide fairly sim-
ilar results (Posada and Buckley 2004; Kelchner and
Thomas 2006). However, we chose to use Bayes’ factors
as our partitioning scheme selection criterion because
they are computationally feasible (only 3 estimates of
model likelihood) and avoid the inherent approxima-
tion of the BIC (Sullivan and Joyce 2005). Using the
models selected by the BIC for each partition, we per-
formed two calculations of Bayes’ factor, the first one
comparing a single partition (H0) with 4 partitions (H1)
and the second comparing 4 partitions (H0) with 8 (H1).
Both comparisons identified “very strong” support for
the more complex partitioning scheme (H1), as defined
by Kass and Raftery (1995, p. 777), that is, twice the
natural logarithm of Bayes’ factor exceeded 10. Using
this Bayes’ factor cutoff level in selecting an appropriate
partitioning scheme was demonstrated to perform well
in a simulation study by Brown and Lemmon (2007).
The harmonic mean estimator has been reported to
be an unreliable estimator of model likelihood (Kass
and Raftery 1995; Lartillot and Philippe 2006). In our
case, however, Bayes’ factors were very large and har-
monic mean likelihoods very similar across identical
runs. Comparisons were made using MrBayes 3.2 as
described below using an exponentially distributed
branch-length prior with mean 0.1 and a flat Dirichlet
for proportional rate heterogeneity across partitions.
Using this scheme, we arrived at the following likeli-
hood models for the 8 partitions: K80 + I +Γ for RPB1
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first positions; K80 + I for RPB1 second positions and
5.8S; SYM + Γ for RPB1 third positions, ITS1, and ITS2;
HKY + I +Γ for mrSSU; and GTR + Γ for mrLSU. This
partitioning scheme resulted in a model with a total of
47 free parameters (not counting individual branches as
parameters). This model is hereafter referred to as the
“8×BIC model.”

Additional under- and overparameterization.—In order to
provide an impression of the effect of fitting distinctly
fewer or more parameters to the data, we also per-
formed all phylogenetic analyses by 1) treating the
entire data set as a single partition and 2) setting the
model to GTR + I +Γ for each of the 8 partitions (a to-
tal of 87 free parameters not counting branches). The
model selected by the BIC in the case of a single parti-
tion is TrN + I + Γ , which was approximated with a GTR
+ I + Γ model (10 free parameters) in MrBayes. For sim-
plicity, the single-partition model is hereafter referred
to as the “1×GTR model” and the 8×(GTR + I + Γ) as
the “8×GTR model.” All model denotations used here
follow the ModelTest 3.7 documentation (Posada and
Crandall 1998).

Phylogenetic Analyses

ML estimation of trees and branch lengths.—ML phyloge-
netic estimation was performed using a combination of
the parallel version of RAxML 7.0.4 (Stamatakis 2006;
Stamatakis et al. 2008) and Treefinder version October
2008 (Jobb et al. 2004; Jobb 2008). Under a single GTR
+ I + Γ4 model, RAxML searched for the optimal tree
in rapid hill-climbing mode from 1000 different ran-
dom starting trees. Model parameters were optimized
to an accuracy of 0.0001 ln likelihood units. Node sup-
port was estimated using 999 nonparametric bootstrap
replicates. The single optimal tree and the 999 boot-
strap trees were subsequently input to Treefinder as
starting trees for a tree optimization under the 8×BIC,
1×GTR, and 8×GTR models (including proportional
rate heterogeneity across partitions, exactly matching
the model used by MrBayes). Under each model, node
support was estimated with 1000 nonparametric boot-
strap replicates, each replicate using the three optimal
trees (from the three different models) as starting trees.
All searches were performed at the best search inten-
sity (“level 2 search depth”). We chose Treefinder as
our ML tree search tool because it is unique in its abil-
ity to implement a combination of partitioned likeli-
hood models, a variable number of discrete gamma
categories, and proportional rate heterogeneity across
partitions.

Curve fitting of ML branch lengths.—Branch lengths were
extracted from the best tree found with ML under each
of the three models and fitted to a variety of continu-
ous statistical distributions using EasyFit Professional
5.0 (MathWave Technologies). The null hypothesis that

the data follow the specified distribution was evaluated
using a Kolmogorov–Smirnov test for absolute good-
ness of fit.

Bayesian inference of phylogeny.—We performed Bayesian
phylogenetic inference using Markov chain Monte
Carlo (MCMC) as implemented in the parallel version of
MrBayes 3.2 (Ronquist and Huelsenbeck 2003; Altekar
et al. 2004), the source code of which was downloaded
from the Concurrent Versions System repository on 18
November 2008. Prior distributions included treating
all tree topologies as equally likely, and (when applica-
ble) a uniform (0.001, 200) distribution for the gamma
shape parameter, a uniform (0, 1) distribution for the
proportion of invariable sites, a (1, 1, 1, 1, 1, 1) Dirich-
let for the rate matrix, a beta (1, 1) distribution for the
transition-to-transversion rate, and a (1, 1, 1, 1) Dirichlet
for the state frequencies. The number of discrete cate-
gories used to approximate the gamma distribution was
set to 6 in all analyses.

We first checked for topological congruence between
the three genes by performing Bayesian MCMC analy-
ses on each gene separately using the model identified
as best by the BIC mentioned above and an exponen-
tial branch-length prior with mean 0.1. We defined in-
congruence between pairs of genes as strong support
(taken here to mean 0.95 or higher posterior probabil-
ity) for two different relationships (one monophyletic
and the other nonmonophyletic) involving the same set
of taxa (Mason-Gamer and Kellogg 1996; Reeb et al.
2004). As we did not find any evidence of incongru-
ence, we proceeded to concatenate data from all of the
genes.

Six different exponentially distributed branch-length
priors were tested, five of which were identical across
likelihood models: mean 0.01, 0.0316, 0.1 (the default in
MrBayes 3.2), 0.316, and 1. The second and fourth values
are halfway between 0.01 and 0.1 and between 0.1 and
1 on a logarithmic scale. The sixth branch-length prior
was generated by an empirical Bayes’ approach (Carlin
and Louis 2000; Robert 2001), whereby the distribution
of branch lengths in the ML phylogeny obtained from
Treefinder under each of the three models was fitted to
an exponential distribution using EasyFit Professional
5.0. We restricted the investigation to exponentially dis-
tributed branch-length priors because they are closer
to being uninformative than uniform priors (Ronquist
et al. 2009). Partitioned models allowed rate hetero-
geneity across partitions according to a proportional
model (branch lengths linked) by adding a rate multi-
plier m to each partition. The prior distribution followed
a Dirichlet, either with weights (1, 1, 1, 1, 1, 1, 1, 1) or,
when needed to avoid poor mixing, weights computed
by multiplying by 20 the mean values from the cor-
responding posterior distribution obtained using the
mean 0.1 exponential branch-length prior. All other
likelihood model parameters were unlinked across
partitions.
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For each of the 18 combinations of likelihood model
(3) and branch-length prior (6), three parallel runs were
performed, each with six chains, five of which were in-
crementally heated to a temperature of 0.15. The appro-
priate degree of heating was determined by observing
swap rates between chains in preliminary runs. Every
1000th tree was sampled. Analyses were diagnosed for
convergence every 106 generations in the last 50% of the
tree sample and automatically halted when convergence
was reached. Convergence was defined as an average
standard deviation of splits (of frequency ≥0.1) between
runs below 0.01. Finally, the potential scale reduction
factor (PSRF) was monitored manually, and we only ac-
cepted runs with PSRF values smaller than 1.1 for all
model parameters and all bipartitions.

Majority-rule consensus trees, including also com-
patible groups with lower support than 0.5, were con-
structed from the post-burn-in tree samples. This kind
of consensus tree is hereafter referred to as an “extended
majority-rule consensus,” following the terminology of
PHYLIP (Felsenstein 2005).

Model adequacy.—A series of tests of model adequacy
were carried out using posterior predictive sampling
(Bollback 2002). Tests were performed separately on
each of the 8 partitions used in the MrBayes analyses,
and taxa consisting only of missing data were excluded.
Four tests of overall model adequacy were performed: 1)
the best-fitting model identified by the BIC as described
above, 2) a GTR + Γ6 model 3) a GTR + I + Γ6 model (i.e.,
the one used on every partition in the 8×GTR model),
and 4) a F81 + Γ6 and a GTR + Γ6 model to which hetero-
tachy was added. In addition, we tested the adequacy
of a stationary GTR + Γ6 model to explain the observed
base composition across trees. The four tests of overall
model adequacy used the unconstrained (multinomial)
likelihood as test statistic (Bollback 2002), whereas the
test of stationarity was based on the maximum devi-
ation in nucleotide frequencies across taxa, deviation
being measured as the sum of squares of differences
between global nucleotide frequencies and per-taxon
frequencies (Blanquart and Lartillot 2008). For the three
tests of stationary and homotachous models, poste-
rior distributions of trees and model parameters were
generated using MrBayes as described above. Posterior
predictive sampling was performed with PuMA version
0.905 (Brown and ElDabaje 2009). Tests of the heterota-
chous and nonstationary models, on the other hand,
were performed by generating posterior distributions
with the software PhyloBayes 3.2e (Lartillot et al. 2009)
under a GTR model with rate heterogeneity across sites.
We applied an exponential branch-length prior with
the mean drawn from an exponential hyperprior with
mean 0.1. Default priors were used on all other model
parameters. PhyloBayes does not model a proportion
of invariant sites, which was the reason for not includ-
ing this parameter. We modeled heterotachy with the
“mmbl” option, that is, a branch-length mixture model
(Zhou et al. 2007; Kolaczkowski and Thornton 2008).

Approximately 1000 new data sets were simulated from
a subsample of the posterior using PhyloBayes. Un-
constrained likelihoods were computed with PAUP*
version 4.0b10 (Swofford 2003). Because of the compu-
tational intensity of this procedure, the test of a het-
erotachous model was only applied to partitions for
which homotachous models were rejected (i.e., the two
mitochondrial partitions). Note that PAUP* and PuMA
can only calculate the unconstrained likelihood from
alignment sites with completely unambiguous data.
Therefore, alignment sites containing ambiguous data
(mainly gaps) were excluded prior to all analyses using
this test statistic. The subsequent test of compositional
homogeneity, on the other hand, was conducted for all
partitions and including gapped alignment sites. The
built-in global test of compositional homogeneity (the
“comp” option of ppred) was employed. All PhyloBayes
analyses were conducted with three parallel runs and
automatic convergence monitoring (excluding the first
fifth of the cycles as burn-in). Analyses halted automati-
cally when all model parameters displayed a maximum
discrepancy less than 0.1 between pairs of runs and an
effective sample size exceeding 100. Rate heterogeneity
across sites generally was modeled as a gamma dis-
tribution, divided into 6 discrete categories. However,
PhyloBayes was unable to apply gamma-distributed
rates when gapped sites were excluded from the RPB1
second position sites, so in this case, rate heterogeneity
across sites was instead modeled as a Dirichlet process
(Huelsenbeck and Suchard 2007).

Summary statistics from Bayesian and ML trees.—A series
of summary statistics was calculated from the ML non-
parametric bootstrap and/or Bayesian posterior tree
samples as well as the best tree found under ML. The
marginal likelihoods of data given the Bayesian poste-
rior samples were calculated with Tracer 1.4 (Rambaut
and Drummond 2007) using the importance sampling
estimator originally suggested by Newton and Raftery
(1994) and modified by Suchard et al. (2003). The stan-
dard error was estimated using 1000 bootstrap repli-
cates. Tree lengths and “treeness” (i.e., the proportion
of internal branches to total tree length) were recorded,
tree by tree across bootstrap and Bayesian posterior
tree samples, using TreeStat version 1.2 (Rambaut and
Drummond 2008). This procedure allowed us to calcu-
late the lengths of internal and terminal branches sepa-
rately. Node support can be affected by the topological
stability of individual taxa in the analysis (Wilkinson
1996; Sanderson and Schaffer 2002). Therefore, we com-
puted the leaf stability index (LSI) of Thorley and
Wilkinson (1999) across tree samples using Phyutil-
ity version 2.2 (Smith and Dunn 2008) on input trees
that were rooted with L. demissum in a basal poly-
tomy. In order to quantify the diversity of topologies
within a tree sample, we calculated the average dis-
tance between trees in the sample. Distances between
trees were measured as the symmetric difference metric
(alias partition metric or “Robinson–Foulds distance”)
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of Robinson and Foulds (1981) and Penny and Hendy
(1985), as calculated by PAUP*. We deliberately chose
a distance metric that disregards branch lengths, as
we were only interested in the diversity of tree topolo-
gies. We also recorded the number of nodes with ≥0.95
posterior probability in each of the Bayesian posterior
tree samples as well as posterior probabilities of the
nodes uniting the family Psoraceae and the genus Psora
(including Psora testacea) as circumscribed in Figure 1.
For each bootstrap tree sample, we recorded the num-
ber of nodes with ≥0.75 bootstrap support as well as
bootstrap support for the nodes uniting the Psoraceae
and Psora. The cutoff figure 0.75 was arbitrarily chosen
to correspond approximately to common practice for
defining “strong bootstrap support” in published phy-
logenetic studies. Several studies have demonstrated
that bootstrap proportions should be expected to un-
derestimate the true probability of a node when the
bootstrap probabilities are high (Zharkikh and Li 1992a,
1992b; Felsenstein and Kishino 1993; Hillis and Bull
1993; Li and Zharkikh 1994, 1995), which was the ra-
tionale for setting the bootstrap cutoff lower than the
corresponding Bayesian cutoff.

Associations between taxon stability and amount of
ambiguous data or distance to nearest relative.—The null
hypotheses of no association between the LSI and 1)

the proportion of ambiguous data (including gaps and
unsequenced portions of the genes) as well as 2) the
smallest distance to another taxon (smallest distance
measured as the minimum sum of ML branch lengths)
were tested using Kendall’s rank correlation as imple-
mented in the function “cor.test()” in R version 2.9.2 (R
Development Core Team 2009). The rationale for choos-
ing a nonparametric test was that the data deviated
from bivariate normality.

Tree space visualization.—We visualized tree topology
space sampled by nonparametric bootstrapping and
Bayesian MCMC under the three different models and
(for MCMC) under the six different prior distributions
of branch lengths. The approach was similar to the one
suggested by Hillis et al. (2005). Using Mesquite 2.71
build 514 (Maddison W.P. and Maddison D.R. 2009), we
created a random subsample of 500 trees from each of
the three nonparametric bootstrap tree samples and 500
trees from each of the posterior tree samples resulting
from the 18 combinations of model and branch-length
prior. These tree samples were united into one single
sample including a total of (3+18)× 500= 10,500 trees. A
matrix of all pairwise distances between these trees was
calculated using PAUP* version 4.0b10 (Swofford 2003).
Again, the symmetric difference metric was used. The
generated distance matrix was subjected to principal

FIGURE 1. Extended majority-rule consensus with average branch lengths and posterior probabilities of nodes resulting from Bayesian
MCMC under the 8×BIC model and an exponential branch-length prior with mean 0.1. A revised family classification that incorporates the
new phylogenetic information and at the same time imposes the smallest possible change on the current classification is indicated in the right
margin. The two nodes of principal interest in this investigation, the ones uniting the family Psoraceae and the genus Psora, are indicated with
dots in the tree. The long branch of Badimia dimidiata was broken; the estimated length is noted in brackets behind the name.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/60/4/541/1609032 by guest on 24 April 2024



548 SYSTEMATIC BIOLOGY VOL. 60

coordinates analysis (PCoA), also known as metric mul-
tidimensional scaling, using the “cmdscale()” function
of 64-bit R version 2.9.2. We preferred PCoA over non-
metric multidimensional scaling (used by Hillis et al.
2005) because it is computationally less demanding and
is expected to give a similar result when the dissimilar-
ity metrics satisfies triangle inequality, which symmetric
difference distances do (Felsenstein 2004, p. 533–534).

RESULTS

MCMC convergence and mixing.—MCMC analyses halted
automatically after 7–39 million generations. Under
the 8×BIC model and the longest branch-length pri-
ors (means 0.316 and 1), we experienced poor mixing,
symptoms being exceptionally long trees (16 and 54
changes per site) and rate multipliers implying that
the fastest partition evolves around 1000 or 3000 times
more rapidly than the slowest. The problem was solved
by applying a stronger prior on the rate multipliers.

Bayesian phylogeny.—Figure 1 shows an extended
majority-rule consensus tree with average branch
lengths and posterior probabilities of nodes resulting
from Bayesian MCMC under the best-fitting 8×BIC
model and a mean 0.1 exponential branch-length prior.
The reason for displaying the outcome of this partic-
ular branch-length prior is that it resulted in the best
marginal likelihood under the 8×BIC model. In this
figure, we also indicate a revised but tentative family
classification that incorporates the newly obtained phy-
logenetic information and at the same time imposes
the smallest possible change on the current taxonomic
classification. This tree provides strong support (0.96
posterior probability) for the existence of the Psoraceae
including Psora, Protoblastenia, and the M. sylvicola
group (here including M. sylvicola and M. bauschiana).
The M. sylvicola group appears to be distantly related
to Micarea in the strict sense, which belongs to the Pi-
locarpaceae. Species of Micarea belonging in the Pilo-
carpaceae are represented in this investigation by M.
adnata and M. erratica. There is no support for a close
relationship between the Psoraceae (as circumscribed
here) and other genera with a recent history of be-
ing classified in this family (Eremastrella, Glyphopeltis,
Psorula, Romjularia). Support for the monophyly of Psora
is fair (0.86 posterior probability) but does not qualify
as strong if a 0.95 cutoff is used to define “strong sup-
port.” Extended majority-rule consensus trees obtained
under other combinations of model and branch-length
prior were similar in topology but varied in the posi-
tion of B. dimidiata, whether Glyphopeltis ligustica was
considered sister to Ramalinaceae or to Ramalinaceae +
Sphaerophoraceae + Psoraceae, the basal branching or-
der within the Psoraceae as well as the branching order
within the genus Psora.

ML phylogeny.—The extended majority-rule consensus
trees obtained by ML under the 8×BIC model is shown
in Figure 2. This tree is topologically identical to its

Bayesian counterpart, except that the M. sylvicola group
is sister to Protoblastenia instead of sister to the rest of
the Psoraceae. The best ML tree found is identical in
topology to the ML consensus, except that B. dimidi-
ata is nested deeply inside the genus Psora. Differences
among the optimal trees and among the bootstrap con-
sensus trees under the three models were very similar
to the variation found among the Bayesian extended
majority-rule consensus trees (see above). Under the
8×BIC model, bootstrap proportions are as high as
or higher than posterior probabilities for most nodes
with low posterior probabilities (less than c. 0.5) and,
conversely, as high as or lower than the posterior prob-
abilities for most nodes with posterior probabilities
exceeding 0.5. Support for the two nodes of special in-
terest in this study, the Psoraceae and the genus Psora,
is weak (0.63) and very weak (0.41), respectively. Data
likelihoods, BIC values, and support for Psoraceae and
Psora (under all three models) are shown in Table 2. BIC
values calculated by Treefinder confirm that the 8×BIC
model has the best fit among the three models used in
this investigation.

Model adequacy.—Model adequacy tests revealed that
only 3 of 8 partitions had best-fitting models with ad-
equate goodness of fit to the data (Table 3), viz. the
models fitted to the RPB1 first codon positions, ITS1,
and ITS2. The RPB1 second codon positions as well as
the 5.8S instead seem to be adequately described by the
more general GTR + I + Γ6 model. Furthermore, adding
heterotachy to the models of the two mitochondrial
partitions (mrLSU and mrSSU) renders them seemingly
adequate. The partition including the RPB1 third codon
positions was the only one found to deviate significantly
from stationarity.

ML branch-length distribution.—Among the statistical
distributions fitted to the ML branch lengths, the ex-
ponential distribution turned out to be the best-fitting
single-parameter distribution under all three likelihood
models. However, the Kolmogorov–Smirnov test for
goodness of fit rejected the exponential distribution at
P ≤ 0.05 in all three cases. Other distribution types
with better fit (and not rejected at P ≤ 0.05) include the
gamma and Pareto. However, all distribution types with
better fit need at least two parameters. The uniform dis-
tribution, the only alternative offered by MrBayes, was
rejected in all three cases (2.9 × 10−7 ≤ P ≤ 3.5 × 10−7

depending on the model).

Marginal likelihoods.—The effect of likelihood model and
branch-length prior on the marginal likelihood is shown
in Figure 3. Under all three models, the likelihood dis-
played a unimodal response to the prior on branch
lengths, with an optimum at mean 0.1 or at the mean
of an exponential distribution fitted to the ML branch
lengths (1×GTR: 0.0448, 8×BIC: 0.0454, 8×GTR: 0.0520).
However, a very long prior on branch lengths will only
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FIGURE 2. Extended majority-rule consensus tree with average branch lengths and bootstrap proportions resulting from the ML bootstrap
under the 8×BIC model. The best tree (ln L = −14065.023) differs only in the position of Badimia dimidiata, which is attached to the branch
marked by an arrow. The long branch of B. dimidiata was broken; the estimated length is noted in brackets behind the name.

cause a slight reduction in likelihood under the simplest
model, whereas this reduction is distinctly larger under
the two more complex models.

Internal and external branches.—Figure 4a shows the in-
fluence of likelihood model and branch-length prior on
internal and external branch lengths. Internal branches
are virtually unaffected by the branch-length prior

under the simplest model, whereas a long branch-length
prior tends to stretch the internal branches under the
two more complex models. External branches are more
strongly affected by the branch-length prior, with a
moderate effect under the simplest model. Under the
two more complex models, however, the effect is very
distinct. Long priors on branch lengths effectively cause
tree lengths to become unrealistically high.

TABLE 2. Properties of the ML trees and the ML bootstrap tree samples

Optimal trees Bootstrap tree samples

Internal External BP for BP for Nodes with Mean symmetric-
Model ln L BIC branches branches Psoraceae Psora BP > 0.75 tree distance

1×GTR −14,568.785 29,778.209 0.79 2.39 0.70 0.61 12 35.05
8×BIC −14,065.023 29,063.323 0.82 2.41 0.63 0.41 12 34.57
8×GTR −13,933.018 29,115.678 0.90 2.79 0.66 0.62 13 34.68

Notes: We report the data likelihood (ln L), BIC, and summed lengths of internal and external branches (in units of changes per site) in the
optimal trees, as well as the bootstrap proportions (BPs) for the Psoraceae and Psora, total number of nodes with BPs equalling or exceeding
0.75, and mean symmetric-tree distance in the bootstrap tree samples.
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TABLE 3. Model adequacy as measured by posterior predictive sampling

Best-fitting Best-fitting P
model (including model (excluding (best model P P P P

Partition gapped sites) gapped sites) including gaps) (GTR + Γ6) (GTR + I + Γ6) (MBL) (stationarity)

RPB1, first positions K80 + I + Γ HKY + Γ 0.084 0.031 0.127 0.913
RPB1, second positions K80 + I JC + I 0.003 0.000 0.212 0.652
RPB1, third positions SYM + Γ K80 + I + Γ 0.004 0.008 0.407 0.002a

ITS1 SYM + Γ TrNef + Γ 0.157 0.140 0.208 0.468
5.8S K80 + I K81 + Γ 0.007 0.014 0.107 0.299
ITS2 SYM + Γ K80 + Γ 0.197 0.305 0.323 0.244
mrSSU HKY + I + Γ HKY + I + Γ 0.018 0.003 0.016 0.401/0.495 0.678
mrLSU GTR + Γ HKY + Γ 0.008 0.008 0.038 0.250/0.294 0.447

Notes: The four tests of overall model adequacy were performed using the unconstrained (multinomial) likelihood as test statistic, whereas the
test of compositional homogeneity (stationarity) was performed using the maximum deviation across taxa between taxon-specific and global
nucleotide composition. Heterotachy was modeled as a mixture of branch lengths (MBL) added to a simple F81 + Γ6 model (first number) and
a more complex GTR + Γ6 model (second number). A model is considered inadequate if P ≤ 0.05 (marked in bold). The first test of model
adequacy was performed under the best-fitting model identified by the BIC for the complete data (i.e., data that included gapped alignment
sites). We also report the best-fitting model selected by the BIC when all alignment sites with gaps have been excluded. The reason for this is
that all tests involving the unconstrained likelihood require all sites with ambiguous states (including gaps) to be excluded.
aFor this partition, P = 0.076 when gapped alignment sites have been excluded. The inability of the test to exclude stationarity when gapped
sites are excluded might explain why the GTR + I + Γ6 model is considered adequate using the unconstrained likelihood as test statistic.

Strongly supported nodes.—The number of “strongly
supported” relationships in the Bayesian phylogeny
inference (defined here as relationships with 0.95 or
higher posterior probability) varies between 8 and 14,
depending on the combination of likelihood model and
the branch length prior (Fig. 4b). Simpler models and

FIGURE 3. Marginal likelihood of the data (as estimated by impor-
tance sampling) depending on likelihood model and the mean of the
exponentially distributed branch-length prior. Standard errors of the
marginal likelihood ranged from 0.15 to 0.37 ln likelihood units.

shorter priors on branch lengths generally led to higher
numbers of such nodes than more complex models and
longer priors.

Topological diversity of MCMC samples.—The average dif-
ference in topology between the trees of the Bayesian
posterior tree sample, as measured by the symmetric-
tree distance, shows that short branch-length priors
cause trees to become more similar compared with
longer priors (Fig. 4c). Also, trees tend to be on average
slightly more different under the simplest model than
under the two complex models.

Support for Psora and Psoraceae.—Figure 4d shows how
posterior probabilities for the nodes uniting members of
Psoraceae and Psora in the Bayesian inferences depend
on likelihood model and branch-length prior. Support
for the Psoraceae is pronouncedly more dependent on
the branch-length prior than on the model. The general
tendency is that the support for this family decreases
with increasing length of the prior on branch length,
although support under the simplest model is distinctly
lower than under the two complex models when the
shortest prior on branch length is used. The pattern of
support for the genus Psora is very unlike the support
for the Psoraceae, support being mostly dependent on
the model but in no case exceeding a 0.95 cutoff as
“strong.”

ML tree statistics.—The lengths of internal and external
branches in the optimal trees found under ML as well
as the number of nodes with bootstrap support ≥0.75,
and the average symmetric difference between trees in
the bootstrap tree samples are accounted for in Table
2. Internal and external branch lengths are similar to
Bayesian estimates under an exponential branch-length
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FIGURE 4. Properties of the posterior tree sample obtained via Bayesian MCMC depending on likelihood model and the mean of the ex-
ponentially distributed branch-length prior. a) Average of summed internal and external branch lengths, respectively, across posterior tree
samples. b) Number of nodes with posterior probabilities equalling or exceeding 0.95. “ML” refers to the mean of the prior obtained by fitting
the lengths of the ML trees to an exponential distribution (mean 0.0448 under the 1×GTR model, 0.0454 under the 8×BIC model, and 0.0520
under the 8×GTR model). c) Average symmetric-tree distance among trees in the posterior sample. Averages were calculated from 6.1 × 106 to
78.1 × 106 pairwise distances. d) Posterior probabilities for nodes supporting the Psoraceae and Psora depending on the likelihood model and
branch-length prior.

prior with mean 0.1 or the mean of the ML branch
lengths, irrespective of likelihood model. The number
of “strongly supported” nodes (arbitrarily defined as
nodes with bootstrap proportions of 0.75 or higher) is
12 or 13. These numbers correspond most closely to
the number of supported nodes obtained with Bayesian
MCMC under the second shortest branch-length prior
and do not under any model include the Psoraceae or
Psora nodes. The average symmetric-tree distance across
ML bootstrap tree samples is fairly constant across like-
lihood models and is always distinctly larger than the
corresponding distance across Bayesian posterior tree
samples.

Taxon stability.—The distributions of LSI values across
the three ML bootstrap tree samples and (3 models × 6
branch-length priors = 18) Bayesian MCMC tree sam-
ples are summarized in Figure 5. The distributions of
LSI values based on the ML bootstrap tree sample are

similar across models, with the middle half of the distri-
bution within a narrow range and the upper and lower
quarters widely dispersed. The range of the middle
half of the distribution becomes slightly narrower with
increasing model complexity. The distributions of LSI
values from the Bayesian posterior tree sample largely
overlap with LSI values from the ML bootstrap. How-
ever, Bayesian posterior samples always have larger
LSI medians than the corresponding ML bootstrap tree
samples. The total range of LSI values is always much
smaller in Bayesian inference, whereas the range of the
middle half of the distribution is distinctly wider. The
Bayesian posterior tree samples, unlike the ML boot-
strap tree samples, often include some extremely stable
taxa (LSI ≥ 0.95) and for the most part lack very un-
stable taxa (LSI ≤ 0.70). The effect of the branch-length
prior on taxon stability in Bayesian inference depends
on the model. Medians are only moderately affected.
However, under all models, the effect of the extremely
stable taxa is reduced with an increasing branch-length

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/60/4/541/1609032 by guest on 24 April 2024



552 SYSTEMATIC BIOLOGY VOL. 60

FIGURE 5. Distribution of LSIs of individual taxa in the Bayesian posterior tree samples (with exponential means on the x-axis) as well as
the ML bootstrap tree samples (box immediately to the right of each diagram) under the a) 1×GTR, b) 8×BIC, and c) 8×GTR models. Solid lines
indicate median LSI values, dashed lines the first and third quartiles, and dotted lines minimum and maximum values.

prior and is almost at par with the upper limit of the
ML distribution at the longest priors. At the lower end
of the range of LSI values, formed by the more or less
“rogue” taxa, a minimum is reached either at the prior
fitted to the ML distribution of branch lengths or (under
the 1×GTR model) at the mean 0.0316 prior. Under ex-
ponential branch-length priors with mean 0.1 or higher,
minimum LSI values are larger under the two complex
models than under the simplest model.

Rogue taxa.—The smallest LSI values are nearly always
displayed by B. dimidiata, except in the case of the short-
est branch-length prior under Bayesian inference, in
which case G. ligustica is the least stable. Pruning B.
dimidiata from the Bayesian posterior tree sample gen-
erated by the combination of the 8×BIC model and
the mean 0.1 branch-length prior causes recalculated

average node support in the extended majority-rule
consensus tree to increase by 3.1%. The largest effect
is seen on the node uniting the Psoraceae (support in-
creases from 0.96 to 1.00) and on the node uniting the
Psoraceae and Sphaerophoraceae (support increases
from 0.62 to 0.98). Effects on other nodes are insignifi-
cant. Pruning B. dimidiata from the 8×BIC ML bootstrap
tree sample causes recalculated average node support
to increase by 7.1%. Support for the nodes mentioned
above increases from 0.63 to 0.90 and from 0.34 to 0.77,
respectively, whereas other nodes remain insignificantly
affected.

Associations between taxon stability and amount of ambigu-
ous data or distance to nearest relative.—The null hypothe-
sis of no correlation between the LSI and the amount of
ambiguous data in a taxon could not be rejected in any
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of the 21 analyses. In all cases, τ was slightly negative
but nonsignificant (0.35 ≤ P≤ 0.60 in the three ML anal-
yses, 0.49 ≤ P ≤ 0.78 in the Bayesian inference under
the 1×GTR model, 0.11 ≤ P ≤ 0.37 under the 8×BIC
model, and 0.07 ≤ P ≤ 0.30 under the 8×GTR model).
Similarly, the null hypothesis of no correlation between
the LSI and the smallest branch-length distance to an-
other taxon could not be rejected in any case. In all anal-
yses, τ took small positive or negative values and was
nonsignificant (0.12 ≤ P ≤ 0.55 in the three ML analy-
ses, 0.34 ≤ P ≤ 0.95 in the Bayesian inference under the
1×GTR model, 0.34 ≤ P ≤ 0.91 under the 8×BIC model,
and 0.22 ≤ P ≤ 0.86 under the 8×GTR model).

Tree space visualization.—The results of the PCoA are
shown in Figure 6 from which the following observa-
tions emerge: 1) The ML bootstrap samples trees from
a somewhat larger part of tree topology space than
Bayesian MCMC. However, in most cases, there are
nonoverlapping regions of tree space sampled exclu-
sively by ML bootstrapping or Bayesian MCMC. Only
in the case of the simplest model and the longest branch-
length prior does Bayesian MCMC tree space seem to
be a perfect subset of ML bootstrap tree space. 2) Model
choice affects the emphasis of sampling in tree topology
space but distinctly more so in Bayesian MCMC than
ML bootstrapping. 3) Branch-length priors strongly af-
fects the location of the visited regions of tree topology
space. Bayesian MCMC trees obtained under the short-
est branch-length priors are sampled from a small subset
of long-prior tree space. This part of tree space is largely
unexplored by the ML bootstrap. 4) The branch-length
prior strongly affects the volume of the visited regions of
tree topology space being sampled by Bayesian MCMC,
trees sampled under a short branch-length prior be-
ing considerably more similar than trees obtained with
longer branch-length priors. Observations 1 and 4 are
equivalent to the observations emerging from Table 2
(average symmetric-tree distance in the ML bootstrap
tree sample) and Figure 4c.

DISCUSSION

In the case of our data, short branch-length priors
generate a high number of strongly supported nodes,
and the trees are on average short, similar, and sampled
from a part of tree space that is largely unexplored by
the ML bootstrap. Long branch-length priors, on the
other hand, generate fewer strongly supported nodes,
longer trees, and trees that are more dissimilar and sam-
pled from within the range of tree space sampled by
the ML bootstrap. Priors at or near the ML distribution
of branch lengths generate the best marginal likelihood
and the highest instability of individual taxa. The sever-
ity of the effect of the branch-length prior depends on
the likelihood model: Trees generated by complex mod-
els are more extensively affected by the stretching effect
of the branch-length prior. Fewer nodes are strongly
supported under a more complex model given the same

branch-length prior. Furthermore, trees are, given the
same branch-length prior, on average somewhat more
dissimilar (as measured by the symmetric-tree distance)
under the simplest model compared with the complex
models.

Likelihood Model Performance

According to the BIC, the 8×BIC model fits the data
better than the 1×GTR or 8×GTR models (Table 2). Yet,
the tests of model adequacy (Table 3) indicate that the
model selected by the BIC inadequately describes the
evolutionary processes that shaped the data in 5 of 8
partitions. A possible reason for the BIC selecting inad-
equate models may be that it overpenalizes extra pa-
rameters, and perhaps particularly so when alignment
length (as was the case here for the partitions) is used as
sample size to calculate the penalty term. Sample size
remains a poorly understood quantity in phylogenetic
model selection (Posada and Buckley 2004; Sullivan
and Joyce 2005). It should also be pointed out that our
results are contrary to Ripplinger and Sullivan (2010),
who found that model adequacy tests involving the un-
constrained likelihood are often unable to reject simpler
models than the best-fitting ones selected by, among
others, the BIC.

A remedy for the inadequacy of the best-fitting mod-
els used for the RPB1 second codon positions and the
5.8S appears to be found in the more general yet sta-
tionary and homotachous model GTR + I + Γ6 model.
Remarkably, a GTR + Γ6 model, differing only in the
absence of the proportion of invariable sites, is deemed
inadequate for all partitions in which the best-fitting
model is also inadequate as well as for the RPB1 first
codon positions (in which the adequate best-fitting
model includes a proportion of invariable sites). These
results indicate that modelling a proportion of invari-
able sites, often criticized (e.g., Yang 2006, p. 114) for
introducing a pathological correlation with gamma
distributed rates across sites, can sometimes be cru-
cial for the adequacy of a model to explain underlying
processes.

In both the mitochondrial ribosomal RNA partitions,
model adequacy is achieved by adding heterotachy ei-
ther to a simple F81 + Γ6 or a more parameter-rich GTR
+ Γ6 model. This is an interesting observation, as het-
erotachy is usually discussed in the context of protein-
coding genes (Lopez et al. 2002; Kelchner 2009).

Compositional homogeneity for the ungapped data
was rejected only for the RPB1 third codon positions.
The apparent adequacy of the GTR + I + Γ6 model for
this partition may be explained by the limited power
of the unconstrained likelihood to reject stationarity
(Foster 2004). It should be noted that the recalculated
probability of stationarity is nonsignificant for this par-
tition when sites with ambiguous states (in this case
gaps) have been excluded.

Model adequacy tests relying on the unconstra-
ined (multinomial) likelihood of the data should be
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FIGURE 6. PCoA of pairwise topological symmetric-tree (“Robinson–Foulds”) distances among trees from the ML bootstrap and Bayesian
MCMC analyses. Five hundred random trees from each phylogenetic analysis were included (3 models × 500=1500 trees from the ML bootstrap
analyses, plus 3 models × 6 branch-length priors × 500 = 9000 trees from the Bayesian inferences, totalling 10,500 trees). Although the figure
displays the result of one single PCoA, dots representing the 21 categories of trees have been separated into 6 identical diagrams for the purpose
of clarity.

interpreted cautiously, as currently available software
(e.g., PAUP* and PuMA) can only calculate this quantity
in the absence of ambiguous data, including missing
data and gaps (Goldman 1993; Bollback 2002; Brown
and ElDabaje 2009). This shortcoming essentially means
that the test must be performed on only a subset of the
data, since empirical data, particularly from nonprotein–
coding genes, often contain an abundance of gaps. A

complication arising from this fact is that the best-fitting
model of the reduced data (excluding sites containing
ambiguous data) is not necessarily identical to the best-
fitting model of the complete data, as is the case in 7 of
8 partitions of our data (Table 3). A method for calcu-
lating the unconstrained likelihood in the presence of
ambiguous data has been described (Waddell 2005) but
currently lacks a software implementation.
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Effect of Branch-Length Prior and Likelihood Model on
Marginal Likelihoods

The three models investigated (1×GTR, 8×BIC, and
8×GTR) respond differently to variations in the branch-
length prior (Fig. 3). The marginal likelihood under the
two complex models is clearly better under medium-
sized branch-length priors than under very short or
very long priors. The simplest model differs in being
distinctly less sensitive to long branch-length priors. We
ascribe this phenomenon to the much higher number
of parameters in the complex models. With the same
amount of data available, a higher number of parame-
ters will become increasingly difficult to estimate with
accuracy, and the priors will have an increasing influ-
ence on the posteriors (Rannala 2002).

Topological Confidence

Node support obtained from our data depends on
the reconstruction method, the likelihood model, and
the branch-length prior. In general, the ML bootstrap
generates more topological uncertainty within the tree
sample than Bayesian inference (cf. Table 2 and Fig. 4c).
Furthermore, the number of strongly supported nodes
as well as the sampled part of topological space ap-
pear to be less variable across likelihood models in the
ML bootstrap than in Bayesian inference (Table 2 and
Figs. 4b and 6). This is in agreement with the simulation
study by Huelsenbeck and Rannala (2004), who found
ML bootstrap branch support to be more insensitive
to variations in the generating likelihood model than
Bayesian posterior probabilities. Under medium and
long branch-length priors, Bayesian inference seems to
sample trees mostly from a reasonable subset of topo-
logical space sampled by the ML bootstrap (Fig. 6).
The observation that the ML bootstrap generates more
uncertainty about relationships than Bayesian infer-
ence is in line with a large body of knowledge, which
has been elegantly reviewed elsewhere (Alfaro and
Holder 2006; Yang 2006, p. 177–179; Wróbel 2008). A
detailed mathematical explanation why patterns of sup-
port should be expected to disagree between bootstrap
proportions and posterior probabilities was provided
by Svennblad et al. (2006) and Britton et al. (2007).
The commonly used practice of applying a simple di-
chotomous decision rule, whereby nodes with a poste-
rior probability exceeding some predetermined cutoff
(e.g., 0.95, as suggested by Alfaro and Holder 2006)
are considered “strongly supported” and other nodes
“unsupported,” would have major consequences if un-
critically applied to our data without knowledge of
how the interaction between branch-length prior and
likelihood model affects the outcome (Fig. 4b). In our
case, shorter branch-length priors tend to generate more
“strongly supported” nodes compared with longer pri-
ors, and even more so when the model is simple (Fig.
4b). Also, branch-length priors shorter than the ML
distribution tend to generate a posterior tree sample in
which topologies are substantially more similar than un-

der longer priors (Fig. 4c). Topological variation within
the posterior tree sample is highest under the simplest
model, except under the shortest branch-length prior
(Figs. 4c and 6). This counterintuitive result is at odds
with the observed effect of model choice on the number
of highly supported nodes (Fig. 4b), which is higher
under the simplest model, except under the two short-
est branch-length priors. Apparently, the posterior tree
sample under the simplest model includes considerable
topological variation, possibly caused by taxa with poor
stability (see below), that does not affect nodes with
the highest posterior probabilities. Not only are trees
sampled under short branch-length priors more alike
within the sample, they also tend to be sampled from
a different part of topological space than trees sampled
under medium to long branch-length priors or under
the ML bootstrap (Fig. 6). Together, our results suggest
that long branch-length priors convey more topological
uncertainty than short priors. This is in agreement with
the findings of Kolaczkowski and Thornton (2007), who
found the highest risk of excessive node support when
the prior on branch lengths was much shorter than
the corresponding ML distribution of branch lengths.
Brown et al. (2010), on the other hand, found no or neg-
ligible effects of the branch-length prior on topological
confidence.

Branch-Length Estimates

Bayesian posterior tree lengths agree closely with ML
tree lengths when a mean 0.1 or ML branch length prior
(mean c. 0.05) was applied (Table 2 and Fig. 4a). Shorter
priors generate shorter branch lengths and longer pri-
ors generate longer branch lengths. Although this ten-
dency appears universal, it is weakest in the simplest
model and stronger in the two complex and parameter-
rich models. Average tree lengths under the combi-
nation of the longest branch-length prior and the two
complex models come close to 8 changes per site
(Fig. 4a), which seems biologically unrealistic and far
exceeds the corresponding ML estimates (Table 2). ML
estimates of branch lengths must be taken seriously, as
simulation experiments have shown them to be accu-
rate or, in very long branches, only slightly on the short
side (Schwartz and Mueller 2010). We ascribe the ob-
served phenomena to the increased influence of the pri-
ors when the model is rich in parameters that might
be difficult to estimate with accuracy (Rannala 2002).
Marshall et al. (2006) even found cases of nearly non-
identifiable branch lengths when they were unlinked
across partitions, that is, when a unique set of branch
lengths was estimated from each partition.

Not only is total tree length affected by the branch-
length prior, internal and external branches appear to
react differently (Fig. 4a). Total internal branch length
is virtually unaffected by short- and medium-sized
branch-length priors irrespective of likelihood model.
The two longest priors cause internal branches to ap-
proximately double in length under the complex models,
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whereas branches remain unaffected under the simplest
model. External branches, on the other hand, grow al-
most linearly in response to the logarithm of short- and
medium-sized branch-length priors. Under the simplest
model, the two longest priors have limited additional
effect on external branch length, whereas they cause
an approximate doubling in length (compared with
the mean 0.1 prior) under the two complex models.
Consequently, irrespective of model, the proportion of
internal branches to total tree length is approximately
constant over medium-sized and long branch-length
priors, whereas the proportion of internal branches
is markedly higher under short branch-length priors.
Relative changes in branch lengths resulting from the
branch-length prior can be a potential hurdle to phy-
logenetic comparative methods that employ branch
length to, for example, reconstruct ancestral states,
pinpoint shifts in diversification rates or transform
branches from units of changes per site into time.

Brown et al. (2010) elegantly demonstrated the sensi-
tivity of inferred Bayesian tree lengths under partitioned
as well as unpartitioned models to the branch-length
prior. Specifically, they showed that too large priors
tend to stretch trees beyond biologically realistic val-
ues and that this effect is probably the most frequent
reason for overestimated Bayesian branch lengths (their
“hypothesis 3”). Assuming that branch lengths are truly
exponentially distributed, they suggest an empirical
Bayes’ approach, whereby the mean of the exponen-
tial branch-length prior is set to −ln 0.5 divided by the
average branch length (estimated by other means, e.g.,
from an ML tree). Using this formula to calculate ap-
propriate branch-length priors for the 6 data sets listed
in their Table 1, it becomes clear that too short priors
will underestimate tree lengths and too long priors will
overestimate tree lengths and that the application of
exponential means deviating as little as 50% from the
calculated appropriate priors can cause the 95% cred-
ible interval on tree lengths to exclude the ML tree
length. In our study, empirical Bayes’ branch-length
priors were instead generated by fitting the ML distri-
bution of branch lengths to an exponential distribution.
This procedure yields priors that are very similar to the
method suggested by Brown et al. (2010), at least when
underlying ML branch lengths are approximately expo-
nentially distributed. However, it remains unclear how
branch-length estimates are affected by a prior distribu-
tion at odds with the true generating or ML distribution
of branch lengths.

Mixing, Convergence, and Branch-Length Identifiability

The combination of the 8×BIC model and the two
longest branch-length priors caused the MrBayes anal-
yses to halt automatically under the convergence crite-
ria in use (average standard deviation of splits <0.01)
without any obvious superficial indications of a prob-
lem. However, at close inspection, we detected poor
marginal likelihoods, extremely long trees, large PSRF

values, and at least some rate multipliers completely off
the scale of biological realism. This problem appears to
be caused by poor mixing as a consequence of attrac-
tion to fairly high and very wide and flat peaks in a
likelihood landscape dominated by long trees (Ronquist
et al. 2009; “hypothesis 2” of Brown et al. 2010). In our
case, repeating the analyses with a stronger prior on
the rate multiplier provided a simple solution to the
problem. However, although this measure caused good
mixing and consequently much shorter trees, realistic
rate multipliers, and PSRF values close to 1, inferred
Bayesian tree lengths were still distinctly longer than
under the corresponding ML tree lengths. Brown et al.
(2010) and Marshall (2010) suggested that poor mix-
ing can often be overcome by starting MrBayes MCMC
analyses from trees with much shorter branches than
the default starting tree.

Stability of Individual Taxa

The common way of representing topological con-
fidence is by node support. In simulation studies in-
volving few (often four) terminal taxa, probabilities of
entire trees may instead be taken into consideration.
However, another way of looking at topological uncer-
tainty is to break it down into the stability of individual
taxa. We used the LSI of Thorley and Wilkinson (1999)
as a measure of taxon stability (Fig. 5). Comparing the
behaviour of the ML bootstrap and Bayesian inference,
the wide overlap of LSIs is conspicuous, suggesting
that stability is approximately similar for a large subset
of the taxa included in the analysis. Compared with
Bayesian inference, median stability indices under the
ML bootstrap are shifted slightly downward, the mid-
dle half of the distribution (first to third quartile) is in a
narrower range, and extremely stable taxa (LSI ≥ 0.95)
and extremely unstable (“rogue”) taxa (LSI ≤ 0.70) are
mostly absent. The combination of likelihood model
and branch-length prior in Bayesian inference has a
minor effect on median LSIs, whereas the effect on the
very stable and very unstable taxa is distinct. Given the
fairly moderate effects of reconstruction method, likeli-
hood model, and branch-length prior on median taxon
stability, we suggest that variations in node support are
caused mainly by the presence and severity of outlier
taxa, that is, by the very stable and very unstable taxa.

Taxa with the poorest stability (“rogue taxa”) may ex-
ert a disproportionate influence on node support values
and may disguise otherwise well supported relation-
ships (Wilkinson 1996; Sanderson and Schaffer 2002).
However, Dunn et al. (2008) demonstrated that rogue
taxa are unlikely to distort inferred relationships among
the remaining taxa. In our case, B. dimidiata was the most
unstable, except in Bayesian inference with the short-
est branch-length prior (in which case G. ligustica dis-
plays the smallest LSI). Following Dunn et al. (2008), we
pruned B. dimidiata from two tree samples (ML 8×BIC
and BI 8×BIC with mean 0.l exponential branch-length
prior) and recalculated support values. As rogue taxa
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appear to be more unstable under ML than Bayesian
inference (Fig. 5), we came to the expected result that
average node support in the extended majority-rule con-
sensus increased more in the ML analyses (7.1%) than
in Bayesian (3.1%) inference. We contend that further
investigations into the behaviour of individual taxa in
phylogenetic analyses may provide fruitful insights into
the statistical properties of the nonparametric bootstrap
and Bayesian posterior probabilities.

Effect of Ambiguous Data and Nearest Relative on Taxon
Stability

We investigated how taxon stability, as measured by
the LSI, was affected by 1) the amount of ambiguous (in-
cluding missing) data and 2) the distance (measured as
ML branch lengths) to the nearest taxon. If the amount
of ambiguous data in a taxon or the distance to the
nearest relative were important factors to determine
the phylogenetic stability of individual taxa, one would
expect strong negative correlations. However, we did
not find any significant correlations at all and there-
fore conclude that other factors must have a stronger
influence on the phylogenetic stability of individual
taxa. It has recently been suggested that Bayesian in-
ference is particularly prone to bias from the presence
of ambiguous data (Lemmon et al. 2009). We suspect
that the difference between observed and expected pos-
terior probabilities can primarily be explained by the
sequence data being simulated on a tree with fixed and
equal branch lengths but analysed under the default
exponential branch length prior with mean 0.1 in Mr-
Bayes. Kolaczkowski and Thornton (2007) noted that
posterior probabilities will almost certainly be biased
when the prior distribution on branch lengths is at odds
with the true distribution. Furthermore, by adding data
to two out of four taxa (either sister or nonsister taxa),
Lemmon et al. (2009) claimed not to have added any
topological information to their simulated data sets.
However, although this would have been true under
ML or maximum parsimony, in a Bayesian context, this
procedure inadvertently modified the vector of site pat-
terns (Svennblad et al. 2006). Consequently, the amount
of separately informative sites was affected and hence
also posterior probabilities of nodes and trees. These
factors might explain why their conclusion on the ef-
fect of ambiguous data was spectacularly different from
the one drawn by Wiens (2005, 2010), Wiens and Moen
(2008), and Wolsan and Sato (2010). In our opinion, the
results of Lemmon et al. (2009) should be interpreted to
mean that the branch-length prior is of vital importance
to the phylogenetic estimate and perhaps particularly
so in the presence of ambiguous data.

Phylogeny of the Psoraceae

We found no evidence for a close relationship be-
tween the Psoraceae in the strict sense and some of
the genera that were recently classified in this family,

namely Eremastrella, Glyphopeltis, Psorula, and Romju-
laria. However, backbone support in the consensus phy-
logenies is poor. Only in the case of Eremastrella is there
convincing support for a distant relationship with Pso-
raceae, Eremastrella grouping with the outgroup with
1.0 posterior probability and 0.90 ML bootstrap sup-
port in Figures 1 and 2. In contrast, the phylogeny of
Ekman et al. (2008) indicated that Psorula belongs in
the Psoraceae, albeit on a very long branch. These re-
sults may have been an artifact of the sparse taxon
sampling or some other property of their data. Our in-
vestigation recovered poor and variable support among
likelihood models for the genus Psora. The position of
P. testacea is particularly interesting, as it has variously
been treated in Protoblastenia (e.g., Poelt and Vĕzda
1977), Psora (Timdal 1984), and the monotypic Chrysop-
sora (Schneider 1980). Our phylogeny cannot answer
the question concerning its phylogenetic position, but it
does not contradict its current classification in the genus
Psora.

Support for the Psoraceae, including Psora, the M.
sylvicola group, and Protoblastenia, is reasonable but
more sensitive to the branch-length prior than the like-
lihood model. The Psoraceae is “strongly supported,
defined here as ≥0.95 posterior probability, under the
8×BIC model and all branch-length priors except the
two longest. Under the 1×GTR and 8×GTR models,
the Psoraceae reaches the 0.95 cutoff only with branch-
length priors of ML length or shorter. A more useful
approach is to perform an approximate integration over
the branch-length priors: Treat the mean of the expo-
nential distribution as a variable drawn on a uniform
(0, 1) distribution, group means into bins with borders
halfway between the six means, and use the estimated
marginal likelihoods as probability estimates of the bins.
Support for the Psoraceae node estimated with this
method is independent of the particular mean of the
branch-length prior and reaches 0.964 under the 8×BIC
model, 0.950 under the 1×GTR model, and 0.945 under
the 8×GTR model. These numbers are insensitive to the
upper bound of the uniform distribution of the expo-
nential mean, the result being identical even if the upper
bound is set as high as 10. However, even though this
support may seem comforting, there are some warning
signs. First of all, although the ML branch length dis-
tribution is obviously a monotonously descending one,
the null hypothesis of fit to an exponential distribution
was rejected by a Kolmogorov–Smirnov test for good-
ness of fit. In our case, branch lengths appear to instead
closely follow a gamma or Pareto distribution. Another
possibility, which we have not tested, is that branch-
lengths follow a “variable-rates” distribution, which is
caused by branches being drawn from several expo-
nential distributions when speciation rate is assumed
to follow a gamma distribution (Venditti et al. 2010). A
gamma-distributed prior on branch lengths is imple-
mented in PhyloBayes version 3 (Lartillot et al. 2009) as
well as PHYCAS version 1 (Lewis et al. 2009), both of
which, however, lack the possibility of Metropolis cou-
pling in these versions. Attempts to analyse our data
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with these software implementations failed, because we
were unable to reach MCMC convergence even after
run lengths of several weeks. Second, model adequacy
may be an issue, as we have shown that most com-
ponent models of the full 8×BIC model inadequately
describe the data. It remains unknown how inadequate
yet best-fitting models affect node support. However, it
has been suggested that they may be upwardly biased
(Huelsenbeck and Rannala 2004). Sullivan and Joyce
(2005), on the other hand, argued that this may be an
artifact appearing when the analytical model is nested
within the true generating model, which is unlikely to
be the case for most real data sets.

“Wisdom Is Knowing What To Do Next; Virtue Is Doing It”
(David Starr Jordan)

This study was concerned with a single empirical data
set and most of our findings will require corroboration
by exhaustive simulation experiments. Notwithstand-
ing, a few practical guidelines can be derived from our
findings. First and foremost, the branch-length prior
cannot be ignored, nor can it be taken for granted that a
default prior is the most appropriate choice. Researchers
need to be aware that the branch-length prior may affect
their phylogenetic estimates from which conclusions are
often drawn based on node support. At the current state
of knowledge, we do not know if such a thing as an
“uninformative” branch-length prior at all exists. Yang
and Rannala (2005) and Yang (2006, 2008) claimed that
branch-length priors need to be short to avoid over-
estimating node support. We have, on the other hand,
found no support for that claim because short branch-
length priors tend to generate the highest support as
well as tree samples from outside tree space sampled by
the ML bootstrap or from a small subset of tree space
sampled by Bayesian MCMC with longer priors. How-
ever, although long priors appear to entail a smaller risk
of exaggerating node support, resulting branch lengths
can be overestimated. We recommend empirical Bayes’
branch-length priors at or near the ML estimate because
they seem to strike a fair balance between node sup-
port and branch lengths, at least if we expect Bayesian
estimates to be reasonably in line with corresponding
ML estimates. A similar approach was suggested by
Kolaczkowski and Thornton (2007, 2009) to achieve
nearly unbiased node support and by Brown et al.
(2010) to bring about unbiased branch-length estimates.
It should be noted that any branch-length prior derived
from an ML estimate is highly data set specific and
needs to be reestimated if taxon sampling is modified.
A second option, albeit yet untested, may be to apply
hierarchical models that allow the parameter(s) of the
prior to be estimated from the data given a hyperprior
(as implemented in PhyloBayes and PHYCAS). Both
options, however, assume that the true branch-length
distribution type is known or can at least be estimated
with reasonable accuracy by ML. Whereas node support
may be biased when the prior distribution type (often

an exponential) violates the true branch length distri-
bution (Kolaczkowski and Thornton 2007), the effect on
branch lengths is unknown. The type of branch-length
distribution generated from ML estimates should be
monitored closely and other prior distribution types
than the widely used exponential may sometimes be
called for. Furthermore, model parameter richness may
be an issue in Bayesian inference when accurate branch
lengths estimates are required, as we found the sensi-
tivity to the branch-length prior to be distinctly greater
under complex models compared with simpler models.
In such cases, reversible-jump MCMC might be useful
to curtail parameter redundancy in phylogeny esti-
mation (Pagel and Meade 2008). Although this study
may have contributed a modest amount of wisdom,
we evidently have a long way ahead to a complete un-
derstanding of the properties of Bayesian phylogeny
inference.
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Poelt J., Vĕzda A. 1977. Bestimmungsschliissel europäischer Flechten.
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