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The shrimp genera Ephyrina, Meningodora and Notostomus have an unusual carapace strengthened with carinae and a
half-serrated mandible, which may suggest a possible monophyly of this group. Here we test this hypothesis and present
the first phylogenetic study of these genera based on 95 morphological characters (all valid species coded) and six molecular
markers (71% of valid species sequenced). Representatives of all genera of Oplophoridae (sister to Acanthephyridae) were
outgroups, 32 species belonging to all genera and potentially different clades of Acanthephyridae were ingroups. Both
morphological and molecular analyses retrieve trees with similar topology. Our results reject the hypothesis of a clade
formed by Ephyrina + Meningodora + Notostomus. We show that Ephyrina and Notostomus are monophyletic, both on
morphological and on molecular trees, Meningodora gains support only on morphological trees. Evolutionary traits in
the Ephyrina and Meningodora + Notostomus clades are different. Synapomorphies are mostly linked to adaptations to
forward motion in Ephyrina (oar-like meri and ischia of pereopods, stempost-like rostrum) and to progressive strengthening
of the carapace and pleon in Meningodora and Notostomus (net of sharp carinae). Unusual mandibles evolved in the clades
independently and represent convergent adaptations to feeding on gelatinous organisms.

ADDITIONAL KEYWORDS: Crustacea — evolution — phylogeny — plankton biology — shrimp.

INTRODUCTION Following this two-family concept, we have revised
the global fauna of the family Oplophoridae (Lunina
et al., 2019b) and now take the next step to start a
phylogenetic revision of the family Acanthephyridae,
which is more species-rich than Oplophoridae (55 vs.
16 currently accepted species, seven vs. three genera;
WoRMS, 2020).

Acanthephyridae is morphologically heterogeneous
inmany aspects (Chace, 1986). For example, the rostrum
may have more teeth on the ventral than on the dorsal
margin (Heterogenys Chace, 1986) or vice versa (other
genera), the hepatic spine and three lateral carinae on
the carapace may be present (Kemphyra Chace, 1986)
or absent (other genera), the carapace is ventrally
dentate (Notostomus A. Milne-Edwards, 1881) or
smooth (other genera), the dorsal pleonic carina is
absent (Ephyrina Smith, 1885 and Hymenodora Sars,
1877) or developed (other genera), eggs are large
and few (< 50) (Ephyrina and Hymenodora) or small
and numerous (> 80) (other genera). One of the basic
phylogenetic characters in Crustacea, the morphology
*Corresponding author. E-mail: alv@ocean.ru of the mandible, also varies. In Acanthephyridae, this

Among pelagic decapods, Oplophoroidea is one of
the most diverse superfamilies occurring in the
widest geographic and depth ranges. Indeed, nearly
one hundred species have been recorded from polar
to equatorial regions (WoRMS, 2020), from the
upper mixed layer to bathyal depths. Their role in
pelagic trophic chains is important: Oplophoroidea
are a dominant group explaining nearly half of the
total zooplankton stock in the Atlantic tropical and
equatorial waters (Vereshchaka et al., 2019b).
Historically, Oplophoroidea was considered on
morphological grounds as a single family Oplophoridae
(e.g. Chace, 1986; De Grave et al., 2009), but molecular
data suggest that it consists of two families,
Oplophoridae and Acanthephyridae, within the
superfamily Oplophoroidea (e.g. Bracken et al., 2009;
Chan et al., 2010; Lunina et al., 2019b; WoRMS, 2020).
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character, which is conservative in decapods at family
and even superfamily level, may have two different
states (Chace, 1986): (1) subtriangular and armed along
the entire margin (Fig. 1A) and (2) subtruncate and
unarmed in the distal half beyond the apex, except the
terminal tooth (Fig. 1B). The first state is common for
most pelagic carnivorous shrimps (Burukovsky, 2009),
while the second state is restricted only to the genera
Ephyrina, Meningodora Smith, 1882 and Notostomus;
its adaptive value has never been assessed. In addition
to the remarkable mandible, Ephyrina, Meningodora

and Notostomus are characterized by strong ridges
and carinae along the lateral sides of the carapace
(Fig. 1C-E). These structures are also unusual for
most pelagic shrimps, having a more or less smooth
and streamlined carapace. Both unusual characters (a
half-serrated mandible and a strengthened carapace)
may suggest possible monophyly of this group. Here
we test this hypothesis and thus start a revision of the
global Acanthephyridae fauna. Using morphological
and molecular data, we examine whether the unusual
mandible and the strengthened carapace represent
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Figure 1. Morphological characters of Acanthephyridae. A, typical mandible of Oplophoroidea (exemplified by Acanthephyra
brevicarinata). B, mandible of the Ephyrina—Meningodora—Notostomus group (exemplified by Ephyrina bifida). C, schematic
carapace view of Notostomus (exemplified by N. elegans). D, schematic carapace view of Meningodora (exemplified by
M. compsa). E, schematic carapace view of Ephyrina (exemplified by E. bifida). Dotted lines indicate additional carinae,
which are present alongside the obligatorily carinae (solid lines) in part of species.
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synapomorphies of a single clade or if they evolved
independently in separate clades.

Among 21 currently accepted species of the
Ephyrina—Meningodora—Notostomus group
(WoRMS, 2020), none has been included in previous
morphological phylogenetic analyses and only a few
were included in molecular analyses: a single one
(Bracken et al., 2009), two (Chan et al., 2010) or seven
species (Wong et al., 2015). The previous molecular
analyses targeted higher level relationships within
Caridea and/or Oplophoroidea, and did not cover
the proper diversity of the Ephyrina—Meningodora—
Notostomus group. Here we present the first
comprehensive phylogenetic analysis based on
the simultaneous use of morphological characters
and molecular markers. We used 95 morphological
characters to encode all valid species of the target
genera, and six gene markers for 15 species (71%
of currently accepted species). We also included in
the analyses representatives of all three genera of
Oplophoridae (outgroups). Acanthephyra A. Milne-
Edwards, 1881, which is morphologically variable and
probably polyphyletic (Chace, 1986), was represented
in our analysis by 12 species from morphologically
different groups.

MATERIAL AND METHODS
MORPHOLOGICAL ANALYSIS

Oplophoridae encompasses three genera (Janicella
Chace, 1986, Oplophorus Milne-Edwards, 1837 and
Systellaspis Spence Bate, 1888) and is considered as
a sister-clade to Acanthephyridae (Wong et al., 2015),
which includes, in addition to the three analysed
genera, Acanthephyra, Heterogenys, Hymenodora and
Kemphyra. We chose as the outgroups representatives
of the three genera of Oplophoridae: Janicella
spinicauda (A. Milne-Edwards, 1883) (Analysis 1),
Oplophorus gracilirostris A. Milne-Edwards, 1881
(Analysis 2) and Systellaspis pellucida (Filhol,
1884) (Analysis 3).

We included as the ingroups all valid species
of Ephyrina (six species), Meningodora (six) and
Notostomus (nine), and representatives of all other
genera of Acanthephyridae; the highly diverse
and probably polyphyletic (Chace, 1986) genus
Acanthephyra was represented by 12 species from
potentially different clades (Table 1).

For each included taxon we identified and encoded
95 morphological characters (not weighted, Supporting
Information, Appendix S1), which were combined into
four morphological groups (Fig. 2): carapace (characters
0-32 in Supporting Information, Appendix S1),
pleon + telson (33-55), mouthparts (58-74) and
pereopods (75-92).

The dataset (Supporting Information, Appendix S2)
was handled and analysed using a combination
of programs using maximum parsimony settings:
WINCLADA/NONA and TNT (Nixon, 1999; Goloboff
et al., 2000). Trees were generated in TNT with 30 000
trees in memory, under the ‘traditional search’ (branch-
and-bound) algorithms. Relative stability of clades
was assessed by standard bootstrapping (sample with
replacement) with 10 000 pseudoreplicates and by
Bremer support (algorithm TBR, saving up to 10 000
trees up to 12 steps longer). In all analyses, clades were
considered robust if they had synchronously Bremer
support > 3 and bootstrap support > 70.

MOLECULAR ANALYSIS

We used both original data (15 species across six
genera) and sequences from GenBank (22 species
across six genera) (Table 2). All seven genera of the
family are thus represented in the molecular dataset.
Outgroups and ingroups were the same as in the
morphological analysis (Table 2).

We selected six molecular markers: a mitochondrial
ribosomal gene (16S), a mitochondrial protein-coding
gene (cytochrome c¢ oxidase subunit I, COI), a nuclear
ribosomal gene (18S) and three nuclear protein-coding
genes: histone H3, sodium-potassium ATPase alpha-
subunit (NaK, ~565 bps) and phosphoenolpyruvate
carboxykinase (PEPCK). These markers have been
widely applied in decapod phylogenetic analyses and
proven to be informative at fine and coarse evolutionary
scales (Bracken et al., 2009; Felder & Robles, 2009;
Robles et al., 2009; Toon et al., 2009; Bracken-Grissom
et al., 2014; Ditter et al., 2020).

Total genomic DNA was extracted from the pleopods
or abdomen using the Qiagen DNeasy Blood and Tissue
Kit in accordance with the manufacturer’s protocol.
Polymerase chain reaction (PCR) amplification of the
COI gene was performed with the primers: COL6/
COHS6 (~ 650 bps; Schubart & Huber, 2006; Schubart,
2009) or LCOI 1490/HCOI 2198 (~ 650 bps, Folmer
et al., 1994). The mitochondrial large subunit 16S
rRNA was amplified by 16L2/16H3 primers (~550
bps;Schubart et al., 2002; Reuschel & Schubart,
2006), and the nuclear small subunit 18S rRNA
was amplified by A/L, C/Y, O/B primers (~1800 bps;
Apakupakul et al., 1999). Nuclear H3 gene fragment
was amplified by H3A/H3B primers (~330 bps; Colgan
et al., 1998), NaK with primers for-b/rev2 (~660 bps;
Tsang et al., 2008) and PEPCK (~510 bps) with the
5" primer PEPCK for (Tsang et al., 2008) and newly
designed for this study PEPCK acant-rev2 (5-RCCR
AAGTTGTARCCAAAGAAGGG-3’) as the 3’ primer.
Polymerase chain reaction amplification reactions
were performed in 25 pL containing 1 x PCR buffer,
1 pL of 10 pmol/L of primer pair mix, 1 pL. of DNA

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2021, 193, 1002-1019
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PHYLOGENETIC REVISION OF ACANTHEPHYRIDAE 1007

Table 1. Continued

Museum, number

Coordinates Other information

Species

10 RAN 37L99 IKMT

ZMUK

ROV ‘Professor Logachev’, 37 cruise, St. 99 IKMT

17°10'N, 46°25 W
21°57N; 22°58'W

Systellaspis debilis

Dana Expedition, St. 1157, E 300, 27.10.1921

Systellaspis debilis

I0 RAN 13-D1

R.V. Akademik Sergey Vavilov, 46 cruise, St. 2719, 25.10.2018, 200-800 m

31°12.08S, 39°18.0W

Systellaspis debilis

template, 0.2 mmol/L of each dNTP and 0.5 units of
Taq polymerase. The thermal profile used an initial
denaturation for 3 min at 95 °C followed by 35—-40
cycles of 20 s at 94 °C, 30 s at 45-57 °C depending
on primer pair, 1 min at 72 °C and a final extension
of 7 min at 72 °C. Polymerase chain reaction products
were purified using the PCR Purification Kit protocol
(Promega) and sequenced in both directions using
BigDye Terminator v.3.1 (Applied Biosystems). Each
sequencing reaction mixture, including 0.5 pL of
BigDye Terminator v.3.1, 0.8 pL of 1 pmol/L primer and
1-2 pL of purified PCR template, was run for 30 cycles
0f 96 °C (10 s), 50 °C (5 s) and 60 °C (4 min). Sequences
were purified by ethanol precipitation to remove
unincorporated primers and dyes. Products were
re-suspended in 14 pL formamide and electrophoresed
in ABI Prism-3500 sequencer (Applied Biosystems).
The nucleotide sequences were cleaned and assembled
using CodonCode Aligner v.7.1.1. Protein-coding
sequences (COI, H3, NaK and PEPCK) were checked
for indels and stop codons to prevent the inclusion of
pseudogenes. All sequences were then compared to
genes reported in GenBank using BLAST (National
Center for Biotechnology Information, NCBI) to check
for potential contamination.

For each gene-fragment, the sequences were aligned
using MUSCLE (Edgar, 2004) implemented in MEGA
v.X (Kumar et al., 2018), and the alignment accuracy
was adjusted by eye. Missing data were designated
with a ‘? for any incomplete sequences. All obtained
sequences were submitted to the NCBI GenBank
database (Table 2).

To assess phylogenetic relationships between
species, Bayesian inference (BI) and maximum
likelihood (ML) analyses were run. The BI analysis
was conducted in MrBayes v.3.2.6 (Ronquist
et al., 2012) for the concatenated dataset of all
genes. The combined dataset was partitioned and
analysed using models selected by PartitionFinder2
(Lanfear et al., 2016). Akaike information criterion
(AICc modification for small sample size) metric
implemented in PartitionFinder2 was used to obtain
the optimal partitioning scheme. Two independent
runs, each consisting of four chains, were executed for
this analysis. A total of 10 000 000 generations were
performed for the combined dataset, with sampling
every 1000 generations, and the first 25% trees (i.e.
2500 trees for combined dataset) were discarded as
‘burn-in’. A 1% average standard deviation of split
frequencies was reached after about 1.1 million
generations.

The maximum likelihood (ML) analysis was run
in RAxML GUI v.2.0 (Stamatakis, 2014; Edler et al.,
2020), and the GTR+G model was used. Bootstrap
resampling with 1000 replicates was run using the
thorough bootstrap procedure to assign support to

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2021, 193, 1002-1019

20z Iudy £z uo 1senb Aq G2£8709/2001/E/€6 L /2I01LE/UBBUI00Z/WO0"ANODILIBPEIE//:SA]IY WO} POPEOJUMOQ



1008 A.A.LUNINAETAL.

pleon+telson

pereopods

Figure 2. Grouping of morphological characters (schematic white lines) in Ephyrina, Meningodora and Notostomus

exemplified by Notostomus elegans.

branches in the ML tree. Final ML tree was generated
using the partitioned dataset of all concatenated genes.

We considered the clades statistically supported
if they had a synchronous support of posterior
probabilities > 0.9 in the BI analysis and bootstrap
value > 70% in the ML analysis.

RESULTS
MORPHOLOGICAL ANALYSES

Analysis 1 with Janicella spinicauda as outgroup
retrieved a single most-parsimonious (MP) tree
(Fig. 3A; Supporting Information, Appendix S3) with
a score of 109 (Ci = 88, Ri = 96). The tree shows that
Hymenodora is a sister-clade to the rest of the genera,
the latter clade includes two sister-clades: Ephyrina
and Heterogenys + Kemphyra + Acanthephyra +
Notostomus + Meningodora. There is also a well-
supported clade Meningodora + Notostomus
within which both genera are robust sister-clades.
Acanthephyra shows polytomy.

Analysis 2 with Oplophorus gracilirostris as outgroup
retrieved a single MP tree (Fig. 3B; Supporting
Information, Appendix S3) with a score of 116 (Ci = 82,
Ri =95). Analysis 3 with Systellaspis pellucida as
outgroup also retrieved a single MP tree (Fig. 3C;
Supporting Information, Appendix S3) with a score of
104 (Ci =92, Ri = 98). Both trees are similar in topology
to each other and to the tree retrieved in Analysis 1,
with the same set of statistically supported clades.

MOLECULAR ANALYSES

We successfully obtained 84 sequences across six gene
fragments for 15 out of 21 species from the genera
Ephyrina, Meningodora and Notostomus. In order to
retrieve phylogenetic reconstructions, we also included
all species of Acanthephyridae from GenBank
with at least two selected gene markers. Prior to
analyses, all sequences from GenBank were checked
for contamination or possible misidentification
using BLAST search and preliminary phylogenetic
reconstruction with each gene separately. A total of
35 species from seven genera of Acanthephyridae and
three genera of Oplophoridae were thus put in the
data matrix. The concatenated six-marker dataset
comprised 4525 bp. Results from PartitionFinder2
recommended a 12-partition scheme by gene and
codon (H3, COI, NaK, PEPCK), which was used in the
final analyses. Substitution models for each partition
are listed in Table 3.

Molecular analysis retrieved Bayesian and ML
trees, which are similar to each other in topology but
significantly differ in support of two major clades
(Fig. 4).

On the BI tree, Hymenodora is a sister-clade to
the rest of the genera, the latter clade includes two
sister-clades: Ephyrina and ‘Heterogenys + Kemphyra
+ Acanthephyra + Notostomus + Meningodora’.
There is also a well-supported clade Meningodora +
Notostomus, within which Notostomus is monophyletic
and Meningodora shows polytomy. Although the BI
tree shows polytomy of Acanthephyra, some clades
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PHYLOGENETIC REVISION OF ACANTHEPHYRIDAE 1011

Table 2. Continued

Voucher No Locality/year GenBank accession numbers

Species

References

NaK PEPCK

H3

18S

16S

cor

Wong et al., 2015

N
N
N

KP076027

KP076100

KP075789

KP076182 KP075880

North Atlantic
Gulf of Mexico

Taiwan

Acanthephyra pelagica HBG153

Wong et al., 2015

KP076023

KP076095

KP075782

KP075882

KP076170

Acanthephyra purpurea HBG899A

Wong et al., 2015

KP076025

KP076099

KP075821

KP075886

KP076178

HBG931

Acanthephyra

quadrispinosa

Outgroups

Wong et al., 2015;
Lunina et al.,

N

MH100869 MH107256

MH572546 KP075932

HBG7002, HBG905 Gulf of Mexico,

Janicella spinicauda

Papua New
Guinea

and MNHN-IU-

2019b; Published
in GenBank, Wil-
kins & Bracken-
Grissom, 2020

2014-18783/ Op11

Wong et al., 2015
Liet al., 2011,

N

KP076045
JF346355

KP076072
JF346319

KP075847
JF346250

KP075920

KP076150

Oplophorus gracilirostris HBG909A and HBG904A Gulf of Mexico

JF346391

KP076147 KP075924

Taiwan

HBGY944 and

Systellaspis pellucida

Wong et al., 2015

NTOU:M01001

Sequences obtained in this work are indicated in bold. An ‘N’ designates gene sequences we were unable to acquire

within the genus are robust: ‘Acanthephyra armata’,
‘Acanthephyra media’ and ‘Acanthephyra purpurea’
species groups (Fig. 4). The ML tree shows lesser
support (slightly below accepted 70) of the two deepest
nodes indicated by arrows in Fig. 4. In other respects,
ML and BI trees are similar.

MORPHOLOGICAL SYNAPOMORPHIES

MP trees are similar in Analyses 1-3 and we, therefore,
mapped morphological synapomorphies in a single
picture Fig. 5 for all analyses. In addition to robust
clades shown in Fig. 3, all morphological analyses
retrieved three minor clades within Acanthephyra,
which do not receive statistical support but are
identical to species groups retrieved in molecular
analyses: ‘Acanthephyra armat’, ‘Acanthephyra media’
and ‘Acanthephyra purpurea’ (Fig. 5). Unlike its
position on the molecular trees, the first species group
was combined with Kemphyra.

The clade ‘Acanthephyridae without Hymenodora’
is supported by the presence of the postorbital dorsal
teeth on the rostrum (character 5, see Supporting
Information, Appendix S1), a submarginal papilla and
a lamina on the second maxilla (63), three-segmented
endopod on the first maxilliped (65, 66) and a reduced
dactyl of the fifth pereopods attached transversely
to the propodus (91, 92). Ephyrina is supported by a
rostrum shaped as an unarmed crest (0,4), a postorbital
ridge from the orbit to the posterior margin of the
carapace and a blunt ridge ventral to the postorbital
ridge (20, 23), a mandible unarmed along the distal
margin (61), greatly compressed and expanded meri
and ischia on all pereopods (75, 76, 81-86, 88, 89). The
clade Meningodora + Notostomus is supported by a
net of sharp lateral carinae along the whole carapace
length (7, 8), including a sharp postorbital carina
from the orbit to the posterior margin of the carapace
(18) and a sharp oblique transverse carina ventral of
the postorbital carina (24). In addition, Meningodora
+ Notostomus have a mandible unarmed along the
distal margin (61), similar to that in Ephyrina.
Meningodora is supported by a reduction of the dorsal
carina on the second pleonic segment (35) and a blunt,
indistinct carina on the third pleonic segment (38,
39). Notostomus is supported by a long branchiostegal
carina, which is 0.7-1.0 of the carapace length (13), a
supraorbital carina extending from the rostrum to the
postorbital region (15), an additional lateral carina on
posterior part of the carapace parallel to the postorbital
carina (21) and a strong mesial teeth on the posterior
margin of the third and fourth pleonic segments
(44, 47). All these synapomorphies are stable within
clades, except the presence of the postorbital dorsal
teeth on the rostrum in the clade ‘Acanthephyridae
without Hymenodora’: the teeth posteriorly disappear
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Figure 3. Morphological MP trees with Janicella spinicauda (A), Oplophorus gracilirostris (B) and Systellaspis pellucida
(C) as the outgroups. Different colours indicate different genera. Only clades supported by both Bremer values (in bold,
below branches) and bootstrap values (blue, above branches) are shown.

Table 3. Partitioning scheme and best models selected by
PartitionFinder2

synapomorphies linked to the pereopods (oar-like meri and
ischia): their contribution was exceptionally high (67% vs.
14% on average). Meanwhile, the clades Meningodora +

Partition Best Model Notostomus, Meningodora and Notostomus were mainly
supported by synapomorphies linked to strengthening of the

165 GTR+I+G carapace, pleon and telson (carinae and teeth), their combined

188, 1* codon of H3 TRN+G contribution was greater than on average (80-100% vs.

2" codon of H3 K80+I 32-37%).

3" codon of H3 GTR+G

1%t codon of COI SYM+I+G

2" codon of COI TVM+G

3 codon of COI GTR+G DISCUSSION

1%t codon of NaK, 1°* codon of TVM+I+G EPHYRINA, MENINGODORA AND NOTOSTOMUS ON

PEPCK PHYLOGENETIC TREES AND THEIR STATUS

2:: codon Otlf NaK GTR+1 The most comprehensive analysis of Acanthephyridae

3nd codon of NaK HKY+G hitherto done (Wong et al., 2015) encompassed seven

2" codon of PEPCK TVMEF+ species of the target genera and 14 other species of the

3" codon of PEPCK TVM+G

in Ephyrina. The mandible, unarmed along the distal
margin, is a homoplasy found in the Ephyrina and
Meningodora + Notostomus clades.

We grouped morphological synapomorphies into four
types (Fig. 2) and calculated the contribution of each type
in the support of major clades (Table 4 based on Fig. 5 and
Supporting Information, Appendix 4). Average contribution
of each type of synapomorphies ranged between 14% and
37% (last line in Table 4), but supporting synapomorphies
were unevenly distributed in the analysed clades. The
support of the Ephyrina clade was mainly provided by

family: Hymenodora (two species), Ephyrina (three),
Meningodora (two), Notostomus (two), Heterogenys
(one) and Acanthephyra (11); the analysis was
based on seven gene markers and did not include
morphological evidence. Here we use six gene markers
and significantly extended the number of analysed
species of the target group (to 15) and the rest of
Acanthephyridae (to 17, including a representative of
the genus Kemphyra not sequenced before this study).
In order to improve the power of the analyses, we also
included morphological evidence.

Overall, our study makes the phylogenetic results
shown in Fig. 2 by Wong et al. (2015) statistically
significant. First, the major clades ‘Acanthephyridae
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Figure 4. Molecular BI tree with supported clades, the horizontal scale bars mark the number of expected substitutions
per site. Statistical support indicated as Bayesian posterior probabilities (black, above branches) and ML bootstrap analysis
(blue, below branches). Different colours indicate different genera. Arrows indicate deep nodes perfectly resolved on the BI

tree and insufficiently resolved on the ML tree.

without Hymenodora’ and ‘Heterogenys + Kemphyra
+ Acanthephyra + Notostomus + Meningodora’ are
not robust on the BI tree in Wong et al. (2015) but
gain support here. Both clades have great support
on the BI molecular tree (0.98 and 1, Fig. 4) and high
Bremer and bootstrap support on all morphological
trees in Analyses 1-3 (Fig. 3). Having this in mind,
we consider both deepest nodes on the tree (arrows in
Fig. 4) resolved, although bootstrap values on the ML
molecular tree are below the generally accepted 70 (68
and 63). Our results thus confirm that Hymenodora is
a sister-clade to the rest of Acanthephyridae and that
Ephyrina is a sister-clade to ‘Heterogenys + Kemphyra
+ Acanthephyra + Notostomus + Meningodora’.

As in Fig. 2 by Wong et al. (2015), the clade
Notostomus + Meningodora is robust; this clade gains
greater support on both of our molecular trees and is
robust on all morphological trees. As in the previous
studies, Notostomus is monophyletic in all trees
and Meningodora is not resolved on both molecular
trees. However, Meningodora is monophyletic
and gains bootstrap and Bremer support on our
morphological trees, which shows the resolving power
of morphological methods in this particular case. The

current phylogenetic status of Meningodora match the
status of Systellaspis (Lunina et al., 2019b) from the
sister-clade Oplophoridae: both genera are robust on
the morphological trees and do not receive support
on the molecular trees. As in Lunina et al. (2019b),
we maintained a conservative approach and did not
change the taxonomic status of Meningodora. We
hope to solve the problem of a possible polyphyly of
Meningodora and Systellaspis after completing a
revision of the whole superfamily Oplophoroidea.
Ephyrina and Notostomus are monophyletic genera on
all trees.

Molecular methods, in turn, show the resolving power
in a retrieving of statistical support for three species
group clades within Acanthephyra (Fig. 4), which do
occur (Fig. 5) but are not robust on the morphological
trees (Fig. 3). Future use of the combination of
morphological and molecular methods based on richer
datasets and focused on Acanthephyra is needed to
justify the taxonomic status of these species groups.

We conclude that the target group Ephyrina—
Notostomus—Meningodora is not monophyletic on all
phylogenetic trees and the unusual mandible and
strengthened carapace observed in these genera thus
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Figure 5. Synapomorphies on identical morphological MP trees with Janicella spinicauda, Oplophorus gracilirostris and
Systellaspis pellucida as the outgroup. Different colours indicate different genera. Synapomorphies retrieved in analyses
1-3 are similar and mapped in Supporting Information, Appendix S4. Character coding see in Supporting Information,

Appendix S1.

Table 4. Contribution (%) of different groups of synapomorphies supporting major clades of Acanthephyridae, results of

morphological analyses 1-3 combined

Clades Synapomorphies and their numerical order in parenthesis (see Appendix S1)
Carapace (0-32) Pleon + telson (33-55)  Mouthparts (58-74) Pereopods (75-92)

Hymenodora 83 0 17 0

Acanthephyridae without 17 0 50 33
Hymenodora

Ephyrina 27 0 7 67

Acanthephyridae without 0 71 29 0
Hymenodora and Ephyrina

Meningodora + Notostomus 80 0 20 0

Meningodora 0 100 0 0

Notostomus 50 50 0 0

Average for clades 37 32 17 14

exemplify parallel evolution. We reject the hypothesis
of the monophyly of the target group.

MORPHOLOGICAL TRAITS IN EPHYRINA,
MENINGODORA AND NOTOSTOMUS

Evolutionary traits in the clades Ephyrina and
Meningodora + Notostomus are different. Ephyrina
is mostly supported by synapomorphies linked to
the pereopods: contribution of these characters is

nearly five times higher than on average in the major
clades of Oplophoroidea (Table 4). All meri and ischia
in Ephyrina are greatly compressed, expanded and
resemble oars (Fig. 1E) adapted to locomotory function.
Unlike the usual spear-like and serrate shrimp rostra
(Fig. 1C, 1D), the rostrum in Ephyrina is a smooth,
wide lamina (Fig. 1E), possibly adapted to stabilize
forward motion, as does a stempost of a cruiser. The
forward motion requires strengthening of the carapace
but not in the form of sharp carinae, which may cause
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turbulent flow along carapace and pleon. Ephyrina has
smooth ridges on the carapace extending from the orbit
to the posterior margin, a blunt ridge ventral to the
postorbital ridge (Fig. 1E) and no more ridges, carinae
or teeth on the pleon. Ephyrina benedicti Smith, 1885
and E. bifida Stephensen, 1923 have ‘dorsomedial
teeth’ on the third pleonic segment but these teeth are
soft protuberances flattened dorsoventrally, adjacent to
the pleon and do not prevent an active forward motion.

Our data suggest that the set of characters
above evolved as a single morphological unit and
contributed to the evolutionary success of the genus.
Once evolved, this set of adaptations remained
conservative and the six known species of Ephyrina
are similar externally. Morphological traits within
the genus mainly encompass development and the
shape of dorsal protuberances on the third abdominal
segment in two species (entire in E. benedicti and bifid
in E. bifida) and spination of the telson: position of
spines (dorsolateral in E. bifida, E. childressi Chace,
1986 and E. hoskynii Wood-Mason, 1891 or marginal
in E. benedicti, E. figueirai Crosnier & Forest, 1973
and E. ombango Crosnier & Forest, 1973), number of
spines and additional rows of spines (E. figueirai).

The Meningodora + Notostomus clade is mostly
supported by synapomorphies linked to the
strengthening of the carapace; contribution of
these characters is two to three times higher than
on average in the major clades of Oplophoroidea
(Table 4). The strengthening is provided by means
of sharp lateral carinae along the whole carapace
length (a postorbital carina from the orbit to the
posterior margin, an oblique transverse carina
ventral of the postorbital carina; Fig. 1C, 1D),
which are coupled with a thin, half-membranous
integument. The strengthening has probably evolved
to keep the body firm and rigid. Strong carinae
on the carapace are likely analogous to stiffening
members in ships and serve to reduce vibrations
and flexing during fast movement (especially
escape flips). Sharp carinae, which are absent in
shrimps with a firm carapace, such as Oplophoridae
and most Acanthephyridae, become indispensable
for Meningodora and Notostomus having a thin and
half-membranous integument.

The main evolutionary traits within the clade are
linked to a further strengthening of the carapace and
the pleon. Notostomus is supported by an impressive
set of such synapomorphies (Fig. 1C) (the last two may
also be defensive):

e A sharp branchiostegal carina along 0.7-1.0 of
carapace length.

e An additional lateral carina on the posterior part,
parallel to the postorbital carina.

e A supraorbital carina, extending from the rostrum
to the postorbital region.

e A denticulate dorsal carina on the carapace.

e Strong and firm posteromesial teeth on the third to
fifth abdominal somites.

The basic morphological trait within Notostomus
is also linked to further strengthening of the
carapace: N. auriculatus Barnard, 1950, N. crosnieri
Macpherson, 1984, N. elegans A. Milne-Edwards, 1881,
N. japonicus Spence Bate, 1888 and N. murrayi Spence
Bate, 1888 have an additional lateral carina along the
entire carapace length between the branchiostegal
carina and the ventral margin of the carapace, the
three latter species also have a transverse oblique
carina extending dorsally from the postorbital carina
(Fig. 1C). In other respects, all species of Notostomus
are similar on the exterior and variations encompass
proportions of carinae, denticulation of the carapace
and the first abdominal somite.

Meningodora is supported by synapomorphies
linked to a reduction of the dorsal pleonic carinae
(absent on the second segment, blunt and indistinct
on the third segment). The genus encompasses species
smaller than Notostomus, which may partly explain
the absence of the further strengthening observed
in Notostomus. However, some strengthening is still
observed in larger species: a long, sharp branchiostegal
carina on the carapace (~half of the carapace length)
in M. mollis Smith, 1882 and M. compsa (Chace,
1940) (Fig. 1D), and an armament of the third pleonic
somite [posterodorsal tooth in M. marptocheles (Chace,
1940) and M. miccyla (Chace, 1940)]. There is an
interesting trend linked to M. mollis, which occurs
deeper than other Meningodora (Crosnier & Forest,
1973): this shrimp has a soft body and reduced cornea
owing to the deep-living mode of this species. Another
trait in Meningodora concerns relative length of the
sixth and the fifth pleonic somites: the ratio is 1-1.5 in
M. compsa, 1.5-2 in M. longisulca Kikuchi, 1985 and
> 2 in the rest of the genus. We suggest that this row
mirrors increasing movability of the species.

Overall, in the revised group, we observe different
evolutionary traits. The first one is linked to an
armament of the carapace and pleon with strong
and numerous spines and ridges. This trait, likely
associated with a defensive function and recorded here
in Notostomus, was previously found in other pelagic
crustaceans, such as Euphausiacea (Vereshchaka
et al., 2019a) and Oplophoridae (Lunina et al.,
2019b). The second trait is morphologically opposite
to the first one and is linked to a ‘smoothening’
of the body (reduction of the spines and carinae).
This trait, found here in Ephyrina, was previously
recorded in the pelagic branch of Benthesicymidae
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(Lunina et al., 2019a; Vereshchaka et al., 2020).
Analyses of the ‘Notostomus + Meningodora’ clade
retrieved a novel evolutionary trait associated with
keeping the body firm and rigid. The shrimps of
this clade occur in the deep-sea and have a half-
membranous carapace and pleon, which provide
nearly zero buoyancy and, consequently, a reduction of
energy loss. Strong carinae on their carapace and pleon
may serve as a compensatory structure to provide a
necessary supporting structure for locomotion.

A key to species of Ephyrina, Meningodora and
Notostomus may be found in Chace (1986); the only
species described since then is M. longisulca, which
differs from all other Meningodora in the absence
of the branchiostegal carina and in the unique (for
Meningodora) ratio between the sixth and the fifth
pleonic somites (1.7).

THE UNUSUAL MANDIBLE: AN EXAMPLE OF A
PARALLEL EVOLUTION

In addition to the synapomorphies discussed above,
the clades Ephyrina and Meningodora + Notostomus
are supported by such a character as the unusual
mandible (Fig. 1B), which is easily distinguishable
from the mandibles of other decapods (Fig. 1A). We
suggest that the characteristic mandibles have evolved
in the Ephyrina and Meningodora + Notostomus clades
independently as adaptations to feeding on an unusual
prey. Indeed, most caridean pelagic shrimps (families
Pasiphaeidae, Oplophoridae and Acanthephyridae)
are voracious predators, living on small fish, decapods
and euphausiids (e.g. review in: Burukovsky, 2009).
In particular, Burukovsky (2009) studied in detail the
gut content of such representatives of Oplophoroidea
as Systellaspis [S. debilis (A. Milne-Edwards, 1881),
S. pellucidal, Acanthephyra [A. acanthitelsonis Spence
Bate, 1888, A. eximia Smith, 1884, A. fimbriata Alcock
& Anderson, 1894, A. kingsleyi Spence Bate, 1888,
A. pelagica (Risso, 1816) and A. purpurea A. Milne-
Edwards, 1881] and Oplophorus [O. gracilirostris,
O. novaezealandiae (de Man, 1931), O. spinosus (Brullé,
1839) and O. typus H. Milne-Edwards, 1837], and
found that the most common and voluminous dietary
items of all these decapods are fish and crustaceans.
Shrimps have typical oplophoroid mandibles (reduced
molar process and subtriangular incisor process armed
with teeth along the entire inner margin; Fig. 1A),
which can crush crustacean carapaces and fish bones
and further cut tissues.

The prey of Ephyrina, Meningodora and Notostomus
is different. Although the feeding of these genera is
underexplored, scattered information confirms our
suggestion about their different trophic specializations.
Examination of the gut content of Notostomus
(N. crosnieri and N. elegans), Ephyrina figueirai and

Meningodora vesca shows that the most common
and voluminous dietary items of these species differ
from those found in other pelagic decapods and are
represented by pelagic cnidarians (Burukovsky, 2009).
Other studies also indicate that cnidarian tissue is the
most common dietary item of Notostomus japonicus
(Nishida et al., 1988). Notostomus robustus Smith, 1884
has even been observed from a submersible feeding
on the medusa Atolla wyvillei Haeckel, 1880 (Moore
et al., 1993). Our study is first to emphasize a link
between this type of mandible (Fig. 1B) and feeding
on gelatinous organisms but no direct observations
on feeding procedure of deep-sea Notostomus,
Meningodora or Ephyrina have been made (if possible
at all). We may only hypothesize that a sharp, smooth
blade is more efficient for the destruction of voluminous
soft tissues (feeding objects are large enough) than a
thickened serrate margin (teeth are buttressed by a
relief). A sharp, smooth blade likely chops tissues (as
we use a smooth acute knife to cut butter), whereas a
serrated blade saws and crushes tissues (like when we
slice bread).

Overall, during colonization of the pelagic realm,
the main trophic trend in the evolution of pelagic
decapods, including Oplophoroidea, was linked to
feeding on crustaceans and fish that was mirrored
in the mandible with subtriangular and an entirely
serrated incisor process. Two clades of Oplophoroidea,
Ephyrina and Meningodora + Notostomus, followed
another trophic pathway. They feed, presumably, on
gelatinous animals, mainly cnidarians, thus filling a
separate ecological niche. Gelatinous animals, which
significantly contribute to the pelagic biomass in all
depth zones (Vereshchaka et al., 2016), are consumed
by a limited number of predators and thus represent a
potentially strong food source. Noteworthy, Notostomus
is dominant in the meso- and upper bathypelagic of
the Subequatorial and Equatorial Atlantic in terms
of biomass (Vereshchaka et al., 2019b). The unusual
mandibles that evolved in the clades Ephyrina and
Meningodora + Notostomus, therefore, represent a
remarkable example of parallel evolution.

CONCLUSIONS

Here we present the first comprehensive phylogenetic
revision of the genera Ephyrina, Meningodora and
Notostomus based on the synchronous use of 95
morphological characters (all valid species included)
and six gene markers (71% of valid species belonging
to the target genera included). These three genera
have an unusual carapace strengthened with a set of
ridges and carinae, and a one-sided serrated mandible,
which suggest possible monophyly of this group; a
hypothesis we test here.
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It is noteworthy that both morphological and
molecular analyses retrieve trees with similar topology
and a set of statistically supported clades. We show
that Ephyrina and Meningodora + Notostomus are
separate clades and thus reject the hypothesis of group
monophyly. The genera Ephyrina and Notostomus
are monophyletic, both on the morphological and on
molecular trees; Meningodora gains support only on
the morphological trees.

Basic evolutionary traits in the Ephyrina and
Meningodora + Notostomus clades are different. In
Ephyrina, they are mostly linked to the pereopods (oar-
like) and shape of the rostrum (smooth lamina possibly
acting as a stempost) favouring active forward motion.
The Meningodora + Notostomus clade is predominantly
supported by synapomorphies coupled with the
carapace and pleon strengthened with ridges and
carinae, which is indispensable for Meningodora and
Notostomus with their half-membranous integument.
Carapace strengthening further evolved into an even
more elaborate net of sharp carinae in large Notostomus
as a possible response to increasing carapace loads.

Our results suggest that unusual mandibles evolved
in the clades Ephyrina and Meningodora + Notostomus
independently and represent convergent trophic
adaptations. Unlike most pelagic decapods feeding
on other crustaceans and fish, both clades follow an
alternative pathway and are adapted to feeding on
gelatinous organisms, mostly cnidarians. Living on this
prey appears to be ecologically advantageous, as species
of Notostomus dominate in the low-latitude Atlantic
communities in terms of biomass.
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