SUPEROXYGENATION

A MEANS TO EFFICIENTLY DISSOLVE OXYGEN INTO WATER AND WASTEWATER

WATER QUALITY 2-1-2013

PRESENTATION OUTLINE

- 1. Speece Cone Roots
- 2. Technology Overview
- 3. Speece Cone Attributes
- 4. Case Studies
- 5. Conclusions
- 6. Q/A

PIONEERING EFFORTS - BRAIN TRUST

Dr. Richard Speece Professor Emeritus Vanderbilt

BS - Fenny University

MS – Yale University

Ph D - MIT

Dr. George Tchobanoglous
Professor Emeritus UC Davis

BS — University of the Pacific

MS – UC Berkeley

Ph D — Stanford University

SUPEROXYGENATION

WHAT

PURE OXYGEN

- No Addition of Chemicals
- Environmentally Friendly

WHY

SUSTAINS AEROBIC CONDITIONS

- Prevents Odor and Corrosion
- Sustains Aquatic Life

HOW

ECO2 TECHNOLOGY

- Simple Design
- Very Efficient (OTE > 90%)

TECHNOLOGY OVERVIEW

Raw Water

CONE DESIGN

- Stainless Steel Construction
- No inner mixers or baffles
- Self-cleaning device

SYSTEM COMPONENTS

ECO2 SYSTEM CONTROLS

SUPEROXYGENATION FOCUS

WASTEWATER

Odor / Corrosion Prevention

WATER QUALITY

Restore Water Quality

WATER QUALITY

IMPORTANCE OF D.O.

	1	-		
OSi	ITI\			
\mathbf{O}			┏.	

No D.O.

Support Aquatic Life

Fish Kills

Reduces BOD Level

Increases BOD Level

Prevents H2S Production

Odors

Prevents Iron & Manganese Release

Taste and Odor in Drinking Water

How can D.O. be added?

Bubble Diffusers

SuperOxygenation

ECO2: Hypolimnetic Oxygenation

- Pulls water from hypolimnion & discharges oxygenated water back into the hypolimnion
- Water of same density remains in hypolimnion
- D.O. brought to the source where it is needed most to
- Prevent H2S Formation and Fe&Mn Release

SURFACE AERATION

- Mixing of the entire Volume required
- Destratification
- Cold water mixed with warm water from surface
- Nutrients from Sediment stirred up and brought to top → increase in algae growth

BUBBLE DIFFUSERS

- Bubbles rise O2 must dissolve while bubble is rising
- O2 that reaches the surface is wasted
- O2 is needed in sediment
- Air Diffusers must operate continuously to prevent clogging from bio-growth
- Destratification

ECO₂ Advantage: No Destratification

- ECO2 Technology maintains the natural stratification of the lake
- No nutrients are stirred up from the sediment and brought to the upper algae growth zone
- Colder water remains on the bottom:
 - Easier Water Treatment
 - Maintains cold water fish habitat

ECO2 Advantage: Natural Water Surface

- No Mixers or Aerators on the surface
- No visual impact on the lake's surface
- No obstacles for recreational activities such as boating, waterskiing or fishing

ECO2 Advantage: No Bubbles

- ECO2 Technology adds already dissolved oxygen to the water
- Liquid-to-liquid mixing allows for faster & broader distribution of O2
- Does not waste any oxygen
- O2 feed rate can be precisely controlled and adjusted to respond to DO levels in water body
- Robust system can be turned off as needed without danger of clogging delivery pipes

APPLICATIONS

© Orange County Sanitation District

7. SURFACE WATER

GOALS

- > Supplement D.O. to Sustain Aquatic Life
- Prevent H₂S Formation
- > Prevent Iron and Manganese Release

DRINKING WATER RESERVOIR

4.2 MGD . 2,200 lb O2 / day
Results: Cone D.O. Discharge 60 mg/L

Marston Reservoir Bottom Dissolved Oxygen 2008 vs. 2009

GOWANUS CANNAL, NY

- 30 m Wide
- 24,00 m Long
- 4 m Deep

GOWANUS CANAL, NY

GPA - Savannah Harbor, GA

GPA - Savannah Harbor, GA

CONE: 12 ft Diameter, 24 ft tall (x2) GOAL: Dissolve 30,000 lbs / day

D.O. DISCHARGE TMDL

Effluent Pipe

GOALS

- Meet D.O. Discharge Standards
- Point Source Loads
- Offset Residual BOD NET ZERO

NET-ZERO ULTIMATE OXYGEN DEMAND

- WWTP Effluent Contains Residual Pollutants i.e BOD and Ammonia
- Bacteria in the Receiving Water Biologically Consume Residual Pollutants
- This Biological Process Causes an Oxygen Demand in the Receiving Water
- Reduced Oxygen Damages Aquatic Life

TREATMENT OPTIONS

- 1. Zero Effluent Discharge
 - Effluent Stored Onsite used for Reclaim Water
 NOT PRACTICAL
- 2. Tertiary / Reverse Osmosis Treatment
 - Residual Pollutants Removed VERY EXPENSIVE
- 3. Dissolved Oxygen Offset SuperOxygenation
 - Satisfy Oxygen Demand of Residual Pollutants

 PRACTICAL AND INEXPENSIVE

KENNEBUNK, ME

5.0 MGD · 210 lb O₂ / day

Results: WWTP Plant D.O. Discharge 8 mg/L

EFFLUENT D.O. LEVEL

DRINKING WATER RESERVOIR

4.2 MGD . 2,200 lb O2 / day Results: Cone D.O. Discharge 60 mg/L

Marston Reservoir Bottom Dissolved Oxygen 2008 vs. 2009

SUPEROXYGENATION FOCUS

WATER QUALITY

Restore Water Quality

WASTEWATER

Odor / Corrosion Prevention

ROOT CAUSE OF ODOR

Nitrate Sulfate

Under Anaerobic Conditions:

- Bacteria consumes BOD
- Converts Sulfate to Sulfide

 $SO_4^{2-} + BOD + No D.O. \rightarrow H_2S$

CORROSION CONCERN

Sulfuric Acid:

Bacteria Converts
 Hydrogen Sulfide to
 Sulfuric Acid

H₂S + bacteria ----- H₂SO₄

1. COLLECTION SYSTEM

- Sustains Aerobic Conditions
- Prevents H₂S and Corrosion
- Eliminates Cover and Scrub

LAGUNA BEACH, CA

System Discharge

2. HEAD WORKS

- Sustains Aerobic Conditions
- ➤ Prevents H₂S and Corrosion
- ➤ Eliminates Cover and Scrub

Cheeney Creek WWTP - Fishers, IN

5.0 MGD · 5 hrs HRT

Results: 5 - 10 mg/L D.O. at Plant Head Works

Allisonville Road

Hague Road

Smock Creek

3. PRIMARY CLARIFIER

- Eliminates Cover and Scrub
- Eliminates Confined Space Issues
- Does Not Impact Settling

TRA - Dallas, TX

150 MGD · 14,000 lb O₂ / day

Anticipated Results: 0.0 mg/L DS into Primary Clarifier

4. AERATION

- Pure Oxygen Plants
- Increased Capacity
- Peak Power Shaving

INSTALLATION SCHEMATIC

5. OZONE DISINFECTION

- Efficient Ozone Transfer
- Reduce Oxygen Feed Gas
- Reduce Residual Ozone Destruction

ECO₂ SYSTEM vs. DIFFUSERS

6. D.O. DISCHARGE / BOD OFFSET

- ➤ Meet TMDL D.O. Discharge Standards
- Offset Residual BOD

KSD - Kennebunk, ME

5.0 MGD · 210 lb O₂ / day

Results: WWTP Plant D.O. Discharge 8 mg/L

CONCLUSIONS

- "Aerobic Cap" above sediment PREVENTS release of Fe & Mn and formation of H2S
- Robust System
- High Oxygen Transfer Efficiency
- Targeted Delivery of D.O.
- Extremely low O&M

QUESTIONS?

David Clidence

dclidence@eco2tech.com

www.eco2tech.com