
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Andelmin, Juho; Bartolini, Enrico
A multi-start local search heuristic for the green vehicle routing problem based on a
multigraph reformulation

Published in:
Computers and Operations Research

DOI:
10.1016/j.cor.2019.04.018

Published: 01/09/2019

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Andelmin, J., & Bartolini, E. (2019). A multi-start local search heuristic for the green vehicle routing problem
based on a multigraph reformulation. Computers and Operations Research, 109(September 2019), 43-63.
https://doi.org/10.1016/j.cor.2019.04.018

https://doi.org/10.1016/j.cor.2019.04.018
https://doi.org/10.1016/j.cor.2019.04.018

A multi-start local search heuristic for the green vehicle
routing problem based on a multigraph reformulation

J. Andelmina,∗, E. Bartolinib

Link to the published article: https://doi.org/10.1016/j.cor.2019.04.018

aDepartment of Mathematics and Systems Analysis, Aalto University School of Science,
P.O. Box 11100 FI-00076 Aalto, Finland

bDeutsche Post Chair - Optimization of Distribution Networks, School of Business and
Economics, RWTH Aachen University, Kackertstr. 7 B, 52072 Aachen, Germany

Abstract

We consider the Green Vehicle Routing Problem (G-VRP) which is an extension

of the classical vehicle routing problem for alternative fuel vehicles. In the

G-VRP, vehicles’ driving autonomy and possible refueling stops en-route are

explicitly modeled. We propose a multi-start local search algorithm that consists

of three phases. The first two phases iteratively construct new solutions, improve

them by local search, and store all vehicle routes forming these solutions in a

route pool. Phase three optimally combines vehicle routes in the route pool

by solving a set partitioning problem and improves the final solution by local

search. The algorithm is based on a multigraph reformulation of the G-VRP

in which nodes correspond to customers and a depot, and arcs correspond to

possible sequences of refueling stops for vehicles traveling between two nodes.

All local search operators used by our algorithm are tailored to exploit this

reformulation and do not explicitly deal with refueling stations. We report

computational results on benchmark instances with up to ∼ 470 customers,

showing that the algorithm is competitive with state-of-the-art heuristics.

Keywords: vehicle routing, alternative fuel vehicles, local search, multigraph

∗Corresponding author
Email addresses: juho.andelmin@aalto.fi (J. Andelmin),

bartolini@dpo.rwth-aachen.de (E. Bartolini)

Preprint submitted to Computers & Operations Research May 15, 2019

https://doi.org/10.1016/j.cor.2019.04.018

1. Introduction

Vehicle Routing Problems (VRPs) are a class of optimization problems con-

cerned with designing least-cost delivery routes for a fleet of vehicles to serve a

set of customers. In the Capacitated Vehicle Routing Problem (CVRP) intro-

duced by Dantzig and Ramser (1959), a set of customers with known demands is5

to be served by a fleet of vehicles with limited capacities, and the objective is to

plan a set of minimum cost vehicle routes so that all customers are served. Sev-

eral CVRP variants and generalizations of it have been studied since then (see,

e.g., Golden et al., 2008; Laporte, 2009 for recent surveys). As gasoline- and

diesel-powered vehicles have dominated the market, there has been little need10

to revise one major assumption underlying these models: each vehicle route can

be represented as an ordered sequence of customer visits.

More recently, environmental concerns have driven governments to enact laws

and regulations that require organizations to emphasize green logistic approaches

in their operations, including the deployment of alternative fuel vehicles (AFVs).15

However, many AFVs have limited driving range and must often rely on a lim-

ited refueling infrastructure. Therefore, it may be necessary to include the exact

locations of the refueling stations in the route planning. Furthermore, refueling

delays may also have a considerable impact. This is a notorious issue, e.g., with

electric vehicles due to their relatively short driving range and long recharging20

time, which together with a limited recharging infrastructure may cause range

anxiety, the fear of not having enough energy to reach the desired destination

(Franke et al., 2012). As a consequence, new routing models are emerging to

provide reliable and adequate level of service when adopting AFVs.

There is a growing body of research addressing the routing of AFVs that con-25

sider intermediate refueling stops. Modeling vehicles’ refueling strategies has

been identified as one major challenge, and several routing models have been

proposed with different trade-offs between the overall model complexity, fuel

consumption representation, and vehicles’ refueling policies. Special attention

has been devoted to electric vehicles (EVs) (see, e.g., Conrad and Figliozzi,30

2

2011, Felipe et al., 2014, Schneider et al., 2014, Hiermann et al., 2016, Montoya

et al., 2017), and the impact of different recharging policies in this context is re-

cently analyzed by Desaulniers et al. (2016) and Sweda et al. (2017). The study

of Desaulniers et al. (2016) assesses the impact of different recharging policies

(full vs partial recharges, and one vs multiple recharging stops) on the solution35

quality in presence of time windows constraints. The study highlights apprecia-

ble savings in terms of mileage and number of vehicles used when adopting the

more flexible policies (partial recharges and multiple recharging stops). As the

authors note, these savings are especially relevant in presence of relatively tight

time windows.40

In this paper, we focus on the Green Vehicle Routing Problem (G-VRP), in-

troduced by Erdoğan and Miller-Hooks (2012), which is one of the first models

tailored to AFV routing that includes refueling station visits. The G-VRP does

not consider time windows, but imposes a maximum route duration to each ve-

hicle. Although it assumes a full refuel policy and a constant refueling time, it45

captures the main features of AFV routing: explicit representation of vehicles’

fuel levels and refueling stops. The G-VRP can thus be viewed as fundamental

building block towards solving more complex and realistic problems. Moreover,

it is motivated by AFV applications in which full refuel policies may be well

justified, e.g., in presence of vehicles running on bio-diesel blends and EVs with50

replaceable batteries.

The G-VRP consists of a set of customers, a set of refueling stations, and a

fleet of identical AFVs located at a central depot. The objective is to plan

a set of vehicle routes, each starting and ending at the depot, so that each

customer is visited exactly once and the total distance traveled by the vehicles55

is minimized. The vehicle fleet is assumed to be unlimited and no capacity

constraints are considered, but the vehicles are subject to fuel constraints which

limit their maximum driving range (autonomy). The vehicles can restore their

driving autonomy by stopping at refueling stations en route (where they are

assumed to fully refuel), and a constant refueling delay is incurred at each60

stop. Finally, each vehicle’s trip is subject to a maximum duration constraint.

3

Therefore, the G-VRP has some similarities with the distance-constrained VRP

(Laporte et al., 1984; Li et al., 1992).

1.1. Literature review

This section reviews VRP variants that are closest to the G-VRP in that they65

attempt to model the operational constraints arising with the adoption of AFVs

as a consequence of refueling stops. It also provides an overview of heuristic

methods that have been applied to solve the G-VRP.

The earliest studies of routing models that include refueling stations appear to

be by Ichimori et al. (1981), who investigate the routing of a single vehicle with70

a limited driving autonomy through a network of regular nodes and refueling

nodes at which the vehicle can refuel completely. The objective is to find the

shortest path between two nodes along which the vehicle can traverse without

running out of fuel. Ichimori et al. (1983) further study a problem in which a

vehicle with a limited driving autonomy is initially located at a depot, visits75

a single customer after receiving a service call, and finally returns back to the

depot, possibly stopping to refuel en route if necessary.

More recently, Conrad and Figliozzi (2011) introduce a variant of the VRP with

time windows in which the vehicle fleet is composed of battery electric vehicles

(BEVs). In their model, the BEVs are allowed to recharge their batteries at the80

customer locations, but dedicated recharging stations at which the vehicles can

stop to refuel more than once are not considered.

Erdoğan and Miller-Hooks (2012) introduce the G-VRP and present two heuris-

tic methods for solving it: a modified Clarke and Wright savings heuristic

(Clarke and Wright, 1964) and a density-based clustering algorithm (Ester et al.,85

1996). The authors assess the heuristics by comparing their results to those ob-

tained with the mixed-integer linear programming solver CPLEX (IBM ILOG

CPLEX 11.2). The results indicate no significant differences between the pro-

posed heuristics.

Schneider et al. (2014) introduce the electric VRP with time windows (E-90

VRPTW), which extends the G-VRP by incorporating customer time windows,

4

customer demands, and vehicle capacities. The E-VRPTW also uses a new

refueling policy in which recharging time depends on the battery level upon ar-

rival at a station. The objective is to first minimize the number of vehicles and

then the routing cost. The authors develop a hybrid metaheuristic combining95

variable neighborhood search (VNS) (Hansen and Mladenovic, 2003) and tabu

search (TS) (Glover and Laguna, 1999). They apply their metaheuristic, called

VNS/TS, also to the G-VRP and significantly improve the previous results.

Schneider et al. (2015) present the VRP with intermediate stops, which extends

the E-VRPTW by incorporating both refueling stations and satellite facilities,100

as well as combinations of these two. In this model, vehicles can restore their

driving autonomy at refueling stations and also replenish their supply at satel-

lite facilities, thus allowing them to serve additional customers before returning

to the depot. The authors develop a heuristic method called adaptive variable

neighborhood search (AVNS), which combines ideas from VNS and adaptive105

large neighborhood search (Pisinger and Ropke, 2007). The AVNS is also ap-

plied to the G-VRP, improving the results obtained by VNS/TS with consid-

erably smaller computation times. The E-VRPTW has also been extended to

model a heterogeneous vehicle fleet (Hiermann et al., 2016) and a mixed fleet

of conventional and electric vehicles (Goeke and Schneider, 2015).110

Felipe et al. (2014) present the Green VRP with multiple technologies and par-

tial recharges, which extends the G-VRP by incorporating customer demands,

partial recharges, and different but constant recharging rates at different charg-

ing stations. The authors propose a heuristic method combining constructive

local search heuristics within a simulated annealing framework (Suman and Ku-115

mar, 2006). Their heuristic yields competitive results with respect to VNS/TS,

but is outperfomred by AVNS.

Montoya et al. (2016) study the G-VRP and propose a two-phase heuristic

method called modified multi-space sampling heuristic, which is based on the

multi-space sampling heuristic introduced by Mendoza and Villegas (2013). The120

first phase uses constructive heuristics to randomly generate several traveling

salesman tours visiting only customer nodes. Each such tour is then optimally

5

split into feasible vehicle routes while preserving the customer visiting order and

adding possible refueling station visits to ensure feasibility (this is an adaptation

of the optimal splitting procedure introduced by Prins (2004)). In the second125

phase, a solution to the G-VRP is computed by solving a set partitioning prob-

lem with all feasible routes obtained in the first phase, using the best solution

cost obtained during the splitting procedure as an initial upper bound. The

authors report competitive results with respect to AVNS.

Recently, Koç and Karaoglan (2016) present a new mathematical formulation130

for the G-VRP and a branch-and-cut algorithm. The authors also propose a

simulated annealing heuristic and report results on small instances with up to

20 customers and 3-10 refueling stations.

The current best known solutions on benchmark G-VRP instances have been

reported by Schneider et al. (2015) and Montoya et al. (2016).135

1.2. Contributions of this paper

We propose a new matheuristic algorithm for solving the G-VRP. Our algorithm

is based on a multigraph reformulation of the G-VRP in which refueling stations

are not explicitly modeled. The node set in the multigraph consists of customers

and a depot, and multiple arcs may exist between each pair of nodes. Each arc140

(i, j) in the multigraph represents a possible sequence of consecutive refueling

stops for a vehicle traveling from node i to node j. We describe how to exploit

this multigraph reformulation by tailoring classical local search operators to

work directly on it, and by combining these operators to develop a multi-start

local search heuristic algorithm. We demonstrate its effectiveness on benchmark145

instances with up to 500 customers. We report improved best known upper

bounds for the largest benchmark instances, and we show that on instances

with up to 100 customers our algorithm provides upper bounds that are, on

average, within 0.27% from optimal.

Overall, our results suggest that high quality G-VRP solutions may be obtained150

by exploiting a multigraph reformulation, and by adapting classical local search

6

operators to work directly on it, without dealing explicitly with refueling sta-

tions.

The heuristic we describe in this paper and the multigraph reformulation it is

based upon were used by the exact method of Andelmin and Bartolini (2017).155

This article was quoted therein as a working paper and is the final version of

that manuscript.

1.3. Organization of the paper

The rest of this paper is organized as follows. Section 2 describes the G-VRP.

Section 3 describes the multigraph reformulation of the G-VRP and the con-160

struction of the multigraph. Section 4 details our multi-start local search heuris-

tic and the local search operators used by it. Section 5 describes how the main

parameters of the heuristic are determined. Section 6 reports a computational

evaluation of our heuristic, and concluding remarks are given in Section 7.

2. Description of the G-VRP165

The G-VRP is defined on a directed graph G = (V, A), where the vertex set

V = N ∪ F ∪ {0} is a combination of a set N = {1, . . . , n} of n customers, a

set F = {n + 1, . . . , n + s} of s refueling stations, and a vertex 0 representing

the depot. Each customer i ∈ N has a service time si, and each arc (i, j) ∈ A

is associated with a distance cij and a travel time tij .170

The n customers are to be served by a (unlimited) homogeneous fleet of alter-

native fuel vehicles which are based at the depot. Each vehicle has a maximum

driving time of T minutes and a limited amount of fuel which is expressed as a

maximum fuel capacity C. All vehicles departing from the depot are assumed

to be fully refueled having the maximum fuel amount C. It is worth noting that175

the G-VRP expresses the maximum driving range of a vehicle as its maximum

fuel capacity C. However, since vehicle fuel consumption is assumed to be lin-

early dependent on the distance traveled, the maximum driving range can be

equivalently expressed as a distance value. Letting K be the constant rate of

7

fuel consumption per distance unit, the maximum distance Q that a vehicle can180

travel without refueling is thus defined as Q = C/K.

To avoid running out of fuel, vehicles can stop at any of the s refueling stations.

After stopping at a refueling station, a vehicle is assumed to be fully refueled,

and each stop is assumed to incur a refueling delay of δ minutes. It is also

assumed that each vehicle incurs such a delay before leaving the depot for the185

first time (i.e., vehicles leave the depot fully refueled). This assumption is

adopted by all the previous studies found in the literature.

Each vehicle is assumed to travel at a constant speed v. Thus, the travel time

of each arc (i, j) ∈ A can be defined as tij = cij/v+si if i ∈ N or tij = cij/v+δ

if i ∈ F ∪{0} (we include service times si and refueling delays δ in the arc travel190

times to simplify notation). Note that because of the maximum driving range

Q and driving time T , any arc (i, j) ∈ A with cij > Q or tij > T cannot be part

of a feasible solution. We assume that those arcs are not present in G.

3. Multigraph reformulation of the G-VRP

In this section, we briefly describe a multigraph reformulation of the G-VRP,195

introduced by Andelmin and Bartolini (2017), which is used by our algorithm.

For completeness, we also detail the procedure that we use to construct it.

3.1. Description of the multigraph

To define the multigraph, we denote by N0 its set of nodes where N0 = N ∪{0}.

A refuel path from i ∈ N0 to j ∈ N0, i 6= j, is a simple path in G starting from200

i, visiting a subset F ′ ⊆ F of refueling stations, and ending at j. For any pair

of nodes i, j ∈ N0, i 6= j, we denote by P ′
ij the index set of all refuel paths from

i to j. For a refuel path P , its total distance c(P) is equal to the sum of the

distances of the arcs it traverses, and its travel time t(P) is equal to the sum of

the travel times of the arcs it traverses.205

The multigraph is denoted by G = (N0,A), where A is the arc set containing

arcs of the form (i, j, p), ∀i, j ∈ N0, i 6= j, ∀p ∈ P ′
ij . Note that the arcs of

8

A model either proper refueling paths that visit at least one station, or paths

corresponding to a direct trip between two nodes i, j ∈ N0, i 6= j. We will call

these latter arcs direct arcs and denote them as (i, j, 0), or simply (i, j).210

Thus, any arc (i, j, p) ∈ A either corresponds to a proper refuel path, or it is a

direct arc indexed by p = 0.

Each arc a = (i, j, p) ∈ A has a distance c(a) = c(i, j, p) and a travel time

t(a) = t(i, j, p) which are equal to the total distance and travel time, respectively,

of the corresponding refuel path Pp, p ∈ P ′
ij (we assume that c(i, j, 0) = cij215

and t(i, j, 0) = tij). Moreover, for each arc a = (i, j, p) ∈ A, we denote by

c1(a) = c1(i, j, p) and c2(a) = c2(i, j, p) the distances of the first and the last

arc, respectively, traversed by the refuel path Pp, p ∈P ′
ij , p 6= 0.

Let us call driving autonomy the residual distance that a vehicle can travel

without running out of fuel. Let qi denote the driving autonomy after arriving220

at a node i ∈ N0. Notice that traversing an arc (i, j, p) ∈ A, p 6= 0, in the

multigraph corresponds to traversing the corresponding refuel path Pp, p ∈P ′
ij .

This is however possible only if the driving autonomy qi upon arrival at i is

at least c1(i, j, p). Moreover, the driving autonomy upon arrival at j after

traversing an arc (i, j, p) is Q− c2(i, j, p). A G-VRP route can thus be modeled225

as a simple circuit (0, a0, i1, a1, . . . , ir, ar, 0) in G traversing nodes (0, i1, . . . , ir)

and arcs a0 = (0, i1, p0), . . . , ar = (ir, 0, pr) such that:

1. the sum of travel times of the arcs a0, ..., ar does not exceed T

2. the driving autonomy qik upon arrival at each node ik, k = 1, ..., r, which

is visited by the circuit is at least c1(ik, ik+1, pk)230

Let GF = (F,AF) be a subgraph of G induced by the set F of refueling stations

with AF = {(i, j) ∈ A : i, j ∈ F, cij ≤ Q}. The multigraph construction is

based on the following dominance rule.

Dominance 1. Let P = (i, u, . . . , h, j) be a refuel path from i ∈ N0 to j ∈ N0

traversing the subpath (u, . . . , h) in GF from u ∈ F to h ∈ F (possibly with

u = h). P is said to be dominated if there exists another refuel path P ′ =

9

(i, u′, . . . , h′, j) traversing a subpath (u′, . . . , h′) in GF from u′ ∈ F to h′ ∈ F

(possibly with u′ = h′) such that

(i) ciu′ ≤ ciu (ii) ch′j ≤ chj (iii) c(P ′) ≤ c(P) (iv) t(P ′) ≤ t(P)

and at least one of the inequalities is strict.

3.2. Construction of the multigraph235

We represent a non-dominated refuel path as a simple path P = (i, u, . . . , h, j)

which starts from i ∈ N0, traverses a subpath Puh = (u, . . . , h) in GF from

u ∈ F to h ∈ F , and finally ends at j ∈ N0. For any pair u, h ∈ F , let P ∗uh be

the shortest u − h path in GF with respect to the arc distances {cij}, and let

k∗uh be its cardinality (i.e., the number of refueling station visits in P ∗uh). All240

the non-dominated refuel paths P from i ∈ N0 to j ∈ N0 must contain a u− h

path Puh in GF from some u ∈ F to some h ∈ F having cardinality less than or

equal to k∗uh. Thus, each non-dominated refuel path P from i to j is composed

of

1. an arc (i, u) ∈ A, such that u ∈ F245

2. a shortest u− h path P k
uh in GF of cardinality k, for some k ≤ k∗uh

3. an arc (h, j) ∈ A, such that h ∈ F

The computation of non-dominated refuel paths is executed in the following

three steps: (i) for every pair of nodes u, h ∈ F , compute the set Puh of all

shortest paths in GF of cardinality k = 1, 2, . . . , k∗uh, (ii) for every pair of nodes250

i, j ∈ N0, i 6= j, compute the set P ′ij of all refuel paths from i to j satisfying 1

– 3, by using the paths Puh, ∀u, h ∈ F , (iii) extract the non-dominated paths

from the sets P ′ij for all i, j ∈ N0, i 6= j. A step-by-step description of this

procedure together with preprocessing steps that allow to reduce the size of the

graph are provided in Andelmin and Bartolini (2017). Moreover, in this paper255

we also use a further reduction: we remove from A both arcs (i, j) and (j, i) if

i ∈ F0, j ∈ N , and cij + cjk > Q, ∀k ∈ V , where F0 = F ∪ {0}.

10

In the following, Pij denotes the final index set of all non-dominated paths

from i to j obtained in this way ∀i, j ∈ N0, i 6= j.

4. A Multi-start local search heuristic for the G-VRP260

In this section, we describe our local search heuristic for solving the G-VRP.

The core part of the heuristic builds on the idea of strategically sampling the

solution space over a number of global iterations, a procedure more commonly

known as the multi-start method (Mart́ı et al., 2013). Each such global iteration

typically consists of two phases: the first phase generates an initial solution and265

the second phase attempts to improve this solution by means of local search.

Every global iteration thus produces a candidate solution that corresponds to

a local optimum, and the best candidate solution over all global iterations is

selected as the final output.

Our Multi-Start Local Search (MSLS) heuristic uses an approach similar to270

the multi-start method, but introduces some additional features. The vehicle

routes of every phase one and phase two solution are added to a route pool

R, and a final component is included that solves a set partition problem over

all the vehicle routes stored in R after all global iterations and improves the

final solution by local search. Moreover, the algorithm directs the search to275

different parts of the solution space by dividing the set of all global iterations

into four sequences. Each sequence uses different neighborhood structures in the

construction phase (i.e., the first phase) of the corresponding global iteration

sequence. Finally, in order to avoid generating identical solutions, the heuristic

keeps track of each solution cost by using a cost table H which stores the cost280

of each solution found. If a candidate solution in phase one or two is found to

have the same cost as one generated before, the heuristic iteratively modifies it

(by also allowing its cost to become worse) until a solution with a unique cost

is found. This is described in more detail in Section 4.3.1. Notice that if two

different solutions have the same cost, they will be seen as the same solution.285

In this case, the vehicle routes in the solution that is constructed later will not

11

be added to the route pool immediately but will enter the diversification phase

instead. However, since the diversification phase rarely modifies several routes

at a time, it is likely that even if several different solutions have the same cost,

most of their routes will end up being added to the pool eventually.290

Both phases of each global iteration use local search heuristics, hereafter called

operators, to construct and improve G-VRP solutions. The local search opera-

tors used by the algorithm are divided into inter-route and intra-route operators.

The inter-route operators operate on multiple routes simultaneously, while the

intra-route operators operate on a single route at a time.295

It is worth noting that although similar operators have been used by most of

the previous heuristic methods developed for various alternative fuel VRPs,

when adapted to work on our multigraph, they allow to simultaneously change

both customer sequences and refueling stops of the routes they operate on. This

allows to partially overcome one of the possible limitations of classical operators,300

namely, the lack of an integrated optimization approach with respect to routing

and refueling decisions during local search.

The operators used by MSLS are described in Section 4.1, and Section 4.2

describes an efficient way to test the feasibility of the solutions in the neighbor-

hoods explored by the operators. The overall structure of MSLS is detailed in305

Section 4.3.

4.1. Local search operators

All the operators used by MSLS are modified versions of the original ones which

are tailored to work directly on the multigraph. Their pseudocode descriptions

are given in Appendix B. When describing the operators, the depot is also310

considered to be a customer, except in the obvious case where a customer is

relocated within or between routes.

The inter-route operators used by MSLS are the Clarke and Wright savings

heuristic, the 2-OPT* and 3-OPT* heuristics, and the sequence relocate and

cyclic exchange heuristics. MSLS also uses the intra-route 2-OPT and intra-315

route relocate heuristics which operate on a single route at a time, trying to

12

improve its cost by removing and reconnecting arcs in A between customer

pairs. Intra-route operators are used in the intensification phase, specifically,

inside the function Intensify, described in Algorithm 3 (see Section 4.3.1).

Similar operators were also used by previous heuristics developed for the G-320

VRP or similar problems (Erdoğan and Miller-Hooks, 2012, Felipe et al., 2014,

Schneider et al., 2014, 2015).

4.1.1. Clarke and Wright savings

We use the Clarke and Wright savings (Clarke and Wright, 1964) operator

(hereafter abbreviated as CWS) to combine two vehicle routes into a single one.325

CWS computes all possible cost changes, or savings, resulting from merging

two routes R1 and R2. This is done by reconnecting the last customer of R1

to the first customer of R2 so that a new feasible route is created. During each

operator call, the best saving is computed by examining all pairs of routes, and

for each such pair, by trying all possible arcs in A between the customers that330

are reconnected by the merge. The operator also considers the case where the

route R2 is reversed when computing the savings.

R1

0

i

R2

j

R

0

i
j

Figure 1: Example of the CWS operator merging two routes R1 and R2 into a
new route R. Solid arrows represent direct arcs, and dashed arrows represent non-
dominated refuel paths visiting one or more refueling stations.

We also use a modified version of the CWS operator (called CWS*) that operates

in a similar fashion as the regular CSW, but it also checks if changing the arc

between the depot and the first customer would be beneficial when merging two335

routes. An example of using the CWS* operator is presented in Figure 2.

We further modify CWS to use a regret-k heuristic (Ropke and Pisinger, 2006)

for selecting a pair of routes to be merged. The regret-k heuristic computes

13

R1

0

i

R2

j

R

0

i
j

Figure 2: Example of using the CWS* operator. Solid arrows represent direct arcs,
and dashed arrows represent non-dominated refuel paths visiting one or more refueling
stations. Compared to Figure 1, the arc between i and j in R is now a direct arc,
while the arc between the depot 0 and the first customer is now a non-dominated
refuel path.

and stores, for each vehicle route Ri, the k best savings s1(Ri), . . . , sk(Ri) from

merging Ri with every other route Rj . Then, for each route Ri, the following340

k-regret value ck(Ri) is computed:

ck(Ri) = s1(Ri)−
k∑

j=2

sj(Ri).

Finally, the route Ri that obtains the greatest k-regret value ck(Ri) is merged

with the route Rj that yields the best saving.

Different regret values (i.e., values of k) are used during the η first times that

CWS or CWS* are used. The values of k and η are drawn randomly from a345

uniform distribution at the beginning of each global iteration (see Section 5).

4.1.2. 2-OPT* and 3-OPT*

The 2-OPT* operator (Potvin and Rousseau, 1995) tries to reconnect customer

sequence pairs of two vehicle routes in order to create two new routes with a

smaller total cost. 2-OPT* first removes one arc from each route, thus creating350

four distinct customer sequences (two for each route), and then tries to reconnect

the first customer sequence of the first route to the second customer sequence of

the second route and vice versa. During each operator call, 2-OPT* computes

cost savings for every pair or routes and selects the greatest one. The greatest

cost saving for a given pair of routes is computed by examining all possible355

customer sequence pairs of the two routes, and for each such pair, by trying all

14

possible combinations of arcs in A between the customers that can reconnect

the customer sequences.

R1

0

i1

i2R2

j1

j2

R′1

0

i1

i2

R′2j1

j2

Figure 3: Example of the 2-OPT* operator removing one arc from route R1 (be-
tween i1 and i2), one arc from route R2 (between j1 and j2), and reconnecting the
disconnected customer sequence pairs, thus creating two new routes R′1 and R′2. Solid
arrows represent direct arcs, and dashed arrows represent non-dominated refuel paths
visiting one or more refueling stations.

The 3-OPT* operator is otherwise similar to the 2-OPT*, but instead of oper-

ating on two routes, the 3-OPT* removes one arc from three distinct routes and360

then reconnects these routes optimally. The computational burden of 3-OPT*

increases quickly when the number of routes becomes large, wherefore we use it

only in the diversification phase (see function Diversify in Algorithm 4).

4.1.3. Sequence relocate and cyclic exchange

The sequence relocate operator selects a sequence of σ customers from one365

route and tries to insert it into another route between two successive customers.

If some route has less than σ customers, the operator then tries to relocate

the sequence containing all customers of that route between the two successive

customers in the other route. During each call, the sequence relocate operator

computes cost savings for every pair of routes by trying to relocate every possible370

customer sequence of length σ of the first route between every possible pair of

successive customers in the second route. The greatest cost saving for a given

relocation is computed by comparing all possible combinations of arcs in A

between the corresponding customers when reconnecting the routes.

The cyclic exchange operator (Thompson and Orlin, 1989) selects a sequence375

of customers from each route within a set of two or more routes and exchanges

these sequences such that each route obtains a new customer sequence from one

15

R1

0

i1

R2

j1

j2
R′1

0

i1

R′2

j1

j2

Figure 4: Example of the sequence relocate operator relocating customer sequence
(j1, j2) of route R2 between i1 and 0 in route R1, thus creating two new routes R′1 and
R′2. Solid arrows represent direct arcs, and dashed arrows represent non-dominated
refuel paths visiting one or more refueling stations.

of the other routes. Each route is then connected to these new sequences, thus

creating a set of new routes. The greatest cost saving for a given set of routes and

sequence lengths for each route is computed by examining all possible customer380

sequence combinations with the given lengths, and for each such combination,

by trying all possible customer sequence exchanges among the set of routes.

We limit the number of routes used by the the cyclic exchange operator to

two, because the computational burden increases rapidly when operating on

more than two routes simultaneously. When only two routes are considered,385

the operator is similar to a swap operator that selects a customer sequence from

each route and swaps these customer sequences between the two routes.

R1

0

i1

i2
R2

j2

j1

R′1

0

i1

i2
R′2

j2

j1

Figure 5: Example of the cyclic exchange operator exchanging customer sequences
(i1, i2) of route R1 and (j1, j2) of route R2, thus creating two new routes R′1 and R′2.
Solid arrows represent direct arcs, and dashed arrows represent non-dominated refuel
paths visiting one or more refueling stations.

16

4.1.4. Intra-route 2-OPT

The intra-route 2-OPT operator (Lin, 1965) is similar to the 2-OPT* opera-

tor except that 2-OPT operates on a single route instead of two. 2-OPT first390

removes two arcs from a given route and then reconnects the disconnected cus-

tomer sequences optimally. The greatest cost saving for a given route R is

computed by examining all possible pairs of arcs in R, and for each such pair,

by removing these arcs from R and trying all possible combinations of arcs in

A between the customers that can reconnect the route.395

R

0

i

j

k

R′

0

i

j

k

Figure 6: Example of the 2-OPT operator removing two arcs (between i and j, and
between k and 0) and optimally reconnecting the disconnected customer sequences.
Solid arrows represent direct arcs, and dashed arrows represent non-dominated refuel
paths visiting one or more refueling stations.

4.1.5. Intra-route relocate

The intra-route relocate operator selects a customer from a given route and

tries to relocate it between two successive customers in the same route. It first

removes two arcs adjacent to a customer k which is to be relocated and one arc

between two successive customers i and j. It then tries to reconnect the route400

so that it contains the customer sequence (i, k, j). The greatest cost saving for

a given route is computed by examining all possible customer relocations and,

for each such relocation, trying all possible combinations of arcs in A that can

reconnect the route.

4.2. Feasibility tests405

All the operators used by MSLS work by relocating or swapping customers or

customer sequences (i.e., paths in G) between the routes they operate on. This

17

R0

k

i
j

R′0

k

i
j

Figure 7: Example of the intra-route relocate operator relocating customer k between
customers i and j. Solid arrows represent direct arcs, and dashed arrows represent
non-dominated refuel paths visiting one or more refueling stations.

section describes an efficient way to evaluate feasibility of solutions resulting

from these operations.

Let R = (0, a0, i1, a1, . . . , ir, ar, 0) be a G-VRP route, where i0 and ir+1 both410

represent the depot 0. The route R starts from the depot i0, visits customers

i1, . . . , ir while traversing arcs a0, ..., ar, and finally returns to the depot 0.

In order to efficiently test the feasibility of solutions resulting from applying the

operators described in Section 4.1, we define the following four labels for each

vertex ik visited by a G-VRP route R:415

1. C(ik, R): The remaining fuel upon arriving at ik with the convention that

C(0, R) denotes the fuel level at the end of the route).

2.
−→
C (ik, R): The amount of fuel needed to reach the first refueling station,

or the depot, starting from ik.

3. T (ik, R): The total travel time upon arriving at ik (with the convention420

that T (0, R) denotes the total route time).

4.
−→
T (ik, R): The time needed to reach the depot starting from ik.

By using the labels defined above, it is easy to verify whether the modifications

made on a solution by the MSLS operators preserve feasibility or not. We

illustrate how this is done by using, as an example, a cyclic exchange relocation425

move (see Section 4.1.3), it being one of the most general cases.

18

Consider two feasible (customer-disjoint) routes R = (0, a0, i1, a1, . . . , ir, ar, 0)

and R′ = (0, a′0, i
′
1, a
′
1, . . . , i

′
r, a
′
r, 0). Suppose that a path P = (i′k, a

′
k, ..., i

′
h) is

extracted from R′ and inserted in R between two customers ik and ih. Suppose

that the arcs āk = (ik, i
′
k, pk) and āh = (i′h, ih, ph) are used to connect P to R′430

(see Figure 8), thus creating a new route R̄. To determine if R̄ is feasible, it is

sufficient to check that

A: The total duration of the route R̄ (i.e., T (0, R̄)) does not exceed T .

B: The amount of fuel needed to reach the first refueling station (or the depot)

starting from ik (i.e.,
−→
C (ik, R̄)) does not exceed C(ik, R̄).435

C: The amount of fuel needed to reach the first refueling station (or the depot)

starting from i′k ∈ R̄ (i.e.,
−→
C (i′k, R̄)) does not exceed C(i′k, R̄).

D: The amount of fuel needed to reach the first refueling station (or the depot)

starting from i′h ∈ R̄ (i.e.,
−→
C (i′h, R̄)) does not exceed C(i′h, R̄).

E: The amount of fuel needed to reach the first refueling station (or the depot)440

starting from ih ∈ R̄ (i.e.,
−→
C (ih, R̄)) does not exceed C(ih, R̄).

The above conditions can be checked in constant time without explicitly com-

puting all the labels C(i, R̄) and T (i, R̄) of the new route R̄ as follows.

Condition A can be verified in time O(1) by computing

T (0, R̄) = T (ik, R) +
−→
T (i′k, R

′)−
−→
T (i′h, R

′) +
−→
T (ih, R) + t(āk) + t(āh)

and testing if T (0, R̄)− T ≤ 0.

For condition B, first notice that C(ik, R̄) = C(ik, R). Thus, we consider the

following cases. If the arc āk is not a direct arc, then
−→
C (ik, R̄) = Kc1(āk) and

condition B can be verified in time O(1) by testing if C(ik, R) −Kc1(āk) ≥ 0.

Otherwise, āk represents a direct arc and we can compute

−→
C (ik, R̄) =

Kc(āk) +
−→
C (i′k, R

′), if P contains a refueling station

Kc(āk) +Kc(P) + Γ, otherwise

19

where c(P) is the total distance of the path P and Γ = Kc(āh) +
−→
C (ih, R) if445

the arc āh is a direct arc, or Γ = Kc1(āh) otherwise. Note that P contains a

refueling station if and only if Kc(P) 6= C(i′k, R
′) − C(i′h, R

′). Thus,
−→
C (ik, R̄)

can be obtained in time O(1), and since C(ik, R̄) = C(ik, R), condition B can

be verified in time O(1) by testing if C(ik, R̄)−
−→
C (ik, R̄) ≥ 0.

Condition C is already verified by condition B if the arc āk is a direct arc. Thus,

we need to check condition C only if the arc āk is not a direct arc. In this case,

we have

−→
C (i′k, R̄) =

−→
C (i′k, R

′), if P contains a refueling station

Kc(P) + Γ, otherwise

where Γ = Kc(āh) +
−→
C (ih, R) if the arc āh is a direct arc, or Γ = Kc1(āh),450

otherwise. Thus,
−→
C (i′k, R̄) can be obtained in time O(1), and since C(i′k, R̄) =

C −Kc2(āk), condition C can be verified in time O(1) by testing if C(i′k, R̄)−
−→
C (i′k, R̄) ≥ 0.

Condition D is already verified by condition C if the path P does not con-

tain a refueling station. Thus, we need to verify condition D only if P con-455

tains a refueling station. In this case, we have C(i′h, R̄) = C(i′h, R
′). More-

over, we have
−→
C (i′h, R̄) = Kc(āh) +

−→
C (ih, R) if the arc āh is a direct arc,

or
−→
C (i′h, R̄) = Kc1(āh) otherwise. Having computed

−→
C (i′h, R̄), we can test if

C(i′h, R̄)−
−→
C (i′h, R̄) ≥ 0 in time O(1).

Condition E is already verified by condition D if the arc āh is a direct arc.460

Thus, we need to verify condition E only if the arc āh is not a direct arc. In

this case, we have C(ih, R̄) = C −Kc2(āh), and since
−→
C (ih, R̄) =

−→
C (ih, R), we

can test if C(ih, R̄)−
−→
C (ih, R̄) ≥ 0 in time O(1).

Feasibility checks for routes that are modified by operators other than the cyclic

exchange are derived in a similar way as above. However, when applying the465

intra-route 2-OPT operator to a route, the orientation of the middle path tra-

versed by the new route must be reversed. Therefore, the corresponding feasi-

bility check has to be adapted accordingly.

20

It is worth noting that the feasibility tests described in this section assume that

those parts of the routes R and R′ which occur before and after the relocated470

sequences (i.e., in the example above, before i′k and after i′h in R, and before

ik and after ih in R′), as well as the relocated sequences themselves, are fixed.

In other words, consistently with the definition of our local search operators

(see Section 4.1), we do not attempt to make an infeasible move feasible by

modifying either the fixed parts of R and R′ or the relocated sequences.475

. . .
R

i′k i′h

. . .

. . .
R′

ik ih

. . .

Figure 8: An example of the cyclic exchange operator relocating the customer se-
quence P = (i′k, . . . , i

′
h) of R between the customers ik and ih of R′ to create a new

route R̄.

Note also that after each successful operator move, it is necessary to update the

vertex labels of the routes involved in the move.

The vertex labels for each route are stored as doubly linked lists containing one

node for each customer. After a successful operator move, we update the for-

ward and backward time labels of each customer in the routes that are modified480

(by traversing the customer labels in their corresponding lists). The forward

and backward fuel labels are also updated for those customers that are affected

when traversing the lists, and the update process stops when the labels are guar-

anteed to not change (e.g., if we encounter a refueling station when traversing

backwards from the customer ik, we need not update any further backward fuel485

labels). The computational complexity of label updates is thus O(n) for every

successful operator move, where n is the number of customers. Since the vertex

labels need to be updated only after a successful operator move, label updates

21

tend to have a negligible effect on the overall running time of the heuristic.

Finally, we note that the feasibility tests detailed in this section can be adapted490

to handle a partial refueling policy. Indeed, the labels C(ik, R) keep track of

the maximum amount of fuel that a vehicle can have upon arriving at ik, and

the labels
−→
C (ik, R) keep track of the least amount of fuel needed to reach the

next refueling station or the depot. Thus, any partial refueling policy will be

feasible as long as C(ik, R) ≥
−→
C (ik, R) for every customer ik ∈ R. To compute495

possible time savings, we can introduce additional labels Tmin(ik, R) for every

customer ik ∈ R to keep track of the minimum travel time upon arriving at ik

when using a partial refueling policy. If a route R using a full refueling policy

has a travel time that is greater than the maximum T , it is then fast to check

if R can be made feasible by using a partial refueling policy instead. A policy500

that uses the least amount of fuel (and time) is obtained by setting the refuel

amount of each station visit to be the minimum required.

4.2.1. Feasibility and labeling comparison to similar approaches

It is worth noting that similar strategies to the one described in Section 4.2

have been proposed by several other authors to reduce the computational burden505

associated with the feasibility evaluation of local search moves applied to various

generalizations of the G-VRP.

A major difference, however, is that all previous heuristics are based on formu-

lations where refueling station visits are explicitly modeled as separate (dupli-

cated) nodes. Differently from MSLS, these heuristics typically allow at most510

one refueling stop between two customers, thus simplifying the feasibility checks

required by their local search moves.

An example is the Adaptive Large Neighbourhood Search (ALNS) metaheuristic

developed by Hiermann et al. (2016) for the Electric Fleet Size and Mix Vehicle

Routing Problem with Time Windows and Recharging Stations (E-FSMFTW).515

This algorithm uses similar labeling strategy to MSLS for handling fuel-level

feasibility tests. It also uses similar local search operators as MSLS, including

2-OPT* and variants of the sequence relocate and cyclic exchange operators.

22

The operators used by MSLS are, however, modified to operate directly on the

multigraph, and therefore require modified feasibility tests as well.520

To appreciate the differences, consider the operation of concatenating two par-

tial customer sequences R1 = (i1, . . . , ir) and R2 = (j1, . . . , jr) to form a new

sequence R = R1⊕R2 = (i1, . . . , ir, j1, . . . , jr). Although both ALNS and MSLS

can assess the feasibility of this operation in constant time, ALNS disregards

the possibility of inserting a charging station between the two customers ir and525

j1 to achieve feasibility. In contrast, MSLS can possibly make the concatena-

tion feasible by connecting the two customer sequences through an arc of the

multigraph that includes an arbitrary number of refueling stations.

Thus, even thought the ALNS and MSLS use a similar labeling strategy yield-

ing the same time complexity for their feasibility checks, MSLS allows more530

options to repair infeasible routes without increasing the computational burden

of testing their feasibility.

Similar observations can be made for other local search moves used by ALNS

too. Overall, MSLS relies on a similar labeling strategy, but adapts it to work

for local search operators that are tailored to the multigraph. This permits to535

explore wider neighborhoods (with regard to recharging station sequences) with

no additional overhead in terms of complexity for the feasibility tests.

4.3. Overall description of the Heuristic

MSLS executes L = 4l global iterations divided into four distinct global itera-

tion sequences of length l (i.e., one global iteration sequence executes l global540

iterations). Each global iteration is divided into two distinct phases, both of

which execute a number of local iterations by iteratively applying local search

operators to modify a G-VRP solution. The two phases differ in the sets of

operators they use and in their selection criteria. Phase one emphasizes the use

of fast constructive operators, while phase two tries to improve each phase one545

solution by using a wider set of operators.

Phase one uses a different operator set Hi = {Hi
1, . . . ,H

i
t} in each of the four

global iteration sequences i = 1, ..., 4 with the intention of exploring different

23

regions of the solution space. Each set Hi is also associated with a probability

set P (Hi) = {Pr(Hi
1), . . . , P r(Hi

t)} that controls the order and frequency with550

which the operators in the set Hi are applied. In phase two on the other hand,

a same set of operators O = {O1, . . . , Ok} is used over all global iterations and

no priority is given to any specific operator in this set. The operator sets Hi,

i = 1, . . . , 4, and O are detailed in Section 4.3.1.

Figure 9 shows the structure of MSLS and visualizes its search strategy through555

the four global iteration sequences, followed by the set partitioning heuristic.

H1 +O H2 +O H3 +O H4 +O

Route pool

Set partitioning

heuristic +

final local search

Sequence 1

(l global iterations)

Sequence 2

(l global iterations)

Sequence 3

(l global iterations)

Sequence 4

(l global iterations)

Figure 9: Structure of MSLS

The following section gives a detailed description of the two phases executed560

at each global iteration with the corresponding operator sets Hi and O. A

pseudocode description of MSLS is presented in Algorithm 1.

4.3.1. The two phases of a global iteration

Phase one of each global iteration starts by generating an initial solution S

consisting of one vehicle route for each customer (i.e., n vehicle routes, each565

visiting a single customer). The function LocalSearch described in Algorithm

2 is then executed to improve S over a number of local iterations.

LocalSearch takes as input the current solution S, a set H = {H1, . . . ,Ht}

of operators, and a set P (H) = {Pr(H1), . . . , P r(Ht)} of probabilities. Each

operator H ∈ H is assigned a probability value Pr(H), and the frequency with570

which the operators are applied depends on these probability values. Whenever

24

Algorithm 1 Multi-Start Local Search (MSLS)

Input: L = 4l: Number of global iterations. R: Route pool for storing vehicle routes.
H = {H1, . . . ,H4} and P (H) = {P (H1), . . . , P (H4)}, i = 1, . . . , 4: Phase one
operator and probability sets. O = {O1, . . . , Ok}: Phase two operator set.
H : Table for storing solution costs. p: Max number of Diversify iterations.

1: function MSLS(L, R, H1, . . . ,H4, P (H1), . . . , P (H4), O, H , p)
2: for i = 1, . . . , 4 do
3: for j = (i− 1)l + 1, . . . , il do
4: Execute phase one:

5: Construct an initial solution S containing one route per customer
6: S ←− LocalSearch(S, Hi, P (Hi))
7: S′ ←− Intensify(S)
8: if c(S′) ∈H then
9: S′ ←−Diversify(S′, H , p)

10: end if
11: AddRoutes(S′, R, H)

12: Execute phase two:

13: S ←− LocalSearch(S, O, unif{1, |O|})
14: S′ ←− Intensify(S)
15: if c(S′) < c(S) then
16: go to row 13 and restart phase two using S′

17: end if
18: if c(S′) ∈H then
19: S′ ←−Diversify(S′, H , p)
20: end if
21: AddRoutes(S′, R, H)

22: end for
23: end for
24: Solve the problem (1) – (3) with the route set R to obtain a solution S∗

25: S∗ ←− LocalSearch(S∗, O, unif{1, |O|})
26: S∗ ←− Intensify(S∗)
27: return S∗

28: end function

an operator H ∈ H is applied but produces no improvement, it is removed from

H (i.e., we set H ←− H \ {H}). However, every time some operator H ∈ H

improves the current solution, all the previously removed operators are inserted

back into H. Applying an operator H ∈ H to a solution S is expressed as H(S)575

in Algorithm 2.

When an operator H ∈ H is removed from H, the probability value of H is

divided among the remaining operators in H so that the ratio between their

probability values remains unchanged. For example, suppose that H contains

25

three operators H1, H2, and H3 with probability values 0.10, 0.30, and 0.60,580

respectively, and suppose that we remove H3 from H. Then the probability

values of H1 and H2 become Pr(H1) = 0.25 and Pr(H2) = 0.75, since the ratio

between Pr(H1) and Pr(H2) before removing H3 was 0.10 : 0.30 = 1 : 3.

The phase one operators Hi
1, . . . ,H

i
t included in the sets Hi and their selection

probabilities Pr(Hi
1), . . . , P r(Hi

t) for each of the i = 1, . . . , 4 global iteration585

sequences are presented in Table 1, along with the number of routes r and the

minimum and maximum number of customers used by these operators. Notice

that in the operator set H1, the CWS operator is applied at each local iteration

(its selection probability is 1.00), whereas at most one of the three remaining

operators is applied depending on their probabilities. For the sets H2, H3, and590

H4, only one operator is instead applied per each local iteration.

Table 1: The phase one operator sets Hi and the corresponding probabilities P (Hi).
The number of routes r and the minimum and maximum number of customers used
by the operators (columns min and max, respectively) are also displayed.

Set H1 #cus Set H2 #cus

Operator H r min max Pr(H) Operator H r min max Pr(H)

CWS 2 1.00 CWS 2 0.25
2-OPT* 2 0.50 2-OPT* 2 0.25
Sequence relocate 2 1 1 0.10 Sequence relocate 2 1 1 0.50
Cyclic exchange 2 1 1 0.10

Set H3 #cus Set H4 #cus

Operator H r min max Pr(H) Operator H r min max Pr(H)

CWS 2 0.20 CWS 2 0.30
2-OPT* 2 0.20 2-OPT* 2 0.15
Sequence relocate 2 1 1 0.10 Sequence relocate 2 1 3 0.10
Sequence relocate 2 2 2 0.10 Sequence relocate 2 3 6 0.10
Sequence relocate 2 1 3 0.10 Cyclic exchange 2 1 3 0.05
Cyclic exchange 2 1 1 0.10 Cyclic exchange 2 1 6 0.20
Cyclic exchange 2 1 2 0.10 Cyclic exchange 2 3 6 0.10
Cyclic exchange 2 1 3 0.10

All the sets H1, . . . ,H4 include the constructive operators CWS and 2-OPT*

because their combination forms a quick heuristic to construct initial solutions.

Differences between the four sets arise from operators that exchange or relo-

26

cate varying numbers of customers between two routes, and from the different595

selection probabilities. The rationale for selecting the operator sets and a com-

putational evaluation of different probability values is presented in Section 5.

Algorithm 2 Local Search phase

Input: S: Initial solution. H = {H1, . . . , Ht}: Set of operators used in local search.
P (H) = {Pr(H1), . . . , P r(Ht)}: Probability distribution of operators in H.

1: function LocalSearch(S, H, P (H))
2: H0 ←− H
3: while H 6= ∅ do
4: Randomly select an operator H ∈ H with probability Pr(H)
5: S′ ←− H(S)
6: if c(S′) < c(S) then
7: S ←− S′

8: H ←− H0

9: else
10: H ←− H \ {H}
11: end if
12: end while
13: return S
14: end function

At termination of LocalSearch, the resulting solution S is passed to the

function Intensify described in Algorithm 3. Intensify tries to obtain a new

solution S′ by modifying S, but in case its cost c(S′) is already included in H , it600

uses the function Diversify described in Algorithm 4 to change S′. Diversify

executes p = 40 iterations. It works by applying 2-OPT* and 3-OPT* operators

to randomly selected routes, accepting also non-improving solutions. 2-OPT*

and 3-OPT* were included in Diversify because they were found to provide

diverse solutions significantly more often than the other operators. Finally, the605

function AddRoutes described in Algorithm 5 is applied to S′.

At this point, the solution S that was initially obtained by LocalSearch

(before applying Intensify) is passed on to phase two. Notice that phase two

operates on S instead of S′ in order to reduce the probability of getting stuck

in local optima.610

Phase two proceeds in a similar fashion as phase one by first applying Lo-

calSearch and then Intensify to the phase one solution S. The main dif-

ference with respect to phase one is the use of a wider set O = {O1, . . . , Ok} of

27

Algorithm 3 Intensification phase

Input: S: Initial solution.

1: function Intensify(S)
2: for each route R ∈ S do
3: Iteratively apply intra-route relocate and 2-OPT operators defined in Sec-

tion 4.1 each with probability 0.5 to R until no improvement is obtained

4: end for
5: return S
6: end function

Algorithm 4 Diversification phase

Input: S: Initial solution. H : Cost table for storing solution costs. p: Number of
iterations.

1: function Diversify(S, H , p)
2: for k = 1, . . . , p do
3: Randomly select an operator H among 2-OPT* and 3-OPT* defined in

Section 4.1.2.
4: Apply H to randomly selected routes in S
5: if c(S) /∈H then
6: return S
7: end if
8: end for
9: return S

10: end function

operators in LocalSearch. Moreover, the entire local search phase (Algorithm

2) is restarted whenever Intensify in row 14 improves the solution. Each op-615

erator O ∈ O is associated with a probability value Pr(O) = 1/|O|, i.e., the op-

erator selection probabilities follow a discrete uniform distribution unif{1, |O|},

meaning that no operator is given priority with respect to the others. The set

O of phase two operators used by our heuristic and their characteristics are

presented in Table 2.620

4.3.2. Set partitioning heuristic

The use of a set partitioning model within vehicle routing heuristics is not new

(see, e.g., Rochat and Taillard, 1995, Groër et al., 2011, Subramanian et al.,

2006), and it is known to yield appreciable improvements to the solution quality

when properly combined with heuristic search. It also appears as a natural625

complement to the search strategy of our multi-start heuristics that is designed

28

Algorithm 5 Add vehicle routes to the route pool R

Input: S: Initial solution. R: Route pool. H : Cost table to store solution costs.

1: function AddRoutes(S, R, H)
2: if c(S) /∈H then
3: Add c(S) to H
4: for each route R ∈ S do
5: R←− R∪ {R}
6: end for
7: end if
8: end function

Table 2: The set O = {O1, . . . , Ok} of phase two operators used by our MSLS heuris-
tic. The number of routes r and the minimum and maximum number of customers
used by the operators are also displayed.

O Operator r min max

O1 2-OPT* 2
O2 Sequence relocate 2 1 1
O3 Sequence relocate 2 2 2
O4 Sequence relocate 2 3 3
O5 Cyclic exchange 2 1 1
O6 Cyclic exchange 2 1 3
O7 Cyclic exchange 2 1 6
O8 Cyclic exchange 2 3 6

to provide a large set of diverse solutions. In the context of the G-VRP, the set

partitioning model is also used by Montoya et al. (2016).

The set partitioning heuristic is executed after all global iterations, and it solves

the following set partitioning (SP) problem over all vehicle routes stored in the

route pool R. Let R be the index set of all vehicle routes in R after all global

iterations, and let θi` be a binary coefficient that equals one if a route R` visits

a customer i ∈ N , and zero otherwise. Moreover, for each route R`, ` ∈ R, let

c` = c(R`) be its cost, i.e., the sum of costs of the arcs it traverses. By defining

a binary variables x` for each ` ∈ R taking value one if and only if the route R`

29

is part of the solution, the SP problem can be modeled as follows

(SP) zSP = min
∑
`∈R

c`x` (1)

s.t.
∑
`∈R

θi`x` = 1, ∀i ∈ N (2)

x` ∈ {0, 1}, ∀` ∈ R. (3)

The SP problem (1) – (3) is solved by using the Mixed-Integer Linear Pro-

gramming (MILP) solver CPLEX (IBM ILOG CPLEX 12.7.1). A time limit of630

tSP = 2000 seconds is imposed on CPLEX, and the cost of the best phase one

or phase two solution found is passed to CPLEX as an upper bound. A final

LocalSearch followed by Intensify is applied to the solution obtained from

the SP problem which tries to improve it one last time.

5. Parameter settings and implementation choices635

This section describes how we determined the values of the main parameters

used by MSLS to obtain the results reported in Section 6. The main choices

concern the parameters η and k used by the regret-k heuristic, the number of

iterations p used by the function Diversify, the time limit tSP imposed on

the set partitioning heuristic, and the sets of probabilities associated with the640

operator sets Hi, i = 1, . . . , 4.

The method we used to determine these parameter values is similar to the

tuning strategy used by Ropke and Pisinger (2006). A fair parameter setting

was produced by a trial-and-error phase while developing the heuristic. This

produced the values η ∈ {1, . . . , 15} and k ∈ {1, 2, 3} for the regret-k heuristics645

which seemed to generate a fair amount of variability in the phase 1 solutions,

and p = 40 iterations for the function Diversify which was typically enough

to transform a duplicate solution into a unique one. The time limit for the SP

heuristic was set to tSP = 2000 seconds. The idea was to set this limit large

enough to find good solutions for larger instances without making it too big to650

30

become a bottleneck. This time limit was reached only in instances with 400

or more customers. More detailed results on the effect of this time limit on the

overall computational time is given in Table A.10 of Appendix A.

Since the parameters having the largest impact on MSLS are the selection prob-

abilities Pr(Hi
1), . . . , P r(Hi

t) associated with the operator sets Hi, i = 1, . . . , 4,655

we used a more detailed tuning procedure to determine their values. We first

focused on the probability values of the CWS and the 2-OPT* operators since

they form the backbone of the construction phase. The probabilities of the re-

maining operators were set by considering six different combinations for each

set Hi, i = 1, . . . , 4, and the probability combination that produced the best660

average solution was selected. The procedure was repeated for each operator set

Hi, i = 1, . . . , 4, individually while keeping the probability combinations of the

previous sets Hj , j < i, fixed. Table 3 shows a computational evaluation with

different probability settings for each of the operator sets Hi, i = 1, . . . , 4. This

evaluation was executed using a set of 10 test instances (namely, the instances665

111c 21s - 111c 28s of data set EMH and the instances AB101 - AB105 of data

set AB that will be described in Section 6).

The following gives, for each set Hi, i = 1, . . . , 4, the rationale behind the

probability values for CWS and 2-OPT*, and how the remaining operators are

expected to affect the solutions.670

1. H1 executes CWS at every iteration to generate initial solutions quickly.

To avoid having too much variability from 2-OPT*, we set an upper limit

of 0.5 to its probability value. We tried two combinations with 2-OPT*

having a smaller probability than 0.5, but they produced worse results. H1

occasionally relocates a single customer or exchanges a pair of customers675

between two routes to diversify solutions, i.e., the search is limited to small

neighborhoods. Decreasing the probabilities of the relocate and exchange

operators from 0.1 produced worse results.

2. For H2, we tried different probability values for CWS and 2-OPT* while

keeping their ratio at 1. The probability value of sequence relocate opera-680

31

Table 3: Computational evaluation with different probability settings P0, . . . , P5 for
each set H1, . . . ,H4. The best probability setting for each set is denoted by P0. Rows
Average and %Average report the average solution value and the percentage distance
from the average solution of P0, respectively. The number of routes r and the minimum
and maximum number of customers used by the operators are also displayed.

Set H1 #cus Probability settings

Operator r min max P0 P1 P2 P3 P4 P5

CWS 2 1.00 1.00 1.00 1.00 1.00 1.00
2-OPT* 2 0.50 0.50 0.50 0.50 0.40 0.30
Sequence relocate 2 1 1 0.10 0.05 0.01 0.00 0.10 0.10
Cyclic exchange 2 1 1 0.10 0.05 0.01 0.00 0.10 0.10

Average 3889.95 3892.23 3900.44 3906.69 3890.80 3892.08
%Average 0.00 0.06 0.27 0.43 0.02 0.05

Set H2 #cus Probability settings

Operator r min max P0 P1 P2 P3 P4 P5

CWS 2 0.25 0.30 0.35 0.40 0.45 0.50
2-OPT* 2 0.25 0.30 0.35 0.40 0.45 0.50
Sequence relocate 2 1 1 0.50 0.40 0.30 0.20 0.10 0.00

Average 3886.03 3891.59 3888.57 3907.08 3906.37 3932.21
%Average 0.00 0.14 0.07 0.54 0.52 1.19

Set H3 #cus Probability settings

Operator r min max P0 P1 P2 P3 P4 P5

CWS 2 0.20 0.20 0.20 0.20 0.20 0.20
2-OPT* 2 0.20 0.20 0.20 0.20 0.20 0.20
Sequence relocate 2 1 1 0.10 0.15 0.15 0.10 0.24 0.28
Sequence relocate 2 2 2 0.10 0.10 0.10 0.15 0.03 0.01
Sequence relocate 2 1 3 0.10 0.05 0.05 0.05 0.03 0.01
Cyclic exchange 2 1 1 0.10 0.10 0.15 0.10 0.10 0.10
Cyclic exchange 2 1 2 0.10 0.10 0.10 0.15 0.10 0.10
Cyclic exchange 2 1 3 0.10 0.10 0.05 0.05 0.10 0.10

Average 3893.47 3894.53 3894.90 3897.16 3896.41 3897.58
%Average 0.00 0.03 0.04 0.09 0.08 0.11

Set H4 #cus Probability settings

Operator r min max P0 P1 P2 P3 P4 P5

CWS 2 0.30 0.30 0.30 0.30 0.30 0.30
2-OPT* 2 0.15 0.15 0.15 0.15 0.15 0.15
Sequence relocate 2 1 3 0.10 0.05 0.00 0.10 0.10 0.10
Sequence relocate 2 3 6 0.10 0.15 0.20 0.10 0.10 0.10
Cyclic exchange 2 1 3 0.05 0.05 0.05 0.05 0.05 0.00
Cyclic exchange 2 1 6 0.20 0.20 0.20 0.15 0.10 0.20
Cyclic exchange 2 3 6 0.10 0.10 0.10 0.15 0.20 0.15

Average 3879.24 3880.85 3882.19 3882.88 3879.73 3879.86
%Average 0.00 0.04 0.08 0.09 0.01 0.02

32

tor changes accordingly, and smaller probabilities seem to produce worse

results. An upper bound of 0.5 was set to limit the variability of this op-

erator on the generated solutions. The idea is to generate initial solutions

quickly, but to allow more frequent customer relocations compared to H1.

3. For H3, we kept the probability values of both CWS and 2-OPT fixed at685

0.2 to allow operators that swap or relocate customers have more effect on

the generated solutions. H3 explores bigger neighborhoods than H1 and

H2: up to 3 customers can be relocated or two customer sequences with

up to 3 customers each can be exchanged between two routes at each local

iteration. The best combination spreads the probabilities evenly among690

the different relocate and exchange operators, although all six probability

combinations produced quite similar results.

4. For H4, we fixed the probability values of CWS and 2-OPT* to 0.3 and

0.15, respectively. The reason for CWS having a higher probability value

than 2-OPT* is to decrease the average computation time. We also wanted695

to assign different probabilities to these operators than in the other op-

erator sets to construct more diverse solutions. H4 explores even larger

neighborhoods than H3: up to 6 customers can be relocated or two cus-

tomer sequences with up to 6 customers each can be exchanged between

two routes at each local iteration. Instead of dividing the remaining prob-700

ability mass evenly, we wanted to prioritize operators that relocate or

exchange up to 6 customers between two routes. However, the six tested

combinations produced very similar results.

A final decision concerns the composition of the phase two operator set O. The

operators O = {O1, . . . , Ok} were selected as follows. We first included in O705

all inter-route operators working on the neighborhoods shown in Table 4. We

then ran our MSLS heuristic on the test instanceof data set EMH (see Section

6) while collecting statistics about their success rates. The columns in Table

4 report the number of routes r affected by an operator move; the minimum

33

(min) and maximum (max) number of customers used by an operator move;710

the total number of operator moves (#tot); the number of operator moves that

successfully improved a solution (#succ); and the corresponding success rates

(%succ). The success rates are computed as %succ = (#succ / #tot) × 100%.

We finally removed from O all the operators with less than 1.5% success rate,

namely, the CWS* and sequence relocate with 4, 5, and 6 customers.715

Table 4: The initial set O = {O1, . . . , Ok} of operators used in phase two and their
success rates over the test instances of data set EMH. The columns report the number
of routes r affected by an operator move; the minimum (min) and maximum (max)
number of customers used by the operators; the total number of operator moves (#tot);
the number of operator moves that successfully improved a solution (#succ); and the
corresponding success rates (%succ).

O Operator r min max #tot #succ %succ

O1 CSW* 2 19909 226 1.14
O2 2-OPT* 2 28327 16277 57.46
O3 Sequence relocate 2 1 1 25553 8495 33.24
O4 Sequence relocate 2 2 2 23571 1170 4.96
O5 Sequence relocate 2 3 3 23715 421 1.78
O6 Sequence relocate 2 4 4 23429 190 0.81
O7 Sequence relocate 2 5 5 21984 120 0.55
O8 Sequence relocate 2 6 6 22189 149 0.67
O9 Cyclic exchange 2 1 1 30445 17882 58.74
O10 Cyclic exchange 2 1 3 26798 4178 15.59
O11 Cyclic exchange 2 1 6 26419 2896 10.96
O12 Cyclic exchange 2 3 6 26802 3503 13.07

6. Computational experiments

We consider two sets of benchmark instances. The first set, called EMH, was

proposed by Erdoğan and Miller-Hooks (2012) and comprises 52 test instances

with 20 - 500 customers and 3 - 28 refueling stations. Most of these instances

(40 out of 52) consist of 20 customers and 2 - 10 refueling stations and have720

been randomly constructed to represent different types of customer and refuel-

ing station configurations. The larger EMH instances are based on an actual

case study which uses a medical textile supply company depot and a pool of

customers in Virginia, Maryland and the District of Columbia. These instances

contain 111 - 500 customers and 21 - 28 refueling stations and have been used725

34

to benchmark all the previous G-VRP algorithms. All these instances assume

a maximum driving time of 11 hours and a maximum driving autonomy of 300

miles. Every customer has a service time of 30 minutes, and the refueling de-

lay is assumed to be δ = 15 minutes. The vehicles are assumed to travel at

a constant speed of v = 40 miles per hour. The locations of the customers730

and refueling stations are provided as geographical coordinates (latitude and

longitude). Thus, all distances cij have to be computed by using the Harvesine

formula with an earth radius of 4,182.45 miles (this value has been used in all

previous studies on the G-VRP). Moreover, in all previous G-VRP studies, cus-

tomers that cannot be served by a route visiting at most one refueling station735

are considered infeasible and removed from the instance a-priori.

The second set of instances, which we denote by AB, was created by Andelmin

and Bartolini (2017) by extracting a subset of customers from the larger EMH

instances. The number of customers in the AB instances ranges between 50 and

100. These instances are divided into two subsets called AB1 and AB2. The740

AB1 instances have the same characteristics as the EMH instances, whereas

the AB2 instances have the same customers and refueling stations as those in

AB1, but the vehicles are assumed to travel at a higher speed of v = 60 miles

per hour and have a maximum driving autonomy of 280 miles. Notice that the

AB2 instances allow longer vehicle routes with respect to the EMH and AB1745

instances due to the higher vehicle speed. All AB instances are available at the

URL http://www.vrp-rep.org/variants/item/g-vrp.html.

All the results reported in this paper have been obtained on an Intel i5-3570K

desktop clocked at 3.40 GHz with 8 GB RAM running Windows 10 Home x64

Edition. The heuristic was coded in C++.750

In the remainder of this section, we report the results obtained by our algo-

rithm on the three data sets AB1, AB2, and EMH. We first analyze the results

obtained by MSLS on these data sets and then report a comparison with the

other heuristics found in the literature that have been applied to the G-VRP.

35

http://www.vrp-rep.org/variants/item/g-vrp.html

6.1. Computational results755

Our first set of experiments was aimed at assessing the quality of the best

solutions found by MSLS. For these experiments, we ran MSLS 10 times on

each instance using 240 global iterations per run, and we collected statistics

relative to both the average and best results it found. Tables 5, 6 and 7 present

the results obtained for the larger EMH instances with 111 – 500 customers760

and for the AB instances. The results obtained on the small EMH instances

are instead reported in Table A.9 of Appendix A. Also, more detailed results of

the algorithm on the large EMH instances in terms of the trade-off between the

time spent and the resulting improvement in the solution quality at the different

phases is given by Table A.10 in Appendix A.765

In Tables 5 – 7, the columns “n”, “s” and “|A|” report for each instance the

number of customers, the number of stations, and the number of arcs in G,

respectively, while the column “BKS” reports the Best Known Solution cost

(hereafter abbreviated as BKS). Improved BKS values found by MSLS for the

first time are marked in bold. The column “m∗” reports the number of vehicles770

in the best solution (BKS), and the column “LB∗” reports for each instance the

best lower bound LB∗ found by Andelmin and Bartolini (2017). The average

gaps above the BKS values in percentages are reported under columns “%Best”

and “%Avg.” and are computed with respect to the best and average upper

bound, respectively, obtained over 10 runs. As an example, the gap for an upper775

bound z is computed as (z/BKS − 1)×100. Finally, column “m” reports the

number of vehicles in the solution of smallest cost found by MSLS, column “t”

presents the average computing time over all the runs, and the column %opt

reports the percentage gap between LB∗ and the best upper bound over ten

runs (computed as (z/LB∗ − 1)× 100 where z is the best upper bound found).780

Note that the BKS of instances 111c 21 – 111c 28 were proven to be optimal,

whereas for most of the remaining EMH instances no lower bound is available.

Therefore columns “LB∗” and %opt are not reported in Table 5.

Tables 5 – 7 show that MSLS consistently finds solutions of very high quality.

Indeed, it is able to match or improve the best known solutions for all the785

36

Table 5: Results on the large EMH instances. Times are in minutes.

Instance n s |A| BKS m∗ %Best %Avg. m t

111c 21s 109 21 57462 4770.47 17 0.03 0.08 17 1.87
111c 22s 109 22 58480 4767.21 17 0.00 0.05 17 1.96
111c 24s 109 24 64588 4767.14 17 0.00 0.03 17 2.42
111c 26s 109 26 66814 4767.14 17 0.00 0.05 17 2.57
111c 28s 109 28 68878 4765.52 17 0.00 0.05 17 2.78
200c 21s 192 21 191884 8766.04 31 0.00 0.28 31 10.48
250c 21s 237 21 303962 10379.98 37 0.00 0.33 37 21.46
300c 21s 283 21 424602 12202.49 43 0.00 0.06 43 35.44
350c 21s 329 21 576896 13908.96 49 0.00 0.15 49 60.99
400c 21s 378 21 743346 16398.13 58 0.00 0.16 58 111.84
450c 21s 424 21 931852 17938.85 64 0.00 0.20 64 145.73
500c 21s 471 21 1128354 20207.81 71 0.00 0.18 71 198.97

Average 10303.31 0.003 0.136 49.71

Table 6: Results on the AB1 instances. Times are in seconds.

Instance n s |A| BKS m∗ LB∗ %Best %Avg. m t %opt

AB101 50 21 10590 2566.62 9 2566.62 0.00 0.00 9 10.98 0.00
AB102 50 21 12768 2876.26 10 2876.26 0.00 0.00 10 12.80 0.00
AB103 50 21 12604 2804.07 10 2804.07 0.00 0.00 10 15.82 0.00
AB104 47 25 7420 2634.17 9 2634.17 0.00 0.00 9 48.16 0.00
AB105 73 21 21002 3939.96 14 3939.96 0.00 0.00 14 31.50 0.00
AB106 74 21 24956 3915.15 13 3915.15 0.09 0.37 14 32.69 0.09
AB107 75 21 35694 3732.97 13 3732.97 0.00 0.04 13 43.44 0.00
AB108 75 21 31972 3672.40 13 3672.40 0.00 0.05 13 41.49 0.00
AB109 75 24 29358 3722.17 13 3722.17 0.00 0.01 13 43.27 0.00
AB110 75 24 29420 3612.95 13 3572.11 0.20 0.59 13 44.16 1.34
AB111 71 25 21462 3996.96 14 3996.96 0.00 0.06 14 142.90 0.00
AB112 100 21 52858 5487.87 18 5487.87 0.60 1.27 19 90.01 0.60
AB113 100 21 53902 4804.62 17 4804.62 0.04 0.30 17 93.22 0.04
AB114 100 21 53686 5324.17 18 5324.17 0.01 0.35 18 87.07 0.01
AB115 100 21 50764 5035.35 17 5035.35 0.00 0.27 17 84.08 0.00
AB116 100 21 58286 4511.64 16 4511.64 0.03 0.22 16 102.26 0.03
AB117 99 22 47174 5370.28 18 5370.28 0.12 0.18 18 80.83 0.12
AB118 100 22 48770 5756.88 19 5756.88 0.00 0.14 19 81.04 0.00
AB119 98 25 47884 5599.96 19 5599.96 0.00 0.00 19 95.21 0.00
AB120 96 25 47658 5679.81 19 5679.81 0.00 0.00 19 81.84 0.00

Average 4252.21 0.05 0.19 63.14 0.11

37

Table 7: Results on the AB2 instances. Times are in seconds.

Instance n s |A| BKS m LB∗ Best Avg. m∗ t %opt

AB201 50 21 19442 1836.25 6 1836.25 0.00 0.00 6 30.85 0.00
AB202 50 21 19978 1966.82 6 1966.82 0.00 0.02 6 58.10 0.00
AB203 50 21 19454 1921.59 6 1921.59 0.00 0.00 6 40.91 0.00
AB204 50 25 17874 2001.70 6 2001.70 0.00 0.00 6 130.92 0.00
AB205 75 21 42814 2793.01 9 2793.01 0.09 0.20 9 79.21 0.09
AB206 75 21 45478 2891.48 9 2891.48 0.00 0.00 9 79.23 0.00
AB207 75 21 54458 2717.34 8 2717.34 0.09 1.40 8 160.15 0.09
AB208 75 21 49572 2552.18 8 2552.18 0.00 0.17 8 110.63 0.00
AB209 75 24 51422 2517.69 8 2517.69 0.00 0.01 8 170.88 0.00
AB210 75 25 52968 2479.97 8 2479.97 0.00 0.02 8 158.25 0.00
AB211 75 24 47230 2970.56 9 2928.47 0.00 0.48 9 322.42 1.44
AB212 100 21 82248 3341.43 11 3341.43 0.70 0.71 11 230.68 0.70
AB213 100 21 90166 3133.24 10 3133.24 0.00 0.28 10 277.51 0.00
AB214 100 21 83186 3384.28 11 3364.16 0.03 0.50 11 210.35 0.63
AB215 100 21 83320 3480.52 11 3443.58 0.11 0.29 11 241.63 1.18
AB216 100 21 84618 3221.78 10 3200.47 0.55 1.22 10 259.79 1.22
AB217 100 22 87072 3714.94 11 3714.94 0.00 1.14 11 259.11 0.00
AB218 100 22 89430 3658.17 11 3658.17 0.14 0.29 11 256.52 0.14
AB219 100 25 103576 3790.71 11 3757.28 1.68 1.75 12 418.06 2.59
AB220 100 25 88330 3737.88 11 3737.88 0.35 0.51 11 281.61 0.35

Average 2905.64 0.19 0.45 188.84 0.42

large EMH instances but one within an average computing time of about 50

minutes. MSLS finds 8 new BKS (for instance 111c 22, and for instances 200c 21

– 500c 21) and matches 3 previously found BKS (for instances 111c 24, 111c 26,

and 111c 28). When considering the best solution found over the 10 runs, the

average gap with respect to the BKS is only 0.003%. When considering the790

average solution costs over the 10 runs, the solution quality appears convincing

as well with an average gap of 0.136% above the BKS values.

For the AB1 instances, MSLS finds 13 optimal solutions and achieves an average

gap of 0.05% with respect to the BKS and an average gap of 0.11% with respect

to the best known lower bounds. For the AB2 instances, it finds 10 optimal795

solutions, its average gap with respect to the BKS is of 0.19%, and its average

gap with respect to the best lower bounds is 0.42%. We also observe that the

average solution quality appears rather stable, and the average solution costs

are not too far from the best solutions found over the ten runs.

The main parameter of MSLS that allows to control the computing time is800

the number L of global iterations which is defined as L = 4l, where l is the

38

1.219

0.826

0.503

0.136

0.682

0.465

0.258

0.003

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 20 60

%
B

K
S

length of a global iteration sequence

Best Average

Figure 10: Average solution quality as a function of the length l of a global iteration
sequence for the large EMH instances.

length of a global iteration sequence. To assess the trade-off between solution

quality and the computing time, we have conducted a set of experiments with

the larger EMH instances using four different values of l, i.e., l = 5, 10, 20 and

60, yielding L = 20, 40, 80 and 240 global iterations, respectively. Detailed805

results are reported in Table A.8 of Appendix A, while Figure 10 summarizes

the impact of parameter l on the solution quality.

We see that the total computing time scales almost linearly with the value

of l, thus allowing in effect to control the MSLS time by setting an upper

bound on the maximum number of global iterations. Interestingly, Figure 10810

shows that the solution quality scales almost linearly as well with the value of l.

Overall, using the results obtained with l = 5 as a reference point, the average

solution quality over the 10 runs of MSLS improves by 32.24%, 58.74%, and

88.84% when l is increased from 5 to 10, 20 and 60, respectively. Similarly,

the best solution quality improves by 31.82%, 62.17%, and 99.56%, whereas815

the total computing time increases by approximately 1.9, 4.3 and 10.4 times.

This analysis suggests that on the instances under consideration, the value of

39

parameter l can be effectively used to control the trade off between solution

quality and CPU time of MSLS, and the CPU time appears to be well utilized

by the algorithm. It also suggests that the combination of intensification and820

diversification strategies adopted by MSLS are effective in guiding the algorithm

across the solution space while avoiding it to get trapped in local minima.

6.2. Comparison with other heuristics

In this section, we benchmark our MSLS heuristic against other state-of-the-art

heuristics found in the literature. Specifically, we consider four variants of MSLS825

that are obtained by setting l equal to 5, 10, 20, and 60. We refer to MSLS

using L = 4× l global iterations as MSLS-l. We compare MSLS-l on the large

EMH instances to the Density-Based Clustering Algorithm/Modified Clarke and

Write Savings (DBCA/MCWS) of Erdoğan and Miller-Hooks (2012), the 48A

and Simulated Annealing (SA) heuristics of Felipe et al. (2014), the Variable830

Neighborhood Search / Tabu Search (VNS/TS) combination of Schneider et al.

(2014), the Adaptive Variable Neighborhood Search (AVNS) by Schneider et al.

(2015), and to the Multi-Space Sampling Heuristic (MSH) by Montoya et al.

(2016). The number of test runs is 10 for all other heuristics (including our

MSLS) except for the MCWS/DBCA for which the exact number of runs is not835

reported, and for the 48A and SA which have been ran only once.

The test runs of MCWS/DBCA were performed on a desktop with Pentium (4)

CPU, 32-bit platform with 3.20 GHz processor and 2.00 GB of RAM. However,

no computation times were presented. The algorithms 48A and SA were imple-

mented in Fortran 95 and executed on an Intel Core i5, 2.8 GHz, 8 GB RAM,840

running Windows 7. Both algorithms VNS/TS and AVNS were implemented

as single-thread code in Java, and both were evaluated on a desktop computer

with an Intel Core i5 2.67 GHz processor with 4 GB RAM, running Windows

7 Professional. Finally, algorithm MHS was evaluated on a computing cluster

with 2.33 GHz Intel Xeon E5410 processors with 16 GB of RAM running under845

Linux Rocks 6.1.1 (each replication was ran on a single processor).

Detailed results of this comparison are reported in Table A.8 of Appendix A,

40

0 1 2 3 4 5 6 7
%BKS (%-distance from best known solution)

0

1

2

3

4

5

6

7

8

9

10

11

12
nu

m
be

r o
f s

ol
ut

io
ns

 w
ith

 (c
os

t/B
KS

 -
1)

*1
00

%

 %
BK

S

MSLS-60
MSLS-20
MSLS-10
MSLS-5
AVNS
MSH-10k
VNS/TS
48A
SA

Figure 11: Performance profile comparing different heuristics (excluding
MCWS/DBCA) with respect to the percentage distances from BKS costs of their
best solution costs found for the large EMH instances.

while Figures 11 and 12 offer a visual comparison of the solution quality achieved

by the different heuristics with respect to the best and average solution costs

over 10 runs. For each value p, Figure 11 reports the number of instances for850

which the best solution costs found by each algorithm over the 10 runs is within

p % from the BKS costs. Figure 12 reports the same information, but considers

the % distances of the average solution costs obtained by each algorithm over

the 10 runs from the BKS costs. Note that algorithms MCWS/DBCA are not

considered in these figures because they are outperformed by all other algorithms855

(see Table A.8 in Appendix A) and no information is available regarding the

number of runs they used and their average solution quality.

We observe that all versions of MSLS perform very well with regard to solution

quality, and particularly MSLS-60, MSLS-20 and MSLS-10 demonstrate a clear

advantage over the other heuristics. When looking at the upper half of Figure860

11 (% distance from BKS with respect to at least 50% of the instances), a clear

ranking emerges with the four MSLS variants in the first positions followed

41

0 1 2 3 4 5
%BKS (%-distance from best known solution)

0

1

2

3

4

5

6

7

8

9

10

11

12
nu

m
be

r o
f s

ol
ut

io
ns

 w
ith

 (a
vg

.c
os

t/B
KS

 -
1)

*1
00

%

 %
BK

S MSLS-60
MSLS-20
MSLS-10
MSLS-5
AVNS
MSH-10k

Figure 12: Performance profile comparing different heuristics with respect to the
percentage distances from the BKS costs of their average solution costs obtained over
10 runs for the large EMH instances.

1.0 10.0 100.0 1000.0
Average time (minutes)

0.001%

0.01%

0.1%

1.0%

10.0%

Av
er

ag
e

%
-d

ist
an

ce
 fr

om
 B

KS

MSLS-60

MSLS-20
MSLS-10

MSLS-5
AVNS MSH-10k

VNS/TS
48A
SA

Figure 13: Comparison of average best upper bounds and cpu times of the different
heuristics for the large EMH instances.

42

by MSH-10k and AVNS. Figure 12 shows that the situation is similar with

even more pronounced differences when considering the average solution quality,

although in this case MSH-10k falls behind AVNS when considering 9 or more865

instances.

A direct comparison of the computation times with the other heuristics is not

straightforward as different programming languages and computers have been

used for implementing and testing the heuristics. However, Table A.8 in Ap-

pendix A suggests that the computation time of our MSLS heuristic with l = 60870

remains competitive with the other heuristics until the number of customers

reaches 350, after which the solution time tends to slow down. This is be-

cause MSLS uses many operators whose running time depends on the number

of routes, and this number increases rapidly with more customers for the large

EMH instances. Nevertheless, by reducing the value of l, the computing time875

of MSLS decreases significantly, while the solution quality remains competitive.

This is illustrated in Figure 13 which shows the trade-off between solution qual-

ity (average best solution costs over 10 runs) and cpu time realized by each

algorithm.

We see that when l = 5, the average CPU time of MSLS drops to about 5880

minutes while, on average, the distance from BKS over the 10 runs is still

competitive with respect to the other heuristics. Finally, we note that algorithm

AVNS appears to scale better than the other heuristics in terms of computation

time. Compared to MSLS, it is indeed faster on most of the larger instances,

although its solution quality becomes worse.885

Finally, a comparison of all the algorithms on the small EMH instance can be

found in Table A.9 of Appendix A. On these instances, our MSLS heuristic

obtains 39 out of 40 BKS, and the average solution cost over the 10 runs is the

same as the best solution cost for most of the instances. We used MSLS-60 for

these instances and the computation times were between 0.1 and 1.0 seconds.890

43

7. Conclusions

We have developed a Multi-Start Local Search (MSLS) heuristic for the Green

Vehicle Routing Problem (G-VRP) which iteratively constructs new solutions,

stores the vehicle routes forming these solutions in a pool, and finally optimally

combines these routes by solving a set partitioning problem. We tested our895

MSLS heuristic on a set of 52 benchmark instances from the literature and

found it competitive with recent heuristics. MSLS found 8 new best known

solutions and matched another 43. Moreover, although MSLS contains some

randomized components, the average solution costs it found over ten runs on

each instance were not far from the best found solutions, suggesting that the900

heuristic is “robust” in the sense that it produces solutions whose costs do not

vary much between different test runs. We also applied our MSLS heuristic to

a new set of 40 instances with up to 100 customers for which MSLS found 23

optimal solutions and provided upper bounds on average within 0.27% far from

optimal.905

A distinguishing feature of our heuristic is that it is based on the multigraph

reformulation of the G-VRP which does not require to explicitly model the re-

fueling stops, and which excludes solutions containing sub-optimal refuel paths.

This multigraph forms a core part of our MSLS heuristic because all the local

search operators used by the MSLS are tailored to exploit it. As it is shown910

in Andelmin and Bartolini (2017) (see Appendix A3 and tables therein), the

construction of the multigraph G and subsequent arc reductions on it exclude a

significant number of sub-optimal customer-station sequences. We believe this,

coupled with the fact that G allows local search heuristics to operate simultane-

ously on customer sequencing and refueling decisions, provides a rationale for915

the good performance of MSLS and motivates the investigation of multigraph

reformulations in the context of AFV routing heuristics.

We finally note that the multigraph reformulation used by MSLS can be adapted

to other VRP variants that include a limited fuel autonomy and refueling sta-

tions where this autonomy can be restored (either fully or partially), such as920

44

the electric VRP with time windows. A description of how the multigraph can

be constructed in order to model EV routing problems with partial recharges is

detailed in the Master’s thesis of the first author (see Chapter 4 of Andelmin,

2014). We refer the interested reader to that document for a detailed descrip-

tion.925

Acknowledgements

We wish to thank four anonymous referees for helpful comments that improved

the presentation of our paper.

References

Andelmin, J., 2014. Optimal routing of electric vehicles. Department of Mathematics930

and Systems Analysis, Aalto University School of Science.

Andelmin, J., Bartolini, E., 2017. An exact algorithm for the green vehicle routing

problem. Transportation Science 51 (4), 1288–1303.

Clarke, G., Wright, J. W., 1964. Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research 12 (4), 568–581.935

Conrad, R. G., Figliozzi, M. A., 2011. The recharging vehicle routing problem. In:

Proceedings Industrial Engineering Research Conference, Reno, NV.

Dantzig, G. B., Ramser, J. H., 1959. The truck dispatching problem. Management

Science 6 (1), 80–91.

Desaulniers, G., Errico, F., Irnich, S., Schneider, M., 2016. Exact algorithms for electric940

vehicle-routing problems with time windows. Operations Research 64 (6), 1388–

1405.

Erdoğan, S., Miller-Hooks, E., 2012. A green vehicle routing problem. Transportation

Research Part E: Logistics and Transportation Review 48 (1), 100–114.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for945

discovering clusters in large spatial databases with noise. In: Proceedings of the

International Conference on Knowledge, Discovery and Data Mining (KDD).

Vol. 96. pp. 226–231.

45

Felipe, Á., Ortuño, M. T., Righini, G., Tirado, G., 2014. A heuristic approach for the

green vehicle routing problem with multiple technologies and partial recharges.950

Transportation Research Part E: Logistics and Transportation Review 71, 111–

128.

Franke, T., Neumann, I., Bühler, F., Cocron, P., Krems, J. F., 2012. Experiencing

range in an electric vehicle: understanding psychological barriers. Applied Psy-

chology 61 (3), 368–391.955

Glover, F., Laguna, M., 1999. Tabu Search. Springer.

Goeke, D., Schneider, M., 2015. Routing a mixed fleet of electric and conventional

vehicles. European Journal of Operational Research 245 (1), 81–99.

Golden, B. L., Raghavan, S., Wasil, E. A., 2008. The Vehicle Routing Problem: Latest

Advances and New Challenges. Vol. 43. Springer.960

Groër, C., Golden, B., Wasil, E., 2011. A parallel algorithm for the vehicle routing

problem. INFORMS Journal on Computing 23 (2), 315–330.

Hansen, P., Mladenovic, N., 2003. Variable neighbourhood search. Handbook of Meta-

heuristics, Dordrecht, Kluwer Academic Publishers.

Hiermann, G., Puchinger, J., Ropke, S., Hartl, R. F., 2016. The electric fleet size965

and mix vehicle routing problem with time windows and recharging stations.

European Journal of Operational Research 252 (3), 995–1018.

Ichimori, T., Ishii, H., Nishida, T., 1981. Routing a vehicle with the limitation of fuel.

J. OPER. RES. SOC. JAPAN. 24 (3), 277–281.

Ichimori, T., Ishii, H., Nishida, T., 1983. Two routing problems with the limitation of970

fuel. Discrete Applied Mathematics 6 (1), 85–89.

Koç, Ç., Karaoglan, I., 2016. The green vehicle routing problem: A heuristic based

exact solution approach. Applied Soft Computing 39, 154–164.

Laporte, G., 2009. Fifty years of vehicle routing. Transportation Science 43 (4), 408–

416.975

Laporte, G., Desrochers, M., Nobert, Y., 1984. Two exact algorithms for the distance-

constrained vehicle routing problem. Networks 14 (1), 161–172.

Li, C.-L., Simchi-Levi, D., Desrochers, M., 1992. On the distance constrained vehicle

routing problem. Operations Research 40 (4), 790–799.

46

Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell System980

Technical Journal, The 44 (10), 2245–2269.

Mart́ı, R., Resende, M. G., Ribeiro, C. C., 2013. Multi-start methods for combinatorial

optimization. European Journal of Operational Research 226 (1), 1–8.

Mendoza, J. E., Villegas, J. G., 2013. A multi-space sampling heuristic for the vehicle

routing problem with stochastic demands. Optimization Letters 7 (7), 1503–985

1516.

Montoya, A., Guéret, C., Mendoza, J. E., Villegas, J. G., 2016. A multi-space sampling

heuristic for the green vehicle routing problem. Transportation Research Part

C: Emerging Technologies 70, 113–128.

Montoya, A., Guéret, C., Mendoza, J. E., Villegas, J. G., 2017. The electric vehicle990

routing problem with nonlinear charging function. Transportation Research Part

B: Methodological 103, 87–110.

Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems. Com-

puters & Operations Research 34 (8), 2403–2435.

Potvin, J.-Y., Rousseau, J.-M., 1995. An exchange heuristic for routeing problems with995

time windows. Journal of the Operational Research Society 46 (12), 1433–1446.

Prins, C., 2004. A simple and effective evolutionary algorithm for the vehicle routing

problem. Computers & Operations Research 31 (12), 1985–2002.

Rochat, Y., Taillard, É. D., 1995. Probabilistic diversification and intensification in

local search for vehicle routing. Journal of Heuristics 1 (1), 147–167.1000

Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science 40 (4),

455–472.

Schneider, M., Stenger, A., Goeke, D., 2014. The electric vehicle-routing problem with

time windows and recharging stations. Transportation Science 48 (5), 500–520.1005

Schneider, M., Stenger, A., Hof, J., 2015. An adaptive VNS algorithm for vehicle

routing problems with intermediate stops. OR Spectrum 37 (2), 353–387.

Subramanian, A., Uchoa, E., Ochi, L. S., 2006. A hybrid algorithm for a class of vehicle

routing problems. Computers & Operations Research 40, 2519–2531.

Suman, B., Kumar, P., 2006. A survey of simulated annealing as a tool for single1010

47

and multiobjective optimization. Journal of the Operational Research Society

57 (10), 1143–1160.

Sweda, T. M., Dolinskaya, I. S., Klabjan, D., 2017. Adaptive routing and recharging

policies for electric vehicles. Transportation Science 51 (4), 1326–1348.

Thompson, P. M., Orlin, J. B., 1989. The theory of cyclic transfers. Working paper,1015

OR 200-89, Massachusetts Institute of Technology, Operations Research Center.

48

Appendix A. Detailed computational results

This section provides a detailed comparison of the four variants of our MSLS

heuristic, using L = 20, 40, 80 and 240 global iterations, with the other heuristics

in the literature (see Section 6.2). We also provide here some additional details1020

on the behavior of the algorithm when applied to the large EMH instances.

Table A.8 compares all the heuristics on the large EMH instances whereas Table

A.9 presents the result on the 20-customer EMH instances. The columns in these

tables report similar information as in Tables 5 – 7 of Section 6.1. Columns “n”,

“s” and “|A|” report the number of customers, the number of stations, and the1025

number of arcs in G, respectively, while the column “BKS” reports the Best

Known Solution. Columns “Best” and “Avg.” report the best upper bound

and average upper bound (when available) found by each heuristic during the

runs performed. Finally, column “t” reports the average computing time over

all the runs. The table also presents the average gaps above the BKS values in1030

percentages for each heuristic. The average gaps are obtained by first computing

the percentage gaps for each instance individually and then taking the average.

As an example, the gap for an individual instance for some heuristic with a

solution cost z is computed as (z/BKS − 1)×100%.

To allow a more detailed analysis of the algorithm’s behavior we report in Table1035

A.10 more detailed statistics about the different phases of the algorithm. In

columns “tP1”, “tP2”, and “tSP ” we report for each instance the total time

spent by the MSLS on phase one, phase two, and on solving the SP prob-

lem described in Section 4.3.2, respectively. The column “BestP2” reports for

each instance the best solution found at termination of the 4 global iteration1040

sequences (i.e., before applying the set partitioning heuristic), while columns

“%P2” and “%P2” report the % distance from the BKS of the best solution

cost found at the end of the 4 global iteration sequences, and after the set

partitioning heuristic, respectively.

49

T
a
b
le

A
.8
:

R
es

u
lt

s
o
n

la
rg

e
E

M
H

in
st

a
n
ce

s.
T

im
e

is
m

ea
su

re
d

in
m

in
u
te

s.

M
C

W
S
/
D

B
C

A
4
8
A

S
A

V
N

S
/
T

S
A

V
N

S

In
st

a
n
c
e

n
s

|A
|

B
K

S
m

B
e
st

m
B

e
st

t
m

B
e
st

t
m

B
e
st

t
B

e
st

A
v
g
.

t

1
1
1
c

2
1
s

1
0
9

2
1

5
7
4
6
2

4
7
7
0
.4

7
2
0

5
6
2
6
.6

4
1
8

4
9
6
0
.6

0
2
1
.7

4
1
8

5
0
6
2
.0

6
1
2
.3

5
1
7

4
7
9
7
.1

5
2
1
.7

6
4
7
7
0
.4

7
4
7
9
1
.5

3
1
.7

8
1
1
1
c

2
2
s

1
0
9

2
2

5
8
4
8
0

4
7
6
7
.2

1
2
0

5
6
1
0
.5

7
1
8

4
9
1
4
.2

0
2
1
.2

3
1
8

5
0
2
9
.1

7
1
2
.3

0
1
7

4
8
0
2
.1

6
2
3
.5

6
4
7
7
6
.8

1
4
7
9
7
.3

1
1
.9

4
1
1
1
c

2
4
s

1
0
9

2
4

6
4
5
8
8

4
7
6
7
.1

4
2
0

5
4
1
2
.4

8
1
8

4
9
5
2
.9

0
2
1
.2

7
1
8

5
0
1
0
.5

9
1
2
.1

3
1
7

4
7
8
6
.9

6
2
1
.9

0
4
7
6
7
.1

4
4
7
9
0
.8

4
2
.1

6
1
1
1
c

2
6
s

1
0
9

2
6

6
6
8
1
4

4
7
6
7
.1

4
2
0

5
4
0
8
.3

8
1
8

4
9
3
4
.1

1
2
1
.2

5
1
8

5
0
9
2
.0

6
1
2
.0

7
1
7

4
7
7
8
.6

2
2
5
.1

2
4
7
6
7
.1

4
4
7
8
2
.6

0
2
.0

4
1
1
1
c

2
8
s

1
0
9

2
8

6
8
8
7
8

4
7
6
5
.5

2
2
0

5
3
3
1
.9

3
1
8

4
9
7
1
.9

3
2
1
.2

9
1
8

5
0
3
8
.8

4
1
1
.9

9
1
7

4
7
9
9
.1

5
2
4
.1

7
4
7
6
5
.5

2
4
7
8
1
.2

6
1
.7

3
2
0
0
c

2
1
s

1
9
2

2
1

1
9
1
8
8
4

8
7
6
6
.0

4
3
5

1
0
4
1
3
.5

9
3
2

9
2
7
6
.6

3
7
6
.4

1
3
2

9
2
0
6
.2

8
7
3
.8

4
3
5

8
9
6
3
.4

6
7
6
.6

5
8
8
8
6
.0

0
8
9
7
0
.1

4
3
.6

1
2
5
0
c

2
1
s

2
3
7

2
1

3
0
3
9
6
2

1
0
3
7
9
.9

8
4
1

1
1
8
8
6
.6

1
3
9

1
1
0
0
7
.9

8
1
2
0
.6

7
3
8

1
0
8
8
5
.7

1
1
0
8
.1

0
3
9

1
0
8
0
0
.1

8
1
2
0
.9

0
1
0
4
8
7
.1

5
1
0
5
3
1
.2

0
3
.6

7
3
0
0
c

2
1
s

2
8
3

2
1

4
2
4
6
0
2

1
2
2
0
2
.4

9
4
9

1
4
2
2
9
.9

2
4
6

1
2
8
6
9
.1

7
1
8
4
.2

7
4
5

1
2
8
2
7
.3

5
3
0
2
.0

4
4
6

1
2
5
9
4
.7

7
1
8
2
.2

3
1
2
3
7
4
.4

9
1
2
5
1
4
.7

8
4
.9

4
3
5
0
c

2
1
s

3
2
9

2
1

5
7
6
8
9
6

1
3
9
0
8
.9

6
5
7

1
6
4
6
0
.3

0
5
4

1
4
9
5
4
.8

3
2
2
7
.3

0
5
2

1
4
8
2
8
.6

3
3
3
2
.3

8
5
1

1
4
3
2
3
.0

2
2
3
2
.0

3
1
4
1
0
3
.6

6
1
4
2
7
1
.5

6
7
.1

1
4
0
0
c

2
1
s

3
7
8

2
1

7
4
3
3
4
6

1
6
3
9
8
.1

3
6
7

1
9
0
9
9
.0

4
6
1

1
7
3
5
1
.9

2
3
0
2
.0

3
6
0

1
7
3
2
7
.2

7
3
8
4
.6

8
6
1

1
6
8
5
0
.2

1
3
0
5
.1

2
1
6
6
9
7
.2

1
1
6
8
3
9
.2

3
1
2
.7

0
4
5
0
c

2
1
s

4
2
4

2
1

9
3
1
8
5
2

1
7
9
3
8
.8

5
7
5

2
1
8
5
4
.1

7
6
8

1
9
2
1
5
.3

8
5
1
4
.6

8
6
7

1
9
0
8
5
.9

1
4
5
6
.2

6
6
8

1
8
5
2
1
.2

3
5
2
5
.5

2
1
8
3
1
0
.6

0
1
8
5
1
2
.4

7
1
3
.1

9
5
0
0
c

2
1
s

4
7
1

2
1

1
1
2
8
3
5
4

2
0
2
0
7
.8

1
8
4

2
4
5
1
7
.0

8
7
6

2
1
6
3
6
.5

9
3
5
2
.1

6
7
5

2
1
4
7
5
.7

1
1
5
4
.4

5
7
6

2
1
1
7
0
.9

0
3
5
6
.0

1
2
0
6
0
9
.6

7
2
0
8
7
4
.5

0
1
9
.5

1

A
v
e
ra

g
e

1
0
3
0
3
.3

1
1
2
1
5
4
.2

3
1
0
9
2
0
.5

2
1
5
7
.0

3
1
0
9
0
5
.8

0
1
5
6
.0

5
1
0
5
9
8
.9

8
1
5
9
.5

8
1
0
4
4
2
.9

9
1
0
5
3
8
.1

2
6
.2

0
A

v
g
.

G
a
p

a
b

o
v
e

B
K

S
(%

)
1
6
.8

6
7

5
.7

6
9

5
.3

0
5

2
.1

6
0

0
.9

4
1

1
.6

9
7

C
o
m

p
u
te

r
P

4
3
.2

G
H

z
C

o
re

I5
2
.8

G
H

z
C

o
re

I5
2
.8

G
H

z
C

o
re

I5
2
.6

7
G

H
z

C
o
re

I5
2
.6

7
G

H
z

R
u
n
s

N
o
t

re
p

o
rt

e
d

1
1

1
0

1
0

M
S
H

(1
0
k
)

M
S
L

S
-5

(L
=

4
×

5
)

M
S
L

S
-1

0
(L

=
4
×

1
0
)

M
S
L

S
-2

0
(L

=
4
×

2
0
)

M
S
L

S
-6

0
(L

=
4
×

6
0
)

In
st

a
n
c
e

m
B

e
st

A
v
g
.

t
m

B
e
st

A
v
g
.

t
m

B
e
st

A
v
g
.

t
m

B
e
st

A
v
g
.

t
m

B
e
st

A
v
g
.

t

1
1
1
c

2
1
s

1
7

4
7
7
7
.9

1
4
7
8
1
.8

5
4
.9

4
1
7

4
7
7
5
.8

1
4
7
9
0
.4

4
0
.1

8
1
7

4
7
7
5
.8

1
4
7
8
0
.5

6
0
.3

3
1
7

4
7
7
0
.4

7
4
7
7
5
.8

6
0
.6

3
1
7

4
7
7
1
.9

7
4
7
7
4
.2

0
1
.8

7
1
1
1
c

2
2
s

1
7

4
7
7
4
.6

5
4
7
7
8
.8

0
4
.6

9
1
7

4
7
7
1
.5

9
4
7
8
7
.7

4
0
.1

8
1
7

4
7
7
0
.0

1
4
7
7
5
.1

2
0
.3

4
1
7

4
7
6
7
.2

1
4
7
7
2
.6

6
0
.6

5
1
7

4
7
6
7
.2

1
4
7
6
9
.7

7
1
.9

6
1
1
1
c

2
4
s

1
7

4
7
7
3
.6

7
4
7
7
8
.6

2
5
.6

4
1
7

4
7
6
8
.9

4
4
7
9
0
.5

0
0
.2

2
1
7

4
7
6
9
.4

0
4
7
8
5
.5

8
0
.4

3
1
7

4
7
6
8
.6

5
4
7
7
2
.8

4
0
.8

2
1
7

4
7
6
7
.1

4
4
7
6
8
.4

8
2
.4

2
1
1
1
c

2
6
s

1
7

4
7
7
3
.6

7
4
7
7
8
.6

2
5
.2

3
1
7

4
7
7
5
.5

5
4
7
9
1
.5

2
0
.2

3
1
7

4
7
6
9
.4

0
4
7
8
6
.3

6
0
.4

6
1
7

4
7
6
8
.6

5
4
7
7
1
.9

7
0
.8

7
1
7

4
7
6
7
.1

4
4
7
6
9
.5

0
2
.5

7
1
1
1
c

2
8
s

1
7

4
7
7
2
.4

6
4
7
7
7
.0

3
5
.5

4
1
7

4
7
7
0
.8

6
4
8
0
8
.7

5
0
.2

6
1
7

4
7
6
7
.3

2
4
7
7
1
.7

5
0
.4

8
1
7

4
7
6
7
.0

3
4
7
7
3
.7

6
0
.9

3
1
7

4
7
6
5
.5

2
4
7
6
7
.9

7
2
.7

8
2
0
0
c

2
1
s

3
1

8
8
3
9
.6

2
8
8
7
9
.9

8
1
9
.9

6
3
1

8
8
3
6
.8

6
8
8
9
5
.1

0
1
.0

6
3
1

8
8
1
2
.8

7
8
8
5
3
.3

3
1
.9

3
3
1

8
8
0
7
.9

3
8
8
4
3
.3

9
3
.6

7
3
1

8
7
6
6
.0

4
8
7
9
0
.8

0
1
0
.4

8
2
5
0
c

2
1
s

3
7

1
0
4
8
2
.5

2
1
0
5
1
8
.3

2
2
1
.5

8
3
7

1
0
5
2
0
.0

7
1
0
6
1
0
.3

8
2
.2

4
3
7

1
0
4
6
8
.9

3
1
0
5
7
4
.5

6
3
.9

8
3
7

1
0
4
4
5
.3

9
1
0
4
9
8
.5

7
7
.5

4
3
7

1
0
3
7
9
.9

8
1
0
4
1
4
.4

5
2
1
.4

6
3
0
0
c

2
1
s

4
4

1
2
3
6
7
.6

0
1
2
4
2
1
.7

5
4
7
.5

3
4
3

1
2
2
8
7
.6

4
1
2
3
4
4
.0

5
3
.6

9
4
3

1
2
2
5
7
.7

1
1
2
2
8
9
.0

4
6
.4

3
4
3

1
2
2
2
4
.6

3
1
2
2
4
7
.7

2
1
2
.2

0
4
3

1
2
2
0
2
.4

9
1
2
2
0
9
.9

4
3
5
.4

4
3
5
0
c

2
1
s

5
0

1
4
0
7
3
.3

4
1
4
2
2
6
.0

3
6
3
.0

1
5
0

1
4
0
8
4
.3

6
1
4
1
5
8
.0

2
6
.0

3
5
0

1
4
0
1
4
.5

4
1
4
0
9
9
.4

0
1
0
.7

7
5
0

1
3
9
7
6
.7

2
1
4
0
3
1
.6

5
2
2
.4

4
4
9

1
3
9
0
8
.9

6
1
3
9
2
9
.8

9
6
0
.9

9
4
0
0
c

2
1
s

5
9

1
6
6
6
0
.2

0
1
7
1
1
9
.8

9
7
1
.7

0
5
8

1
6
5
7
4
.5

4
1
6
6
7
3
.8

8
1
0
.9

3
5
8

1
6
5
3
4
.4

5
1
6
6
0
1
.5

5
2
1
.8

7
5
8

1
6
4
7
1
.1

8
1
6
5
0
7
.0

7
4
7
.2

3
5
8

1
6
3
9
8
.1

3
1
6
4
2
4
.2

9
1
1
1
.8

4
4
5
0
c

2
1
s

6
5

1
8
2
4
1
.4

8
1
8
9
0
2
.0

3
8
0
.7

5
6
4

1
8
1
9
0
.7

1
1
8
2
6
9
.1

9
1
4
.5

8
6
4

1
8
1
1
8
.5

9
1
8
1
7
6
.0

5
2
6
.3

1
6
4

1
8
0
3
4
.7

9
1
8
0
9
1
.3

4
6
6
.5

7
6
4

1
7
9
3
8
.8

5
1
7
9
7
3
.9

3
1
4
5
.7

3
5
0
0
c

2
1
s

7
3

2
0
4
9
6
.5

0
2
0
9
9
7
.0

4
8
9
.9

5
7
2

2
0
4
2
1
.7

2
2
0
5
5
2
.2

3
1
8
.0

1
7
2

2
0
3
7
6
.7

9
2
0
4
3
0
.8

6
3
6
.2

6
7
1

2
0
2
5
6
.2

1
2
0
3
3
2
.8

2
8
3
.1

9
7
1

2
0
2
0
7
.8

1
2
0
2
4
5
.1

3
1
9
8
.9

7

A
v
e
ra

g
e

1
0
4
1
9
.4

7
1
0
5
8
0
.0

0
3
5
.0

4
1
0
3
9
8
.2

2
1
0
4
5
5
.9

8
4
.8

0
1
0
3
6
9
.6

5
1
0
4
1
0
.3

5
9
.1

3
1
0
3
3
8
.2

4
1
0
3
6
8
.3

1
2
0
.5

6
1
0
3
0
3
.4

4
1
0
3
1
9
.8

6
4
9
.7

1
0
.8

1
7

1
.7

9
9

0
.6

8
2

1
.2

1
9

0
.4

6
5

0
.8

2
6

0
.2

5
8

0
.5

0
3

0
.0

0
3

0
.1

3
6

C
o
m

p
u
te

r
X

E
O

N
E

5
4
1
0

2
.3

3
G

H
z

C
o
re

I5
3
.4

0
G

H
z

R
u
n
s

1
0

1
0

50

T
a
b
le

A
.9
:

R
es

u
lt

s
o
n

th
e

2
0

cu
st

o
m

er
E

M
H

in
st

a
n
ce

s.
T

im
e

is
m

ea
su

re
d

in
m

in
u
te

s.

M
C

W
S
/
D

B
C

A
4
8
A

V
N

S
/
T

S
A

V
N

S
M

H
S

(1
0
k
)

M
S
L

S
-6

0
(L

=
4
×

6
0
)

In
st

a
n
c
e

n
s
|A
|

B
K

S
m

B
e
st

m
B

e
st

t
m

B
e
st

t
B

e
st

A
v
g
.

t
m

B
e
st

A
v
g
.

t
m

B
e
st

A
v
g
.

t

2
0
c
3
sU

1
2
0

3
5
5
8

1
7
9
7
.4

9
6

1
7
9
7
.5

1
6

1
8
0
5
.4

1
0
.0

3
6

1
7
9
7
.4

9
0
.6

9
1
7
9
7
.4

9
1
7
9
7
.4

9
0
.1

6
6

1
7
9
7
.4

9
1
7
9
7
.4

9
0
.0

8
6

1
7
9
7
.5

0
1
7
9
7
.5

0
0
.0

0
5

2
0
c
3
sU

2
2
0

3
5
7
0

1
5
7
4
.7

7
6

1
6
1
3
.5

3
6

1
5
7
4
.7

8
0
.0

2
6

1
5
7
4
.7

7
0
.6

4
1
5
7
4
.7

8
1
5
7
4
.7

8
0
.1

5
6

1
5
7
4
.7

8
1
5
7
4
.7

8
0
.0

7
6

1
5
7
4
.7

8
1
5
7
4
.7

8
0
.0

0
5

2
0
c
3
sU

3
2
0

3
5
9
4

1
7
0
4
.4

8
7

1
9
6
4
.5

7
6

1
7
0
4
.4

8
0
.0

2
6

1
7
0
4
.4

8
0
.6

4
1
7
0
4
.4

8
1
7
0
4
.4

8
0
.1

3
6

1
7
0
4
.4

8
1
7
0
4
.4

8
0
.0

7
6

1
7
0
4
.4

8
1
7
0
4
.4

8
0
.0

0
5

2
0
c
3
sU

4
2
0

3
5
8
8

1
4
8
2
.0

0
6

1
4
8
7
.1

5
5

1
4
8
2
.0

0
0
.0

3
5

1
4
8
2
.0

0
0
.6

5
1
4
8
2
.0

0
1
4
8
2
.0

0
0
.1

7
5

1
4
8
2
.0

0
1
4
8
2
.0

0
0
.0

7
5

1
4
8
2
.0

0
1
4
8
2
.0

0
0
.0

0
5

2
0
c
3
sU

5
2
0

3
5
5
8

1
6
8
9
.3

7
5

1
7
5
2
.7

3
6

1
6
8
9
.3

7
0
.0

4
6

1
6
8
9
.3

7
0
.6

7
1
6
8
9
.3

7
1
6
8
9
.3

7
0
.1

8
6

1
6
8
9
.3

7
1
6
8
9
.3

7
0
.0

7
6

1
6
8
9
.3

7
1
6
8
9
.3

7
0
.0

0
5

2
0
c
3
sU

6
2
0

3
5
8
6

1
6
1
8
.6

5
6

1
6
6
8
.1

6
6

1
6
1
8
.6

5
0
.0

3
6

1
6
1
8
.6

5
0
.6

7
1
6
1
8
.6

5
1
6
1
8
.6

5
0
.1

5
6

1
6
1
8
.6

5
1
6
1
8
.6

5
0
.0

7
6

1
6
1
8
.6

5
1
6
1
8
.6

5
0
.0

0
5

2
0
c
3
sU

7
2
0

3
5
2
8

1
7
1
3
.6

6
6

1
7
3
0
.4

5
6

1
7
1
3
.6

7
0
.0

3
6

1
7
1
3
.6

6
0
.6

4
1
7
1
3
.6

6
1
7
1
3
.6

6
0
.1

9
6

1
7
1
3
.6

6
1
7
1
3
.8

7
0
.0

7
6

1
7
1
3
.6

7
1
7
1
3
.6

7
0
.0

0
4

2
0
c
3
sU

8
2
0

3
5
4
4

1
7
0
6
.5

0
6

1
7
1
8
.6

7
6

1
7
2
2
.7

8
0
.0

3
6

1
7
0
6
.5

0
0
.6

7
1
7
0
6
.5

0
1
7
0
6
.5

0
0
.1

6
6

1
7
0
6
.5

0
1
7
0
6
.5

0
0
.0

7
6

1
7
0
6
.5

0
1
7
0
6
.5

0
0
.0

0
4

2
0
c
3
sU

9
2
0

3
4
8
8

1
7
0
8
.8

1
6

1
7
1
4
.4

3
6

1
7
0
8
.8

2
0
.0

4
6

1
7
0
8
.8

1
0
.6

6
1
7
0
8
.8

2
1
7
0
8
.8

2
0
.1

9
6

1
7
0
8
.8

2
1
7
0
9
.6

5
0
.0

7
6

1
7
0
8
.8

2
1
7
0
8
.8

2
0
.0

0
4

2
0
c
3
sU

1
0

2
0

3
6
2
4

1
1
8
1
.3

1
5

1
3
0
9
.5

2
4

1
1
8
1
.3

1
0
.0

2
4

1
1
8
1
.3

1
0
.6

4
1
1
8
1
.3

1
1
1
8
1
.3

1
0
.2

3
4

1
1
8
1
.3

1
1
1
8
1
.3

1
0
.0

7
4

1
1
8
1
.3

1
1
1
8
1
.3

1
0
.0

0
5

2
0
c
3
sC

1
2
0

3
7
7
2

1
1
7
3
.5

7
5

1
3
0
0
.6

2
4

1
1
7
8
.9

7
0
.0

3
4

1
1
7
3
.5

7
0
.6

2
1
1
7
3
.5

7
1
1
7
3
.5

7
0
.3

8
4

1
1
7
3
.5

7
1
1
7
3
.5

7
0
.0

7
4

1
1
7
3
.5

7
1
1
7
7
.4

9
0
.0

0
6

2
0
c
3
sC

2
1
9

3
5
3
8

1
5
3
9
.9

7
5

1
5
5
3
.5

3
5

1
5
3
9
.9

7
0
.0

2
5

1
5
3
9
.9

7
0
.5

8
1
5
3
9
.9

7
1
5
3
9
.9

7
0
.2

1
5

1
5
3
9
.9

7
1
5
3
9
.9

7
0
.0

8
5

1
5
3
9
.9

7
1
5
3
9
.9

7
0
.0

0
5

2
0
c
3
sC

3
1
2

3
2
7
8

8
8
0
.2

0
4

1
0
8
3
.1

2
3

8
8
0
.2

0
0
.0

1
3

8
8
0
.2

0
0
.2

5
8
8
0
.2

0
8
8
0
.2

0
0
.1

5
3

8
8
0
.2

0
8
8
0
.2

0
0
.0

4
3

8
8
0
.2

0
8
8
0
.2

0
0
.0

0
4

2
0
c
3
sC

4
1
8

3
6
0
8

1
0
5
9
.3

5
5

1
0
9
1
.7

8
4

1
0
5
9
.3

5
0
.0

2
4

1
0
5
9
.3

5
0
.5

3
1
0
5
9
.3

5
1
0
7
7
.7

1
0
.2

3
4

1
0
5
9
.3

5
1
0
5
9
.9

4
0
.0

6
4

1
0
5
9
.3

5
1
0
5
9
.3

5
0
.0

0
5

2
0
c
3
sC

5
1
9

3
3
6
2

2
1
5
6
.0

1
7

2
1
9
0
.6

8
7

2
1
5
6
.0

1
0
.0

2
7

2
1
5
6
.0

1
0
.6

0
2
1
5
6
.0

1
2
1
5
6
.0

1
0
.1

4
7

2
1
5
6
.0

1
2
1
5
6
.0

4
0
.1

0
7

2
1
5
6
.0

1
2
1
5
6
.0

1
0
.0

0
4

2
0
c
3
sC

6
1
7

3
2
7
6

2
7
5
8
.1

7
9

2
8
8
3
.7

1
8

2
7
5
8
.1

7
0
.0

2
8

2
7
5
8
.1

7
0
.7

1
2
7
5
8
.1

7
2
7
5
8
.1

7
0
.1

4
8

2
7
5
8
.1

7
2
7
5
8
.1

7
0
.0

8
8

2
7
5
8
.1

7
2
7
5
8
.1

7
0
.0

0
3

2
0
c
3
sC

7
6

3
3
8

1
3
9
3
.9

9
5

1
7
0
1
.4

0
4

1
3
9
3
.9

9
0
.0

0
4

1
3
9
3
.9

9
0
.1

8
1
3
9
3
.9

9
1
3
9
3
.9

9
0
.0

4
4

1
3
9
3
.9

9
1
3
9
3
.9

9
0
.0

6
4

1
3
9
3
.9

9
1
3
9
3
.9

9
0
.0

0
2

2
0
c
3
sC

8
1
8

3
2
3
2

3
1
3
9
.7

2
1
0

3
3
1
9
.7

4
9

3
1
3
9
.7

2
0
.0

2
9

3
1
3
9
.7

2
0
.6

2
3
1
3
9
.7

2
3
1
3
9
.7

2
0
.0

8
9

3
1
3
9
.7

2
3
1
3
9
.7

2
0
.1

2
9

3
1
3
9
.7

2
3
1
3
9
.7

2
0
.0

0
3

2
0
c
3
sC

9
1
9

3
4
8
0

1
7
9
9
.9

4
6

1
8
1
1
.0

5
6

1
7
9
9
.9

4
0
.0

2
6

1
7
9
9
.9

4
0
.6

0
1
7
9
9
.9

4
1
7
9
9
.9

4
0
.1

6
6

1
7
9
9
.9

4
1
7
9
9
.9

4
0
.1

0
6

1
7
9
9
.9

4
1
7
9
9
.9

4
0
.0

0
4

2
0
c
3
sC

1
0

1
5

3
2
2
2

2
5
8
3
.4

2
8

2
6
4
4
.1

1
8

2
5
8
3
.4

2
0
.0

2
8

2
5
8
3
.4

2
0
.4

5
2
5
8
3
.4

2
2
6
0
0
.3

9
0
.0

9
8

2
5
8
3
.4

2
2
5
8
3
.4

2
0
.0

7
8

2
6
4
0
.0

0
2
6
4
0
.0

0
0
.0

0
3

S
1

2
i6

s
2
0

6
8
9
6

1
5
7
8
.1

2
6

1
6
1
4
.1

5
6

1
5
7
8
.1

2
0
.0

3
6

1
5
7
8
.1

2
0
.7

1
1
5
7
8
.1

2
1
5
7
8
.1

2
0
.1

6
6

1
5
7
8
.1

2
1
5
7
8
.1

2
0
.0

7
6

1
5
7
8
.1

2
1
5
7
8
.1

2
0
.0

0
7

S
1

4
i6

s
2
0

6
9
7
2

1
3
9
7
.2

7
5

1
5
4
1
.4

6
5

1
4
1
3
.9

7
0
.0

3
5

1
3
9
7
.2

7
0
.7

5
1
3
9
7
.2

7
1
3
9
7
.2

7
0
.1

6
5

1
3
9
7
.2

7
1
3
9
7
.2

7
0
.0

7
5

1
3
9
7
.2

7
1
3
9
7
.2

7
0
.0

0
8

S
1

6
i6

s
2
0

6
7
4
4

1
5
6
0
.4

9
6

1
6
1
6
.2

0
6

1
5
7
1
.3

0
0
.0

3
5

1
5
6
0
.4

9
0
.7

3
1
5
6
0
.4

9
1
5
6
0
.4

9
0
.2

0
5

1
5
6
0
.4

9
1
5
6
0
.4

9
0
.0

7
5

1
5
6
0
.4

9
1
5
6
0
.4

9
0
.0

0
5

S
1

8
i6

s
2
0

6
8
2
2

1
6
9
2
.3

2
6

1
8
8
2
.5

4
6

1
6
9
2
.3

3
0
.0

3
6

1
6
9
2
.3

2
0
.7

4
1
6
9
2
.3

2
1
6
9
2
.3

2
0
.1

7
6

1
6
9
2
.3

2
1
6
9
2
.3

2
0
.0

7
6

1
6
9
2
.3

2
1
6
9
2
.3

2
0
.0

0
7

S
1

1
0
i6

s
2
0

6
1
1
8
6

1
1
7
3
.4

8
5

1
3
0
9
.5

2
4

1
1
7
3
.4

8
0
.0

3
4

1
1
7
3
.4

8
0
.7

1
1
1
7
3
.4

8
1
1
7
3
.4

8
0
.2

4
4

1
1
7
3
.4

8
1
1
7
3
.4

8
0
.0

7
4

1
1
7
3
.4

8
1
1
7
3
.4

8
0
.0

0
9

S
2

2
i6

s
2
0

6
8
4
8

1
6
3
3
.1

0
6

1
6
4
5
.8

0
6

1
6
4
5
.8

0
0
.0

3
6

1
6
3
3
.1

0
0
.7

5
1
6
3
3
.1

0
1
6
3
3
.1

0
0
.1

9
6

1
6
3
3
.1

0
1
6
3
3
.1

0
0
.0

9
6

1
6
3
3
.1

0
1
6
3
3
.1

0
0
.0

0
8

S
2

4
i6

s
1
9

6
9
2
0

1
5
0
5
.0

7
6

1
5
0
5
.0

7
6

1
5
0
5
.0

7
0
.0

2
5

1
5
3
2
.9

6
0
.8

8
1
5
0
5
.0

7
1
5
0
5
.0

7
0
.1

4
6

1
5
0
5
.0

7
1
5
0
5
.0

7
0
.0

9
6

1
5
0
5
.0

7
1
5
0
5
.0

7
0
.0

0
7

S
2

6
i6

s
2
0

6
5
6
0

2
4
3
1
.3

3
1
0

3
1
1
5
.1

0
8

2
6
6
0
.4

9
0
.0

4
7

2
4
3
1
.3

3
0
.7

8
2
4
3
1
.3

3
2
4
3
1
.3

3
0
.1

3
7

2
4
3
1
.3

3
2
4
3
1
.3

3
0
.0

7
7

2
4
3
1
.3

3
2
4
3
1
.3

3
0
.0

0
7

S
2

8
i6

s
1
6

6
2
9
2

2
1
5
8
.3

5
9

2
7
2
2
.5

5
7

2
1
7
5
.6

6
0
.0

2
7

2
1
5
8
.3

5
0
.5

7
2
1
5
8
.3

5
2
1
5
8
.3

5
0
.0

9
7

2
1
5
8
.3

5
2
1
5
8
.3

5
0
.0

6
7

2
1
5
8
.3

5
2
1
5
8
.3

5
0
.0

0
4

S
2

1
0
i6

s
1
6

6
4
6
6

1
5
8
5
.4

6
6

1
9
9
5
.6

2
5

1
5
8
5
.4

6
0
.0

2
6

1
9
5
8
.4

6
0
.6

1
1
5
8
5
.4

6
1
5
8
5
.4

6
0
.1

5
5

1
5
8
5
.4

6
1
5
8
5
.4

6
0
.0

6
5

1
5
8
5
.4

6
1
5
8
5
.4

6
0
.0

0
5

S
1

4
i2

s
2
0

2
5
1
8

1
5
8
2
.2

0
6

1
5
8
2
.2

0
6

1
5
9
8
.9

1
0
.0

3
6

1
5
8
2
.2

1
0
.6

3
1
5
8
2
.2

1
1
5
8
2
.2

1
0
.1

3
6

1
5
8
2
.2

1
1
5
8
2
.2

1
0
.0

7
6

1
5
8
2
.2

1
1
5
8
2
.2

1
0
.0

0
4

S
1

4
i4

s
2
0

4
7
0
8

1
4
6
0
.0

9
6

1
5
8
0
.5

2
5

1
4
8
3
.1

9
0
.0

3
5

1
4
6
0
.0

9
0
.6

8
1
4
6
0
.0

9
1
4
6
0
.0

9
0
.1

6
5

1
4
6
0
.0

9
1
4
6
0
.0

9
0
.0

7
5

1
4
6
0
.0

9
1
4
6
0
.0

9
0
.0

0
6

S
1

4
i6

s
2
0

6
9
7
2

1
3
9
7
.2

7
5

1
5
4
1
.4

6
5

1
4
1
3
.9

7
0
.0

3
5

1
3
9
7
.2

7
0
.7

5
1
3
9
7
.2

7
1
3
9
7
.2

7
0
.1

6
5

1
3
9
7
.2

7
1
3
9
7
.2

7
0
.0

7
5

1
3
9
7
.2

7
1
3
9
7
.2

7
0
.0

0
8

S
1

4
i8

s
2
0

8
1
3
2
0

1
3
9
7
.2

7
6

1
5
6
1
.2

9
6

1
3
9
7
.2

7
0
.0

3
6

1
3
9
7
.2

7
0
.8

2
1
3
9
7
.2

7
1
3
9
7
.2

7
0
.1

7
5

1
3
9
7
.2

7
1
3
9
7
.2

7
0
.0

7
5

1
3
9
7
.2

7
1
3
9
7
.2

7
0
.0

1
0

S
1

4
i1

0
s

2
0

1
0

1
4
9
4

1
3
9
6
.0

2
5

1
5
2
9
.7

3
5

1
3
9
6
.0

2
0
.0

3
5

1
3
9
6
.0

2
0
.8

5
1
3
9
6
.0

2
1
3
9
6
.0

2
0
.2

3
5

1
3
9
6
.0

2
1
3
9
6
.0

2
0
.0

7
5

1
3
9
6
.0

2
1
3
9
6
.0

2
0
.0

1
2

S
2

4
i2

s
1
8

2
5
4
8

1
0
5
9
.3

5
5

1
1
1
7
.3

2
4

1
0
5
9
.3

5
0
.0

2
4

1
0
5
9
.3

5
0
.5

1
1
0
5
9
.3

5
1
0
6
9
.4

2
0
.2

3
4

1
0
5
9
.3

5
1
0
5
9
.9

4
0
.0

6
4

1
0
5
9
.3

5
1
0
5
9
.3

5
0
.0

0
4

S
2

4
i4

s
1
9

4
8
3
8

1
4
4
6
.0

8
6

1
5
2
2
.7

2
5

1
4
4
6
.0

8
0
.0

2
5

1
4
4
6
.0

8
0
.6

0
1
4
4
6
.0

8
1
4
4
9
.1

7
0
.2

1
5

1
4
4
6
.0

8
1
4
4
6
.0

8
0
.0

9
5

1
4
4
6
.0

8
1
4
4
6
.0

8
0
.0

0
6

S
2

4
i6

s
2
0

6
9
2
4

1
4
3
4
.1

4
6

1
7
3
0
.4

7
5

1
4
3
4
.1

4
0
.0

2
5

1
4
3
4
.1

4
0
.6

9
1
4
3
4
.1

4
1
4
4
5
.3

5
0
.2

0
5

1
4
3
4
.1

4
1
4
3
5
.9

5
0
.0

8
5

1
4
3
4
.1

4
1
4
3
4
.1

4
0
.0

0
7

S
2

4
i8

s
2
0

8
1
2
5
6

1
4
3
4
.1

4
6

1
7
8
6
.2

1
5

1
4
3
4
.1

4
0
.0

2
5

1
4
3
4
.1

4
0
.7

5
1
4
3
4
.1

4
1
4
3
4
.1

4
0
.2

0
5

1
4
3
4
.1

4
1
4
3
5
.9

5
0
.0

8
5

1
4
3
4
.1

4
1
4
3
4
.1

4
0
.0

1
0

S
2

4
i1

0
s

2
0

1
0

1
5
2
8

1
4
3
4
.1

3
6

1
7
2
9
.5

1
5

1
4
3
4
.1

3
0
.0

2
5

1
4
3
4
.1

3
0
.7

8
1
4
3
4
.1

3
1
4
5
5
.3

1
0
.2

4
5

1
4
3
4
.1

3
1
4
3
5
.9

4
0
.0

9
5

1
4
3
4
.1

3
1
4
3
4
.1

3
0
.0

1
4

A
v
e
ra

g
e

1
6
3
5
.4

3
1
7
7
4
.1

5
1
6
4
4
.7

5
0
.0

3
1
6
4
5
.4

5
0
.6

5
1
6
3
5
.4

3
1
6
3
7
.4

5
0
.1

7
1
6
3
5
.4

3
1
6
3
5
.6

2
0
.0

7
1
6
3
6
.8

4
1
6
3
6
.9

4
0
.0

0
6

G
a
p

a
b

o
v
e

B
K

S
(%

)
8
.7

2
0
.4

6
0
.6

3
0
.0

0
0
.1

5
0
.0

0
0
.0

1
0
.0

5
0
.0

6
N

B
K

S
2

2
9

3
8

4
0

4
0

3
9

C
o
m

p
u
te

r
P

4
3
.2

G
H

z
C

o
re

I5
2
.8

G
H

z
C

o
re

I5
2
.6

7
G

H
z

C
o
re

I5
2
.6

7
G

H
z

X
E

O
N

E
5
4
1
0

2
.3

3
G

H
z

C
o
re

I5
3
.4

0
G

H
z

R
u
n
s

N
.A

.
1

1
0

1
0

1
0

1
0

51

Table A.10: Detailed results of MSLS-60 (L = 4× 60) on the large EMH instances.
Time is measured in minutes.

Instance tP1 tP2 tSP BestP2 %P1 %P2

111c 21s 1.25 0.60 0.01 4778.36 0.17 0.03
111c 22s 1.30 0.62 0.01 4770.76 0.07 0.00
111c 24s 1.61 0.78 0.01 4775.11 0.17 0.00
111c 26s 1.68 0.85 0.01 4772.00 0.10 0.00
111c 28s 1.80 0.93 0.01 4772.41 0.14 0.00
200c 21s 8.02 2.32 0.04 8918.41 1.74 0.00
250c 21s 16.29 4.73 0.20 10557.43 1.71 0.00
300c 21s 27.92 6.79 0.32 12344.03 1.16 0.00
350c 21s 44.53 10.24 4.97 14084.01 1.26 0.00
400c 21s 67.62 15.77 26.70 16658.52 1.58 0.00
450c 21s 97.61 23.36 22.40 18231.13 1.63 0.00
500c 21s 134.02 29.39 31.72 20467.61 1.40 0.00

Average 33.64 8.03 7.20 10427.48 0.927 0.003

Appendix B. Operator pseudocodes1045

In the pseudocode descriptions, we will use the notation [c, Aout, Ain] where c

denotes the cost of the best saving found by the operator, Aout denotes the set

of arcs removed by the best operator move, and Ain denotes the set of arcs

added by the best operator move to reconstruct the routes.

52

Algorithm 6 Clarke and Wright Savings (CWS)

Input: S: Initial feasible solution. c = 0: cost of the best saving. Aout = ∅: arcs removed
by the best operator move. Ain = ∅: arcs added by the best operator move to
reconstruct the routes.

Output: S′: Improved solution.
1: [c, Aout, Ain]←− [0, ∅, ∅]
2: for each route R1 ∈ S do
3: for each route R2 ∈ S \ {R1} do
4: Let i be the last customer of R1 and j the first customer of R2

5: Let (i, 0, pi0) be the last arc of R1, and (0, j, p0j) be the first arc of R2

6: for each p′ ∈Pij do
7: ĉ←− c(i, 0, pi0) + c(0, j, p0j)− c(i, j, p′)
8: if ĉ > c then
9: R←− R1 \ (i, 0, pi0) ∪R2 \ (j, 0, pj0) ∪ (i, j, p′)

10: if R is feasible then
11: c←− ĉ
12: Aout ←− {(i, 0, pi0), (j, 0, pj0)}
13: Ain ←− {(i, j, p′)}
14: end if
15: end if
16: end for
17: end for
18: end for
19: if [c, Aout, Ain] 6= [0, ∅, ∅] then
20: Remove the arcs in Aout and add the arcs in Ain to obtain a new solution S′

21: end if

Algorithm 7 2-OPT*

Input: S: Initial feasible solution. c = 0: cost of the best saving. Aout = ∅: arcs removed
by the best operator move. Ain = ∅: arcs added by the best operator move to
reconstruct the routes.

Output: S′: Improved solution.
1: [c, Aout, Ain]←− [0, ∅, ∅]
2: for each route R1 ∈ S do
3: for each route R2 ∈ S \ {R1} do
4: for all arcs (i1, i2, pi1i2) ∈ R1 and (j1, j2, pj1j2) ∈ R2 do
5: for all p1 ∈Pi1j2 and p2 ∈Pj1i2 do
6: ĉ←− c(i1, i2, pi1i2) + c(j1, j2, pj1j2)− c(i1, j2, p1)− c(j1, i2, p2)
7: if ĉ > c then
8: R′1 ←− R1 \ (i1, i2, pi1i2) ∪ (i1, j2, p1)
9: R′2 ←− R2 \ (j1, j2, pj1j2) ∪ (j1, i2, p2)

10: if R′1 and R′2 are feasible then
11: c←− ĉ
12: Aout ←− {(i1, i2, pi1i2), (j1, j2, pj1j2)}
13: Ain ←− {(i1, j2, p1), (j1, i2, p2)}
14: end if
15: end if
16: end for
17: end for
18: end for
19: end for
20: if [c, Aout, Ain] 6= [0, ∅, ∅] then
21: Remove the arcs in Aout and add the arcs in Ain to obtain a new solution S′

22: end if

53

Algorithm 8 Sequence relocate

Input: S: Initial feasible solution. σ: customer sequence length. c = 0: cost of the best
saving. Aout = ∅: arcs removed by the best operator move. Ain = ∅: arcs added by
the best operator move to reconstruct the routes.

Output: S′: Improved solution.
1: [c, Aout, Ain]←− [0, ∅, ∅]
2: for each route R1 ∈ S do
3: for each route R2 ∈ S \ {R1} do
4: for all pairs of customer sequences (i, i1, . . . , iσ , j) ∈ R1 and (j1, j2) ∈ R2 do
5: for all triplets p1 ∈Pij , p2 ∈Pj1i1 and p3 ∈Piσj2 do
6: ĉ ←− c(i, i1, pii1) + c(iσ , j, piσj) + c(j1, j2, pj1j2) − c(i, j, p1) −

c(j1, i1, p2) − c(iσ , j2, p3)
7: if ĉ > c then
8: R′1 ←− R1 \ (i, i1, pii1) \ (iσ , j, piσj) ∪ (i, j, p1)
9: R′2 ←− R2 \ (j1, j2, pj1j2) ∪ (j1, i1, p2) ∪ (iσ , j2, p3)

10: if R′1 and R′2 are feasible then
11: c←− ĉ
12: Aout ←− {(i, i1, pii1), (iσ , j, piσj), (j1, j2, pj1j2)}
13: Ain ←− {(i, j, p1), (j1, i1, p2), (iσ , j2, p3)}
14: end if
15: end if
16: end for
17: end for
18: end for
19: end for
20: if [c, Aout, Ain] 6= [0, ∅, ∅] then
21: Remove the arcs in Aout and add the arcs in Ain to obtain a new solution S′

22: end if

54

Algorithm 9 Cyclic Exchange (2 routes)

Input: S: Initial feasible solution. σ: customer sequence length. w: customer sequence
length. c = 0: cost of the best saving. Aout = ∅: arcs removed by the best operator
move. Ain = ∅: arcs added by the best operator move to reconstruct the routes.

Output: S′: Improved solution.
1: [c, Aout, Ain]←− [0, ∅, ∅]
2: for each route R1 ∈ S do
3: for each route R2 ∈ S \ {R1} do
4: for all customer sequences (i, i1, . . . , iσ , j) ∈ R1 and (k, j1, . . . , jw, l) ∈ R2 do
5: for all path combinations p1 ∈Pij1 , p2 ∈Pjwj , p3 ∈Pki1 , p4 ∈Piσl do
6: ĉ←− c(i, i1, pii1) + c(iσ , j, piσj) + c(k, j1, pkj1) + c(jw, l, pjwl)−

c(i, j1, p1)− c(jw, j, p2)− c(k, i1, p3)− c(iσ , l, p4)
7: if ĉ > c then
8: R′1 ←− R1 \ (i, i1, pii1) \ (iσ , j, piσj) ∪ (i, j1, p1) ∪ (jw, j, p2)
9: R′2 ←− R2 \ (k, j1, pkj1) \ (jw, l, pjwl) ∪ (k, i1, p3) ∪ (iσ , l, p4)

10: if R′1 and R′2 are feasible then
11: c←− ĉ
12: Aout ←− {(i, i1, pii1), (iσ , j, piσj), (k, j1, pkj1), (jw, l, pjwl)}
13: Ain ←− {(i, j1, p1), (jw, j, p2), (k, i1, p3), (iσ , l, p4)}
14: end if
15: end if
16: end for
17: end for
18: end for
19: end for
20: if [c, Aout, Ain] 6= [0, ∅, ∅] then
21: Remove the arcs in Aout and add the arcs in Ain to obtain a new solution S′

22: end if

55

	Introduction
	Literature review
	Contributions of this paper
	Organization of the paper

	Description of the G-VRP
	Multigraph reformulation of the G-VRP
	Description of the multigraph
	Construction of the multigraph

	A Multi-start local search heuristic for the G-VRP
	Local search operators
	Clarke and Wright savings
	2-OPT* and 3-OPT*
	Sequence relocate and cyclic exchange
	Intra-route 2-OPT
	Intra-route relocate

	Feasibility tests
	Feasibility and labeling comparison to similar approaches

	Overall description of the Heuristic
	The two phases of a global iteration
	Set partitioning heuristic

	Parameter settings and implementation choices
	Computational experiments
	Computational results
	Comparison with other heuristics

	Conclusions
	Detailed computational results
	Operator pseudocodes

