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Figure 1: Exploration waypoints and solution paths discovered using abstraction-guided exploration in Super Metroid. Color
ranges from blue to red along the path to illustrate how the player backtracks. The total non-cutscene gameplay length is 3250
frames, compared with an estimated human expert gameplay of 2420 frames.

ABSTRACT
Machine playtesting systems often aim to demonstrate how to reach
certain moments of play. To provide design feedback in a timely
manner, they often internally rely on heuristic-guided search. How-
ever, there are many types of videogames for which sufficiently
accurate heuristics are not available. We use an imperfect abstrac-
tion of an underlying game to define progress scores, and show
that combining these scores yields a highly effective cell selection
heuristic for use in the Go-Explore algorithm. We demonstrate the
impact of this approach in automated gameplay for Super Metroid
(involving mandatory item collection, destructible blocks, and back-
tracking) using a tile-based abstraction of the game that onlymodels
a small subset of the game’s mechanics. Surprisingly, our abstrac-
tion guidance mechanism is able to explore this complex game
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several orders of magnitude more efficiently than past work with
similar exploration methods in Montezuma’s Revenge.

CCS CONCEPTS
•Applied computing→Computer games; •Computingmethod-
ologies → Heuristic function construction; Abstraction and
micro-operators.

KEYWORDS
machine playtesting, search heuristic, go-explore, state abstraction

ACM Reference Format:
RossMawhorter andAdam Smith. 2023. Automated Testing in SuperMetroid
with Abstraction-Guided Exploration. In Foundations of Digital Games 2023
(FDG 2023), April 12–14, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3582437.3582447

1 INTRODUCTION
Testing is an important part of the game design process [11]. While
some aspects of human playtesting focus on aesthetic concerns
and players’ emotional responses, another large focus of testing is
ensuring that the game is free of embarrassing bugs [6]. Coverage
of all of the interesting things a player can do in a game is often
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achieved through the high-stress, low-pay labor of quality assur-
ance (QA) workers. Automated testing systems (that allow human
operators to set high-level coverage goals for algorithmic gameplay
agents) offer to increase coverage and reduce time-to-feedback in
the larger game design process [4, 27]. Often, this feedback details
what states the player can reach after making the change. By look-
ing at these outputs, a designer can be certain that the changes that
they make do not break any internal invariants (for example, “the
player picks up item X before they reach location Y”). Fig. 1 offers
an example reachability report resulting from our work that shows
how the player can reach a distant goal by collecting item required
along the way.

In order to produce this type of feedback, automated testing
systems often rely internally on some kind of search to explore the
game’s state graph [16, 31]. However, when the game’s state graph
is very complex, these methods may not be able to provide feedback
quickly enough to be useful, as reaching the states that the developer
cares about becomes less and less likely given a fixed compute
budget. To solve this problem, search algorithms often rely on a
heuristic which encodes game-specific domain knowledge [10, 29]
so that the algorithm can select the most promising actions in
the most promising parts of the known gameplay space. While
search can be conducted without this information, adding it often
dramatically reduces the compute cost required to reach relevant
states [10].

We often desire simple and effective heuristics. For games like
Super Mario Bros [23], where the player’s goal is always clear (com-
plete the level by reaching the right side), very simple heuristics
like the player’s x-position have been highly effective [18, 29]. For
highly complex but relatively short games like Go,1 it is practical
to learn heuristic functions from vast quantities of data, using both
expert gameplay records and self-play experiments [26]. However,
automated testing targets a different scenario. For a complex game
that is still in the design process, little data is available for statistical
modeling, and the specific goals for hand-crafted heuristics are con-
stantly shifting as game mechanics and game world designs change.
Seemingly general heuristics (such as encouraging the player to
make progress towards an on screen goal by measuring distances
in image pixels) are often ineffective in guiding search.

This paper addresses the following research question: How can
imperfectmodels of a game help in exploration-based testing
of that game? To answer this, we focus on abstraction guidance.
We use a coarse-grained, incomplete, and even flawed model of the
game’s mechanics, and show that this is sufficient to usefully guide
exploration.

To demonstrate these methods in a realistic setting, we focus
on Super Metroid [24], an exploration-based platformer published
by Nintendo in 1994. We chose this game because it has an active
modding community,2 is easy to interact with via the gym-retro
Python library [2], and it serves as a compact bundle of many ideas
(e.g. game mechanics and world design patterns) present in other
videogames [22]. While Super Metroid is a platforming game, the
player’s movement can be influenced by items that they collect;
because of this, exploration involves backtracking to previously

1Go matches typically involve about 200 sequential moves.
2https://metroidconstruction.com/

explored areas with new items. We use a tile-based abstraction
described in previous Metroid-focused work [22], and we perform
search in an emulator for the Super Nintendo console hardware.

2 BACKGROUND
In this section we discuss relevant prior work. Since our method
builds directly on Go-Explore, we describe the exploration algo-
rithm in detail.

2.1 Search-based Game Testing
Because our target use-case is testing videogames during develop-
ment, we consider methods for automated playing that can directly
execute the game in question.3 In this case, game-playing can be
formalized as finding a path through the state graph of the game.
Jaffe explains how many design questions can be posed by setting
constraints on the actions allowed during optimal automated game-
play [20]. To convert this path into an exploration of the game,
existing methods like Reveal-More can be used [4]. To find these
paths in the state space, standard graph-based search algorithms
like A* could be applied (e.g. [29]). However, for most videogames,
search algorithms will only feasibly reach a small part of the game’s
state space, and finding true shortest paths is infeasible in the long
run. Algorithms like Monte Carlo Tree Search (MCTS) add ran-
domness to the search, typically selecting states based on a mix-
ture of the heuristic value and the level of certainty about that
value (based on evaluations that start from that state) [3, 21]. While
MCTS in more discrete settings can evaluate a state by playing it
out until the end of the game (for example AlphaGo [26]), applying
MCTS to videogames usually requires some kind of intermediate
evaluation (i.e., a heuristic) [18, 29]. For games without obvious
heuristics, an existing body of work aims to automatically learn
plausible heuristics[12, 15]. However, time spent learning agents for
a specific version of the game might be wasted if the next version
introduces small changes that obsolete the learned heuristics.

2.2 Go-Explore
Go-Explore [10] is another algorithm for automatically playing
games. Go-Explore assumes access to a function that can assign
any reachable game state into a discrete cell (such that similar
states fall into the same cell and meaningfully distant states fall
into different cells). This cell-grouping function can be somewhat
game-agnostic (e.g. downsampling the screen displayed), or game-
specific (including certain details about the state such as global
position and even considering state variables not directly visible
to the player). During exploration, at each time step, a populated
cell is selected randomly, and a known state is sampled randomly
from within that cell. Applying random actions to the chosen state
produces a new state which is then stored and indexed according
to its associated cell. Most implementations of Go-Explore use
heuristics to bias random selections of cells, states, and actions
while leaving the skeleton of the algorithm in place.

3We also assume that the people capable of creating the in-development game are also
capable of producing (and maintaining) a simplified model of the game that captures a
subset of the original game’s mechanics and is capable of working with the original
game’s world design data. This plausible assumption has not been leveraged in past
work on automated testing.

https://metroidconstruction.com/
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The cell structure prevents the search from focusing too much
attention on states that are only trivially different. This helps the
search recover from situations where a heuristic has guided the
search incorrectly. For example, if the best state (according to the
heuristic) is a dead-end, a traditional search can continue to explore
nearby trapped states with slight alterations to position and global
timer variables. As the system explores these ostensibly valuable
states, more will be discovered, and the chance of selecting an
actually useful state (with less desirable heuristic score) decreases.
In Go-Explore, this cell will still have an incorrectly good heuristic
value, but exploring more nearby states will not cause one of these
problematic states to be more likely to be selected at each step.

To apply Go-Explore to Super Metroid, we use a domain-specific
cell-assignment function (described in the next section). Notably,
Super Metroid and many other games include critical state infor-
mation that is not always visible onscreen, such as what items the
player has collected. This contrasts with the Atari games evalu-
ated in the original Go-Explore paper, and makes defining a good
domain-agnostic heuristic very challenging.

2.3 Abstractions for Analyzing Games
We rely on the use of an abstraction of Super Metroid to generate
heuristic guidance. In software verification, abstractions are sim-
plifications of an underlying system that can be analyzed more
efficiently than the original system, while retaining key proper-
ties [5]. For games, this means a simplified, lighter-weight version
of it that does not work identically to the original, but retains
some of the key mechanics and a compatible representation of
the game’s world. The technical games research community often
uses abstractions of games in order to apply existing techniques to
games where the original version is too complex or cumbersome
to use. For example, ANGELINA II, a genetic algorithm for generat-
ing mini-metroidvania games, uses an abstraction for playability
analysis [7]. Many Mario generation and playing systems use In-
finite Mario (e.g. [9, 18, 29]) as an abstraction of the original NES
game Super Mario Bros [23]. Systems have also been built to sup-
port creating custom-defined abstractions, such as the Videogame
Description Language (VGDL) [25]. The authors describe how ap-
proximations of Zelda-like games can be written in VGDL, and
note several features that make writing search-based agents easier
for these abstractions. Abstractions have also been pre-computed
directly from the game mechanics, before applying them to ensure
that generated levels are playable [30].

Perhaps the most common type of abstraction used in games
today is a navmesh [8]. This decomposes existing world design
geometry into a graph, and long-distance navigation tasks are first
solved by finding a path in this graph. During gameplay, only the
location of the very next navigation node is considered by character
control algorithms that move characters on a frame-by-frame basis.

Some game abstractions are implicit: they come from design
annotation attached to existing world design data. For example,
Summerville and Mateas generate playable Mario levels using
LSTMs [17]. A key part of their approach is that a playable path for
each level is encoded as part of the training data. The model learns
about how Mario can move only through these playable paths, so

Figure 2: Left: an example maze with the solution shown in
red. Right: the associated progress score computed for the
abstraction of that maze. The progress score is the shortest-
path graph distance from each node to the goal (lower is
closer).

these paths implicitly encode an abstraction of the platforming
mechanics in Super Mario Bros.

We use the same abstraction as Mawhorter et. al. [22] which is
explicitly designed to model Super Metroid at the level of world
design tiles (described in more detail in Section 4.1). This prior
work searches for paths in the abstraction in order to formally
prove properties about the model of the games. Earlier work leaves
it up to human testers to check that the tile-level counterexamples
generated make sense in frame-by-frame execution of the original
game.

Although creating such an abstraction is not necessarily easy, the
widespread use of similar models suggests it is not unreasonable.
In many cases, these abstractions can be created by reading data
directly out of the original game’s implementation. However, these
abstractions will likely ignore features like responsive enemies or
destructible terrain elements. In Section 4, we show that Go-Explore
can overcome spurious advice from a faulty abstraction and find in-
game paths that the abstraction would not have considered possible.

3 ABSTRACTION GUIDANCE
In this section, we present a technique for augmenting Go-Explore
by providing it with heuristic guidance generated from an abstrac-
tion. We illustrate this technique with a toy example.

For a given game, Go-Explore operates over the true state graph
of the game, 𝑆 = (𝑉𝑆 , 𝐸𝑆 ), consisting of nodes 𝑉𝑆 and edges 𝐸𝑆 .
Each node is a state that the player can be in, and each edge is an
action that the player can take from that state. We use a separate
abstract state graph 𝐴 = (𝑉𝐴, 𝐸𝐴), which models 𝑆 , but is much
smaller. A mapping function 𝑀 : 𝑉𝑆 → 𝑉𝐴 , relates the two state
graphs; usually, many real states will map to a single abstract state.
We are interested in finding a real path starting at some real state
𝑠0 and ending at some real state 𝑠𝑓 .

The toy example is solving a randomly-generated maze. Each
maze is a minimum spanning tree of a randomly-weighted graph.
Fig. 2 shows one of the mazes. While traveling through the maze,
the player has a 2-dimensional floating point position, with each
dimension between 0 and 100, so

𝑉𝑆 = {(𝑥,𝑦) ∈ F232 | 0 ≤ 𝑥,𝑦 ≤ 100, not inside a wall}
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Figure 3: Results of continuous-space exploration of a maze world attempting to find traversal from the top-left of the world to
the bottom-right. Unguided exploration (left) explores entire rooms that are irrelevant for making progress towards the goal.
Guided exploration with the same total step budget (right) uses progress score to bias exploration towards the more relevant
cells.

Where F32 refers to the set of all 32-bit floating point numbers.
In this scenario, the true dynamics are conceptually simple – at

each time step, the agent chooses an angle between 0 and 2𝜋 , and
a distance between 0 and 3 pixels, and moves that far in the chosen
direction. A move is invalid if the agent would travel inside a wall.
Thus

𝐸𝑆 ⊆ {(𝑎, 𝑏) ∈ 𝑉𝑆 | | |𝑎 − 𝑏 | | < 3}
The player starts in the top-left room, and their goal is to reach

the bottom-right room. Because the agent’s position is two floating
point coordinates, there are many possible states (approximately
1.11𝑒18)4, and the entire state graph for even this very simple game
cannot be practically generated or stored directly. Although the
dynamics are easy to understand, the branching factor is also ex-
tremely high, because it involves choosing two floating point num-
bers. Because of this, using typical graph search algorithms that
attempt to consider all possible actions from a given state is infea-
sible.

Our abstraction of this maze-solving task is a graph of 100 nodes
(arranged in a 10 × 10 grid), so

𝑉𝐴 = {(𝑥,𝑦) ∈ Z | 0 ≤ 𝑥,𝑦 ≤ 10}
with an edge between two nodes if there is blank space at the border
between the corresponding tiles, defining 𝐸𝐴 . Mapping from the
real space to the abstraction is simply done using truncation:

𝑀 ((𝑥,𝑦)) = (⌊𝑥/10⌋, ⌊𝑦/10⌋)
4https://lemire.me/blog/2017/02/28/how-many-floating-point-numbers-are-in-the-
interval-01/

Because the abstraction has a very small graph, a path from start
to end can be computed efficiently using breadth-first-search. This
results in an abstract path from𝑀 (𝑠) to𝑀 (𝑡).

The challenge is now to use this path to guide Go-Explore in the
real state graph.

3.1 Abstraction-Guided Search
To begin, recall that Go-Explore relies on a cell-assignment func-
tion, which groups real states into cells. In Mazes, each cell will
correspond to an abstract state (a node in the underlying graph),
and the mapping𝑀 from real to abstract states can be used to assign
cells.

When running Go-Explore, the main source of guidance is the
cell selection policy, which determines which cell will be examined
at any given iteration. Typically, this amounts to deciding on a selec-
tion probability for each cell, then choosing the next cell randomly
according to this distribution.

In order to use the abstraction to guide search, we define the
progress score for an abstract state, which indicates distance to the
desired goal. For a given abstract state 𝑎,

progress(𝑠) = 𝐷 (𝑎,𝑀 (𝑡))

This is simply the length of a shortest abstract path from 𝑎 to the
abstract goal. In our examples 𝐷 counts the number of edges on
that path, but in some cases there is a natural weighting scheme
associated with each action the player can take. Figure 2 shows
what this looks like for an example maze.

https://lemire.me/blog/2017/02/28/how-many-floating-point-numbers-are-in-the-interval-01/
https://lemire.me/blog/2017/02/28/how-many-floating-point-numbers-are-in-the-interval-01/
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Figure 4: Progress towards goal over time in 100 randomly-
generated mazes, similar to Fig. 3. Shaded region indicates
95% confidence interval, assuming a normal distribution.

To compute the cell selection probabilities, we use a log-linear
model. For the Mazes example:

𝑝 (𝑠) ∝ exp(−progress(𝑠)/𝛽)
Where 𝛽 is a temperature parameter controlling how strong the

heuristic guidance is (higher means weaker). In our experiments,
𝛽 = 3. A relevant variation (that we do not report on in this paper)
reminiscent of Upper Confidence Trees for MCTS [21] would be to
decrease the selection probability of a cell proportional to howmany
times it has already been sampled (subtracting a term proportional
to the count in the inner terms of the equation above).

3.2 Mazes Discussion
Fig. 4 shows results from adding guidance to Go-Explore on Mazes.
Each method explores for 100,000 steps, using the guidance to
compute selection probabilities for each cell. Lines show how much
of the distance the algorithm has covered over time, with 100%
indicating that it has reached the goal. We consider unguided search
and two types of guidance. Euclidean guidance chooses cells based
on their distance to the goal cell (scaled to [0,1]), while Progress
guidance looks at the graph distance from each cell to the goal. The
curves were obtained by averaging closest approach on a single run
of each algorithm across 100 randomly-generated mazes. Progress
guidance solved (got within 1 pixel of the goal) 55 of the 100 mazes
within the 100,000-step time limit, while unguided and Euclidean-
guided search did not solve any of the mazes.

Notably, Euclidean guidance is about the same as not guiding
the search at all (although may be much better for certain mazes).
This metric decreases (although not necessarily monotonically)
from 1 to 0 in an optimal traversal of the maze, so it might seem
better than unguided search. Euclidean-guided search might do so
poorly because in this setting, the state space is large enough that
the search will never realistically exhaust a dead-end with a good
heuristic value. Receiving even a small amount of incorrect advice
from the heuristic can dramatically slow down search.

Setting the temperature parameter 𝛽 lower (meaning higher
confidence in heuristic values) speeds up progress-guided search,
and with 𝛽 = 1, progress guidance can reliably solve mazes within
60,000 steps. However, this also means that an imperfect heuristic

will slow down the search even more when it gives bad guidance.
In Mazes, we know that the heuristic always gives perfect guidance.
For applying this technique to Super Metroid, we cannot always
trust the abstraction.

4 SUPER METROID
The Mazes toy example discussed in the previous section is useful
for explaining the method of abstraction-guidance and validating
some of the results. However, it is not a very difficult problem,
and it is easy to see how the abstraction-based heuristic provides
extremely good guidance. In order to test our methods in a more
realistic setting, we turned to Super Metroid, a Super Nintendo
game from 1994 [24]. This game has many mechanics that make
designing traditional heuristics difficult. For example, the fact that
the game requires the player to collect items to proceed implies that
strong heuristics will be sensitive to the set of items the player has
collected, not just their distance to some waypoint. The inclusion of
destructible blocks means that traversibility computed over a static
world design is only approximate. The way the game requires the
player to backtrack through familiar parts of the map suggests the
heuristics will need to provide several different scores for a given
point in the world depending on other aspects of the abstracted
game state. To cover a few of these concerns, we use the tile-based
abstraction described in [22] without changes. This abstraction
can be computed automatically for a given part of the game by
reading the level design from the ROM and applying a set of defined
movement rules to compute reachability.

4.1 Abstraction
We performed our experiments in Super Metroid using OpenAI’s
gym-retro library to control the SNES9x emulator.

The abstraction we use has a state space consisting of states

𝑠 = (𝑥, 𝑣, 𝑖, 𝑝)

where 𝑥 is the player character’s world-space position (tuple of
integers), 𝑣 is the velocity (tuple of integers with some additional
information), 𝑖 is the item set, and 𝑝 is the player character’s pose
(stand, jump, morph, or spinjump). The abstract graph𝐴 = (𝑉𝐴, 𝐸𝐴)
is derived from a set of movement rules designed to coarsely approx-
imate the game’s physics.5 In addition to using the same movement
model as prior work [22], we also focus on the same section of
gameplay, shown in Fig. 1. The abstract graph for this portion of
the game has 3,322 states and 13,904 edges. This method for com-
puting the abstract graph scales linearly with the size of the space,
and the graph was generated in 10.06 seconds for this example
segment of the larger world design.

For a graph of this size, the time spent precomputing the progress
scores is still negligible compared to searching within the game.
In a more complex example, finding abstract paths might require
re-applying a more advanced search algorithm like MCTS or Go-
Explore, albeit with a more rudimentary heuristic. Alternatively,
the fidelity of the abstraction could be reduced in a way that results
in a smaller graph.

5Among many other simplifications, the states of all non-player characters are not
modeled in this abstraction.
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The true state of the game is all random-access memory (RAM)
and processor state values for the Super Nintendo Entertainment
System (SNES) during gameplay, which consists of 430,181 bytes of
data. So, the true state graph for the game is impractically large.

The mapping function 𝑀 reads the RAM6 of a given state to
evaluate the abstraction parameters, notably truncating the player
position value to the nearest 16-pixel tile.

Unlike the abstraction used for Mazes, this abstraction for Super
Metroid is imperfect. It contains two major categories of error:

• Overapproximation Error: It may be possible to reach some
abstract states by paths that have no equivalent in the real
space. The model has overestimated the player’s abilities in
some way, and provides incorrect guidance about where to
go.

• Underapproximation Error: It may be possible to reach some
real states along paths considered that have no equivalent in
the abstraction. The model has underestimated the player’s
ability in some way, and cannot provide guidance about
states it believes are impossible.

For example, one overapproximation in the abstraction is the
treatment of breakable blocks: breakable blocks can be treated both
as solid and as air for evaluating the abstract movement model.
In reality of course, they are either broken or not in any given
state. An underapproximation in the abstraction is the absence of
walljumps from the movement model. This causes the model to
underestimate the places that the player can reach.

Because of underapproximation errors, the player may some-
times reach states that the abstraction believes cannot reach the
goal. For these states, the progress score is∞. However, it may be
useful or even necessary to enter these states. For example, the
abstraction does not model crouching, but the player character
must crouch to complete our examples.

To allow the system to reason about these states, we define an
approximate distance function

𝐷approx (𝑠1, 𝑠2) =
{
| |𝑥 (𝑠1) − 𝑥 (𝑠2) | | if 𝑖 (𝑠1) = 𝑖 (𝑠2)
∞ otherwise

This is the Euclidean distance, but only if the two states have
the same item set. When the system discovers a real state where an
underapproximation error has occurred, the corresponding node
𝑎 in the abstraction cannot reach the goal. We first calculate the
closest abstract state 𝑎′ for which progress(𝑎) < ∞ according to
this approximate metric. Then define

progress(𝑠) = progress(𝑠′) + 𝐷𝑎𝑝𝑝𝑟𝑜𝑥 (𝑠, 𝑠′)
This allows the system to correctly select crouching states (and
other states that are not covered by the abstraction). These ap-
proximate values will be increasingly inaccurate as the set of valid
abstract states becomes scarcer. Fortunately, the maximum value
of 𝐷𝑎𝑝𝑝𝑟𝑜𝑥 seen in our experiments was 2.

To handle overapproximation error, we will rely on the search
algorithm to overcome it naturally by eventually finding paths that
perform slightly worse than the faulty abstraction suggests should
be possible. This makes probabilistic cell selection very important,

6https://patrickjohnston.org/ASM/Lists/Super%20Metroid/RAM%20map.asm

as best first cell selection will not be able to overcome this kind of
misguidance.

Finally, in order to practically perform search in Super Metroid,
we must consider the action set. Naively, the SNES controller has
12 buttons, so the branching factor of search is 212 = 4,096. To
reduce this, we recorded one of the authors playing through the
level fragment, and restricted the action set to all button combi-
nations pressed during our play (25 total actions that are enough,
for example, to express jumping while running in various direc-
tions but never using the pause button). The system uses no other
information from this playthrough.

Once Go-Explore selects a cell and a state in that cell, it randomly
selects an action, consisting of a button combination, and number
from 1 to 20 (inclusive). The game is simulated with that button
combination pressed for that many frames to obtain the next new
state. Because the Super Nintendo nominally runs at 60 frames
per second,7 our average step length of 10 frames corresponds to
making decisions about 6 times per virtual second or roughly every
160 virtual milliseconds.

For our experiments, we used progress guidance:

𝑝 (𝑎) ∝ exp(−(progress(𝑎))/𝛽)

4.2 Results
The level design in Fig. 1 shows amap of our SuperMetroid scenarios.
The player starts at the bottom of the elevator (A), in the middle of
the level segment. Their goal is to get past the missile door on the
right side of the screen (E). Since they start with no items, they first
need to obtain the missiles (C) to pass through this door. However,
blocking the entrance to the missiles is a short passageway that
the player cannot walk through (D). To access this passageway,
the player must first travel to the left to obtain the morph ball (B)
that allows them two squeeze through the small passageway. This
example level demonstrates some of the reasons why developing
heuristics for Super Metroid is difficult. Naively traveling towards
the goal will actually make backwards progress (travelling across
terrain that then needs to be backtracked). Traveling towards the
closest item is better, but some items may be impossible to reach as
they require other items to access them, and it may also be necessary
to get much further away in order to eventually get closer.

We break this level design up into multiple segments (skipping
brief cutscenes manually). Referring to Fig. 1, the segments are
A to B, B to C, and D to E. We omit the uninteresting C to D
segment. In each of these scenarios, the cell-selection heuristic
is the same: path lengths in the abstract graph to the goal at E.
The shortest path to E in the abstraction obtains the morph ball
in order to obtain the missiles to pass through the missile door
at E. This means that the goal of reaching E automatically guides
the search from A towards B (and sequentially the other locations)
without having to manually specify B as a waypoint. Table 1 shows
a comparison between author gameplay and automated gameplay
for these scenarios. These values give impression about how long
each segment is, how good the paths found by search are, and how
efficient the search is.

7Our automated gameplay setup, which does not attempt to exploit any form of
parallelism, is typically able to simulate around 500 frames per wall-clock second.

https://patrickjohnston.org/ASM/Lists/Super%20Metroid/RAM%20map.asm
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Scenario Human Gameplay
(frames)

Progress-guided path
length (frames)

Average States
Searched

A to B 460 490 1042
B to C 1240 1855 9248
D to E 500 603 N/A

Table 1: Expert Human and algorithm gameplay data for the three scenarios. Refer to Fig. 1 to see the scenarios. For D to E,
search does not always complete within the time window, so accurate average values are unavailable. Average frames searched
is an average of 5 separate runs.

Figure 5: Summary of exploration progress over time in sev-
eral gameplay segments from the map seen in Fig. 1. Fig-
ures show an average of 5 runs, with 95% confidence interval
shown for each run, assuming a normal distribution. Y-axis
shows the percentage of the total distance traveled over time.

Fig. 5 summarizes our results. As with the Mazes example, we
measure the distance to the goal over time, averaging over 5 play-
throughs. In this case, because Euclidean distance to goal would

be misleading, we report abstraction’s progress score to show how
close the search has gotten to the goal. Progress-guided search
vastly outperforms unguided Go-Explore on the A to B and B to
C segments. Unguided search was never able to find a path within
the time window for these scenarios, while guided search always
found a path within 16,000 frames.

The same does not hold for the D to E segment. This segment
involves traveling up the room on the right, and to do this the
player must climb through the breakable blocks, leaving some in
place to use as platforms. Because the abstraction does not model
breakable blocks correctly, the abstraction guidance is much less
useful during this segment, and unguided search is able to get closer
to the goal more quickly than the guided methods. However, this
is not the whole story: guided search actually found a solution in
two out of five attempts, while unguided search never found a path
to the goal within the time cutoff. This suggests that while guided
search can still stumble upon a solution more easily than unguided
search, it can also be hindered by guidance if it starts out badly.

In addition to mostly outstripping the unguided search, our
abstraction guidance results in massive efficiency gains. In the
paper introducing the Go-Explore algorithm, the authors report
on applying exploration to the simpler Atari game Montezuma’s
Revenge [19], which has some overlapping design elements with
Super Metroid such as the need to backtrack through the world
design as the player collects items. In an experiment they describe,
Go-Explore is set to run a simulation of the Atari game console for
1.2 billion frames (or about 230 virtual days of gameplay), producing
output trajectories of about 8,000 frames in length[10]. By contrast,
by using a stronger heuristic based on guidance tubes, we are able
to find useful trajectories about 3,000 frames long with less than
270,000 frames (or 75 virtual minutes) of gameplay. Table 1 reports
search efficiency for each segment of our Super Metroid scenario.

Once Go-Explore has recovered a path, it can be replayed in
the emulator to produce a video as well as a sequence of button
inputs that reproduces the path. It can also be used as input to other
automated exploration systems like Reveal-More [4].

4.3 Limitations
These results show the promise of using imperfect abstractions
to develop heuristics that still successfully guide search. However,
there are still severe limitations. For example, the missile door on
the far right of the screen is still an effectively impossible obstacle.
To get through this door, the player must select the missiles, then
shoot the door five times in a row. The player has five total missiles,
so if any shot is missed, they will be unable to open the door without
leaving for an entirely different area to refill their missiles. The
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current abstraction is completely unaware of the amount of missiles
that the player has, or the remaining health of the door cap, because
it models the door as a group of breakable blocks that require
missiles.

In testing, the system was never able to discover a way past the
door, and this fact is not surprising. Many paths were discovered
where the player accidentally fires a missile, creating a state where
the player is effectively stuck.Worse, because this does not affect the
heuristic in anyway, the systemwill continue to expand these states,
and create more states that are stuck, in turn making it even less
likely to expand states where opening the door is possible. Even if it
manages to get close enough to the door with the right missile count,
it needs to shoot the door 5 times, then walk through, a sequence
requiring at least 11 consecutive actions. The heuristic does not
give any guidance about which of these states are preferable, and
the branching factor of the space is 25, almost all of which lead to
states that either do not make progress, or become permanently
stuck by missing a shot. In short, this system would have to be
extremely lucky to open the door without first running out of time
or memory.

In this specific case, revising the cell assignment function to
include information about the player’s missile count is relatively
easy. However, it is unrealistic to attempt to resolve all such gaps
by making the abstraction more and more complex (approaching
the complexity and lower execution speed of the original game).
Any kind of feasible abstraction is bound to have some flaws, and
not all of them will be easy to recognize or solve.

A more general alternative approach is to run Go-Explore with
a finer-grained cell representation and leave the abstraction un-
changed. For example, we could make Go-Explore aware of coarse-
grained missile accounts. Although this would proportionally grow
the state space experienced by Go-Explore, it would have the result
of encouraging the algorithm to spread its attention across ways
of reaching abstract states with different missile counts (includ-
ing some where there is enough to pass through the missile door).
Because the goal of our project was to find a role for imperfect
abstractions (rather than engineering new abstractions or new cell
representations), we do not explore the results of this alternative
approach here.

5 FUTUREWORK
A parallel thread of related research deals with learning abstrac-
tions using gameplay data [1, 9, 13, 14]. While often this kind of
learned model is expected to be used in reinforcement learning, this
work shows that search-based methods may also be able to take
advantage of this data, or even be used to bootstrap RL agents. Sim-
pler uses of additional data include improving the action selector
using player data, similar to the LSTM used by Sorochan et al. [28].
Finally, the learned representation demonstrated by Dann et al. in-
cludes probability distributions for action failure [9]. Including this
could allow a system to search for the easiest path, rather than the
shortest path, or even predict the difficultly of paths that players
choose to take.

6 CONCLUSION
In this paper we considered the problem of making more efficient
exploration-based testing systems for videogames. We presented a
method for developing sophisticated heuristics based on abstrac-
tions of those videogames. We used the abstraction to precompute
progress values for the abstract space, then used these values to
guide cell selection in Go-Explore. We demonstrated the effective-
ness of these heuristics on the motivating example of a simple
maze-solving game. We then applied the same technique to quickly
find long (3,000+-step) paths in Super Metroid, a game for which
many naive heuristics will actually hinder search. Overall, our re-
sults show how standard automated testing methods to be applied
to a broader class of games where the system must make intelligent
long-term planning decisions as well as managing movement in
the short-term.
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