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Simple sequence repeats (SSRs) are very common short repeats in eukaryotic genomes. “Long” SSRs are considered
“hypermutable” sequences because they exhibit a high rate of expansion and contraction. Because they are potentially
deleterious, long SSRs tend to be uncommon in coding sequences. However, several genes contain long SSRs in their
exonic sequences. Here, we identify 1,291 human genes that host a mononucleotide SSR long enough to be prone to
expansion or contraction, being called hypermutable hereafter. On the basis of Gene Ontology annotations, we show that
only a restricted number of functions are overrepresented among those hypermutable genes including cell cycle and
maintenance of DNA integrity. Using a probabilistic model, we show that genes involved in these functions are expected
to host long SSRs because they tend to be long and/or are biased in nucleotide composition. Finally, we show that for
almost all functions we observe fewer hypermutable sequences than expected under a neutral model. There are however
interesting exceptions, for example, genes involved in protein and RNA transport, as well as meiosis and mismatch repair
functions that have as many hypermutable genes as expected under neutrality. Conversely, there are functions (e.g.,
collagen-related genes) where hypermutable genes are more often avoided than in other functions. Our results show that,
even though several functions harbor unusually long SSR in their exons, long SSRs are deleterious sequences in almost
all functions and are removed by purifying selection. The strength of this purifying selection however greatly varies from
function to function. We discuss possible explanations for this intriguing result.

Introduction even longer SSRs, prevents their infinite growth (Kruglyak
et al. 1998; Ellegren 2000; Dieringer and Schlotterer 2003).
The nature of the motif itself also greatly modulates the mu-
tation rate. For example, GC-rich SSRs are more unstable
than others (Sagher et al. 1999; Gragg et al. 2002), and long
motifs are more stable than short ones (Rose and Falush
1998; Legendre et al. 2007). Overall, the relative role of
all these factors makes difficult to predict a mutation rate
for a given SSR. However, it remains true that the SSR mu-
tation rate is typically several orders of magnitude higher
than the average substitution rate (Drake et al. 1998).

A number of studies in a wide range of organisms have
attempted to delimit characteristics of SSRs that are predictive
of the variability of the repeats. They concluded that the num-
ber of repeats was among the strongest predictors of the slip-
page probability during replication (Rose and Falush 1998; Lai
and Sun 2003b; Legendre et al. 2007; Kelkar et al. 2008). Re-
peat variability is not an all-or-nothing phenomenon but rather
increases exponentially with increasing number of repeat
units, as initially established in yeast (Sia et al. 1997).

At what length should SSRs be deemed “hypermuta-
ble”? Using a simple probabilistic model, Rose and Falush
(1998) proposed a threshold size for slippage mutations
around 8 bp for mono-, di-, and tetranucleotide SSRs.
Based on a different model, similar thresholds were pro-
posed: 9 units for mononucleotide SSRs (mono-SSRs)
and 4 units for dinucleotide (8 bp) and tetranucleotide
(16 bp) SSRs (Lai and Sun 2003a). Using a human/chim-
panzee complete genome comparison, it appears that, in this
lineage, a mononucleotide of 9 units exhibit a similar mu-
tability than a dinucleotide of 6 units or a tetranucleotide

Microsatellites or simple sequence repeats (SSRs) are
arrays of DNA with short motifs—1-6 nt—repeated in tan-
dem (Tautz 1994). SSRs are ubiquitous in all genomes ex-
plored so far and are especially abundant in eukaryote
genomes (Toth et al. 2000). Strikingly, the number and
the sizes of SSRs in genomes are typically much larger than
expected from simple substitution models (Pupko and
Graur 1999). This overabundance of SSRs is, most likely,
a consequence of their specific mutational properties; these
repeats are prone to expansion and contraction through
polymerase strand slippage (Levinson and Gutman 1987)
and, to a lesser extent, to recombination (Li et al. 2002).
For strand slippage, after the replication fork has run, tem-
plate and neosynthesized strands can be reannealed with the
slippage of one (or more) motifs. If the “mismatch repair”
(MMR) complex does not correct the resulting loop, a sub-
sequent round of replication changes the number of re-
peated units by a specific amount. This translates into an
insertion or a deletion of one (or more) motifs in the SSR.

Various factors have been shown to modulate the rate of
SSR expansion/contraction, although their relative strength
varies from species to species (Toth et al. 2000). It appears
that, for “long” SSRs, contraction prevails over expansion
(Xu et al. 2000). This bias in favor of contraction, along with
a higher chance of being interrupted by a substitution for
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a similar mutability than a dinucleotide of 5 units or a tet-
ranucleotide SSR of 4 units.

Interestingly, similar threshold sizes for mononucleo-
tide and dinucleotide SSRs instability were observed in vi-
tro during polymerase chain reaction (Lai and Sun 2003a;
Shinde et al. 2003). For mono-SSRs, the observation of hu-
man oncogenesis associated with microsatellite instability
(MSI) also highlights 8 units as an instability threshold.
MSI has been shown to underlie hereditary nonpolyposis
colorectal cancer (HNPCC) (Aaltonen et al. 1993). HNPCC
patients carry a germ-line mutation in one of the postrepli-
cative MMR genes, mainly MLH1 or MSH2 (Jacob and
Praz 2002; Woerner et al. 2006). Once the corresponding
normal allele is lost through somatic inactivation, cells be-
come totally devoid of MMR activity and are left with un-
repaired polymerase errors that arise during replication.
Rates of mutation arising in microsatellite repeats are dras-
tically enhanced by mutations affecting postreplicative
DNA MMR (Strand et al. 1993). In this context, only genes
with an SSR of at least 8 nt have been reported to exhibit
a significant instability (Duval and Hamelin 2003; Woerner
et al. 2006; Miquel et al. 2007). Altogether, these results
suggest common features of microsatellite mutation mech-
anisms both in vivo and in vitro with evidence of a slippage
mutation threshold at around 8 or 9 units for mono-SSRs.

SSRs tend to be less common in coding sequences
(Metzgar et al. 2000; Ackermann and Chao 2006) as
a change in nucleotide number often has disastrous func-
tional consequences. If the unit length is a multiple of three,
there will be an expansion or a contraction of the particular
amino acids encoded by the 3-mer (codon). It is well estab-
lished that long expansions of such coding microsatellites
are responsible for many neurodegenerative disorders
(Everett and Wood 2004). When the unit length is not a mul-
tiple of three, a change in unit number produces a frameshift
(Strauss 1999). If the slippage occurs during the replication
process, it may create an allele that contains a premature
stop codon either in somatic cells or in the germ line. Slip-
page can also occur during transcription (Fabre et al. 2002),
leading to abnormal messenger RNA that is usually de-
graded by the nonsense-mediated mRNA decay system
(Conti and Izaurralde 2005). Because SSRs in coding se-
quences are typically associated with deleterious effects,
they tend to be subject to purifying selection. We want to
emphasize that SSRs that have unit lengths that are not a mul-
tiple of three have a direct, harmful potential in coding se-
quences because no slippage can be tolerated; therefore,
they should be even less common within exons. Intriguingly,
it has been observed that many genes involved in DNA re-
pair, including MMR, carry along mono-SSR in their coding
sequences (Mori et al. 2001; Miquel et al. 2007). If these par-
ticular SSR experience an expansion or a contraction, the
MMR system will become deficient and will lead to a higher
mutation rate (as observed in some HNPCC-associated tu-
mors). It has been postulated that a deficient MMR system
could be advantageous when the environment is stressful. In
this case, organisms with a higher mutation rate could adapt
more easily to environmental challenges. Consequently,
mono-SSRs in these genes could have been positively se-
lected for their mutational potential (Moxon and Wills
1999; Chang et al. 2001; Kashi and King 2006).

In the present study, we have detected all strict
SSRs—that is perfect repeats without any “interruption”
in the pattern—in all human genes. We used the presence
of along SSR (with at least 8 [or 9] units for mono-SSR, 5
[or 6] units for di-SSR, and 4 [or 5] units for tetra- and pen-
ta-SSRs) as a proxy for the hypermutability of genes (Rose
and Falush 1998; Lai and Sun 2003b). Even though many
other factors can influence the mutability of genes, the pres-
ence of a long SSR greatly increases the chances for a gene
to be inactivated. Indeed, the probability of a nonsense sub-
stitution is several orders of magnitude lower than the rate
of slippage of a long enough SSR. We found mono-SSRs to
be the most abundant unstable SSR as well as the most bi-
ased in term of hosting genes’ function. Consequently, we
focused our study on mono-SSR and used the term “hyper-
mutable genes” to refer to genes that carry a long (and
therefore potentially unstable) mono-SSR in their coding
sequence hereafter.

Using annotations from the Gene Ontology (GO) da-
tabase (Ashburner et al. 2000), we performed an in silico
functional analysis of all genes that are a priori hypermu-
table. We found a cohesive restricted subset of functions
that are overrepresented among hypermutable genes. To
take into account differences due to the length and the com-
position of genes, we computed for each gene the probabil-
ity to host a long mono-SSR. In this statistical framework,
we observe less hypermutable genes than expected in al-
most all functions, including the ones we found overrepre-
sented. This shows that, typically, hypermutable genes are
removed by purifying from the human genome because of
their deleterious potential. Interestingly, we observe that the
strength of the purifying selection, that removes long mono-
SSR, varies from function to function.

Materials and Methods
Microsatellites in Human-Coding Sequences

We extracted all exons and introns from all transcripts
of the 22,218 genes from the human genome of the database
Ensembl v37. Each gene sequence was then reduced to its
exonic sequences only. When exons of different transcripts
were overlapping, we merged them into an artificial exonic-
like sequence. For each gene, we then concatenated all its
nonredundant exonic-like sequences into a single sequence
and inserted an “X” at each junction. The X tag ensures that
no microsatellite can be detected astride two different
exons. The same procedure was applied to introns to build
up a unique intronic sequence for each gene. We built two
sets, each composed of 22,218 artificial exonic sequences
and 18,384 artificial intronic sequences derived from all
transcripts.

We detected all strict SSRs (no interruption in the
pattern) of a motif whose length ranges from 1 to 5.

Statistics on Mono-SSR

The following model is very similar to previous mod-
els that were used to describe the probability of observing
a given SSR in sequences (de Wachter 1981).

Interestingly, the functional bias of hypermutability is
only driven by mono-SSR. Therefore, the statistical



framework focused on mono-SSR exclusively. Extensions
for longer motifs are given in Robin et al. (2005).

Probability of a Given Mono-SSR

We will give here an approximation of the probability
to observe at least one occurrence of an X-SSR of size m™
(m or more) in a random sequence of L independent letters
of the {A, T, G, and C} alphabet. P, will denote the prob-
ability to generate a nucleotide X in such random sequence.

Let us first note that the number of occurrences of an
X-SSR of size m™, denoted by N,, is exactly the number of
clumps of the m-mer (X),,. A clump of a motif is defined
here as the maximal set of overlapping occurrences of this
motif in the sequence (Robin et al. 2005). The expectation
of N, is thus given by

E(Nx)=(1 — Px) x (Px)" x (L — m + 1),

and N, can be approximate by a Poisson random variable
(Robin et al. 2005). Therefore, we have

P(Nle)zl —P(]\/)(:O)7

where

Expected Size of a Mono-SSR

We first computed, for each sequence and for each type
of nucleotide, the m value that corresponds to P(N, > 1)
> 0.5. This value will be named m,,. If the model fits
the data, a given gene has 50% chance of having its longest
SSR larger than m,,,. We can then affect all genes to either
a “larger” or a “smaller” category depending whether its
longest mono-SSR is larger or smaller than its m; ,. Because
these are independent Bernoulli trials, we expect for a set of
genes that half of it should be in the larger category. We can
then test if the genes tend to have a smaller/larger mono-SSR
than expected using a x> test.

Expected Fraction of Hypermutable Genes

We also computed the expected fraction of genes car-
rying a long mono-SSR (m fixed) in their coding sequences
for a set of genes. To do so, we calculated, for each gene of
this set, the probability of observing at least one mono-SSR
of length m™ of any type of nucleotide (with m = 8 or 9).
We assume that the probability for each type of SSR is in-
dependent. Because m is not very small, this approximation
is reasonable. In a given gene, the probability to find at least
one mono-SSR of length m™ is

P(Nacgr >1)=1 — P(Na=0) x P(Nc=0)
X P(NGZO) X P(NTZO)

The average of all these probabilities for a given func-
tion is an unbiased estimator of the expected fraction of hy-
permutable genes in this function.
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Finally, using this model, we can compute the confi-
dence interval (CI) associated with its expected fraction of
hypermutable gene. To do so, one needs to compute the
probability that, among N genes, each having a probability
P(Na,c. g, 7> 1) to host a mono-SSR at size m*,n genes
have such an SSR. These are N independent Bernoulli trials
with different probabilities of success. We estimate the
probability to obtain at least n hypermutable genes for
a given term by simulations. For each term, we randomly
run N Bernoulli trials with respect to the individual prob-
ability of each gene. This procedure is repeated 10° times
for a given term. The empirical distribution is then used to
compute a 95% CI for a given set of genes.

Functional Group of Human Genes

We used GO (Ashburner et al. 2000) as well as Panther
Ontology (Mi et al. 2005) to assign human genes to func-
tional groups. Both databases are based on organized ontol-
ogies, a controlled vocabulary for the description of gene
products. More precisely, there are constituted of terms
(i.e., GO term or PantherID) that describe a “biological pro-
cess” (BP), a “molecular function” (MF), or a “cellular
component” (CC) (although this latter category does not
exist in Panther Ontology). For all genes, we considered
all available annotations. We retrieved GO terms from En-
sembl (http://www.ensembl.org/biomart/martview/) and
Panther IDs from the Panther database Web page (http://
www.pantherdb.org/).

Here, we defined the level of a term as the number of
nodes that exists between this term and the root of the graph
(Ievel 0). In the cases of multiple paths, we keep the shortest
one. We decided to compare only terms lying at the same
level. We used the annotated term of a gene to browse the
ontologies and collect all its parental terms. For each level,
we considered only genes that have at least one defined
term.

Representation of Gene Functions among the Data Set

We wanted to test if any function were overrepre-
sented among genes carrying a long SSR. For that purpose,
we used a cumulative hypergeometric law (see e.g., Castillo-
Davis and Hartl 2003 as suggested Rivals et al. 2007).

We perform our tests level by level to compare com-
parable terms. For each level of the ontologies, we per-
formed one test per term. To correct for multiple tests,
we considered that terms lying at the same level of the on-
tology were independent and therefore can be corrected us-
ing the Bonferroni correction. On the contrary, we
considered that tests between levels were fully dependent
because they use the same annotations but with different
accuracies.

Results

In this study, we restricted ourselves to strict SSRs that
contain no nucleotide interruption, which tend to stabilize
microsatellites (Ellegren 2004) and thus lower their intrin-
sic mutability. For each of the 22,218 annotated genes in the
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human genome, we detected all strict SSRs in concatenated
exonic and intronic sequences. Because we were interested
in studying genes that are susceptible to direct inactivation
by SSR contraction or expansion, we excluded SSR that
had a unit length that was a multiple of three.

Long SSRs in Coding Sequences Are Mononucleotide
and Dinucleotide SSRs

For each gene, we identified the largest mono-, di-,
tetra-, and pentanucleotide SSR (frameshifting SSR) in ex-
onic and, when available, in intronic sequence. Because the
rate of insertion/deletion grows exponentially with the
number of repeat units (Tran et al. 1997; Legendre et al.
2007), the longest SSR in the exons of a given gene pro-
vides a good approximation for gene hypermutability.

Results (fig. 1) show that all types of SSRs are smaller
in exons than in introns. Indeed, intronic SSRs are four
times longer than exonic SSR for mono-SSR (5.8 vs.
21.9) and 2.5 times longer for pentanucleotide SSR (1.3
vs. 3.4). One could relate this observation to the purifying
selection that acts against the expansion of SSR in coding
sequence; however, intronic sequences are much longer
than exonic sequences (i.e., on average 30 times). Both fac-
tors contribute to this difference, as it will be shown below.

As mentioned above, mono-SSRs are estimated to be
unstable when they reach a length of 8 units (Rose and
Falush 1998) or 9 units (Lai and Sun 2003b). If we consider
a threshold of 8 units, the corresponding mutabilities are
reached for di-, tetra-, and penta-SSRs for 5, 4 and 4 units,
respectively. In this case, the numbers of genes, in the hu-
man genome, having an SSR longer or equal than the
threshold, are 1,291 for mono-SSR (5.8% of all genes),
678 for di-SSR (3.1%), 39 for tetra-SSRs (0.2%), and 11
for penta-SSRs (<0.1%) and a total of 1,935 (8.7%) genes.
Using thresholds of 9, 6, 5, and 5 units for mono-, di-, tetra-,
and penta-SSRs yields to 417 for mono-SSR (1.9%), 116
for di-SSR (0.52%), 8 for tetra-SSRs (<0.1%), and 1 for
penta-SSRs (<<<0.1%) and a total of 475 (2.1%) genes.

If we assume that those thresholds represent the min-
imum numbers of units to observe instability, the SSRs that
mostly participate to gene hypermutability are clearly
mono-SSR and di-SSR.

Hypermutable Genes Are Overrepresented in
a Restricted Subset of Functions

Using either the lower (8 units for mono-SSRs) or the
higher (9 units for mono-SSRs) threshold, we define a set of
genes that have, a priori, a high probability to be disrupted
by a nonsense mutation due to the expansion/contraction of
the SSR they host. We then searched for overrepresented
terms of GO (Ashburner et al. 2000) among the set of genes.

We worked on the subset of 15,385 genes (69% of to-
tal) that had at least one term in one of the three graphs.
Note that 57% of all genes have one term in BP, 63% in
MF, 54% in CC, and 48% in the three. The fraction of genes
with a long SSR within each subset is identical (data not
shown). It is however important to note that more specific
levels are made up of fewer annotated genes.

Longest SSR
tetra — — - penta — —-
T T T T T T T T T 3

Exons ]

105

104 F
1030

102F

Gene Count

105F
104 F
103 [

102f

Gene Count

10F

Units number

Fic. 1.—Distribution of SSR length in human genes. Counts of
human genes that contain an SSR which size is equal or larger than the
value given in x axis. The size is expressed in number of units. We only
report the results for SSRs whose motif length is not a multiple of three.
In the top panel, we report results for exonic sequences, whereas results
for intronic sequences are displayed on the bottom panel. This figure
illustrates that introns carry larger SSRs than exons do and that long SSRs
in exons are mostly mono- or di-SSRs.

From all terms that were annotated at least once in the
human genome (supplementary table S1, Supplementary
Material online), only a few were found overrepresented.
No function was overrepresented if only genes hosting
a long tetra- or a penta-SSR were considered, and their re-
moval has no impact on the results. More surprisingly, there
is no function overrepresented among genes with long di-
SSR, and their removal leaves the results almost unchanged
(supplementary table S2, Supplementary Material online).
Therefore, the only SSRs that are not uniformly distributed
among functions are the mono-SSRs.

Figure 2 shows all terms we found overrepresented in
hypermutable genes when mono-SSRs of 8 bp or more are
considered. Results with mono-SSR of 9 bp are consistent
with the former and are presented in supplementary table S2
(Supplementary Material online). Among the 3,122 BP
terms, only 10 were statistically overrepresented
(fig. 2a). Interestingly, genes with mono-SSRs are enriched
for functions involved in either “cell cycle” or “response to
DNA damage stimulus.” Many of these hypermutable
genes carry both types of annotations or related ones.
The overrepresented terms are more or less precise descrip-
tions of the same subset of functions. Following Alexa et al.
(2006), if we remove the 12 genes that are annotated as
functioning in meiosis (the most specific overrepresented
term), no BP terms are found to be overrepresented. There-
fore, genes with this function are responsible for the more
general terms found to be overrepresented. Because there is
no reason to believe that the most precise terms are most
informative, we present results for all levels.

The same trend is observed for MF (fig. 2b) and CC
(fig. 2¢). In MF, out of the 2,600 terms, only 15 highly
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connected terms are found overrepresented. These terms all
relate to “hydrolase” (especially “ATPase”), “helicase,”
“GTPase regulator,” and “ATP binding.” Removing AT-
Pase and GTPase regulator genes from the data set sup-
presses other overrepresentations in MF. As for CC, only
five terms (out of 583) are overrepresented and all are re-
lated to “nucleus.” The “intracellular nonmembrane-bound
organelle” term encompasses intracellular molecular com-
ponents such as the kinetochores, the chromosomes, and the
nucleosome. Ignoring genes from nucleus does not alter the
overrepresentation in intracellular nonmembrane-bound or-
ganelle and vice versa. Obviously, removing genes anno-
tated by the latter suppresses the overrepresentations of
shallower related terms.

Among Overrepresented Functions, Genes Are Longer
and/or More Biased in Composition

Only a restricted number of functions are overrepre-
sented in hypermutable genes. In the three graphs, these
functions all relate to cell cycle and “DNA maintenance.”
We wanted to test whether genes involved in these func-
tions have a higher chance of hosting a long mono-SSR.
In this respect, we computed, for each gene, the probability
of finding a long mono-SSR (8 bp or more) given its length
and composition. The probability model we used here
assumes that mono-SSRs are only generated by several
independent substitutions that keep the average nucleotide
content of the gene unchanged. It is therefore used to
check whether the presence of a given mono-SSR in a given
gene can be explained by random point mutations only.
This model does not include the possibility of slippage
for modifying the size of coding mono-SSR. Indeed,
insertion or deletion of 1 or 2 units in a coding SSR
whose motif length is not a multiple of three leads to
a frameshift mutation. Thus, fixation of such events must
be extremely rare.

The average probability of having a mono-SSR of 8
units or more in genes involved in the function we find
overrepresented is 0.184, that is higher than 0.142, the av-
erage for the other annotated genes (P << 10~ ', Wilcox-
on U test). This shows that, on average, genes involved in
the function we found overrepresented have a higher prob-
ability to host a long mono-SSR.

Mono-SSRs Are Typically Shorter than Expected in
Exons

Because this model assumes that all substitutions can
occur freely with respect to the gene nucleotide composi-
tion, this model can be used as a neutral model. Indeed, this
model corrects for local composition and therefore for po-
tential local mutation biases. Furthermore, it assumes that
all substitutions occur freely within the sequence, which
implies the neutrality of substitutions. From the comparison
of what is expected under the model to what we observe, we
are able to test for the neutrality of mono-SSR.

We first tested whether the length of mono-SSR, we
observe in genes, is expected under the neutral model.
To do so, we computed for each gene, m,, the size of
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the SSR that corresponds to a probability P = 0.5. If
an SSR originates from several independent selectively
neutral substitutions, half of the genes will have a mono-
SSR larger than m,,, the other half will have a mono-
SSR smaller than m1;,. We counted all genes that were host-
ing a smaller or a larger SSR than m,,. Results are given in
table 1.

In exons, we find that all types of SSRs are smaller
than expected (y” test; P < 10~'%), which agrees with pre-
vious studies (Metzgar et al. 2000; Ackermann and Chao
2006). For introns, we find that G-SSR and C-SSR are small-
er than expected ()(2 test; P < 10716), whereas A-SSR and
T-SSR are longer than expected (3 test; P < 10~ '°). Inter-
estingly, introns where “Alu” were removed by Repeat-
Masker (Smit 1999) show the same pattern. Actually,
masking Alu reduces the length of intronic sequence and
increases the number of sequences that host larger than ex-
pected G-SSR or C-SSRs.

There Are Less Hypermutable Genes than Expected in
Almost All Functions

If we find as many hypermutable genes (i.e., genes
with a mono-SSR of 8 bp or more) as the neutral model
predicts, we will have to acknowledge that long mono-
SSRs are virtually neutral for these genes. If we find
more hypermutable genes than expected, it suggests
that mono-SSRs were positively selected in these genes. In-
deed, in exons, mono-SSRs are created by the accumulation
of substitutions and if they improve the fitness of their
host genome, they will be selected for. If we find less long
mono-SSR than expected, it suggests that mono-SSRs
are removed by purifying selection from the coding
sequences.

In all, 1,291 genes (5.8% of the total) contain a mono-
SSR of 8 units or more. Using the model, we expect 14.2%
of such genes (with a 95% conservative CI of [13.8%,
14.7%]). This again highlights that, on average, there are
less long mono-SSR in genes than expected by chance,
most likely due to their removal by purifying selection.

We further wanted to test if this trend is shared by all
functions taken individually. Therefore, we compared for
each term of GO, the expected fraction of genes with
long mono-SSR to the expected one. Results are shown
in figure 3. Overall, among the functions that have at least
20 genes, 734/1,238 functions (59.3%) exhibit a fraction of
hypermutable genes outside the 95% CI that was computed
under the neutral model—406/679 (59.8%) in BP, 233/404
(57.7%) in MF, and 95/155 (61.3%) in CC. These functions
are colored in blue in figure 3. For all, except one, there are
less hypermutable genes than predicted by the neutral
model. Taking into account also the terms with less than
20 genes, we observe a lower, though significant, number
of terms outside the 95% CI: 788/6,305 terms (12.5%). This
demonstrates that for almost all functions, hypermutable
genes are removed by purifying selection. Considering
mono-SSR of 9 bp or more (instead of 8 bp or more) leads
to identical results (supplementary fig. S1, Supplementary
Material online).

The functions that we found overrepresented among
hypermutable genes (colored in red)—the functions given
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Fic. 2—GO terms overrepresented among hypermutable genes. Here,
overrepresented among hypermutable genes in the human genome. Results

we report for all three branches of the ontology, the functions we found
are given for (a) BP, (b) MF, and (c¢) CC. Each column is a level in the

ontology (the higher the level, the more precise the annotation). It contains ellipses representing overrepresented functions lying at this level. The
encapsulated numbers are the numbers of hypermutable genes in these functions. Genes shared by several functions are given in the intersection of

ellipses. Arrows indicate a complete inclusion into another term at a shallo

wer adjacent level. We also give, under the picture, the total number of

hypermutable genes that is annotated at this level as well as the number among them that is embedded in the functions we found overrepresented.

in figure 2—have a larger observed fraction than the aver-
age. They, however, exhibit usually less hypermutable
genes than expected from neutrality. This shows that even
though we find them overrepresented, hypermutable genes

are also avoided in these functions. It is noteworthy to men-
tion that the hypergeometric statistics we used to estimate
the overrepresentation among hypermutable genes depends
on the number of genes within a term. Therefore, we
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Table 1
Mono-SSR Probability in Human Exons and Introns
Exons Introns Alu-masked Introns

Mono-SSR Smaller Larger Smaller Larger Smaller Larger
A 20,271 1,947 3,441 1,4943 5,045 13,339
T 20,279 1,939 3,254 1,5130 4,458 13,926
G 21,660 558 16,059 2,325 13,651 4,733
C 21,342 976 15,139 3,245 12,484 5,900
Number expected 11,109 11,109 9,192 9,192 9,192 9,192

Note.—For each type of mono-SSRs (A, C, G, and T), we compute for each human gene an expected length value (m,,,) beyond which there is a 50% chance of
finding an SSR of size m,, or longer. Each gene was then assigned to the larger or the smaller category depending on the comparison of the length of its longest mono-SSR
to myp. If the neutral model were fitting, we would expect half of the genes to host a mono-SSR larger than m,,,. This table shows the results for exonic and intronic
sequences and for each type of repeat nucleotide. We also examined intronic sequences masked for Alu sequences because their presence in an intron adds A/T repeats to
these sequences. Deviation from the expectation (0.5 vs. 0.5) is significant for all types of sequences and mono-SSRs (3> test, P < 10~'® for all tests).

observed terms with a high fraction of hypermutable genes
that are not significantly overrepresented (e.g., MMR with
an observed fraction of 26.1%) and, conversely, terms we
found significantly overrepresented even though they ex-
hibit a moderate fraction of hypermutable genes (e.g., “bio-
polymer metabolism,” which has an observed fraction of
7.3%). This latter case happens when the number of genes
is very large for a given function, which improves the
power of the statistical test we used.

Generally, the comparison between the observed and
the expected fraction of hypermutable genes for all terms
(fig. 3) reveals a weak though positive correlation between
the observed and the expected values (r = 0.35 for BP,
r = 0.56 for MF, and r = 0.43 for CC, P << 10~ for
all regressions). This implies that typically the presence
of long mono-SSR in genes can be partially explained
by their length and their nucleotide composition.

The Strength of Purifying Selection Varies from
Function to Function

Results highlight interesting functions that appear dif-
ferent from the others. First, we observed some functions
with a particularly small observed/expected ratio. The most
striking example is the “collagen” term (fig. 3¢) for which
the ratio is 0.075. Even though one would expect a large
proportion (40.0%) of hypermutable genes within this term,
we found only very few (3.1%). Conversely, there are 36
terms with a ratio observed/expected larger than 1 (e.g.,
“endoplasmic reticulum to Golgi transport” as well as mei-
osis and MMR in fig. 3a).

This variation could be solely due to the random sam-
pling of genes within functions. Modeling the probability of
having long mono-SSR under purifying selection may al-
low the test for this hypothesis. As a first approximation, we
used the observed density of long mono-SSR in coding se-
quences to compute an average rate of SSR per base. If all
genes were under the same selective constraints, the num-
ber of SSR per gene should be Poisson distributed with this
average rate multiplied by their length. Accordingly, we
computed the probability to host at least one long mono-
SSR (i.e., to be an hypermutable gene) for all genes. We
then computed, for each function, a 95% CI for the expected
number of hypermutable genes. Among terms with more
than 20 genes, we found 171/1,238 (13.8%) terms outside

the CI; this is larger than the 5% we expected if coding
mono-SSRs were under the same selective pressure in all
functions.

Discussion

In this study, we assumed that all genes hosting a long
enough mono-SSR can be considered as hypermutable
genes. Whatever the chosen threshold for hypermutability,
we show that only a cohesive restricted set of functions are
overrepresented among hypermutable genes. Interestingly,
we show that this is only due to the mono-SSR within
genes, the other type of SSRs being uniformly distributed
among functions. Using a probabilistic model, we were able
to show that mono-SSRs are shorter than expected by
a model of neutral substitution (which is coherent with pre-
vious studies, e.g., Metzgar et al. [2000]; Ackermann and
Chao [2006]) and that hypermutable genes are avoided in
almost all functions. Finally, our study shows that the
strength of purifying selection, that removes hypermutable
genes from the human genomes, varies greatly from func-
tion to function.

SSRs Are Kept Small by Purifying Selection in Exons

The comparison between introns and exons suggests
that frameshifting SSRs are subject to a strong purifying
selection in coding sequences. Indeed, if one considers
that intron evolution is almost neutral, then the length of
intronic SSRs must be solely the consequence of their mu-
tation process. The differences observed between length of
exonic and intronic SSRs reflect the existence of selection
that acts against free expansion of those SSRs in coding
sequence.

Indeed, using a model that predicts the size of the lon-
gest mono-SSR expected in a coding sequence of a given
length and composition, we showed that, in exons, mono-
SSR length is globally smaller than expected. In introns, G/
C-SSRs are also shorter than expected but A/T-SSRs are
usually longer than expected. This is consistent with the
observation that G/C-SSRs are generally smaller than A/
T-SSRs (Li et al. 2002). This suggests that A/T- and G/
C-SSRs should be considered separately. Insertion of
Alu sequences in introns contributes to the abundance of
long A/T-SSRs but is not sufficient to explain their
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FiG. 3.—Expected and observed fractions of hypermutable genes for all GO terms. Here we represent for each term, the observed proportion of
genes that contain a mono-SSR larger than eight as a function of its expected fraction. The terms are extracted from («) BP, (b) MF, and (c) CC
ontologies. The size of each dot is proportional to the total number of genes that term encompasses (taken as discrete intervals: [20, 50], [50, 100], [100,
5001, [500, 10%], and [10?, infinity]). Terms with less than 20 genes were not represented. Terms we found statistically overrepresented among
hypermutable genes (terms from fig. 2) are colored in red. The line represents the ratio observed/expected = 1. Terms that are significantly outside the
95% CI predicted under neutrality are colored in blue. This figure shows that almost all functions contain less genes carrying a long mono-SSR than
expected. This again illustrates that most, if not all, long mono-SSR tends to be removed by purifying selection. Although, it also shows that some
functions (e.g., meiosis, MMR, and “condensed chromosome”) encompass many genes with long mono-SSR along with an observed/expected ratio
close to 1. This suggests that genes involved in those functions are under relaxed purifying selection.

abundance. Because there is no reading frame, one could old size, SSRs experience expansions through replication
imagine that A/T-SSRs can undergo free expansion. The slippage (or recombination) and then become longer than
model we used as a reference assumes that all SSRs are cre-  expected. Obviously, there are additional factors that pre-
ated by an accumulation of substitutions. Beyond a thresh-  vent G/C-SSRs to expand. As for coding sequences, we



suspect that G/C-SSRs are kept short by purifying selection
in introns. Two molecular evidences are compatible with
this hypothesis. First, G-rich tracts are known to adopt un-
usual DNA structure (parallel quadruplex) involved in dif-
ferent biological functions (Sen and Gilbert 1988). Second,
G-rich tracts are also prone to electron transfer that causes
oxidative damage (Hall et al. 1996). For one or the other (or
both) reasons, there is a good chance that G/C-SSRs have
an impact on fitness even in introns. This effect should
equally apply in exons. Those deleterious effects certainly
add up with those previously highlighted (selection against
frameshifts).

Functions of Hypermutable Genes

Despite this global underrepresentation of SSRs in ex-
onic sequences, several genes still host a long SSR. Defin-
ing a threshold for long SSRs is not trivial. Thus, we used
two sets of values that are relevant for the minimum size
beyond which SSRs are subject to expansion and contrac-
tion. It is important to mention that both sets of thresholds
lead to extremely similar results. This highlights the robust-
ness of our results to the choice of a threshold for hyper-
mutability. Among the very large number of terms that
were annotated in the human genes, only a restricted num-
ber exhibits an overrepresentation of hypermutable genes.

Legendre et al. (2007) conducted a similar analysis on
a data set that includes all genes that contain any type of
SSR. BP overrepresented among this data set is different
from the ones we report here. An analysis of the 1,266
genes hosting a long tri-SSR reveals a similar set of func-
tions (data not shown), with the exception of neurogenesis
and related terms. We suspect that the difference in metric
for hypermutability explains this difference. Because many
neurological disorders are caused by the presence of a cod-
ing tri-SSR, we conclude that the overrepresentation of the
functions described by Legendre et al. is mainly driven by
genes hosting a tri-SSR that we ignored in our study.

Importantly, one could argue that this is a consequence
of large duplicate families that share often the same anno-
tations. However, using Ensembl definition of gene family
(Enright et al. 2002), we computed for each function the
fraction of genes that contain a duplicate within the func-
tion. No differences were observed between the overrepre-
sented functions and the others (0.35 vs. 0.41, P = 0.18
when considering all genes, 0.25 vs. 0.31, P = 0.32 when
considering genes with mono-SSR, Mann—Whitney U test).
Therefore, this overrepresentation is not an artifact of large
duplicate families. Our analysis shows that those functions
are generally devoted to cell cycle and maintenance of
genome integrity (DNA repair, meiosis, cell cycle, helicase
domain—containing genes, nuclear localized genes, etc.). It
should be mentioned that a similar set of functions is over-
represented among genes that host at least two long mono-
SSRs (data not shown). Furthermore, the same analysis
with annotations from PantherDB (Mi et al. 2005)
also leads to a similar set of functions (data not shown).
Overall, we think that our results are robust to the most ob-
vious artifacts and that the restricted cohesive set of func-
tions we find overrepresented in hypermutable genes are
meaningful.
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The Strength of Purifying Selection against
Hypermutable Genes Varies from Function to Function

We computed an expected fraction of hypermutable
genes in all functional groups of genes and compared it with
the observed fraction. We show that almost all functions
clearly harbor less hypermutable genes than expected under
neutrality. This strongly suggests that the vast majority of
long mono-SSRs are kept out of coding sequences by pu-
rifying selection.

Functions overrepresented among the hypermutable
genes (i.e., those dedicated to genomic stability and cell cy-
cle) are expected to contain a large fraction of hypermutable
genes. They are longer and/or more biased in composition
than the average genes. Therefore, the overrepresentation of
hypermutable genes in those functions can be explained by
the length and the nucleotide composition of genes among
those functions. This points out the importance of using
a statistical framework that tests for the effect of length
and composition of the genes.

An overestimation of the expected number of long
mono-SSRs would diminish the strength of the purifying
selection we observe. At least three properties of DNA-
coding sequences were neglected in our model. First, slip-
page process was ignored, although almost none is expected
in coding sequence. Slippage, however, leads to larger
mono-SSR than what is observed in coding sequence. There-
fore, ignoring slippage lowers the expected number and size
of mono-SSR. Second, we also ignored the dependency of
nucleotide context in coding sequences. We estimated the
probabilities of mono-SSR in coding sequences using a sim-
ulated data set of random sequences modeled by a Markov
model of size 2 (using the frequency of the 3-mers). Using
these probabilities instead of the one given by the Poisson
model does not qualitatively changes our results. Finally, we
ignored the amino acid sequences of the genes. Ackermann
and Chao (2006) fixed the amino acid sequences of genes
and showed that mono-SSRs are underrepresented.

There are few functions for which we observed as
many hypermutable genes as expected under a neutral
model. For these functions, long mono-SSRs are virtually
neutral. On another extreme, we shall consider functions
that are expected to contain long mono-SSR but do not
(e.g., cytoskeleton- and collagen-related genes). Overall,
we have to acknowledge that the strength of the purifying
selection that acts against long mono-SSR varies from func-
tion to function, from very strong (e.g., for collagen) up to
its complete absence (e.g., for ER to Golgi transport). We
can propose several hypotheses to explain this observation.

First, the rate of instability for SSR within the same
genome may greatly vary from one locus to another. There-
fore, we can imagine that the hypermutable genes are lo-
cated in peculiar loci in the genome where SSRs are
stabilized.

Alternatively, it is possible that the functions where
mono-SSRs are apparently neutral could be composed of
genes that are more “dispensable” than others. Here we
used dispensable to refer to a low cost in fitness when
the gene is not properly expressed. For the human genome,
we however do not have a list of phenotype associated with
the absence of all genes. The use of Online Mendelian
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Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim/)
seems inappropriate because although half of the genes
carry an entry, the entries clearly do not have the same
meaning in terms of individual fitness and the genes with
no annotation cannot be considered as dispensable.

Finally, it is possible that the apparent neutrality of
SSR could be the result of a balance between positive
and negative selection. If the expression of a gene is asso-
ciated to sometimes positive, sometimes negative fitness,
one could imagine that the evolution of such a gene would
look neutral even though it is always under selection. Here,
we find that genes that host a long SSR are devoted to the
maintenance of DNA integrity. Why did such genes retain
hypermutable motifs in their coding sequences? Previous
studies (Moxon and Wills 1999; Chang et al. 2001;
Rocha et al. 2002; Kashi and King 2006) reported the
presence of long mono-SSR in MMR genes and proposed
that these genes tune the global mutation rate of the organ-
ism by switching on and off after a loss-of-frame mutation
caused by replication slippage. Mutator phenotypes, gener-
ally caused by a mutated MMR gene (Rosenberg et al.
1998), have been shown to be evolutionary advantageous
in bacteria facing an environmental challenge (Taddei et al.
1997). Among a population under stress, individuals
with a new advantageous mutation (most likely individuals
bearing the mutator allele) will improve in fitness. Thus,
this advantageous mutation will increase in frequency along
with the mutator (by hitchhiking). If genetic linkage is
likely to be strong in bacteria, it is not in eukaryotes. There-
fore, the possibility of mutators in the human lineage
seems difficult. We can nonetheless intuitively suspect that
selection could favor a premutator state (i.e., unstable
mono-SSR hosted in coding sequence) in some function
(e.g., genes devoted to genomic stability), although it would
require more theoretical investigations that will not be
conducted here.

It seems difficult at this stage to definitely support or
reject one of the hypotheses. However, we would like to
mention that the last hypothesis (hidden positive selection)
should be regarded with caution. If long mono-SSR looks
neutral in these genes, the most parsimonious explanation is
that they are neutral.

As a consequence, we do not favor this “oscillating
mode of selection” hypothesis and challenge the existence
of mutator genes in human and more generally in
eukaryotes.

Conclusion

The hypermutability of the human genes (when con-
sidering only potentially unstable SSR) is typically a conse-
quence of their length and/or nucleotide composition. Most
long SSRs are removed from coding sequence by purifying
selection. However, a restricted set of functions seems to be
insensitive to the presence of a priori deleterious long SSR.
The mystery of this apparent relaxed purifying selection
needs more thought and data. In that respect, we think that
there is a need for more theory along with a phylogenetic
perspective on the evolution of coding SSR to gather further
insight in this unclosed debate.

Supplementary Material

Supplementary figure S1 and tables S1 and S2 are
available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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