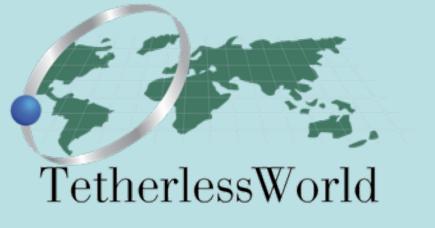


IN33B-0125: Heterogeneity and Heterarchy: How far can network analyses in Earth and space sciences take us?

Peter Arthur Fox (pfox@cs.rpi.edu), Ahmed Eleish (<u>eleisa@rpi.edu</u>), Congrui Li (<u>lic10@rpi.edu</u>), Mark Parsons (parsom3@rpi.edu), Anirudh Prabhu* (prabha2@rpi.edu), and Hao Zhong (zhongh3@rpi.edu) Rensselaer Polytechnic Institute, **Tetherless World Constellation, Troy, NY, United States.**


Abstract

- The vast majority of explorations of Earth systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or conceptual/ semantic, level.
- Recent successes in the application of complex network theory and algorithms to minerology, fossils and proteins (and the basic elements they feature) over billions of years of Earth's history, raise expectations that more general graph-based approaches offer the opportunity for new discoveries = needles instead of haystacks.
- \Rightarrow In the past ~ 10 years in the natural sciences there has substantial progress in providing both specialists and nonspecialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier.
- The corresponding open-world semantics and reasoning provide higher-level interconnections. Data is embedded in the network!
- That is, semantics provided around the data structures, using open-source tools, allow for discovery at the knowledge level.
- This presentation covers the fundamentals of data-rich network analyses for geosciences, provide illustrative examples in mineral evolution and offer future paths for consideration. And then: what might be possible?

Sponsors:

W.M. KECK

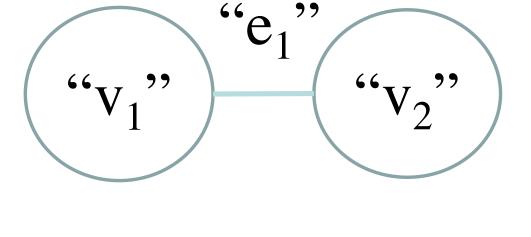
DEEP CARBON

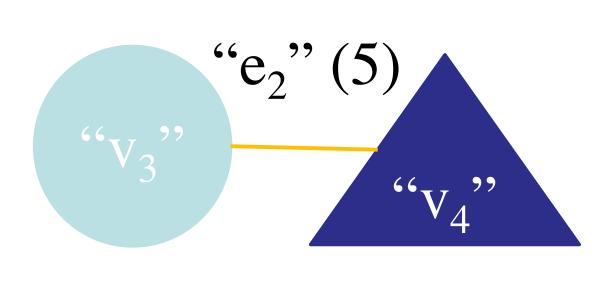
OBSERVATORY

Alfred P. Sloan

FOUNDATION

Poster: IN33B-0125* **Glossary**: **RPI – Rensselaer Polytechnic Institute**


DCO – Deep Carbon Observatory **DTDI – Deep Time Data Infrastructure** PALEOBIODB – Paleo Biology Data Base **PROTDB – Protein Data Base**


Acknowledgments:

Many thanks to the teams of researchers for the DTDI project: at Carnegie Institution for Science (Morrison, Liu et al.) for supporting domain use cases and scientific information in mineralogy; at Arizona State University for mineral data resources (RRUFF.INFO); at Rutgers (Bromberg et al.) for protein evolution; at Harvard (Muscente et al.) for fossil evolution; and to the DCO Data Science Team for their efforts of raw data extraction, algorithm extraction and general commentary: Xiaogang (Marshall) Ma, Han Wang, Benno Lee, Feifei Pan and Fang Huang.

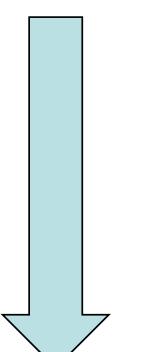
Networks

- A network is a graph, G = (V, E)
- V: set of labeled vertices $(v_1, ..., v_n)$
- E: set of labeled edges (e₁, ...e_n)
- Node attributes
- Node shape, size, color
- Can represent attributes in the data
- Link weights
- Link length, width, color, shape
- Values can be assigned to edges as weights to the relationship between 2 nodes

Metrics

Local (single node)

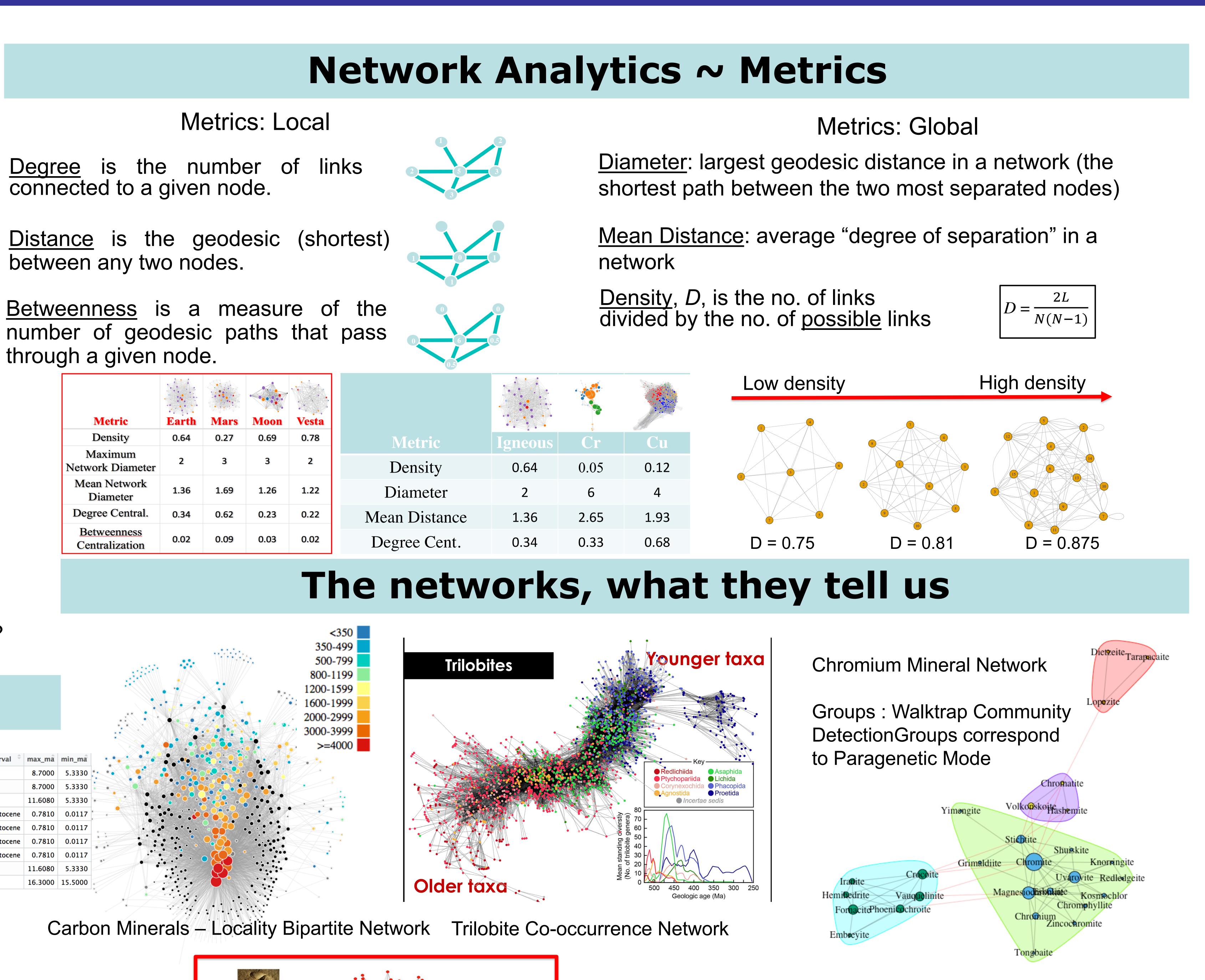
- How "important" is one node?
- Does one node communicate between two distinct groups?

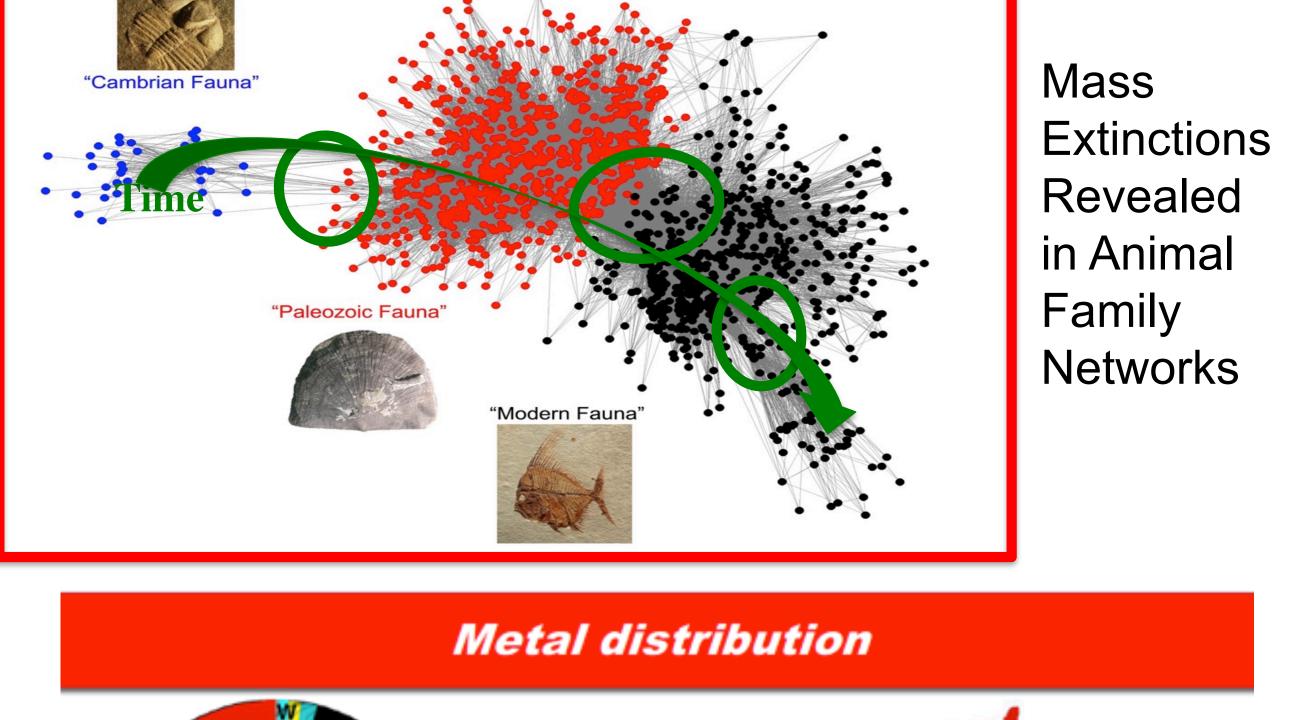

Global (entire network)

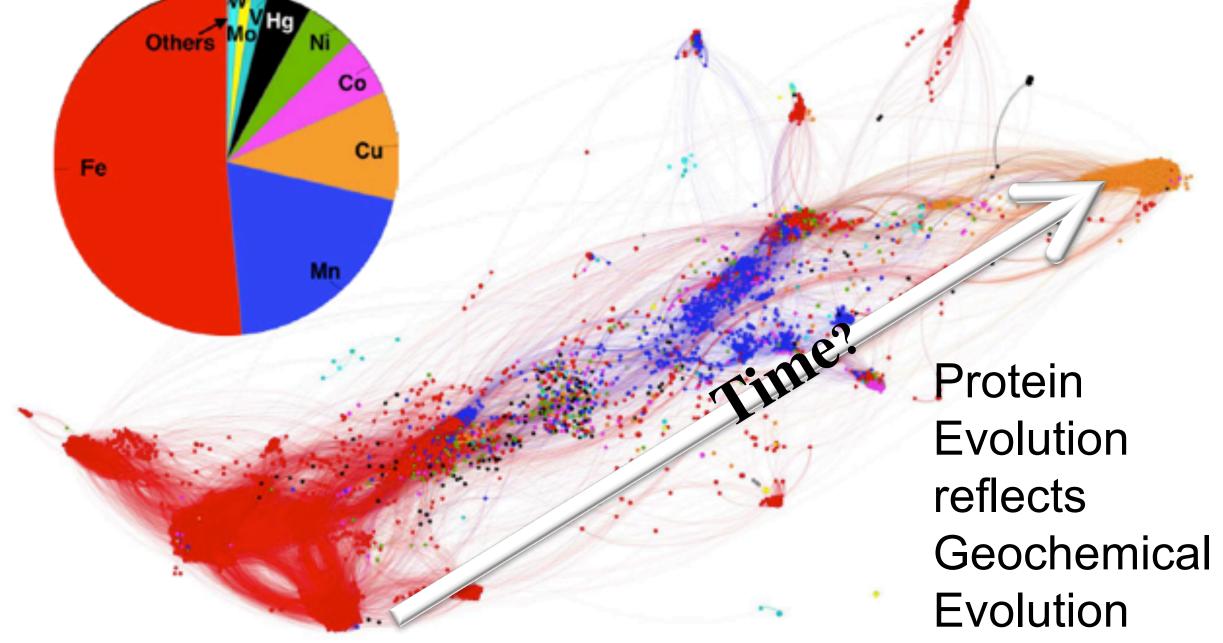
- Is the network highly interconnected?
- Does the network form distinct groups or clusters?

Data types/ structures

NAMES	RRUFF ID	IDEAL CHEMISTRY	SOURCE	LOCALITY
Akatoreite	R060230	$Mn^{2+}{}_{9}Al_{2}Si_{8}O_{24}(OH)_{8}$	Michael Scott S100146	near mouth of Akatore Creek, Taieri, Otago Province, New Zealand
Akrochordite	R100028	$Mn^{2+}{}_{5}(AsO_{4})_{2}(OH)_{4} \cdot 4H_{2}O$	William W. Pinch	Langban, Filipstad, Varmland, Sweden
Alabandite	R070174	MnS	Michael Scott S101601	Mina Preciosa, Sangue de Cristo, Puebla, Mexico
Allactite	R070175	$Mn^{2+}_7(AsO_4)_2(OH)_8$	Michael Scott S102971	Langban, Filipstad, Varmland, Sweden
Allactite	R150120	Mn ²⁺ 7(AsO ₄)2(OH)8	Steven Kuitems	Sterling Mine, 1200' Level, Ogdensburg, New Jersey, USA
Alleghanvite	R060904	$Mn^{2+}{}_{5}(SiO_{4})_{2}(OH)_{2}$	Michael Scott S100995	Near Bald Knob, Alleghany County, North Carolina, USA


accepted_name	accepted_attr	accepted_rank	accepted_no	early_interval	late_interv
Lufengpithecus	NA	genus	89270	Turolian	NA
Laccopithecus robustus	NA	species	58366	Turolian	NA
Sivapithecus indicus	NA	species	133676	Late Miocene	NA
Hylobatidae	NA	family	40889	Middle Pleistocene	Late Pleisto
Pongo pygmaeus	NA	species	232338	Middle Pleistocene	Late Pleisto
Macaca	NA	genus	40869	Middle Pleistocene	Late Pleisto
Trachypithecus	NA	genus	92697	Middle Pleistocene	Late Pleisto
Indraloris himalayensis	NA	species	101101	Late Miocene	NA
Aotus dindensis	NA	species	143115	Friasian	NA




source	target	value
Abenakiite-(Ce)	Adamsite-(Y)	0.83333333
Agricolaite	Albrechtschraufite	0.83333333
Adamsite-(Y)	Alexkhomyakovite	0.85714286
Adamsite-(Y)	Alstonite	0.9444444
Alexkhomyakovite	Alstonite	0.85714286
Aerinite	Alumohydrocalcite	0.96
Alloriite	Alumohydrocalcite	0.83333333
Alstonite	Alumohydrocalcite	0.97468354
Abenakiite-(Ce)	Ancylite-(Ce)	0.83333333
Adamsite-(Y)	Ancylite-(Ce)	0.83333333
Agricolaite	Ancylite-(Ce)	0.85714286
Albrechtschraufite	Ancylite-(Ce)	0.83333333
Alexkhomyakovite	Ancylite-(Ce)	0.85714286

·						
	taxon $ arrow$	group ‡		from [‡]	¢	value 🍦
1	Aaleniella	4 (Mz)	1	Aaleniella	Aaleniella	1
2	Aaptochiton	6 (Pz1)	2	Aaleniella	Acrocoelites	1
3	Aatocrinus	6 (Pz1)			Acrocochices	-
4	Abactinocrinus	6 (Pz1)	3	Aaleniella	Acrocythere	1
5	Abadehceras	6 (Pz1)	4	Aaleniella	Amphitrochus	1
6	Abadiella	1 (Cam)	5	Aaleniella	Aphelocythere	1
7	Abadzekhia	2 (CzC)	6	Aaleniella	Bairdia	1
8	Abakania	1 (Cam)	7	Aaleniella	Belbekella	1
9	Abakanicyathus	1 (Cam)	/	Adlemena	Delbekella	L
10	Abakolia	1 (Cam)	8	Aaleniella	Brevibelus	1

	Chalcopyrite	Malachite	Chalcocite	Bornite	Azurite	Tetrahedrite	Covellite		X1 [‡]	Abakania	Abakoliā	Abdulinaspis	Abharellâ	Acadagnostuŝ	Acadolenuŝ
Chalcopyrite	25179	6949	3935	4376	3298	3654	3215	1	Abakania		4 ()	0 0	0	0 (
Malachite	6949	11439	2920	2437	4603	1564	2089	2	Abakolia		0	3	0 (0	0 (
Chalcocite	3935	2920	5330	2468	1706	1034	1935	3	Abdulinaspis		0) 1	5 (0 (
Bornite	4376	2437	2468	5197	1414	1094	1695							-	
Azurite	3298	4603	1706	1414	5197	1071	1294	4	Abharella		0 ()	0	1	0 (
Tetrahedrite	3654	1564	1034	1094	1071	5010	1122	5	Acadagnostus		0 0)	0 0	0	4
Covellite	3215	2089	1935	1695	1294	1122	3774	6	Acadolenus		0 0)	0 0	0	1 4

How Far/Future work

- Network visualizations and analyses are applicable to data from many different domains.
- Network renderings of large datasets allow us to detect trends and patterns that may not be readily apparent.
- Applying network analysis methods allows us to characterize and quantify relationships across multiple dimensions.
- Future: Currently exploring: tripartite networks, 3-D networks, Virtual Reality renderings, and multinetwork evolution, multiplex networks.
- How far?: Visual analyses are limited by human cognitive load; networks must be built incrementally. Need: phase space for network metrics.