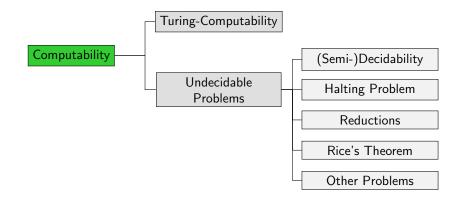
Theory of Computer Science D2. Recursive Enumerability and Decidability

Gabriele Röger

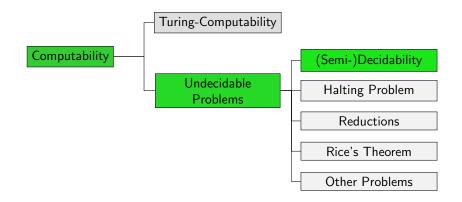
University of Basel

April 10, 2019

Overview: Computability Theory



Overview: Computability Theory



Introduction	Encoding/Decoding Functions	Semi-Decidability	Decidability	
0000				

Introduction

Guiding Question

Guiding question for next chapters:

Which kinds of problems cannot be solved by a computer?

Computable Functions

For a higher level of abstraction, we consider the Church-Turing thesis to be correct (we will further back this up in part F).

- Instead of saying Turing-computable, we just say computable.
- Instead of presenting TMs we use pseudo-code.
- Instead of only considering computable functions over words (Σ* →_p Σ*) or numbers (ℕ^k₀ →_p ℕ₀), we permit arbitrary domains and codomains (e.g., Σ* →_p {0,1}, ℕ₀ → Σ*), ignoring details of encoding.

Introduction

Computability vs. Decidability

- last chapter: computability of functions
- now: analogous concept for languages

Why languages?

- Only yes/no questions ("Is w ∈ L?") instead of general function computation ("What is f(w)?") makes it easier to investigate questions.
- Results are directly transferable to the more general problem of computing arbitrary functions. (~> "playing 20 questions")

How do we proceed?

- We first get to know computable functions for encoding pairs of numbers as numbers (later used for dovetailing).
- Then we consider two new concepts
 - recursive enumerability and
 - semi-decidability

and relate them to each other and earlier concepts.

Afterwards, we require termination of algorithms
 decidability

	Encoding/Decoding Functions		Semi-Decidability	Decidability	
00000	0000	00000			

Encoding/Decoding Functions

Encoding and Decoding: Binary Encode

Consider the function $\textit{encode}: \mathbb{N}_0^2 \rightarrow \mathbb{N}_0$ with:

$$encode(x,y) := {x+y+1 \choose 2} + x$$

- encode is known as the Cantor pairing function (German: Cantorsche Paarungsfunktion)
- encode is computable
- encode is bijective

	<i>x</i> = 0	x = 1	<i>x</i> = 2	<i>x</i> = 3	<i>x</i> = 4
y = 0	0	2	5	9	14
y = 1	1	4	8	13	19
y = 2	3	7	12	18	25
y = 3	6	11	17	24	32
y = 4	10	16	23	31	40

Encoding and Decoding: Binary Decode

Consider the inverse functions

 $\textit{decode}_1: \mathbb{N}_0 \rightarrow \mathbb{N}_0$ and $\textit{decode}_2: \mathbb{N}_0 \rightarrow \mathbb{N}_0$ of encode:

 $decode_1(encode(x, y)) = x$ $decode_2(encode(x, y)) = y$

■ *decode*₁ and *decode*₂ are computable

Encoding/Decoding Functions	Semi-Decidability	Decidability	
0000			

Questions

Questions?

Encoding/Decoding Functions	Recursive Enumerability	Semi-Decidability	Decidability	
	00000			

Recursive Enumerability

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language $L \subseteq \Sigma^*$ is called recursively enumerable if $L = \emptyset$ or if there is a total and computable function $f: \mathbb{N}_0 \to \Sigma^*$ such that

$$L = \{f(0), f(1), f(2) \dots \}.$$

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzählbar, f zählt L (rekursiv) auf → do not confuse with "abzählbar" (countable)

$$\Sigma = \{a, b\}, f(x) = a^{x}$$

$$\Sigma = \{a, b, \dots, z\}, f(x) = \begin{cases} \text{hund} & \text{if } x \mod 3 = 0\\ \text{katze} & \text{if } x \mod 3 = 1\\ \text{superpapagei} & \text{if } x \mod 3 = 2 \end{cases}$$

$$\Sigma = \{0, \dots, 9\}, f(x) = \begin{cases} 2^{x} - 1 \text{ (as digits)} & \text{if } 2^{x} - 1 \text{ prime}\\ 3 & \text{otherwise} \end{cases}$$

$$\Sigma = \{a, b\}, f(x) = a^{x}$$

$$\Sigma = \{a, b, \dots, z\}, f(x) = \begin{cases} \text{hund} & \text{if } x \mod 3 = 0\\ \text{katze} & \text{if } x \mod 3 = 1\\ \text{superpapagei} & \text{if } x \mod 3 = 2 \end{cases}$$

$$\Sigma = \{0, \dots, 9\}, f(x) = \begin{cases} 2^{x} - 1 \text{ (as digits)} & \text{if } 2^{x} - 1 \text{ prime}\\ 3 & \text{otherwise} \end{cases}$$

•
$$\Sigma = \{a, b\}, f(x) = a^x$$
 enumerates $\{\varepsilon, a, aa, ...\}$.
• $\Sigma = \{a, b, ..., z\}, f(x) = \begin{cases} \text{hund} & \text{if } x \mod 3 = 0\\ \text{katze} & \text{if } x \mod 3 = 1\\ \text{superpapagei} & \text{if } x \mod 3 = 2 \end{cases}$

$$\begin{cases} 2^x = 1 \text{ (as digits)} & \text{if } 2^x = 1 \text{ prime} \end{cases}$$

$$\Sigma = \{0, \dots, 9\}, f(x) = \begin{cases} 2 & -1 \text{ (as digits)} & \text{if } 2 & -1 \text{ prime} \\ 3 & \text{otherwise} \end{cases}$$

•
$$\Sigma = \{a, b\}, f(x) = a^x$$
 enumerates $\{\varepsilon, a, aa, ...\}$.
• $\Sigma = \{a, b, ..., z\}, f(x) = \begin{cases} hund & \text{if } x \mod 3 = 0\\ katze & \text{if } x \mod 3 = 1\\ superpapagei & \text{if } x \mod 3 = 2 \end{cases}$
• $\Sigma = \{0, ..., 9\}, f(x) = \begin{cases} 2^x - 1 \text{ (as digits)} & \text{if } 2^x - 1 \text{ prime}\\ 3 & \text{otherwise} \end{cases}$

$$\Sigma = \{a, b\}, f(x) = a^{x} \text{ enumerates } \{\varepsilon, a, aa, ...\}.$$

$$\Sigma = \{a, b, ..., z\}, f(x) = \begin{cases} \text{hund} & \text{if } x \mod 3 = 0\\ \text{katze} & \text{if } x \mod 3 = 1\\ \text{superpapagei} & \text{if } x \mod 3 = 2\\ \text{enumerates } \{\text{hund, katze, superpapagei}\}.\end{cases}$$

$$\Sigma = \{0, ..., 9\}, f(x) = \begin{cases} 2^{x} - 1 \text{ (as digits)} & \text{if } 2^{x} - 1 \text{ prime}\\ 3 & \text{otherwise} \end{cases}$$

$$\Sigma = \{a, b\}, f(x) = a^{x} \text{ enumerates } \{\varepsilon, a, aa, \dots\}.$$

$$\Sigma = \{a, b, \dots, z\}, f(x) = \begin{cases} \text{hund} & \text{if } x \mod 3 = 0\\ \text{katze} & \text{if } x \mod 3 = 1\\ \text{superpapagei} & \text{if } x \mod 3 = 2\\ \text{enumerates } \{\text{hund, katze, superpapagei}\}.\end{cases}$$

$$\Sigma = \{0, \dots, 9\}, f(x) = \begin{cases} 2^{x} - 1 \text{ (as digits)} & \text{if } 2^{x} - 1 \text{ prime}\\ 3 & \text{otherwise} \end{cases}$$

•
$$\Sigma = \{a, b\}, f(x) = a^x$$
 enumerates $\{\varepsilon, a, aa, ...\}.$
• $\Sigma = \{a, b, ..., z\}, f(x) = \begin{cases} hund & \text{if } x \mod 3 = 0\\ katze & \text{if } x \mod 3 = 1\\ superpapagei & \text{if } x \mod 3 = 2\\ enumerates \{hund, katze, superpapagei\}. \end{cases}$
• $\Sigma = \{0, ..., 9\}, f(x) = \begin{cases} 2^x - 1 \text{ (as digits)} & \text{if } 2^x - 1 \text{ prime}\\ 3 & \text{otherwise}\\ enumerates Mersenne primes. \end{cases}$

Encoding/Decoding Functions	Recursive Enumerability 000●0	Semi-Decidability 00000000	

For every alphabet Σ , the language Σ^* can be recursively enumerated with a function $f_{\Sigma^*} : \mathbb{N}_0 \to \Sigma^*$. (How?)

Encoding/Decoding Functions	Recursive Enumerability	Semi-Decidability	Decidability	
	00000			

Questions

Questions?

Encoding/Decoding Functions	Semi-Decidability	Decidability	
	00000000		

Semi-Decidability

Semi-Decidability

Definition (Semi-Decidable)

A language $L \subseteq \Sigma^*$ is called semi-decidable if the following function $\chi'_L : \Sigma^* \to_p \{0, 1\}$ is computable.

Here, for all $w \in \Sigma^*$:

$$\chi'_L(w) = egin{cases} 1 & ext{if } w \in L \ undefined & ext{if } w
otin L \end{cases}$$

German: semi-entscheidbar

Type-0 Languages vs. Semi-Decidability

- Consider a DTM *M* that accepts a language *L*.
- On input w
 - *M* stops after a finite number of steps in an end state if $w \in L$.
 - For $w \notin L$, the computation does not terminate.
- We can easily create a DTM M' from M that computes \(\chi_L\). (How?)

Type-0 Languages vs. Semi-Decidability

- Consider a DTM *M* that accepts a language *L*.
- On input w
 - *M* stops after a finite number of steps in an end state if $w \in L$.
 - For $w \notin L$, the computation does not terminate.
- We can easily create a DTM M' from M that computes \u03c8'_L. (How?)
- Vice versa, given a DTM that computes χ'_L for some language L, we can derive a DTM that accepts L.

Type-0 Languages vs. Semi-Decidability

- Consider a DTM *M* that accepts a language *L*.
- On input w
 - *M* stops after a finite number of steps in an end state if $w \in L$.
 - For $w \notin L$, the computation does not terminate.
- We can easily create a DTM M' from M that computes \u03c8'_L. (How?)
- Vice versa, given a DTM that computes χ'_L for some language L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)

A language L is of type 0 iff L is semi-decidable.

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case $L = \emptyset$ is not a problem. (Why?)

Thus, let $L \neq \emptyset$ be a language over the alphabet Σ .

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case $L = \emptyset$ is not a problem. (Why?)

Thus, let $L \neq \emptyset$ be a language over the alphabet Σ .

```
(⇒): L is recursively enumerable.
Let f be a function that enumerates L.
Then this is a semi-decision procedure for L, given input w:
FOR n := 0, 1, 2, 3, ... DO
IF f(n) = w THEN
RETURN 1
END
DONE
```

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(\Leftarrow): *L* is semi-decidable with semi-decision procedure *M*. Choose $\tilde{w} \in L$ arbitrarily. (We have $L \neq \emptyset$.)

Define:

$$f(n) = \begin{cases} f_{\Sigma^*}(x) & \text{if } n \text{ is the encoding of pair } \langle x, y \rangle \\ & \text{and } M \text{ executed on } f_{\Sigma^*}(x) \text{ stops in } y \text{ steps} \\ & \tilde{w} & \text{otherwise} \end{cases}$$

f is total and computable and has codomain L. Therefore f enumerates L.

f uses idea of dovetailing: interleaving unboundedly many computations by starting new computations dynamically forever

Characterizations of Semi-Decidability

Theorem

Let L be a language. The following statements are equivalent:

- L is semi-decidable.
- 2 L is recursively enumerable.
- I is of type 0.
- $L = \mathcal{L}(M)$ for some Turing machine M
- χ'_L is (Turing-) computable.
- I is the domain of a computable function.
- L is the codomain of a computable function.

Characterizations of Semi-Decidability: Proof (1)

Proof.

- $(1) \Leftrightarrow (5)$: definition of semi-decidability
- $(1) \Leftrightarrow (2)$: earlier theorem in this chapter
- (4) \Leftrightarrow (5): earlier theorem in this chapter
- (3) \Leftrightarrow (4): from Chapter C8
- (5) \Rightarrow (6): χ'_L is computable with domain L
- (6) \Rightarrow (5): to compute χ'_L , compute a function with domain *L*, then return 1

(2) \Rightarrow (7): use a function enumerating *L* (special case $L = \emptyset$) ...

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(7) \Rightarrow (2): If $L = \emptyset$, obvious.

Otherwise, choose $\tilde{w} \in L$ arbitrarily, and let M be an algorithm computing $g: \Sigma^* \to_p \Sigma^*$ with codomain L.

To compute a function f enumerating L,

use the same dovetailing idea as in our earlier proof:

$$f(n) = \begin{cases} g(f_{\Sigma^*}(x)) & \text{if } n \text{ is the encoding of pair } \langle x, y \rangle \\ & \text{and } M \text{ executed on } f_{\Sigma^*}(x) \text{ stops in } y \text{ steps} \\ \tilde{w} & \text{otherwise} \end{cases}$$

Encoding/Decoding Functions	Semi-Decidability	Decidability	
	00000000		

Questions

Questions?

Encoding/Decoding Functions	Semi-Decidability	Decidability	
		0000000	

Decidability

Semi-Decidability

Definition (Semi-Decidable)

A language $L \subseteq \Sigma^*$ is called semi-decidable if $\chi'_L : \Sigma^* \to_p \{0, 1\}$ is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L'(w) = egin{cases} 1 & ext{if } w \in L \ undefined & ext{if } w
otin L \end{cases}$$

For $w \notin L$, the computation does not (have to) terminate.

Encoding/Decoding Functions	Semi-Decidability 000000000	Decidability 00●00000	

Decidability

Definition (Decidable)

A language $L \subseteq \Sigma^*$ is called decidable if $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

German: entscheidbar, charakteristische Funktion

Recursive Enumerability 00000 Semi-Decidability

Decidability Summar

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different?

Recursive Enumerability 00000

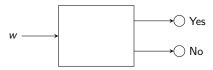
Semi-Decidability

Decidability Summar

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

decidability:

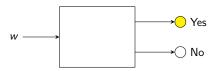


semi-decidability:

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case 1: $w \in L$ decidability:



semi-decidability:

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case 2: $w \notin L$ decidability:

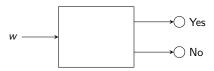


semi-decidability:

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

decidability:



semi-decidability:

Example: Diophantine equations

ion Encoding/Decoding Functions Re 0000 04

Recursive Enumerability 00000 Semi-Decidability

Decidability Summ

. . .

Connection Decidability/Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)

A language L is decidable iff both L and \overline{L} are semi-decidable.

Proof.

 (\Rightarrow) : obvious (Why?)

Connection Decidability/Semi-Decidability (2)

Proof (continued).

```
(\Leftarrow): Let M_L be a semi-deciding algorithm for L, and let M_{\bar{L}} be a semi-deciding algorithm for \bar{L}.
```

```
The following algorithm then is a decision procedure for L, i.e., computes \chi_L(w) for a given input word w:
```

```
FOR s := 1, 2, 3, \dots DO
IF M_L stops on w in s steps with output 1 THEN
RETURN 1
END
IF M_{\overline{L}} stops on w in s steps with output 1 THEN
RETURN 0
END
DONE
```

Example: Decidable \neq Known Algorithm

Computability of χ_L does not mean we know how to compute it:

- $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}$.
- L is decidable.
- There are either 7-sequences of arbitrary length in π (case 1) or there is a maximal number n_0 of consecutive 7s (case 2).

• Case 1:
$$\chi_L(n) = 1$$
 for all n

- Case 2: $\chi_L(n) = 1$ if $n \le n_0$, otherwise it is 0
- In both cases, the functions are computable.
- We just do not know what is the correct function.

Encoding/Decoding Functions	

Semi-Decidability

Decidability Sum

Questions

Questions?

Encoding/Decoding Functions	Semi-Decidability	Decidability	Summary

Summary

Encoding/Decoding Functions	Semi-Decidability	Decidability	Summary

Summary

- decidability of problems (= languages) corresponds to computability of "yes/no" functions
- semi-decidability:
 - recognizing "yes" instances in finite time
 no answer for "no" instances
- decidability of L = semi-decidability of L and \overline{L}
- semi-decidability = recursive enumerability
- relationship to type-0 languages