

Università degli studi di Udine

Biocontrol of ochratoxigenic moulds (Aspergillus ochraceus and Penicillium nordicum) by Debaryomyces hansenii and Saccharomycopsis fibuligera during

 Original

 Availability:

 This version is available http://hdl.handle.net/11390/1101764
 since 2020-02-28T18:08:05Z

 Publisher:

 Published

 DOI:10.1016/j.fm.2016.10.017

 Terms of use:

 The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The aim is to enable open access to all the world.

Publisher copyright

(Article begins on next page)

2	Biocontrol of Ochratoxigenic moulds (Aspergillus ochraceus and Penicillium
3	nordicum) by Debaryomyces hansenii and Saccharomycopsis fibuligera during
4	speck production.
5	
6	Lucilla Iacumin, Marisa Manzano, Debbie Andyanto and Giuseppe Comi*
7	
8	Department Department of Agricultural, Food, Animal and Environmental
9	Sciences
10	Via Sondrio 2/a, 33100 Udine, Italy.
11	
12	
13	
14	*Corresponding author:
15	Giuseppe Comi
16	Department Department of Agricultural, Food, Animal and Environmental
17	Sciences
18	Via Sondrio 2/A
19	33100 Udine, Italy
20	phone: +39 0432 558129; mobile: +39 338 9918561; fax: +39 0432 558130;
21 22	
23	Abstract

24	Speck is a meat product obtained from the deboned leg of pork that is salted, smoked and
25	seasoned for four to six months. During speck seasoning, Eurotium rubrum and
26	Penicillium solitum grow on the surface and collaborate with other moulds and tissue
27	enzymes to produce the typical aroma. Both of these strains usually predominate over other
28	moulds. However, moulds producing ochratoxins, such as Aspergillus ochraceus and
29	Penicillium nordicum, can also co-grow on speck and produce ochratoxin A (OTA).
30	Consequently, speck could represent a potential health risk for consumers. Because A.
31	ochraceus and P. nordicum could represent a problem for artisanal speck production, the
32	aim of this study was to inhibit these mould strains using Debaryomyces hansenii and
33	Saccharomycopsis fibuligera. Six D. hansenii and six S. fibuligera strains were tested in
34	vitro to inhibit A. ochraceus and P. nordicum. The D. hansenii DIAL 1 and S. fibuligera
35	DIAL 3 strains demonstrated the highest inhibitory activity and were selected for in vivo
36	tests. The strains were co-inoculated on fresh meat cuts for speck production with both of
37	the OTA-producing moulds prior to drying and seasoning. At the end of seasoning (six
38	months), OTA was not detected in the speck treated with both yeast strains. Because the
39	yeasts did not adversely affect the speck odour or flavour, the strains are proposed as
40	starters for the inhibition of ochratoxigenic moulds.
41	
42	
43	
44	
45	
46	
47	
48	

- **1. Introduction**

50	Speck is a typical meat product in the European alpine area, particularly North Tyrol
51	(Austria) and South Tyrol (Alto Adige, Italy), regions that utilize different recipes but the
52	same technology. A flow chart showing the traditional speck production process is
53	presented in Table 1. Fresh meat cuts (FMC) obtained from deboned legs are carefully
54	brined with a mixture of salt and spices, such as pepper, juniper, laurel and rosemary, and
55	the percentages of these ingredients depend on the facility. The meat cuts are then cold
56	smoked (20 °C), dehydrated and seasoned for four to six months at 10-15 °C with a
57	relative humidity (R.H.) between 60 and 90%. During this period, moulds grow on the
58	meat surface and give it a distinctive flavour. The colonization of speck during drying and
59	seasoning occurs spontaneously from the mycobiota of the production environment or by
60	contamination with spices (Peintner et al., 2000). The indigenous mycobiota are valued for
61	their beneficial seasoning effects (Peintner et al., 2000). Moulds prevent excessive drying
62	of the surface, improve the texture, and limit excessive hardness of the flesh due to their
63	proteolytic activity (Sunesen and Stahnke, 2003). They also exerts an antioxidant effect,
64	contribute to colour production (Spotti et al., 2008) and improve the aroma and flavour of
65	speck (Rojas et al., 1991, Nunez et al., 1996). The surface moulds of meat products have
66	been studied in great detail (Dragoni et al., 1980; Huerta et al., 1987; Spotti et al., 1989;
67	Rojas et al., 1991; Nunez et al., 1996; Battilani et al., 2007; Iacumin et al., 2011). Eurotium
68	spp. appears to be the most prevalent during all stages of meat production (Peintner et al.,
69	2000; Comi et al., 2004; Battilani et al., 2010; Comi and Iacumin, 2013). In North and
70	South Tyrol, Eurotium rubrum and Penicillium solitum are the dominant species in all
71	parts of speck (crust, meat and fat). Other Pennicillia, including P. nalgiovense, P.
72	verrucosum, P. canescens, P. brevicompactum, P. chrysogenum, P. glabrum, P. commune
73	and P. waksmanii, are less frequently observed (Peintner et al., 2000). The development of
74	mould can also be related to negative effects, such as the production of mycotoxin (Comi
75	and Iacumin, 2013). Several recent investigations have highlighted the presence of

76	ochratoxin A (OTA) in different meat products, and several fungi, including Penicillium
77	verrucosum, P. nordicum, and Aspergillus ochraceus, can produce OTA following growth
78	on the surface of meat products during seasoning and storage (Matrella et al. 2006; Pietri et
79	al. 2006; Iacumin et al., 2011). OTA is undesirable because it is classified by IARC
80	(International Agency for Research of Cancer) into "Group B" as a molecule with possible
81	carcinogenic activity in humans (IARC, 1993). For this reason, limits have been introduced
82	to foods. In Italy, the maximum concentration of OTA allowed in meat and meat products
83	is 1 µg/kg (Ministry of Health Circular no. 10-93 09/06/1999). Different artisanal
84	production lots of speck were recently contaminated with A. ochraceus and P. nordicum.
85	Both species grow during drying and seasoning and produce up to 1 μ g/kg OTA. Many
86	technologies must be used to eliminate the growth of OTA-producing moulds on meat
87	products. The most interesting methods developed to date are represented by bioprotective
88	cultures. Exploring the antagonistic activity of autochthonous yeast strains against moulds
89	could be of great interest. Several researchers (Andrade et al., 2014; Virgili et al., 2012)
90	have experimented with the ability of native yeasts to protect meat products against mould
91	growth. D. hansenii is the main yeast present in meat products from the early stage of
92	seasoning to the end, when it becomes the predominant strain (Comi and Cantoni, 1980;
93	Nunez et al., 1996; Asefa et al., 2010; Simoncini et al., 2007). Consequently, D. hansenii is
94	largely used as a starter culture to improve the quality and sensorial characteristics of
95	European sausages (Hammes and Knauf, 1994). Conversely, S. fibuligera is rarely present
96	in meat products because it is typical of starchy substrates and vegetables (Chi et al.,
97	2009). However, it is used because it grows in the presence of high salt and sugar
98	concentrations similarly to D. hansenii. Because yeasts are capable of growing and
99	colonizing meat products, they could represent the main strains for food biocontrol against
100	moulds and pathogenic microorganisms (Virgili et al., 2012; Andrade et al., 2014;
101	Simoncini et al., 2014). The efficacy of the protection provided by yeasts against moulds

102	on meat products must be seriously evaluated because moulds often grow on meat product
103	surfaces despite the presence of yeasts (Virgili et al., 2012). Little information regarding
104	the antagonistic activity of yeasts on dry cured ham has been reported (Virgili et al., 2012),
105	and different researchers have recently investigated and demonstrated the inhibitory effect
106	of yeasts in vitro against OTA-producing moulds (Andrade et al., 2014; Simoncini et al.,
107	2014). These researchers have demonstrated that it is possible to reduce <i>P. nordicum</i>
108	growth and activity using different yeast strains. The inhibitory mechanism is not well
109	understood, but it has been suggested that yeasts restrict nutrient availability and sites for
110	colonization and consequently predominate and limit the growth of OTA-producing
111	moulds (Bjönberg and Schnürer, 1993; Spotti et al., 2009). Considering the many
112	opportunities that yeasts can have in mould inhibition, this study aimed to evaluate the
113	abilities of Debaryomyces hansenii and Saccharomycopsis fibuligera to control
114	ochratoxigenic mould growth (Aspergillus ochraceus and Penicillium nordicum) during
115	speck production.

117 **2. Materials and methods**

118 Six strains of Saccharomycopsis fibuligera (DIAL 1, DIAL 2, DIAL 3, DIAL 4, DIAL 5, 119 and DIAL 6) and six strains of Debaryomyces hansenii (DIAL 1, DIAL 2, DIAL 3, DIAL 120 4, DIAL 5, and DIAL 6) were selected from a total of 90 isolates from meat products and 121 stored in the Collection of the Department of Food Science of the University of Udine 122 (DIAL, Udine, Italy). The twelve yeast strains were selected for potential competition 123 against Penicillium nordicum and Aspergillus ochraceus. The strains were maintained in 124 malt extract modified agar (MEMA, Oxoid, Italy) supplemented with dextrose (1%) and 125 peptone (1%).

126

127 2.1. Preparation of yeast inocula

128	The yeast strains were grown on MEMA at 25 °C for 48 h. Suspensions were then
129	prepared by adding a loop full of cells to peptonised water (0.7% NaCl and 0.1% peptone
130	in 1.000 mL of water). The density of the yeast cultures was determined
131	spectrophotometrically by measuring their optical density at 600 nm. Serial dilutions were
132	prepared to obtain the concentration used for the experiments.
133	
134	2.2. Preparation of the P. nordicum and A. ochraceus inocula
135	One P. nordicum and one A. ochraceus strain were used in this study. These strains were
136	isolated from sausages in a previous study and identified at the molecular level. Both
137	strains produce OTA and belong to the Food Science Department of the University of
138	Udine. Both strains were grown in Czapek yeast extract agar plates (Oxoid, Italy) and
139	incubated at 25 $^{\circ}$ C for seven days. At the end of the incubation period, the conidia were
140	removed from the culture surface according to the method reported by Virgili et al. (2012).
141	The conidial suspension was adjusted to 102, 104 and 106 conidia/mL using a
142	haemocytometer.
143	
144	2.3. Inhibition of P. nordicum and A. ochraceus by yeast strains
145	The assay was performed using the method described by Virgili et al. (2012) and Bleve et
146	al. (2006) and modified as follows: the experiments were performed on MEMA adjusted to
147	pH 6.0. A top agar was prepared by mixing 10 mL of MEMA broth with 0.7% agar and 1
148	mL of a yeast suspension (D. hansenii or S. fibuligera) containing 106 CFU/mL to obtain a
149	thick, continuous layer on the plate surface. This suspension was distributed into Petri
150	plates containing 15 mL of MEMA. Three 10 µL portions of P. nordicum or A. ochraceus
151	corresponding to 106 conidia/mL were then spotted onto each plate and incubated at 20 $^\circ$ C.
152	Top agar containing different yeast concentrations (102, 104, or 106 CFU/mL) was also
153	prepared to investigate differences among different yeast inocula.

154	Three replicate experiments were performed for each yeast. Plates with culture medium
155	(MEMA) that were not inoculated with yeast were included as controls.
156	Fungal growth was expressed as the average measurement (mm) of two orthogonal
157	diameters per colony after 14 days of incubation at 20 °C. The inhibitory activity was
158	calculated using the equation reported by Lima et al. (1999):
159	(Fungal growth in control plate – Fungal growth in treated plate) x 100
160	% Inhibitory activity =
161	Fungal growth in control plate
162	2.4. Inhibitory activity at different concentrations of the selected yeasts
163	The above-mentioned method (Virgili et al., 2012) was used the following modifications,
164	and the concentration of yeast in top agar was changed. Briefly, top agars containing
165	different concentrations of the yeasts (102, 104, or 106 CFU/mL) were used to examine
166	differences among yeast inocula concentrations. D. hansenii (strain DIAL 1) and S.
167	fibuligera (DIAL 3), which demonstrated the best performance in the above-mentioned
168	test, were used. Ten millilitres of inoculated top agar were distributed onto 15 mL of
169	MEMA, and three 10- μ L suspensions containing 10 ₆ conidia/mL of the moulds were then
170	spotted separately onto each plate and incubated at 20 °C for 14 days. Three replicate
171	experiments were performed for each yeast concentration. MEMA plates that were not
172	inoculated with yeast were included as controls.
173	
174	2.5. Inhibitory activity at different concentrations of moulds (P. nordicum and A.
175	ochraceus)
176	The above-mentioned method (Virgili et al., 2012) was used with the following
177	modifications. The concentration of yeasts in top agar was 104 CFU/mL, and D. hansenii
178	(strain DIAL 1) and S. fibuligera (DIAL 3), which demonstrated the best performance in
179	the above-described test, were used. Ten millilitres of inoculated top agar were distributed

180 onto 15 mL of MEMA, and three 10-µL suspensions containing different concentrations of 181 conidia (102, 104, or 106 conidia/mL) of both moulds were then separately spotted onto 182 each plate and incubated at 20 °C for 14 days. Three replicate experiments were performed 183 for each mould concentration. MEMA plates that were not inoculated with yeast were 184 included as controls.

185

187

186

2.6. Inhibitory activity of yeasts on OTA production in the speck model system (Battilani et al., 2010, modified)

188 Five specks with different water activity (Aw) values were collected from a South 189 Tyrolean facility. From each speck, samples (50 mm in diameter and 5 mm in height) were 190 excised using a hollow metal sampler with a cylindrical cutting edge. The Aw values of the 191 samples measured with an AquaLab CX-2 instrument (Steroglass, Pullman, WA, USA) 192 were 0.960 ± 0.005 , 0.940 ± 0.005 , 0.920 ± 0.005 , 0.900 ± 0.005 , and 0.880 ± 0.005 . After 193 dipping in absolute ethanol for 2 min, the samples were removed and flamed to sterilize 194 them prior to inoculation (Rojas et al., 1991). The samples were placed in Petri plates, 195 inoculated and placed in sealed boxes equipped with beakers containing NaCl solutions 196 (Multon and Bizot, 1980) with the same Aw as the five speck samples. The salt solutions

- 197 were prepared with distilled water (w/w) with 6.57% NaCl (Aw 0.96), 9.38% NaCl (Aw
- 198 0.94), 11.90% NaCl (Aw 0.92), 14.18% NaCl (Aw 0.90) and 16.28% NaCl (Aw 0.88).
- 199 Each Aw value was confirmed using AquaLab CX-2.
- 200 The samples were incubated in the dark at 14 °C for 30 days. Six different inocula or co-
- 201 inocula were tested: 1) Control A, 104 conidia/cm2 Aspergillus ochraceus; 2) Control B,
- 202 104 conidia/cm2 Penicillium nordicum; 3) 106 CFU/g D. hansenii DIAL 1 vs. 104
- 203 conidia/cm2 Aspergillus ochraceus; 4) 106 CFU/g D. hansenii DIAL 1 vs. 104 conidia/cm2
- 204 Penicillium nordicum; 5) 106 CFU/g S. fibuligera DIAL 3 vs. 104 conidia/cm2 Aspergillus
- 205 ochraceus; and 6) 106 CFU/g S. fibuligera DIAL 3 vs. 104 conidia/cm2 P. nordicum. Each

condition was evaluated in triplicate. At the end of the incubation period, the 90 samples
were collected and analysed for OTA according to the method reported by Matrella et al.
(2006).

209

210 2.7. Inhibitory activity of yeasts on OTA production during speck seasoning 211 One hundred and twenty fresh meat cuts (FMCs) were collected. Each FMC (6.5 kg) was 212 trimmed and squared according to the traditional procedure and was then salted and 213 smoked. After smoking, the FMCs were inoculated with a mix of yeast and mould 214 suspensions or with a mould suspension alone according to the following experimental 215 design: 20 FMCs were inoculated with a suspension of *P. nordicum* at a final concentration 216 104 conidia/cm2; 20 FMCs were inoculated with a suspension of A. ochraceus at a final 217 concentration 104 conidia/cm2; 20 FMCs were inoculated with a mix of A. ochraceus and 218 D. hansenii (final concentration 104 conidia/106 CFU/cm2); 20 FMCs were inoculated with 219 a mix of A. ochraceus and S. fibuligera (104 conidia/106 CFU/cm2); 20 FMCs were 220 inoculated with a mix of P. nordicum and D. hansenii (104 conidia/106 CFU/cm2); and 20 221 FMCs were inoculated with a mix of P. nordicum and S. fibuligera (104 conidia/106 222 CFU/cm2). The S. fibuligera DIAL 3 and D. hansenii DIAL 1 strains were used. All of the 223 FMCs were seasoned for six months according to the traditional procedure (Table 1). At 224 the end of the seasoning period, 100-cm² samples were taken from a depth of 0.5 cm below 225 the speck surface and analysed for OTA. Briefly, meat collected from a depth of 0.5 cm 226 below the slime was homogenized using a Stomacher instrument (Lab Blender 400, PBI, 227 Italy), and 10 g of the homogenate was then used for the analysis. OTA was extracted and 228 evaluated according to the method described by Matrella et al. (2006). Before sampling for 229 OTA analysis, the surface of each speck was observed with a Stereoscope (320X; WILD 230 M 420, Heerbrugg, CH) to determine the presence of mould growth (i.e., hyphae).

232 2.8. Sensorial analysis

233	To evaluate the influence of the yeast culture starter on the organoleptic characteristics of
234	the product, a sensory analysis was performed using the triangle test methodology (ISO
235	4120:2004). FMCs were divided into three lots. After smoking, lot A (10 cuts) was
236	inoculated with a suspension of S. fibuligera DIAL 3 (106 CFU/cm2), and Lot B (10 cuts)
237	was inoculated with D. hansenii DIAL 1 (106 CFU/cm2). Lot C (10 cuts) served as the
238	control and was not inoculated with yeast cultures. All cuts were seasoned according to the
239	traditional procedure (Table 1). At the end of seasoning (6 months), all of the lots were
240	subjected to the triangle test, which was used to compare Lot A to Lot B, Lot A to Lot C,
241	and Lot B to Lot C. Twenty non-professional assessors were presented with three products,
242	two of which were identical. The assessors were asked to state which product they believed
243	was a unique sample. The assessors who indicated the existence of two distinct samples
244	were asked to identify the best sample.
245	
243	
245	2.9. Statistical analysis
	2.9. Statistical analysis The values of the various parameters were compared through one-way analysis of
246	
246 247	The values of the various parameters were compared through one-way analysis of
246 247 248	The values of the various parameters were compared through one-way analysis of variance. The averages were compared with Tukey's honest significance test using the
246 247 248 249	The values of the various parameters were compared through one-way analysis of variance. The averages were compared with Tukey's honest significance test using the
246 247 248 249 250	The values of the various parameters were compared through one-way analysis of variance. The averages were compared with Tukey's honest significance test using the Statistical Graphics software package (Rockville, MD, USA).
246 247 248 249 250 251	The values of the various parameters were compared through one-way analysis of variance. The averages were compared with Tukey's honest significance test using the Statistical Graphics software package (Rockville, MD, USA). 3. Results
246 247 248 249 250 251 252	The values of the various parameters were compared through one-way analysis of variance. The averages were compared with Tukey's honest significance test using the Statistical Graphics software package (Rockville, MD, USA). 3. Results A biocontrol test was performed using six <i>Saccharomycopsis fibuligera</i> and six
246 247 248 249 250 251 252 253	The values of the various parameters were compared through one-way analysis of variance. The averages were compared with Tukey's honest significance test using the Statistical Graphics software package (Rockville, MD, USA). 3. Results A biocontrol test was performed using six <i>Saccharomycopsis fibuligera</i> and six <i>Debaryomyces hansenii</i> strains isolated from meat products. Four out of the six <i>D</i> .
246 247 248 249 250 251 252 253 254	The values of the various parameters were compared through one-way analysis of variance. The averages were compared with Tukey's honest significance test using the Statistical Graphics software package (Rockville, MD, USA). J. Results A biocontrol test was performed using six <i>Saccharomycopsis fibuligera</i> and six <i>Debaryomyces hansenii</i> strains isolated from meat products. Four out of the six <i>D</i> . <i>hansenii</i> and three out of the six <i>S. fibuligera</i> strains were detected in dry cured ham. The

Different *in vitro* inhibitory activities against *P. nordicum* and *A. ochraceus* were observed
among the tested strains (p < 0.05). *D. hansenii* DIAL 1 and *S. fibuligera* DIAL 3 showed
the highest inhibitory activities against *A. ochraceus* (76.0% and 86.1%, respectively) and *P. nordicum* (78.8% and 85.2%, respectively; Tables 2-3). The diameters of *A. ochraceus*colonies were reduced from 32.5 mm (control) to 4.5 mm by *S. fibuligera* and to 7.8 mm
by *D. hansenii*. The diameters of *P. nordicum* were reduced from 20.3 mm (control) to 3.0
and 4.3 mm by *S. fibuligera* and *D. hansenii*, respectively.

265 For this reason, both strains were selected for the assessment of their *in vitro* or *in vivo* 266 inhibitory effects. Different concentrations of both yeast strains were tested separately to 267 identify the best strain. As expected, the inhibitory activity was dependent on the yeast 268 concentration. Indeed, an in vitro concentration of 106 CFU/mL of agar showed the best 269 inhibitory effect for both of the tested yeasts (p < 0.05; Table 4). The antagonistic activities 270 of the yeasts (104 CFU/mL) were evaluated separately against different concentrations of 271 both moulds (102, 104, and 106 conidia/mL). The percentage of inhibition varied according 272 to the mould concentration (Table 5). The lowest percentage of inhibition was observed 273 after inoculation with the highest mould concentration (p < 0.05). The activity of S. 274 fibuligera was higher than the activity of D. hansenii. A higher yeast concentration (i.e., 275 106 CFU/mL) completely inhibited mould at concentrations of 102 and 104 conidia/mL 276 (data not shown), and the same results, which are shown in Table 4, were obtained with 277 similar yeast and mould concentrations (106/106 CFU/mL). The measured diameters 278 demonstrated that the inhibitory activity of S. fibuligera was higher than that of D. hansenii 279 (p < 0.05), even though the media used appeared to be more productive for *D. hansenii* 280 than for *S. fibuligera*. 281 A reduction in fungal growth and consequently a decrease in OTA production were

A reduction in rungar growth and consequently a decrease in OTA production were
 observed in speck model systems (Photograph 1). Table 6 displays the effects of the yeast
 strains on the OTA production of the tested moulds in pieces of speck with different Aw

284 levels. As shown, a low OTA concentration was detected in the pieces of speck inoculated 285 with both yeast and mould strains. The OTA concentration in the speck co-inoculated with 286 yeast and mould strains was less than 1 μ g/kg (Table 6), which is the limit allowed in meat 287 and meat products by the Italian Ministry of Health (Circular no. 10-93 09/06/1999). In 288 contrast, OTA concentrations in speck inoculated only with mould reached 1 μ g/kg. As 289 expected, pieces of speck with the higher Aw values (i.e., 0.96 and 0.94) exhibited the 290 highest OTA concentrations (Table 6).

291 The inhibitory activity of both yeasts against OTA-producing moulds during speck 292 production was tested in vivo. Both yeasts were co-inoculated separately in FMCs with the 293 A. ochraceus and P. nordicum strains. The strains inhibited both of the moulds in vivo. An 294 inoculum with the tested strains was prepared after the smoking phase. Less than $0.1 \,\mu g/kg$ 295 OTA was detected in speck inoculated with yeast and mould (Table 7). Conversely, OTA 296 concentrations of 65.5 μ g/kg and 68.1 μ g/kg were detected in speck inoculated with A. 297 ochraceus and P. nordicum, respectively. No hyphae or OTA-producing moulds were 298 observed on the surface of speck using a stereoscope, as demonstrated in Photograph 2.2. 299 The data demonstrated that both of the tested yeast strains were able to reduce or 300 completely inhibit the growth of A. ochraceus and P. nordicum both in vitro and in vivo. 301 Consequently, the yeasts can inhibit OTA production. 302 Based on the promising results obtained, the use of starter cultures of yeast to control 303 OTA-producing moulds might be recommended. However, it was necessary to evaluate the 304 influence of the starter yeasts on the acceptability of speck prior to implementing this 305 suggestion. Speck produced with and without the yeast starter were seasoned using the 306 traditional method (Table 1). At the end of seasoning, the speck samples were subjected to 307 a triangular test by a panel of 20 non-professional assessors. The entire panel confirmed

the acceptability of the speck supplemented with the starter cultures and found no

309 difference among Lots A, B (with bio-protective cultures) and C (without protective

cultures). The tasted speck slices were compact and homogeneous. The lean part was ruby
red in colour, and the colour of the fat was white, which is typical of the product. The
consistency was compact but not elastic, and the bouquet was delicate and distinctive. The
taste was delicate, and there was no perception of spices or flavours.

314

315 **4. Discussion**

The potential biopreservative activities of six different *D. hansenii* and six *S. fibuligera* strains isolated from meat products against ochratoxigenic moulds were investigated in the present study. These species were selected because they are widespread on meat and meat products (Cocolin et al., 2006; Andrade et al., 2009) and are considered safe by the food industry (EFSA, 2012).

321 Speck is a typical meat product of North Tyrol (Austria) and South Tyrol (Alto Adige,

322 Italy). In Italy, speck is also produced in the Veneto and Friuli Venezia Giulia regions.

323 During the seasoning process, a large population of microorganisms (mainly moulds and

324 yeasts) develops on the outer layers of the speck (Peintner et al., 2000). Some of these

325 moulds could produce OTA, such as *P. nordicum* and *A. ochraceus*. Under some

326 environmental conditions, their growth and ability to synthesize OTA could represent a

- 327 real risk for human health. OTA has been found in different meats and meat products
- 328 contaminated by ochratoxigenic moulds (Rojas et al., 1991; Battilani et al., 2010;

329 Dall'Asta et al., 2010; Iacumin et al., 2011). However, the presence of OTA is not always

330 correlated with OTA-producing moulds in meat products (Rodríguez et al., 2012).

Different methods can be used to inhibit OTA-producing moulds (Iacumin et al., 2011;

Comi et al., 2013). The most commonly used method consists of spreading starter cultures

on the meat product surface in the late drying and seasoning stages (Comi et al., 2013). In

334 sausage production, mould and yeast starters are mainly used because they limit the growth

of pathogenic microorganisms and because they improve the sensorial quality of the

336 proc	uct. Our study focused on the use of two yeast strains, and their activities were
337 eval	uated either in vitro or in vivo. Under in vitro conditions, D. hansenii and S. fibuligera
338 sign	ificantly inhibited the growth of the tested ochratoxigenic moulds, and differences
339 were	e observed among the <i>D. hansenii</i> and <i>S. fibuligera</i> strains. <i>D. hansenii</i> DIAL 1 and <i>S.</i>
340 <i>fibu</i>	igera DIAL 3 showed the highest efficiencies for the inhibition of <i>P. nordicum</i> and <i>A.</i>
341 och	vaceus on solid media.
342 The	inhibitory effect of S. fibuligera DIAL 3 against both of the mould strains was higher
343 and	significantly different ($p < 0.05$) compared with the effect of <i>D. hansenii</i> DIAL 1. The
344 inhi	bitory activity of D. hansenii strains against P. nordicum was also found to be reduced
345 by V	Virgili et al. (2012), which is in agreement with the results of our investigation. These
346 rese	archers found that two strains, which were selected for their ability to grow in dry
347 cure	d ham-like substrates (Candida zeylanoides and Hyphopichia burtonii), were more
348 effe	ctive against P. nordicum than against D. hansenii and Candida famata (the
349 anar	norphic form of <i>D. hansenii</i>). Indeed, both of these strains inhibited <i>P. nordicum</i>
350 grov	wth and OTA production (Virgili et al., 2012). Differences in inhibitory activity against
351 <i>P. n</i>	ordicum were also found among D. hansenii strains among Andrade et al. (2014).
352 The	se researchers demonstrated that the <i>in vitro</i> efficiency depends on the strains, the
353 med	ium and the Aw value and that the lysed yeast cells might provide nutrients for P .
354 nord	licum growth. These researchers concluded that the inhibition observed appears to be
355 due	to compounds produced by yeast strains with activity against the tested moulds.
356 Seve	eral researchers (Marquina et al., 2001; Masoud et al., 2005) have demonstrated that D.
357 hans	enii, Saccharomyces cerevisiae and Pichia anomala produce killer proteins against
358 sens	itive strains of yeasts and moulds. Again, the observed mould inhibition could be due
359 to th	e competition activity of nutrients, as previously suggested (Björnberg and Schnürer,
360 1993	3; Zhao et al., 2008); however, researchers have speculated the existence of a minor

362 Due to the large variability in OTA-producing moulds on speck and meat products (Virgili 363 et al., 2012; Asefa et al., 2010), veasts inoculated with a lower concentration were 364 associated with a lower level of mould inhibition. Additionally, the in vitro inhibitory 365 activity of S. *fibuligera* against OTA-producing moulds was higher than the inhibitory 366 activity of D. hansenii. The use of different yeast concentrations in vitro resulted in 367 different percentages of mould inhibition, demonstrating that mould inhibition depends on 368 the competition for the nutrients but not on antimycotic production. Consequently, the 369 highest yeast concentration (106 CFU/g) induced the largest inhibitory action against both 370 of the OTA-producing moulds. The experiment confirmed the potential biocontrol effect of 371 both of the yeast strains used. Our data agree with the results reported by Virgili et al. 372 (2012). In fact, the inhibitory activity of yeast was affected by the mould concentration. 373 Virgili et al. (2012) hypothesized that the concentration of OTA-producing moulds in meat 374 products is a key factor for the effectiveness of yeast starters. Consequently, the meat 375 production industry should apply the most severe controls during the seasoning process to 376 limit the contamination and growth of OTA-producing moulds. Additionally, the raw 377 material, temperatures, and R.H. of the drying and seasoning rooms should be controlled. 378 In the speck model system, the data demonstrated the possibility of the effective biocontrol 379 of the OTA-producing moulds by the yeast. The results did not appear to depend on the 380 Aw, the yeasts or the mould strains. The reduced OTA concentration in the speck model 381 system with different Aw values compared with the control samples was quite obvious. 382 The antagonistic activities of D. hansenii and S. fibuligera were not dependent on the Aw 383 and were similar to data reported by Simoncini et al. (2014), who demonstrated that the 384 variability in the antagonistic effect was affected by the strains of the different species used 385 (D. hansenii and C. zeylanoides). A positive effect of both of the yeasts tested was 386 observed on the inhibition of mould growth, OTA production and accumulation. However, 387 no association was found between the presence of mycotoxins and the biomass of the

388	OTA-producing moulds. As demonstrated by Xu et al. (2007), the production and
389	concentration of some mycotoxins in food are not necessarily proportional to the biomass
390	of the OTA-producing mould. The biocontrol activity of D. hansenii has been
391	demonstrated by various researchers (Hernández-Montiel et al., 2010; Virgili et al., 2012;
392	Andrade et al., 2014). There are no data on the biocontrol activity of S. fibuligera against
393	OTA-producing moulds, even though different yeast species isolated from cheese, milk,
394	grape must, wine, fruits and vegetables have been demonstrated to inhibit many
395	mycotoxigenic moulds and to reduce the presence of mycotoxins (Bleve et al., 2006; Zhao
396	et al., 2008; Virgili et al., 2012; Simoncini et al., 2014). Thus, this study provides the first
397	demonstration of the use of this yeast strain for the biocontrol of OTA-producing moulds.
398	In addition, this study used D. hansenii DIAL 1 and S. fibuligera DIAL 3 as starter cultures
399	for speck production to eliminate the growth of OTA-producing moulds and to eliminate or
400	reduce the presence of OTA. OTA was found at a high level (>1 μ g/kg) only in the speck
401	produced without the addition of yeasts. Inoculation of the FMCs with either A. ochraceus
402	or <i>P. nordicum</i> resulted in the production of OTA at a level that was higher than the limit
403	proposed by the Italian Ministry of Health (1 μ g/kg). In the absence of yeasts, both of the
404	inoculated moulds grew on the FMCs from the late phase of drying to the end of the
405	seasoning phase. OTA production was detected in the meat. P. nordicum produced a white-
406	and-green cottoned slime (Photograph 2.1), whereas A. ochraceus produced a yellow
407	cottoned slime. Both cottoned slimes entirely covered the meat portion of the FMCs, but
408	no growth was observed on the skin of the FMCs. The co-inoculation of yeasts and moulds
409	did not permit mould growth on the FMCs. Therefore, the dominance of the inoculated
410	yeasts was the main parameter involved in the elimination of the growth of OTA-
411	producing moulds and consequently the elimination of OTA presence and production. In
412	the co-inoculated FMCs at the end of the seasoning phase, the amount of OTA was less
413	than the limit of detection of the method (< 0.1 μ g/kg). The speck obtained with the starter

414 yeasts were safe and in accordance with the OTA limit proposed by the Italian Ministry of
415 Health (Circolare Ministero Sanità No. 30 10-09/06/1999).

416 Several researchers (Virgili et al., 2012; Andrade et al., 2014; Simoncini et al., 2014) have 417 demonstrated that inoculated and native yeasts are able to dominate P. nordicum and OTA-418 producing moulds. Specifically, the antagonistic effects of some strains, such as D. 419 hansenii, C. zevlanoides and H. burtonii, are independent of the Aw, temperature and R.H. 420 However, these researchers recognized the existence of an antagonistic variability at the 421 level of the tested strains. Therefore, it was necessary to select the strain with the highest 422 antagonistic effect among the isolated species. This finding was confirmed in our study. 423 The significant absence of OTA appeared to be related to the inhibition of the growth of 424 both mould strains by the co-inoculated yeasts. No other hypotheses might be formulated. 425 In fact, no mould hyphae were observed on the surfaces of the co-inoculated specks under 426 a stereomicroscope. For this reason, the possibility that the absence of OTA in the co-427 cultured samples might be due to mycotoxin degradation by the yeasts into less toxic 428 compounds was excluded (Andrade et al., 2014; Simoncini et al., 2014). Additionally, the 429 possibility that either of the yeasts could have adsorbed OTA on their cell wall was 430 excluded. Various researchers (Gil-Serna et al., 2011; Shetty et al., 2007) recently reported 431 that S. cerevisiae and D. hansenii could influence the regulation of mycotoxin 432 biosynthesis. The mechanisms involved in the reduction of OTA in the presence of yeasts 433 need to be clarified (Andrade et al., 2014). However, the results obtained by the 434 stereoscope observations made in this work demonstrate that the absence of OTA must be 435 due to the dominating effect of the co-inoculated yeasts over the OTA-producing moulds 436 (Photograph 2.2). 437 Despite the antagonistic effect observed in the speck model system at all of the Aw levels

- tested, it is reasonable to propose that both yeasts should be inoculated after the smoking
- 439 phase and before the drying and seasoning steps, when the Aw is 0.95 ± 0.01 and the

440	moulds have not started to grow. The suggested concentration of the inoculum should be
441	106 CFU/cm2 to absolutely ensure that the inoculum can predominate over the moulds.
442	Different researchers (Rodriguez et al., 1994; Andrade et al., 2014) have suggested that
443	yeast starter should be inoculated at the beginning of the production process for dry cured
444	ham (specifically at the end of the post-salting stage), when the Aw of the product is still
445	high (0.94) and can support OTA-producing mould growth. In our study, both of the
446	inoculated strains grew rapidly on the FMCs at this Aw value and blocked the growth of
447	OTA-producing moulds. Therefore, the biopreservative effect of the tested D. hansenii and
448	S. fibuligera strains was obvious. Consequently, both strains may be proposed as
449	antagonistic agents to prevent the presence of OTA-producing moulds and the
450	bioaccumulation of OTA during speck production.
451	The complete prevention of OTA in speck can be obtained by the application of yeast co-
452	inocula and of an adequate hygienic system based on Hazard Analysis and Critical Control
453	Points (HACCP). The HACCP system can reduce the level of OTA-producing mould
454	contamination on FMCs and speck and favour the antagonistic effect of both yeasts.
455	The sensorial acceptability of the speck inoculated with the starter cultures was confirmed
456	by a triangular test using a panel composed of 20 non-professional assessors. These
457	assessors did not find any difference between Lots A and B (with bioprotective cultures)
458	and Lot C (uninoculated control).
459	In conclusion, D. hansenii and S. fibuligera are potential biopreservative agents for
460	elimination of the growth of ochratoxigenic moulds in speck, a typical meat product of
461	North Italy and Austria. The use of selected D. hansenii and S. fibuligera starter cultures,
462	the control of raw meat and the technological (temperature and R.H.) and hygienic
463	parameters are fundamental for the reduction of health hazards due to the development of
464	OTA-producing moulds in dry-cured meat products, such as speck. Consequently, the

465	inoculation of <i>D. hansenii</i> or <i>S. fibuligera</i> strains after the smoking stage and during the
466	drying and seasoning phases could improve the safety and quality of speck.
467	
468	References
469	
470	Andrade, M.J., Rodriguez, A., Casado, E.M., Bermùdez, E., Cordoba, J.J., 2009.
471	Differentiation of yeasts growing on dry-cured meat Iberian ham by mitochondrial
472	DNA restrictionanalysis, RAPD-PCR and their volatile compounds production. Food
473	Microbiology 26, 578-586.
474	Andrade, M.J., Thorsen, L., Rodriguez, A., Cordoba, J.J., Jespersen, L., 2014. Inhibition of
475	ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-
476	cured meat products. International Journal of Food Microbiology 170, 70-77.
477	Asefa, D.T., Kure, C.F., Gjerde, R.O., Omer, M.K., Langrud, S., Nesbakken, T., Skarar, I.,
478	2010. Fungal growth pattern, sources and factors of mould contamination in a dry-cured
479	meat production facility. International Journal of Food Microbiology 140, 131-135.
480	Battilani, P., Formenti, S., Toscani, T., Virgili, R., 2010. Influence of abiotic parameters on
481	ochratoxin A production by a P. nordicum strain in dry-cured meat model systes. Food
482	Control 21, 1379-1744.
483	Battilani, P., Pietri, V. A., Giorni, P., Formenti, S., Bertuzzi, T., Toscani, T., Virgili, R., &
484	Kozakiewicz, Z., 2007. Penicillium populations in dry-cured ham manufacturing plants.
485	Journal of Food Protection 70, 975-980.
486	Björnberg, A., Schnürer, J., 1993. Inhibition of the growth of the grain-storage molds in
487	vitro by the yeast Pichia anomala (Hansen) Kurtzman. Canadian Journal of
488	Microbiology 39, 623–628.

489	Bleve, G., Grieco, F., Cozzi, G., Logrieco, A., Visconti, A., 2006. Isolation of epiphytic
490	yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape.
491	International Journal of Food Microbiology 108, 204-209.
492	Chi, Z., Chi, Z., Liu, G., Wang, F., Ju, L., Zhang, T. 2009. Saccharomycopsis fibuligera
493	and its applications in biotechnology. Biotechnology Advances 27 (4), 423-431.
494	Cocolin, L., Urso, R., Rantsiou, K., Cantoni, C., Comi, G., 2006. Dynamics and
495	characteriza- tion of yeasts during natural fermentation of Italian sausages. FEMS Yeast
496	Research 6, 692–701.
497	Comi, G., Cantoni, C., 1980. I lieviti di insaccati crudi stagionati. Industrie Alimentari, 19,
498	Novembre, 857-860.
499	Comi, G., Orlic, S., Redzepovic, S., Urso, R., Iacumin, L., 2004. Moulds isolated from
500	Istrian dried ham at the pre-seasoning and seasoning level. International Journal of Food
501	Microbiology 96, 29–34.
502	Comi, G., Iacumin, L., 2013. Ecology of moulds during the pre-seasoning and seasoning of
503	San Daniele dry cured ham. Food Research International 54, 1113-1119.
504	Comi, G., Chiesa, L., Panseri, S., Orlic, S., Iacumin, L., 2013. Evaluation of different
505	methods to prevent Penicillium nordicum growth and Ochratoxin A (OTA) presence on
506	country-style sausages. World Mycotoxin Journal 6 (4), 411-418.
507	Commission of the European Communities 2006. Commission Regulation (EC)
508	No1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in
509	foodstuffs. Official Journal of the European Union L364, 5–24.
510	Dall'Asta, C., Galaverna, G., Bertuzzi, T., Moseriti, A., Pietri, A., Dossena, A., Marchelli,
511	R., 2010. Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham
512	frompigs fed with contaminated diet. Food Chemistry 120, 978–983.
513	Dragoni, I., Marino, C., & Cantoni, C., 1980). Muffe in prodotti carnei salati e stagionati
514	(bresaole e prosciutti crudi). Industrie Alimentari 19, 405-407.

- 515 EFSA Panel on Biological Hazards (BIOHAZ) 2012. Scientific opinion on the
- maintenance of the list of QPS biological agents intentionally added to food and feed
 (2012 up- date). EFSA Journal 10 (12), 3020.
- 518 Gil-Serna, J., Vázquez, C., Sardiñas, N., González-Jaén, M. T., Patiño, B., 2011. Revision
- 519 of ochratoxin A production capacity by the main species of Aspergillus section
- 520 Circumdati. Aspergillus steynii revealed as the main risk of OTA contamination. Food521 Control 22, 343–345.
- Hammes, W.P., Knauf H. J.,1994. Starters in the processing of meat products. Meat
 Science 36 (1-2), 155-68.
- 524 Hernández-Montiel, L.G., Ochoa, J.L., Troyo-Diéguez, E., Larralde-Corona, C.P., 2010.
- 525 Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime
 526 by marine and citrus Debaryomyces hansenii isolates. Postharvest Biology and
 527 Technolology 56, 181–187.
- Huerta, T., Sanchis, V., Hernandez, J., Hernandez, E., 1987. Mycoflora of dry-salted
 Spanish ham. Microbiologia Alimentare and Nutrition 5, 247–252.
- 530Iacumin, L., Milesi, S., Pirani, S., Comi, G., Chiesa, L. M. 2011. Ochratoxigenic moulds
- and Ochratoxin A in Sausages from Different Areas in Northern Italy: Occurrence,
- Elimination or Prevention with ozonated air. Journal of Food Safety 31, 538-545.
- 533 I.A.R.C., 1993. Ochratoxin A. In Some naturally occurring substances: food items and
- 534 constituents, heterocyclic aromatic amines and mycotoxins. IARC Monograph on the
- evolution of carcinogenic risks to humans (vol. 56, pp. 489-521) Geneva: International
 Agency for Research on Cancer.
- Lima, G., Arru, S., DE Curtis, F., Arras, G., 1999. Influence of antagonistic, host fruit and
 pathogen on the biological controlof postharvest fungal diseases by yeasts. Journal of
 Industrial Microbiology and Biotechnology 23, 223-229.

540	Marquina, D., Barroso, J., Santos, A., Peinado, J.M., 2001. Production and characteristics
541	of Debaryomyces hansenii killer toxin. Microbiological Research 156, 387-391.
542	Masoud, W., Poll, L., Jakobsen, M., 2005. Influence of volatile compounds produced by
543	yeasts predominant during processing of Coffea arabica in East Africa on growth and
544	ochratoxin A (OTA) production by Aspergillus ochraceus. Yeast 22, 1133-1142.
545	Matrella, R., Monaci, L., Milillo, M.A., Palmisano, F., Tantillo, M.G. (2006). Ochratoxin
546	A determination in paired kidneys and muscle samples from swines slaughtered in
547	southern Italy. Food Control 17, 114-117.
548	Multon, J. L., Bizot, H., 1980. Water adsorption in cereal foods and water activity
549	measurement. In Ingletti, G. E., Munck, L. (Eds.), Cereals for food and beverages (pp.
550	97-119). New York: Academic Press.
551	Núñez F., Rodríguez M.M., Bermudez M.E, Córdoba J.J., Asensio M.A., 1996.
552	Composition and toxigenic potential of the mould population on dry-cured Iberian ham.
553	International Journal of Food Microbiology 32, 185-187.
554	Peintner, U., Geiger, J., Pöder, R., 2000. The mycobiota of Speck, a traditional Tyrolean
555	smoked and cured ham. Journal of Food Protection 63(10), 1399-1403.
556	Pietri, A., Bertuzzi, T., Gualla, A., Piva, G., 2006. Occurrence of Ochratoxin A in raw ham
557	muscles and in pork products from Northern Italy. Italian Journal of Food Science
558	18(1), 99-106.
559	Rodriguez, M., Núñez, F., Córdoba, J.J., Sanabria, C., Bermúdez, E., Asensio, M.A., 1994.
560	Characterization of Staphylococcus spp. and Micrococcus spp. isolated from Iberian
561	ham throughout the seasoning process. International Journal Food Microbiology 24,
562	329-335.
563	Rodríguez, A., Rodríguez, M., Martín, A., Delgado, J., Córdoba, J.J., 2012. Presence of
564	ochratoxin A on the surface of dry-cured Iberian ham after initial fungal growth in the
565	drying stage. Meat Science 92, 728–734.

566	Rojas F. I., Jodral M., Gosalvez F., Pozo R. 1991. Mycoflora and toxigenic Aspergillus
567	flavus in Spanish dry-cured ham. International Journal of Food Microbiology 13, 249-
568	256.
569	Schmidt-Heydt, M., Richter, W., Michulec, M., Buttinger, G., Geisen, R., 2008.
570	Comprehensive molecular system to study the presence, growth and ochratoxin A bio-
571	synthesis of Penicillium verrucosum in wheat. Food Additives and Contaminants, Part
572	A, Chemistry Analysis, Control, Exposure and Risk Assessment, 25 (2), 989–996.
573	Shetty, P. H., Hald, B., Jespersen, L., 2007. Surface binding of aflatoxin B1 by
574	Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous
575	fermented foods. International Journal of Food Microbiology 113 (1), 41-46.
576	Simoncini, N., Rotelli, D., Virgili, R., & Quintavalla, S., 2007. Dynamics and
577	characterization of yeasts during seasoning of typical Italian dry-cured ham. Food
578	Microbiology 24 (6), 577-584.
579	Simoncini, N., Virgili, R., Spadola, G., Battilani, P., 2014. Autochthonous yeasts as
580	potential biocontrol agents in dry-cured meat products. Food Control 46, 160-167.
581	Spotti, E., Mutti, P., Campanini, M., 1989. Presenza di muffe sui prosciutti durante la
582	prestagionatura e la stagionatura: contaminazione degli ambienti e sviluppo sulla
583	porzione muscolare. Industria Conserve 64, 110-113.
584	Spotti E., Berni E., Cacchioli C. 2008. Characteristics and application of moulds. Meat
585	Biotechnology, Toldrà (ed.) 181-195.
586	Spotti, E., Berni, E., Cacchioli, C., Simoncini, N., Quintavalla, S., 2009. Growth and
587	antagonistic activity of Hyphopichia burtonii against other fungal species frequently
588	found on meat products during maturation. Industria delle Conserve 84, 11-22.
589	Sunesen, L.O., Stahnke, L. H., 2003. Mould starter cultures for dry sausages-selection,
590	application and effects. Meat Science 65, 935-948.

591	Virgili, R., Simoncini, N., Toscani, T., Leggieri, M.C., Formenti, S., Battilani, P., 2012.
592	Biocontrol of Penicillium nordicum growth and Ochratoxin A production by Native
593	Yeasts of Dry Cured Ham. Toxins 4 (2), 68-82.
594	Xu, X.M, Monger, W., Ritieni, A., Nicholson, P., 2007. Effect of temperature and duration
595	of wetness during initial periods on disease development, fingal biomass and mycotoxin
596	concentrations on wheat inoculated with single, or combinations of Fusarium species.
597	Plant Pathology 56, 943-956.
598	Zhao, Y., Tu, K., Shao, X.F., Jing, W., Su, Z.P., 2008. Effects of the yeast Pichia
599	guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biology
600	Technology 49, 113–120.
601	
602	
603	Conflict of interest
604	None of the authors of this paper has a financial or personal relationship with other people
605	or organisations that could inappropriately influence or bias the content of the paper.
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	

623

Table 1: Flowchart of speck production

025				
	Production phases	Time	Temperature	R.H. %
	Raw meat -	24 h	1-7 °C	50-60
	Trimming			
	Brining	8 day	1-5 °C	75-88
	Smoking	170 h	15-22 °C	70-80
	Drying	1 month	10-20 °C	50-90
	Seasoning	5 months	15-20 °C	50-90
626	Legend: R.H.: Relative	Humidity.		
627				
628				
629				
630				

631 632

• •	•	vcopsis fibuligera vs C
n moulds co-inocu	•	1 0 0

Starter yeast strain	% Inibitory activity on		
-	A. ochraceus	P. nordicum	
S. fibuligera DIAL 1	$70.6\pm0.7a$	$71.0 \pm 0.3a$	
S. fibuligera DIAL 2	$75.5\pm0.7b$	$75.4\pm0.2b$	
S. fibuligera DIAL 3	$86.1\pm0.3c$	$85.2\pm0.7c$	
S. fibuligera DIAL 4	$69.1 \pm 0.6d$	$68.5\pm0.7c$	
S. fibuligera DIAL 5	$80.2\pm0.1\text{e}$	$78.5 \pm 0.2e$	
S. fibuligera DIAL 6	$76.5\pm0.3b$	75.2 ± 0.2	
		b	

Legend: Data represent the means \pm standard deviations of the total samples; Mean with the same letters within the same column (following the values) are not significantly differently (P< 0.05).

Table 3: Percentage of inhibitory activity of *Debaryomyces hansenii* vs OTA producing moulds co-inoculated in agar plates.

_

_

Starter yeast strain	% Inibitory activity on		
—	A. ochraceus	<i>P. nordicum</i> 706	
D. hansenii DIAL 1	$76.0 \pm 0.7a$	$78.8 \pm 0.5a$ 708	
D. hansenii DIAL 2	$70.2\pm0.3b$	$73.0\pm0.7b\ 709$	
D. hansenii DIAL 3	$70.3\pm0.5b$	$72.2\pm0.5b\ 710$	
D. hansenii DIAL 4	$69.3\pm0.7b$	$72.2 \pm 0.3b$ 711	
D. hansenii DIAL 5	$68.0 \pm 0.3c$	$72.0 \pm 0.4b$ 712	
D. hansenii DIAL 6	$72.3\pm0.5d$	$73.0 \pm 0.5b$ 71.4	
		/ 4	

Legend: Data represent the means \pm standard deviations of the total samples; Mean 714 with the same letters within the same column (following the values) are no715 significantly differently (p < 0.05). 716

Table 4: Percentage of inhibitory effect of different concentration of yeasts vs OTA producing moulds co-inoculated in agar plates

Starter yeast strain	% Inibitory activity on		
	A. ochraceus	P. nordicum	
D. hansenii DIAL 1			
$10^2 \mathrm{CFU/mL}$	$38.4 \pm \mathbf{0.7a}$	$31.0\pm0.2a$	
10^4 CFU/mL	$53.3\pm0.5b$	$50.4\pm0.3b$	
10 ⁶ CFU/mL	$76.0\pm0.7c$	$78.8\pm0.5\text{c}$	
S. fibuligera DIAL 3			
10^2 CFU/mL	$26.4\pm0.2a$	$26.3\pm0.5a$	
10^4 CFU/mL	$54.2\pm0.3b$	$51.1\pm0.5b$	
10^6 CFU/mL	$86.1 \pm 0.3c$	$85.2\pm0.7\text{c}$	

Legend: Data represent the means \pm standard deviations of the total samples; Mean with the same letters within the same column (following the values) are not significantly differently (p < 0.05). A. ochraceus and P. nordicum concentration: 106 conidia/mL.

% Inibitory activity on Starter yeast strain S. fibuligera D. hansenii P. nordicum $76.2 \pm 0.3a$ $79.3\pm0.1a$ 10² CFU/mL $55.4\pm0.4b$ $59.0\pm0.2b$ 10⁴ CFU/mL $38.5 \pm 0.3c$ $42.5\pm0.9c$ 10⁶ CFU/mL A. ochraceus 10² CFU/mL $78.5 \pm 0.5a$ $85.0 \pm 0.6a$ 10⁴ CFU/mL $60.3\pm0.4b$ $65.6\pm0.2b$ 10⁶ CFU/mL $42.0\ \pm 0.3c$ $48.0\pm0.2c$

Table 5: Percentage of inhibitory effect of yeasts vs different concentration of OTA

producing moulds co-inoculated in agar plates

Legend: Data represent the means \pm standard deviations of the total samples; Mean with the same letters within the same column (following the values) are not significantly differently (p < 0.05). *D. hansenii* and *S. fibuligera* concentration: 104 CFU/mL.

803
804
805
806
807
808 Table 6: Mean production of Ochratoxin A by *P. nordicum* and *A. ochraceus* in control and selected yeast co-inoculated in speck model system with different Aw
810
811
Ochratoxin A (μg/kg) in Speck

Aw	P. nordicum Control	P. nordicum/ S. fibuligera	P. nordicum/ D. hansenii	A. ochraceus Control	A. ochraceus/ S. fibuligera	A. ochraceus/ D. hansenii
0.96	7.7	0.4	0.3	8.9	0.7	0.7
0.94	5.6	0.3	0.2	6.4	< 0.1	< 0.1
0.92	3.8	0.2	0.2	3.9	0.7	0.3
0.90	2.9	0.7	0.3	2.5	0.4	0.3
0.88	1.9	0.2	0.3	2.0	0.5	0.3

Legend: OTA Mean $\mu g/kg$.; LOD < 0.1 $\mu g/kg$; Samples were represented by meat pieces of 50 mm diameter and 5 mm in height.

812

Table 7: Mean production of Ochratoxin A by Penicillium nordicum and Aspergillus ochraceus in control and selected yeast co-inoculated after smoking stage and valued during the seasoning of speck.

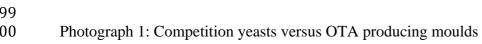
8	14
---	----

Toxigenic moulds	Ochratoxin A (µg/kg) in Speck			
	Speck inoculated with S. fibuligera	Speck inoculated with D. hansenii	Control <i>A</i> . ochraceus	Control P. nordicum
A. ochraceus	< 0.1	< 0.1	65.5 ± 1.5	-
P. nordicum	< 0.1	< 0.1	-	68.1 ± 1.9

Data: OTA mean \pm standard deviations of 20 replicates: $\mu g/kg$.; LOD < 0.1 $\mu g/kg$; Samples taken from a depth of 0.5 cm below the surface; Inocolum after smoking.

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

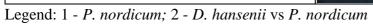
Photograph 1: Competition yeasts versus OTA producing moulds



	51
80	52
80	63
80	54
80	65
80	66
80	67
80	68
80	69
82	70
82	71
82	72
8	73
8	74
82	75
	76
	77
82	78
8	79

Legend: 1-D. hansenii vs P. nordicum; 2-E. fibuligera vs P. nordicum
3-D. hansenii vs A. ochraceus; 4-E. fibuligera vs A. ochraceus

Photograph 2: Mould growth on speck without (1) and with yeast added (2)



- Legend: 1-D. hansenii vs P. nordicum; 2-E. fibuligera vs P. nordicum 3-D. hansenii vs A. ochraceus; 4-E. fibuligera vs A. ochraceus

	Photograph 2: Mould growth on speck without (1) and with yeast added (2)
925	

- 927 928 929 930 931 932 933