Interpolative Fusions

Alex Kruckman

Indiana University Bloomington
BIRS-CMO Neostability Theory Workshop
Casa Matemática Oaxaca, Mexico
October 16, 2018

Outline

Outline:
(1) What are interpolative fusions?
(2) What are some examples?
(3) When do they exist, and how can we axiomatize them?
(9) How much quantifier elimination do they have?
(0) What about neostability? (stability, NIP, simplicity, NSOP $_{1}$, etc.)

This is all joint work with Erik Walsberg and Minh Chieu Tran.

- Interpolative fusions I
- Covers questions (1)-(4).
- Forthcoming: soon!
- Interpolative fusions II
- Covers question (5).
- Forthcoming: not as soon!

Interpolative structures

Suppose we have:

- A language L_{\cap}.
- A family of languages $\left(L_{i}\right)_{i \in I}$ with $L_{i} \cap L_{j}=L_{\cap}$ for $i \neq j$.
- $L_{\cup}=\bigcup_{i \in I} L_{i}$.
- \mathcal{M}_{\cup} an $L_{\cup \text {-structure with reducts }} \mathcal{M}_{i}$ to L_{i} and \mathcal{M}_{\cap} to L_{\cap}.

Interpolative structures

Suppose we have:

- A language L_{\cap}.
- A family of languages $\left(L_{i}\right)_{i \in I}$ with $L_{i} \cap L_{j}=L_{\cap}$ for $i \neq j$.
- $L_{\cup}=\bigcup_{i \in I} L_{i}$.
- \mathcal{M}_{\cup} an $L_{\cup \text {-structure with reducts }} \mathcal{M}_{i}$ to L_{i} and \mathcal{M}_{\cap} to L_{\cap}.

We say \mathcal{M}_{\cup} is an interpolative structure if for all families $\left(X_{i}\right)_{i \in J}$ such that $J \subseteq I$ is finite and each X_{i} is an \mathcal{M}_{i}-definable set, either:
(1) $\bigcap_{i \in J} X_{i} \neq \emptyset$, or
(2) There is a family $\left(Y^{i}\right)_{i \in J}$ of \mathcal{M}_{\cap}-definable sets such that

$$
X_{i} \subseteq Y^{i} \text { for all } i \in J, \text { and } \bigcap_{i \in J} Y^{i}=\emptyset
$$

Interpolative structures

Suppose we have:

- A language L_{\cap}.
- A family of languages $\left(L_{i}\right)_{i \in I}$ with $L_{i} \cap L_{j}=L_{\cap}$ for $i \neq j$.
- $L_{\cup}=\bigcup_{i \in I} L_{i}$.
- \mathcal{M}_{\cup} an L_{\cup}-structure with reducts \mathcal{M}_{i} to L_{i} and \mathcal{M}_{\cap} to L_{\cap}.

We say \mathcal{M}_{\cup} is an interpolative structure if for all families $\left(X_{i}\right)_{i \in J}$ such that $J \subseteq I$ is finite and each X_{i} is an \mathcal{M}_{i}-definable set, either:
(1) $\bigcap_{i \in J} X_{i} \neq \emptyset$, or
(2) There is a family $\left(Y^{i}\right)_{i \in J}$ of \mathcal{M}_{\cap}-definable sets such that

$$
X_{i} \subseteq Y^{i} \text { for all } i \in J, \text { and } \bigcap_{i \in J} Y^{i}=\emptyset
$$

Idea: The structures \mathcal{M}_{i} interact "randomly" / "generically" subject to the constraints imposed by their common reduct \mathcal{M}_{\cap}.

Interpolative fusions

Now suppose we have:

- An L_{\cap}-theory T_{\cap}.
- An L_{i}-theory T_{i} for each $i \in I$, such that T_{\cap} is the set of $L_{\cap \text {-consequences of }} T_{i}$.
- $T_{\cup}=\bigcup_{i \in I} T_{i}$.

If the class of interpolative models of T_{\cup} is elementary, we call the theory T_{\cup}^{*} of this class the interpolative fusion of $\left(T_{i}\right)_{i \in I}$ over T_{\cap}.

Interpolative fusions

Now suppose we have:

- An L_{\cap}-theory T_{\cap}.
- An L_{i}-theory T_{i} for each $i \in I$, such that T_{\cap} is the set of L_{\cap}-consequences of T_{i}.
- $T_{\cup}=\bigcup_{i \in I} T_{i}$.

If the class of interpolative models of T_{\cup} is elementary, we call the theory T_{\cup}^{*} of this class the interpolative fusion of $\left(T_{i}\right)_{i \in I}$ over T_{\cap}.

Proposition

If each T_{i} is model-complete, then:
(1) $\mathcal{M}_{\cup} \vDash T_{\cup}$ is interpolative if and only if it is existentially closed among models of T_{\cup}.
(2) T_{\cup}^{*} is the model companion of T_{\cup} (if it exists).

The main component of the proof is the Craig interpolation theorem.

Examples: Minh's theory

Let $\chi:{\overline{\mathbb{F}_{p}}}^{\times} \rightarrow \mathbb{C}^{\times}$be an injective multiplicative character.
The image of χ_{x} is contained in the unit circle in \mathbb{C}, so it induces a circular order C_{χ} on ${\overline{\mathbb{F}_{p}}} \times$.

Theorem (Tran)
$\operatorname{Th}\left(\overline{\mathbb{F}_{p}}, 0,1,+,-, \times, C_{\chi}\right)$ is (a completion of) the interpolative fusion of $\operatorname{Th}\left(\overline{\mathbb{F}_{p}}, 0,1,+,-, \times\right)$ and $\operatorname{Th}\left(\overline{\mathbb{F}_{p}}, 0,1, \times, C_{\chi}\right)$ over $\operatorname{Th}\left(\overline{\mathbb{F}_{p}}, 0,1, \times\right)$.

The proof uses the Lang-Weil estimates (and other black boxes).

+ and C_{χ} interact "randomly" / "generically" over \times.

Examples: Winkler's thesis

Theorem (Winkler)

Let T_{1} and T_{2} be theories in disjoint languages L_{1} and L_{2}. If T_{1} and T_{2} are model complete and eliminate \exists^{∞}, then $T_{1} \cup T_{2}$ has a model companion.

The model companion is the interpolative fusion of T_{1} and T_{2} over T_{\cap}, where T_{\cap} is the theory of an infinite set in the empty language L_{\cap}.

Special case: When $T_{2}=T_{\cap}$ is the theory of an infinite L_{2}-structure, then the interpolative fusion T_{\cup}^{*} is the generic expansion of T_{1} to $L_{1} \cup L_{2}$.

Examples: Fields with multiple structures

The generic theory of fields with n independent valuations is the interpolative fusion of n copies of ACFV over ACF.

More generally, you can put together copies of your favorite structures on fields (valuations, derivations, automorphisms, etc.) over ACF - when the interpolative fusion exists.

Examples: Fields with multiple structures

Generic theories of fields with several independent valuations were first studied by Lou van den Dries in his thesis. Here is a quote from that thesis:
"P. Winkler treats in [Wi] some general constructions on model complete theories giving, under certain conditions, new model complete theories. For instance, he proves that the disjoint union of two theories each having an algebraically bounded model companion has a model companion. Now in our case not a disjoint union of theories is considered, but what might call, an amalgamated union, with the theory of domains as common part. It seems to me that something like algebraic boundedness is really behind the proof of (1.6). All this suggests a common generalization of Winkler's an my results."
(1.6) is the existence of the model companion for theories of fields with several orderings and valuations.

Examples: ACFA and T_{A}

ACFA is not an interpolative fusion, but it is bi-interpretable with one.
(1) T_{\cap} is the two-sorted theory of two algebraically closed fields K and K^{\prime} of the same characteristic (with no connection between them).
(2) T_{1} is the expansion of T_{\cap} by an isomorphism $\sigma_{1}: K \rightarrow K^{\prime}$.
(3) T_{2} is the expansion of T_{\cap} by an isomorphism $\sigma_{2}: K \rightarrow K^{\prime}$.

Examples: ACFA and T_{A}

ACFA is not an interpolative fusion, but it is bi-interpretable with one.
(1) T_{\cap} is the two-sorted theory of two algebraically closed fields K and K^{\prime} of the same characteristic (with no connection between them).
(2) T_{1} is the expansion of T_{\cap} by an isomorphism $\sigma_{1}: K \rightarrow K^{\prime}$.
(3) T_{2} is the expansion of T_{\cap} by an isomorphism $\sigma_{2}: K \rightarrow K^{\prime}$.

Both T_{1} and T_{2} are bi-interpretable with ACF, and T_{\cup} is bi-interpretable with the theory ACF_{σ} of an algebraically closed field equipped with an automorphism σ. (Take $\left.\sigma=\left(\sigma_{2}\right)^{-1} \circ \sigma_{1}\right)$.

Examples: ACFA and T_{A}

ACFA is not an interpolative fusion, but it is bi-interpretable with one.
(1) T_{\cap} is the two-sorted theory of two algebraically closed fields K and K^{\prime} of the same characteristic (with no connection between them).
(2) T_{1} is the expansion of T_{\cap} by an isomorphism $\sigma_{1}: K \rightarrow K^{\prime}$.
(3) T_{2} is the expansion of T_{\cap} by an isomorphism $\sigma_{2}: K \rightarrow K^{\prime}$.

Both T_{1} and T_{2} are bi-interpretable with ACF, and T_{\cup} is bi-interpretable with the theory ACF_{σ} of an algebraically closed field equipped with an automorphism σ. (Take $\left.\sigma=\left(\sigma_{2}\right)^{-1} \circ \sigma_{1}\right)$.

This bi-interpretation is Δ_{1} (every formula involved is equivalent to both an existential and a universal).
It follows that it restricts to a bi-interpretation between the interpolative fusion T_{\cup}^{*} and the model companion ACFA of ACF_{σ}.

Examples: ACFA and T_{A}

ACFA is not an interpolative fusion, but it is bi-interpretable with one.
(1) T_{\cap} is the two-sorted theory of two algebraically closed fields K and K^{\prime} of the same characteristic (with no connection between them).
(2) T_{1} is the expansion of T_{\cap} by an isomorphism $\sigma_{1}: K \rightarrow K^{\prime}$.
(3) T_{2} is the expansion of T_{\cap} by an isomorphism $\sigma_{2}: K \rightarrow K^{\prime}$.

Both T_{1} and T_{2} are bi-interpretable with ACF, and T_{\cup} is bi-interpretable with the theory ACF_{σ} of an algebraically closed field equipped with an automorphism σ. (Take $\left.\sigma=\left(\sigma_{2}\right)^{-1} \circ \sigma_{1}\right)$.

This bi-interpretation is Δ_{1} (every formula involved is equivalent to both an existential and a universal).
It follows that it restricts to a bi-interpretation between the interpolative fusion T_{\cup}^{*} and the model companion ACFA of ACF_{σ}.

For arbitrary T, the theory T_{A} of a model of T with a generic automorphism is bi-interpretable with an interpolative fusion when it exists.

Examples: DCF and fields with operators

DCF is not an interpolative fusion, but it is bi-interpretable with one.
Let k be any ring.

- Let $D(k)=k[\varepsilon] /\left(\varepsilon^{2}\right)$.
- Define $\pi: D(k) \rightarrow k$ by $\pi(a+b \varepsilon)=a$.

Examples: DCF and fields with operators

DCF is not an interpolative fusion, but it is bi-interpretable with one.
Let k be any ring.

- Let $D(k)=k[\varepsilon] /\left(\varepsilon^{2}\right)$.
- Define $\pi: D(k) \rightarrow k$ by $\pi(a+b \varepsilon)=a$.
- A derivation δ on k is equivalent to a homomorphism $\rho: k \rightarrow D(k)$ which is a section of $\pi\left(\pi \circ \rho=\mathrm{id}_{k}\right)$:

$$
\rho(a)=a+\delta(a) \varepsilon
$$

This formula relies on the k-algebra structure on $D(k)$.

Examples: DCF and fields with operators

DCF is not an interpolative fusion, but it is bi-interpretable with one.
Let k be any ring.

- Let $D(k)=k[\varepsilon] /\left(\varepsilon^{2}\right)$.
- Define $\pi: D(k) \rightarrow k$ by $\pi(a+b \varepsilon)=a$.
- A derivation δ on k is equivalent to a homomorphism $\rho: k \rightarrow D(k)$ which is a section of $\pi\left(\pi \circ \rho=\mathrm{id}_{k}\right)$:

$$
\rho(a)=a+\delta(a) \varepsilon
$$

This formula relies on the k-algebra structure on $D(k)$.

- Viewing $D(k)$ as an abstract ring equipped with π and ε :
- One section ρ_{1} of π gives $D(k)$ a k-algebra structure.
- A second section ρ_{2} of π defines a derivation on k.

Examples: DCF and fields with operators

Let L_{\cup} be the language with:

- Sorts k and D, with the language of rings on each sort.
- $\pi: D \rightarrow k$.
- $\varepsilon \in D$.
- $\rho_{1}, \rho_{2}: k \rightarrow D$.

Examples: DCF and fields with operators

Let L_{\cup} be the language with:

- Sorts k and D, with the language of rings on each sort.
- $\pi: D \rightarrow k$.
- $\varepsilon \in D$.
- $\rho_{1}, \rho_{2}: k \rightarrow D$.
(1) For $i=1,2, T_{i}$ is the theory of $\left(k, D(k), \pi, \varepsilon, \rho_{i}\right)$, where k is algebraically closed and $\rho_{i}: k \rightarrow D(k)$ is the standard k-algebra structure on $D(k)$. This is bi-interpretable with ACF.
(2) T_{\cap} is the common reduct of T_{1} and T_{2} which forgets ρ_{1} and ρ_{2}.
(3) T_{\cup} is Δ_{1} bi-interpretable with the theory of an algebraically closed field with a derivation.
(9) The interpolative fusion T_{\cup}^{*} is bi-interpretable with DCF.

Examples: DCF and fields with operators

Let $L \cup$ be the language with:

- Sorts k and D, with the language of rings on each sort.
- $\pi: D \rightarrow k$.
- $\varepsilon \in D$.
- $\rho_{1}, \rho_{2}: k \rightarrow D$.
(1) For $i=1,2, T_{i}$ is the theory of $\left(k, D(k), \pi, \varepsilon, \rho_{i}\right)$, where k is algebraically closed and $\rho_{i}: k \rightarrow D(k)$ is the standard k-algebra structure on $D(k)$. This is bi-interpretable with ACF.
(2) T_{\cap} is the common reduct of T_{1} and T_{2} which forgets ρ_{1} and ρ_{2}.
(3) T_{\cup} is Δ_{1} bi-interpretable with the theory of an algebraically closed field with a derivation.
(9) The interpolative fusion T_{\cup}^{*} is bi-interpretable with DCF.

More generally, any generic theory of \mathcal{D}-fields (fields with operators) in the sense of Moosa and Scanlon is bi-interpretable with an interpolative fusion.

The main questions

Axiomatization results:

When does T_{\cup}^{*} exist? I.e., when is the class of interpolative models of T_{\cup} elementary?

Preservation results:

How can we understand properties of T_{\cup}^{*} in terms of properties of the T_{i} and T_{\cap} ?

We seek to generalize results and proofs about individual examples, placing them in the general framework of interpolative fusions.

The main questions

Axiomatization results:

When does T_{\cup}^{*} exist? I.e., when is the class of interpolative models of T_{\cup} elementary?

Preservation results:

How can we understand properties of T_{\cup}^{*} in terms of properties of the T_{i} and T_{\cap} ?

We seek to generalize results and proofs about individual examples, placing them in the general framework of interpolative fusions.

The pseudo-topological setting

Recall that \mathcal{M}_{\cup} is an interpolative structure if for all families $\left(X_{i}\right)_{i \in J}$ such that $J \subseteq I$ is finite and each X_{i} is an \mathcal{M}_{i}-definable set, either:
(1) $\bigcap_{i \in J} X_{i} \neq \emptyset$, or
(2) There is a family $\left(Y^{i}\right)_{i \in J}$ of \mathcal{M}_{\cap}-definable sets such that

$$
X_{i} \subseteq Y^{i} \text { for all } i \in J, \text { and } \bigcap_{i \in J} Y^{i}=\emptyset
$$

This quantification over \mathcal{M}_{\cap}-definable sets doesn't look elementary.

The pseudo-topological setting

Recall that \mathcal{M}_{\cup} is an interpolative structure if for all families $\left(X_{i}\right)_{i \in J}$ such that $J \subseteq I$ is finite and each X_{i} is an \mathcal{M}_{i}-definable set, either:
(1) $\bigcap_{i \in J} X_{i} \neq \emptyset$, or
(2) There is a family $\left(Y^{i}\right)_{i \in J}$ of \mathcal{M}_{\cap}-definable sets such that

$$
X_{i} \subseteq Y^{i} \text { for all } i \in J, \text { and } \bigcap_{i \in J} Y^{i}=\emptyset
$$

This quantification over \mathcal{M}_{\cap}-definable sets doesn't look elementary.
Idea: If all the X_{i} are "dense" in the same \mathcal{M}_{\cap}-definable set, they can't be separated by \mathcal{M}_{\cap}-definable sets.

The pseudo-topological setting

Let $\mathbb{M} \models T$, and let dim assign an ordinal or the formal symbol $-\infty$ to each \mathbb{M}-definable set, such that for all \mathbb{M}-definable X, X^{\prime} :
(1) $\operatorname{dim}\left(X \cup X^{\prime}\right)=\max \left\{\operatorname{dim} X, \operatorname{dim} X^{\prime}\right\}$,
(2) $\operatorname{dim} X=-\infty$ if and only if $X=\emptyset$,
(3) $\operatorname{dim} X=0$ if and only if X is nonempty and finite, We call such dim an ordinal rank on T.

The pseudo-topological setting

Let $\mathbb{M} \models T$, and let dim assign an ordinal or the formal symbol $-\infty$ to each \mathbb{M}-definable set, such that for all \mathbb{M}-definable X, X^{\prime} :
(1) $\operatorname{dim}\left(X \cup X^{\prime}\right)=\max \left\{\operatorname{dim} X, \operatorname{dim} X^{\prime}\right\}$,
(2) $\operatorname{dim} X=-\infty$ if and only if $X=\emptyset$,
(3) $\operatorname{dim} X=0$ if and only if X is nonempty and finite, We call such dim an ordinal rank on T.

Let X be a definable set and A be an arbitrary set.

- A is pseudo-dense in X if A intersects every non-empty definable $X^{\prime} \subseteq X$ such that $\operatorname{dim} X^{\prime}=\operatorname{dim} X$.
- X is a pseudo-closure of A if $A \subseteq X$ and A is pseudo-dense in X. (Note the pseudo-closure is not unique, in general.)

The pseudo-topological setting

Let \mathbb{M}^{\prime} be an expansion of \mathbb{M}. Then \mathbb{M}^{\prime} is approximable if every \mathbb{M}^{\prime}-definable set admits an \mathbb{M}-definable pseudo-closure. We also say $T^{\prime}=\operatorname{Th}\left(\mathbb{M}^{\prime}\right)$ is approximable over T.

The pseudo-topological setting

Let \mathbb{M}^{\prime} be an expansion of \mathbb{M}. Then \mathbb{M}^{\prime} is approximable if every
\mathbb{M}^{\prime}-definable set admits an \mathbb{M}-definable pseudo-closure.
We also say $T^{\prime}=\operatorname{Th}\left(\mathbb{M}^{\prime}\right)$ is approximable over T.
T^{\prime} defines pseudo-density over T if for all L-formulas $\varphi(x, y)$ and L^{\prime}-formulas $\psi(x, z)$ there is an L^{\prime}-formula $\delta^{\prime}(y, z)$ such that $\psi\left(\mathbb{M}^{\prime}, c\right)$ is pseudo-dense in $\varphi\left(\mathbb{M}^{\prime}, b\right)$ if and only if $\mathbb{M}^{\prime} \models \delta(b, c)$.

Theorem

If T_{\cap} admits an ordinal rank, and each T_{i} is approximable over T_{\cap} and defines pseudo-density over T_{\cap}, then T_{\cup}^{*} exists.

This theorem also has a "relativized" version, in which the definability of pseudo-density only needs to be checked on a sufficiently rich collection of "pseudo-cells".

Consequences

The content of the previous theorem can be elaborated in different ways in various contexts. Here are two sample applications:

When T is o-minimal, any expansion defines pseudo-density over T.

Theorem

Suppose T_{\cap} is o-minimal. If T_{\cap} is an open core of each T_{i} (the topological closure of every \mathcal{M}_{i}-definable set is \mathcal{M}_{\cap}-definable), then T_{\cup}^{*} exists.

When T is ω-stable, any expansion is approximable over T.
Theorem
Suppose that T_{\cap} is ω-stable and ω-categorical with weak e.i. If each T_{i} eliminates \exists^{∞}, then T_{\cup}^{*} exists.

The main questions

Axiomatization results:

When does T_{\cup}^{*} exist? I.e., when is the class of interpolative models of T_{\cup} elementary?

Preservation results:

How can we understand properties of T_{\cup}^{*} in terms of properties of the T_{i} and T_{\cap} ?

We seek to generalize results and proofs about individual examples, placing them in the general framework of interpolative fusions.

The main questions

Axiomatization results:

When does T_{\cup}^{*} exist? I.e., when is the class of interpolative models of T_{\cup} elementary?

Preservation results:
How can we understand properties of T_{\cup}^{*} in terms of properties of the T_{i} and T_{\cap} ?

We seek to generalize results and proofs about individual examples, placing them in the general framework of interpolative fusions.

From now on, we assume:

- T_{\cup}^{*} exists.
- Each T_{i} has quantifier elimination.

acl-completeness

A theory T is acl-complete if for all $\mathcal{M} \models T$, and $A=\operatorname{acl}(A) \subseteq \mathcal{M}$, every embedding $f: A \rightarrow \mathcal{N} \models T$ is partial elementary.

acl-completeness

A theory T is acl-complete if for all $\mathcal{M} \models T$, and $A=\operatorname{acl}(A) \subseteq \mathcal{M}$, every embedding $f: A \rightarrow \mathcal{N} \models T$ is partial elementary.

The combined closure, $\operatorname{ccl}(A)$, of a subset A of $\mathcal{M}_{\cup} \models T_{\cup}^{*}$ is the smallest set containing A which is acl_{i}-closed for each $i \in I$:

$$
b \in \operatorname{ccl}(A) \Longleftrightarrow b \in \operatorname{acl}_{i_{n}}\left(\ldots\left(\operatorname{acl}_{i_{1}}(A)\right) \ldots\right) \text { for some } i_{1}, \ldots, i_{n} \in I
$$

(Here acl_{i} is acl in the reduct to L_{i}.)

acl-completeness

A theory T is acl-complete if for all $\mathcal{M} \models T$, and $A=\operatorname{acl}(A) \subseteq \mathcal{M}$, every embedding $f: A \rightarrow \mathcal{N} \models T$ is partial elementary.

The combined closure, $\operatorname{ccl}(A)$, of a subset A of $\mathcal{M}_{\cup} \vDash T_{\cup}^{*}$ is the smallest set containing A which is acl_{i}-closed for each $i \in I$:

$$
b \in \operatorname{ccl}(A) \Longleftrightarrow b \in \operatorname{acl}_{i_{n}}\left(\ldots\left(\operatorname{acl}_{i_{1}}(A)\right) \ldots\right) \text { for some } i_{1}, \ldots, i_{n} \in I
$$

(Here acl_{i} is acl in the reduct to L_{i}.)

Theorem

Suppose T_{\cap} is stable with weak e.i. Then acl $\cup=\operatorname{ccl}$ and T_{\cup}^{*} is acl-complete.

So if $A=\operatorname{ccl}(A)$, then

$$
T_{\cup}^{*} \cup \bigcup_{i \in I} \operatorname{tp}_{L_{i}}(A) \models \operatorname{tp}_{L \cup}(A) .
$$

acl-completeness

The key tool in the proof is the following lemma.
Let $L \subseteq L^{\prime}$, and let T^{\prime} be an L^{\prime}-theory with L-reduct T. Assume T is stable with weak e.i., and write \downarrow^{r} for forking independence in the reduct.

Lemma (Full existence over $\operatorname{acl}_{L^{\prime}}$-closed sets)
For any $C=\operatorname{acl}_{L^{\prime}}(C)$ and any B, there exists A^{*} with $A^{*} ป_{C} B$ and $\operatorname{tp}_{L^{\prime}}\left(A^{*} / C\right)=\operatorname{tp}_{L^{\prime}}(A / C)$.

acl-completeness

The key tool in the proof is the following lemma.
Let $L \subseteq L^{\prime}$, and let T^{\prime} be an L^{\prime}-theory with L-reduct T. Assume T is stable with weak e.i., and write \downarrow^{r} for forking independence in the reduct.

Lemma (Full existence over $\mathrm{acl}_{L^{\prime}}$-closed sets)
For any $C=\operatorname{acl}_{L^{\prime}}(C)$ and any B, there exists A^{*} with $A^{*} \downarrow_{C}^{r} B$ and $\operatorname{tp}_{L^{\prime}}\left(A^{*} / C\right)=\operatorname{tp}_{L^{\prime}}(A / C)$.

Remarks:
(1) For the lemma, it suffices to assume T is simple with stable forking and geometric e.i. But we also need stationarity to prove acl-completeness.
(2) The hypothesis " T_{\cap} is stable with weak e.i." can be replaced here (and in what follows) by the existence of an independence relation satisfying full existence and stationarity over ccl-closed sets.

Quantifier elimination, stability, NIP

```
Theorem
Suppose T}\mp@subsup{T}{\cap}{}\mathrm{ is stable with weak e.i. and acl}\mp@subsup{\mp@code{c}}{i}{}(A)=\mp@subsup{\operatorname{dcl}}{\cap}{}(A)\mathrm{ for all sets } and all \(i \in I\). Then every \(L_{\cup}\)-formula is \(T_{\cup}^{*}\)-equivalent to a Boolean combination of quantifier-free \(L_{i}\)-formulas.
```


Quantifier elimination, stability, NIP

```
Theorem
Suppose T}\mp@subsup{T}{\cap}{}\mathrm{ is stable with weak e.i. and acl}\mp@subsup{|}{i}{}(A)=\mp@subsup{\operatorname{dcl}}{\cap}{}(A)\mathrm{ for all sets } and all \(i \in I\). Then every \(L_{\cup}\)-formula is \(T_{\cup}^{*}\)-equivalent to a Boolean combination of quantifier-free \(L_{i}\)-formulas.
```

```
Corollary (Same hypotheses)
If each }\mp@subsup{T}{i}{}\mathrm{ is stable/NIP, then T}\mp@subsup{T}{\cup}{*}\mathrm{ is stable/NIP.
```

- Proof: preservation of stability/NIP under Boolean combinations.
- Under these hypotheses, κ-stability is also preserved in interpolative fusions. (Proof: Type counting.)
- Slightly weaker (but more technical) hypotheses suffice. But we don't hope to get QE except under tight control on acl.

TP_{2}

Interpolative fusions can have TP_{2}, even when fusing two ω-stable theories in disjoint languages.

Example:

- T_{\cap} is the theory of an infinite set in the empty language.
- T_{1} is the theory of divisible abelian groups in the language $\{0,+,-\}$.
- T_{2} is the theory of an equivalence relation with infinitely many infinite classes in the language $\{E\}$.

$$
\varphi(x ; y, z):(x+y) E z \text { has } \mathrm{TP}_{2} \text { in } T_{\cup}^{*} .
$$

TP_{2}

Interpolative fusions can have TP_{2}, even when fusing two ω-stable theories in disjoint languages.

Example:

- T_{\cap} is the theory of an infinite set in the empty language.
- T_{1} is the theory of divisible abelian groups in the language $\{0,+,-\}$.
- T_{2} is the theory of an equivalence relation with infinitely many infinite classes in the language $\{E\}$.

$$
\varphi(x ; y, z):(x+y) E z \text { has } \mathrm{TP}_{2} \text { in } T_{\cup}^{*} .
$$

Let $\left(v_{i}\right)_{i \in \omega}$ be distinct, let $\left(e_{j}\right)_{j \in \omega}$ be representatives of distinct equivalence classes, and set $a_{i, j}=\left(v_{i}, e_{j}\right)$.

- $\left\{\left(x+v_{n}\right) E e_{\sigma(n)} \mid n<\omega\right\}$ is consistent, while
- $\left\{\left(x+v_{n}\right) E e_{i},\left(x+v_{n}\right) E e_{j}\right\}$ is inconsistent when $i \neq j$.

Preservation of NSOP_{1}

So it's natural to ask: what about NSOP_{1} ?

Theorem (Kaplan-Ramsey)

T is $N S O P_{1}$ if and only if there is a relation \downarrow_{M} (Kim independence) defined on subsets of the monster model \mathbb{M} for all $M \prec \mathbb{M}$ such that:
(1) Invariance: If $A \downarrow_{M} B$ and $A^{\prime} B^{\prime} M^{\prime} \equiv A B M$, then $A^{\prime} \downarrow_{M} B^{\prime}$.
(2) Symmetry: If $A \downarrow_{M} B$, then $B \downarrow_{M} A$.
(3) Monotonicity: If $A^{\prime} \subseteq A, B^{\prime} \subseteq B$, and $A \downarrow_{M} B$, then $A^{\prime} \downarrow_{M} B^{\prime}$.
(9) Existence: $A \downarrow_{M} M$.
(3) Strong finite character: if $A \mathbb{X}_{M} B$, then there is a formula $\varphi(x ; b) \in \operatorname{tp}(A / M B)$ such that for any $a^{\prime} \models \varphi(x ; b), a^{\prime} \mathbb{X}_{M} b$.
(0) The independence theorem: If $a \downarrow_{M} B, a^{\prime} \downarrow_{M} C, B \downarrow_{M} C$, and $a \equiv_{M} a^{\prime}$, then there exists $a^{\prime \prime}$ such that $a^{\prime \prime} \equiv_{M B} a, a^{\prime \prime} \equiv_{M C} a$, and $a^{\prime \prime} \downarrow^{K}{ }_{M} B C$.

Preservation of NSOP_{1}

Theorem

Suppose T_{n} is stable with weak e.i. and 3 -uniqueness. If each T_{i} is $N S O P_{1}$, then T_{\cup}^{*} is $N S O P_{1}$.

Preservation of NSOP_{1}

Theorem

Suppose T_{\cap} is stable with weak e.i. and 3 -uniqueness. If each T_{i} is $N S O P_{1}$, then T_{\cup}^{*} is $N S O P_{1}$.

Definition

Suppose a_{1}, a_{2}, and a_{3} enumerate algebraically closed sets, pairwise \downarrow^{f}-independent over a common algebraically closed subset A. For $1 \leq i<j \leq 3$, let $a_{i j}$ be a tuple enumerating $\operatorname{acl}\left(a_{i}, a_{j}\right)$. T has 3 -uniqueness if $\operatorname{tp}\left(a_{12}\right) \cup \operatorname{tp}\left(a_{13}\right) \cup \operatorname{tp}\left(a_{23}\right) \vdash \operatorname{tp}\left(a_{12} a_{13} a_{23}\right)$.

To get amalgamation (acl-completeness) in T_{\cup}^{*}, we assumed weak elimination of imaginaries \Longrightarrow stationarity $=$ " 2 -uniqueness" in T_{\cap}.

To get 3-amalgamation in T (the independence theorem), we assume 3 -uniqueness $=$ elimination of "generalized imaginaries" (groupoids).

Proof sketch

Define $A \downarrow_{M} B \Longleftrightarrow \operatorname{ccl}(M A) \downarrow_{M}^{K} \operatorname{ccl}(M B)$ in each reduct L_{i}.
To prove the independence theorem:

- Given a, a^{\prime}, A, B, separately apply the independence theorem in each reduct, obtaining an $a^{\prime \prime}$ in each reduct.
- All these amalgams are guaranteed to agree on $\operatorname{tp}_{L_{\cap}}\left(\operatorname{acl} l_{\cap}\left(a^{\prime \prime} A B\right)\right)$ by 3 -uniqueness.
- To handle the elements which are in ccl but not acl ${ }_{\cap}$, we need a stronger form of the independence theorem which implies that we can take $\operatorname{ccl}\left(a^{\prime \prime} A\right) \bigsqcup_{\operatorname{acl}_{\cap}\left(a^{\prime \prime} A B\right)} \operatorname{ccl}\left(a^{\prime \prime} B\right), \operatorname{ccl}\left(a^{\prime \prime} A\right) \bigsqcup_{\operatorname{acl}_{\cap}\left(a^{\prime \prime} A B\right)} \operatorname{ccl}(A B)$, and $\left.\operatorname{ccl}\left(a^{\prime \prime} B\right)\right\rfloor_{\operatorname{acl}_{\cap}\left(a^{\prime \prime} A B\right)} \operatorname{ccl}(A B)$ in \mathcal{L}_{\cap}.
- Then we can apply 3 -uniqueness again, over $\operatorname{acl}_{\cap}\left(a^{\prime \prime} A B\right)$ this time. This implies that the two amalgams agree on all of $\operatorname{ccl}\left(a^{\prime \prime} A B\right)$.
- Finally, apply the Robinson Joint Consistency Theorem.

The "reasonable" independence theorem

Let T_{1} be an NSOP_{1} theory with a reduct T_{0} which is simple with stable forking and geometric elimination of imaginaries.

Define $A \downarrow_{C}^{r} B \Longleftrightarrow \operatorname{acl}_{1}(A C) \Psi^{f}{ }_{\operatorname{acl}_{1}(C)} \operatorname{acl}_{1}(B C)$ in \mathbb{M}_{0}. where acl_{1} is algebraic closure in \mathbb{M}_{1}.

Example: If T_{0} is the theory of an infinite set, then $\downarrow^{r}=\downarrow^{a}$.

The "reasonable" independence theorem

Let T_{1} be an NSOP_{1} theory with a reduct T_{0} which is simple with stable forking and geometric elimination of imaginaries.

Define $A \downarrow_{C}^{r} B \Longleftrightarrow \operatorname{acl}_{1}(A C) \downarrow_{\operatorname{acl}_{1}(C)} \operatorname{acl}_{1}(B C)$ in \mathbb{M}_{0}. where acl_{1} is algebraic closure in \mathbb{M}_{1}.

Example: If T_{0} is the theory of an infinite set, then $\downarrow^{r}=\downarrow^{a}$.
Theorem (Independence theorem)
If $a \downarrow^{K}{ }_{M} b, a^{\prime} \downarrow^{K}{ }_{M} c, b \downarrow_{M}^{K} c$, and $a \equiv_{M} a^{\prime}$, then there exists $a^{\prime \prime}$ such that $a^{\prime \prime} \equiv_{M b} a, a^{\prime \prime} \equiv_{M c} a$, and $a^{\prime \prime} \downarrow_{M}^{K} b c$.

The "reasonable" independence theorem

Let T_{1} be an NSOP_{1} theory with a reduct T_{0} which is simple with stable forking and geometric elimination of imaginaries.

Define $A \downarrow_{C}^{r} B \Longleftrightarrow \operatorname{acl}_{1}(A C) \downarrow_{\operatorname{acl}_{1}(C)}^{f} \operatorname{acl}_{1}(B C)$ in \mathbb{M}_{0}. where acl_{1} is algebraic closure in \mathbb{M}_{1}.

Example: If T_{0} is the theory of an infinite set, then $\downarrow^{r}=\downarrow^{a}$.
Theorem (K., K.-Ramsey in the case $\downarrow^{r}=\downarrow^{a}$)
If $a \downarrow^{K}{ }_{M} b, a^{\prime} \downarrow^{K}{ }_{M} c, b \downarrow_{M}^{K} c$, and $a \equiv_{M} a^{\prime}$, then there exists $a^{\prime \prime}$ such that $a^{\prime \prime} \equiv_{M b} a, a^{\prime \prime} \equiv_{M c} a$, and $a^{\prime \prime} \downarrow^{K}{ }_{M} b c$, and further,

$$
a^{\prime \prime} \underset{M b}{{\underset{M}{r}}_{r}^{b}} c, \quad a^{\prime \prime} \underset{M c}{\underset{M a}{r}} b, \quad \text { and } b \underset{M a^{\prime \prime}}{{\underset{V}{r}}_{r}^{c}} c .
$$

Abstract independence without base monotonicity

The previous theorem can be proven replacing \downarrow^{r} with any relation \downarrow^{*} satisfying:
(1) Invariance: If $A \downarrow_{C}^{*} B$ and $A B C \equiv A^{\prime} B^{\prime} C^{\prime}$, then $A^{\prime} \downarrow_{C^{\prime}} B^{\prime}$.
(2) Monotonicity: If $A \uplus_{C}^{*} B, A^{\prime} \subseteq A$, and $B^{\prime} \subseteq B$, then $A^{\prime} \downarrow_{C}^{*} B^{\prime}$.
(3) Symmetry: If $A \uplus_{C}^{*} B$, then $B \downarrow_{C}^{*} A$.
(9) Transitivity: Suppose $C \subseteq B \subseteq A$. If $A \downarrow_{B}^{*} D$ and $B \downarrow_{C}^{*} D$, then $A \downarrow_{C}^{*} D$.
(c) Normality: If $A \downarrow_{C}^{*} B$, then $A C \downarrow_{C}^{*} B$.
(0) Full existence: For any A, B, and C, there exists $A^{\prime} \equiv_{C} A$ such that $A^{\prime} \psi_{C}^{*} B$.
(7) Finite character: If $A^{\prime} \downarrow_{C}^{*} B$ for all finite $A^{\prime} \subseteq A$, then $A \downarrow_{C}^{*} B$.
(8) Strong local character: For every cardinal λ, there exists a cardinal κ such that for all A with $|A|=\lambda$, all B, and all $D \subseteq B$, there exists $D \subseteq C \subseteq B$ with $|C| \leq \max (|D|, \kappa)$ and $A \uplus_{C}^{*} B$.

Preservation of simplicity

Theorem (Kaplan-Ramsey)

T is simple if and only if T is $N S O P_{1}$ and \downarrow^{K} satisfies base monotonicity over models: for all $M \prec N \prec \mathbb{M}$, if $a \downarrow^{K}{ }_{M} N b$, then $a \downarrow_{N}^{K} b$.

Corollary

Suppose T_{0} is stable with weak e.i. and 3 -uniqueness. If T_{i} is simple and $\mathrm{ccl}=\operatorname{acl}_{i}$ for all $i \in I$, then T_{\cup}^{*} is simple.

Preservation of simplicity

Theorem (Kaplan-Ramsey)

T is simple if and only if T is $N S O P_{1}$ and \downarrow^{K} satisfies base monotonicity over models: for all $M \prec N \prec \mathbb{M}$, if $a \downarrow^{K}{ }_{M} N b$, then $a \downarrow_{N}^{K} b$.

Corollary

Suppose T_{0} is stable with weak e.i. and 3 -uniqueness. If T_{i} is simple and $\mathrm{ccl}=\operatorname{acl}_{i}$ for all $i \in I$, then T_{\cup}^{*} is simple.

Proof.

Fix $M \prec N \prec \mathbb{M}_{U}$ and $a \downarrow^{K}{ }_{M} N b$. Then $\operatorname{ccl}(M a) \downarrow_{M}^{K} \operatorname{ccl}(N b)$ in \mathbb{M}_{i} for all i. Since T_{i} is simple, $a \downarrow^{f}{ }_{M} N b$ in \mathbb{M}_{i}. Using base monotonicity for \downarrow^{f}, $a \downarrow_{N}^{f} b$, so $\operatorname{acl}_{i}(N a) \bigsqcup_{N}^{f} \operatorname{acl}_{i}(N b)$. Since ccl $=\operatorname{acl}_{i}$, $\operatorname{ccl}(N a) \downarrow^{K}{ }_{N} \operatorname{ccl}(N b)$ in \mathbb{M}_{i}. Thus $a \downarrow_{N}^{K} b$ in \mathbb{M}_{U}, as desired.

Again, slightly weaker (but more technical) hypotheses suffice.

Questions / Future work

(1) When does interpolative fusion preserve NTP $_{2}$? Elimination of imaginaries? NSOP? Rosiness? Non-maximality in the Keiseler order? Your favorite property here.
(2) Interpolative fusions provide a rich source of examples around NSOP_{1}, which can be used to test conjectures and build intuition.
(3) Complete the analogy:

$$
\text { Simple is to } \mathrm{NTP}_{2} \text { as } \mathrm{NSOP}_{1} \text { is to } \mathrm{X}
$$

Property X should be preserved under interpolative fusions (over tame bases). So we already know examples of theories with Property X, e.g. Minh's theory of ACF_{p} with cyclically ordered multiplicative group.

