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Outline

Outline:

1 What are interpolative fusions?

2 What are some examples?

3 When do they exist, and how can we axiomatize them?

4 How much quantifier elimination do they have?

5 What about neostability? (stability, NIP, simplicity, NSOP1, etc.)

This is all joint work with Erik Walsberg and Minh Chieu Tran.

Interpolative fusions I
I Covers questions (1)-(4).
I Forthcoming: soon!

Interpolative fusions II
I Covers question (5).
I Forthcoming: not as soon!
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Interpolative structures
Suppose we have:

A language L∩.

A family of languages (Li)i∈I with Li ∩ Lj = L∩ for i 6= j.

L∪ =
⋃
i∈I Li.

M∪ an L∪-structure with reducts Mi to Li and M∩ to L∩.

We say M∪ is an interpolative structure if for all families (Xi)i∈J such
that J ⊆ I is finite and each Xi is an Mi-definable set, either:

1
⋂
i∈J Xi 6= ∅, or

2 There is a family (Y i)i∈J of M∩-definable sets such that

Xi ⊆ Y i for all i ∈ J, and
⋂
i∈J

Y i = ∅.

Idea: The structures Mi interact “randomly” / “generically” subject to
the constraints imposed by their common reduct M∩.
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Interpolative fusions

Now suppose we have:

An L∩-theory T∩.

An Li-theory Ti for each i ∈ I, such that T∩ is the set of
L∩-consequences of Ti.

T∪ =
⋃
i∈I Ti.

If the class of interpolative models of T∪ is elementary, we call the theory
T ∗∪ of this class the interpolative fusion of (Ti)i∈I over T∩.

Proposition

If each Ti is model-complete, then:

1 M∪ |= T∪ is interpolative if and only if it is existentially closed
among models of T∪.

2 T ∗∪ is the model companion of T∪ (if it exists).

The main component of the proof is the Craig interpolation theorem.
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Examples: Minh’s theory

Let χ : Fp
× → C× be an injective multiplicative character.

The image of χ is contained in the unit circle in C, so it induces a circular
order Cχ on Fp

×
.

Theorem (Tran)

Th(Fp, 0, 1,+,−,×, Cχ) is (a completion of) the interpolative fusion of
Th(Fp, 0, 1,+,−,×) and Th(Fp, 0, 1,×, Cχ) over Th(Fp, 0, 1,×).

The proof uses the Lang-Weil estimates (and other black boxes).

+ and Cχ interact “randomly” / “generically” over ×.
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Examples: Winkler’s thesis

Theorem (Winkler)

Let T1 and T2 be theories in disjoint languages L1 and L2. If T1 and T2 are
model complete and eliminate ∃∞, then T1 ∪ T2 has a model companion.

The model companion is the interpolative fusion of T1 and T2 over T∩,
where T∩ is the theory of an infinite set in the empty language L∩.

Special case: When T2 = T∩ is the theory of an infinite L2-structure, then
the interpolative fusion T ∗∪ is the generic expansion of T1 to L1 ∪ L2.
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Examples: Fields with multiple structures

The generic theory of fields with n independent valuations is the
interpolative fusion of n copies of ACFV over ACF.

More generally, you can put together copies of your favorite structures on
fields (valuations, derivations, automorphisms, etc.) over ACF – when the
interpolative fusion exists.
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Examples: Fields with multiple structures

Generic theories of fields with several independent valuations were first
studied by Lou van den Dries in his thesis. Here is a quote from that thesis:

“P. Winkler treats in [Wi] some general constructions on model complete
theories giving, under certain conditions, new model complete theories.
For instance, he proves that the disjoint union of two theories each having
an algebraically bounded model companion has a model companion. Now
in our case not a disjoint union of theories is considered, but what might
call, an amalgamated union, with the theory of domains as common part.
It seems to me that something like algebraic boundedness is really behind
the proof of (1.6). All this suggests a common generalization of Winkler’s
an my results.”

(1.6) is the existence of the model companion for theories of fields with
several orderings and valuations.
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Examples: ACFA and TA
ACFA is not an interpolative fusion, but it is bi-interpretable with one.

1 T∩ is the two-sorted theory of two algebraically closed fields K and
K ′ of the same characteristic (with no connection between them).

2 T1 is the expansion of T∩ by an isomorphism σ1 : K → K ′.

3 T2 is the expansion of T∩ by an isomorphism σ2 : K → K ′.

Both T1 and T2 are bi-interpretable with ACF, and T∪ is bi-interpretable
with the theory ACFσ of an algebraically closed field equipped with an
automorphism σ. (Take σ = (σ2)

−1 ◦ σ1).

This bi-interpretation is ∆1 (every formula involved is equivalent to both
an existential and a universal).
It follows that it restricts to a bi-interpretation between the interpolative
fusion T ∗∪ and the model companion ACFA of ACFσ.

For arbitrary T , the theory TA of a model of T with a generic
automorphism is bi-interpretable with an interpolative fusion when it exists.
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Examples: DCF and fields with operators

DCF is not an interpolative fusion, but it is bi-interpretable with one.

Let k be any ring.

Let D(k) = k[ε]/(ε2).

Define π : D(k)→ k by π(a+ bε) = a.

A derivation δ on k is equivalent to a homomorphism ρ : k → D(k)
which is a section of π (π ◦ ρ = idk):

ρ(a) = a+ δ(a)ε.

This formula relies on the k-algebra structure on D(k).

Viewing D(k) as an abstract ring equipped with π and ε:
I One section ρ1 of π gives D(k) a k-algebra structure.
I A second section ρ2 of π defines a derivation on k.
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Examples: DCF and fields with operators
Let L∪ be the language with:

Sorts k and D, with the language of rings on each sort.

π : D → k.

ε ∈ D.

ρ1, ρ2 : k → D.

1 For i = 1, 2, Ti is the theory of (k,D(k), π, ε, ρi), where k is
algebraically closed and ρi : k → D(k) is the standard k-algebra
structure on D(k). This is bi-interpretable with ACF.

2 T∩ is the common reduct of T1 and T2 which forgets ρ1 and ρ2.

3 T∪ is ∆1 bi-interpretable with the theory of an algebraically closed
field with a derivation.

4 The interpolative fusion T ∗∪ is bi-interpretable with DCF.

More generally, any generic theory of D-fields (fields with operators) in the
sense of Moosa and Scanlon is bi-interpretable with an interpolative fusion.
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The main questions

Axiomatization results:
When does T ∗∪ exist? I.e., when is the class of interpolative models of T∪
elementary?

Preservation results:
How can we understand properties of T ∗∪ in terms of properties of the Ti
and T∩?

We seek to generalize results and proofs about individual examples,
placing them in the general framework of interpolative fusions.

Alex Kruckman (IU Bloomington) Interpolative Fusions BIRS-CMO Oaxaca 10/16/18 12 / 28



The main questions

Axiomatization results:
When does T ∗∪ exist? I.e., when is the class of interpolative models of T∪
elementary?

Preservation results:
How can we understand properties of T ∗∪ in terms of properties of the Ti
and T∩?

We seek to generalize results and proofs about individual examples,
placing them in the general framework of interpolative fusions.

Alex Kruckman (IU Bloomington) Interpolative Fusions BIRS-CMO Oaxaca 10/16/18 12 / 28



The pseudo-topological setting

Recall that M∪ is an interpolative structure if for all families (Xi)i∈J
such that J ⊆ I is finite and each Xi is an Mi-definable set, either:

1
⋂
i∈J Xi 6= ∅, or

2 There is a family (Y i)i∈J of M∩-definable sets such that

Xi ⊆ Y i for all i ∈ J, and
⋂
i∈J

Y i = ∅.

This quantification over M∩-definable sets doesn’t look elementary.

Idea: If all the Xi are “dense” in the same M∩-definable set, they can’t
be separated by M∩-definable sets.
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The pseudo-topological setting

Let M |= T , and let dim assign an ordinal or the formal symbol −∞ to
each M-definable set, such that for all M-definable X,X ′:

1 dim(X ∪X ′) = max{dimX,dimX ′},
2 dimX = −∞ if and only if X = ∅,
3 dimX = 0 if and only if X is nonempty and finite,

We call such dim an ordinal rank on T .

Let X be a definable set and A be an arbitrary set.

A is pseudo-dense in X if A intersects every non-empty definable
X ′ ⊆ X such that dimX ′ = dimX.

X is a pseudo-closure of A if A ⊆ X and A is pseudo-dense in X.
(Note the pseudo-closure is not unique, in general.)
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The pseudo-topological setting

Let M′ be an expansion of M. Then M′ is approximable if every
M′-definable set admits an M-definable pseudo-closure.
We also say T ′ = Th(M′) is approximable over T .

T ′ defines pseudo-density over T if for all L-formulas ϕ(x, y) and
L′-formulas ψ(x, z) there is an L′-formula δ′(y, z) such that ψ(M′, c) is
pseudo-dense in ϕ(M′, b) if and only if M′ |= δ(b, c).

Theorem

If T∩ admits an ordinal rank, and each Ti is approximable over T∩ and
defines pseudo-density over T∩, then T ∗∪ exists.

This theorem also has a “relativized” version, in which the definability of
pseudo-density only needs to be checked on a sufficiently rich collection of
“pseudo-cells”.
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Consequences

The content of the previous theorem can be elaborated in different ways in
various contexts. Here are two sample applications:

When T is o-minimal, any expansion defines pseudo-density over T .

Theorem

Suppose T∩ is o-minimal. If T∩ is an open core of each Ti (the topological
closure of every Mi-definable set is M∩-definable), then T ∗∪ exists.

When T is ω-stable, any expansion is approximable over T .

Theorem

Suppose that T∩ is ω-stable and ω-categorical with weak e.i. If each Ti
eliminates ∃∞, then T ∗∪ exists.
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The main questions

Axiomatization results:
When does T ∗∪ exist? I.e., when is the class of interpolative models of T∪
elementary?

Preservation results:
How can we understand properties of T ∗∪ in terms of properties of the Ti
and T∩?

We seek to generalize results and proofs about individual examples,
placing them in the general framework of interpolative fusions.

From now on, we assume:

T ∗∪ exists.

Each Ti has quantifier elimination.
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acl-completeness
A theory T is acl-complete if for all M |= T , and A = acl(A) ⊆M,
every embedding f : A→ N |= T is partial elementary.

The combined closure, ccl(A), of a subset A of M∪ |= T ∗∪ is the
smallest set containing A which is acli-closed for each i ∈ I:

b ∈ ccl(A) ⇐⇒ b ∈ aclin(. . . (acli1(A)) . . . ) for some i1, . . . , in ∈ I.

(Here acli is acl in the reduct to Li.)

Theorem

Suppose T∩ is stable with weak e.i. Then acl∪ = ccl and T ∗∪ is
acl-complete.

So if A = ccl(A), then

T ∗∪ ∪
⋃
i∈I

tpLi
(A) |= tpL∪(A).
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acl-complete.

So if A = ccl(A), then

T ∗∪ ∪
⋃
i∈I

tpLi
(A) |= tpL∪(A).
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acl-completeness

The key tool in the proof is the following lemma.

Let L ⊆ L′, and let T ′ be an L′-theory with L-reduct T . Assume T is
stable with weak e.i., and write |̂r for forking independence in the reduct.

Lemma (Full existence over aclL′-closed sets)

For any C = aclL′(C) and any B, there exists A∗ with A∗ |̂r
C
B and

tpL′(A
∗/C) = tpL′(A/C).

Remarks:

1 For the lemma, it suffices to assume T is simple with stable forking
and geometric e.i. But we also need stationarity to prove
acl-completeness.

2 The hypothesis “T∩ is stable with weak e.i.” can be replaced here
(and in what follows) by the existence of an independence relation
satisfying full existence and stationarity over ccl-closed sets.
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Quantifier elimination, stability, NIP

Theorem

Suppose T∩ is stable with weak e.i. and acli(A) = dcl∩(A) for all sets A
and all i ∈ I. Then every L∪-formula is T ∗∪-equivalent to a Boolean
combination of quantifier-free Li-formulas.

Corollary (Same hypotheses)

If each Ti is stable/NIP, then T ∗∪ is stable/NIP.

Proof: preservation of stability/NIP under Boolean combinations.

Under these hypotheses, κ-stability is also preserved in interpolative
fusions. (Proof: Type counting.)

Slightly weaker (but more technical) hypotheses suffice. But we don’t
hope to get QE except under tight control on acl.
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TP2

Interpolative fusions can have TP2, even when fusing two ω-stable theories
in disjoint languages.

Example:

T∩ is the theory of an infinite set in the empty language.

T1 is the theory of divisible abelian groups in the language {0,+,−}.
T2 is the theory of an equivalence relation with infinitely many infinite
classes in the language {E}.

ϕ(x; y, z) : (x+ y)Ez has TP2 in T ∗∪.

Let (vi)i∈ω be distinct, let (ej)j∈ω be representatives of distinct
equivalence classes, and set ai,j = (vi, ej).

{(x+ vn)Eeσ(n) | n < ω} is consistent, while

{(x+ vn)Eei, (x+ vn)Eej} is inconsistent when i 6= j.
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Preservation of NSOP1

So it’s natural to ask: what about NSOP1?

Theorem (Kaplan–Ramsey)

T is NSOP1 if and only if there is a relation |̂
M

(Kim independence)
defined on subsets of the monster model M for all M ≺M such that:

1 Invariance: If A |̂
M
B and A′B′M ′ ≡ ABM , then A′ |̂

M
B′.

2 Symmetry: If A |̂
M
B, then B |̂

M
A.

3 Monotonicity: If A′ ⊆ A, B′ ⊆ B, and A |̂
M
B, then A′ |̂

M
B′.

4 Existence: A |̂
M
M .

5 Strong finite character: if A 6 |̂
M
B, then there is a formula

ϕ(x; b) ∈ tp(A/MB) such that for any a′ |= ϕ(x; b), a′ 6 |̂
M
b.

6 The independence theorem: If a |̂
M
B, a′ |̂

M
C, B |̂

M
C, and

a ≡M a′, then there exists a′′ such that a′′ ≡MB a, a′′ ≡MC a, and
a′′ |̂K

M
BC.
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Preservation of NSOP1

Theorem

Suppose T∩ is stable with weak e.i. and 3-uniqueness. If each Ti is
NSOP1, then T ∗∪ is NSOP1.

Definition

Suppose a1, a2, and a3 enumerate algebraically closed sets, pairwise
|̂f -independent over a common algebraically closed subset A. For

1 ≤ i < j ≤ 3, let aij be a tuple enumerating acl(ai, aj). T has
3-uniqueness if tp(a12) ∪ tp(a13) ∪ tp(a23) ` tp(a12a13a23).

To get amalgamation (acl-completeness) in T ∗∪, we assumed weak
elimination of imaginaries =⇒ stationarity = “2-uniqueness” in T∩.

To get 3-amalgamation in T (the independence theorem), we assume
3-uniqueness = elimination of “generalized imaginaries” (groupoids).
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Proof sketch

Define A |̂
M
B ⇐⇒ ccl(MA) |̂ K

M
ccl(MB) in each reduct Li.

To prove the independence theorem:

Given a, a′, A,B, separately apply the independence theorem in each
reduct, obtaining an a′′ in each reduct.

All these amalgams are guaranteed to agree on tpL∩(acl∩(a′′AB)) by
3-uniqueness.

To handle the elements which are in ccl but not acl∩, we need a
stronger form of the independence theorem which implies that we can
take ccl(a′′A) |̂f

acl∩(a′′AB)
ccl(a′′B), ccl(a′′A) |̂f

acl∩(a′′AB)
ccl(AB),

and ccl(a′′B) |̂f
acl∩(a′′AB)

ccl(AB) in L∩.

Then we can apply 3-uniqueness again, over acl∩(a′′AB) this time.
This implies that the two amalgams agree on all of ccl(a′′AB).

Finally, apply the Robinson Joint Consistency Theorem.
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The “reasonable” independence theorem

Let T1 be an NSOP1 theory with a reduct T0 which is simple with stable
forking and geometric elimination of imaginaries.

Define A |̂r
C
B ⇐⇒ acl1(AC) |̂f

acl1(C)
acl1(BC) in M0.

where acl1 is algebraic closure in M1.

Example: If T0 is the theory of an infinite set, then |̂r = |̂a .
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Example: If T0 is the theory of an infinite set, then |̂r = |̂a .

Theorem (K., K.–Ramsey in the case |̂r = |̂a )

If a |̂K
M
b, a′ |̂K

M
c, b |̂K

M
c, and a ≡M a′, then there exists a′′ such that

a′′ ≡Mb a, a′′ ≡Mc a, and a′′ |̂K
M
bc, and further,

a′′ |̂r
Mb

c, a′′ |̂r
Mc

b, and b |̂r
Ma′′

c.
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Abstract independence without base monotonicity

The previous theorem can be proven replacing |̂r with any relation |̂∗
satisfying:

1 Invariance: If A |̂∗
C
B and ABC ≡ A′B′C ′, then A′ |̂∗

C′
B′.

2 Monotonicity: If A |̂∗
C
B, A′ ⊆ A, and B′ ⊆ B, then A′ |̂∗

C
B′.

3 Symmetry: If A |̂∗
C
B, then B |̂∗

C
A.

4 Transitivity: Suppose C ⊆ B ⊆ A. If A |̂∗
B
D and B |̂∗

C
D, then

A |̂∗
C
D.

5 Normality: If A |̂∗
C
B, then AC |̂∗

C
B.

6 Full existence: For any A, B, and C, there exists A′ ≡C A such that
A′ |̂∗

C
B.

7 Finite character: If A′ |̂∗
C
B for all finite A′ ⊆ A, then A |̂∗

C
B.

8 Strong local character: For every cardinal λ, there exists a cardinal κ
such that for all A with |A| = λ, all B, and all D ⊆ B, there exists
D ⊆ C ⊆ B with |C| ≤ max(|D|, κ) and A |̂∗

C
B.
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Preservation of simplicity

Theorem (Kaplan–Ramsey)

T is simple if and only if T is NSOP1 and |̂K satisfies base monotonicity
over models: for all M ≺ N ≺M, if a |̂K

M
Nb, then a |̂K

N
b.

Corollary

Suppose T0 is stable with weak e.i. and 3-uniqueness. If Ti is simple and
ccl = acli for all i ∈ I, then T ∗∪ is simple.

Proof.

Fix M ≺ N ≺M∪ and a |̂K
M
Nb. Then ccl(Ma) |̂K

M
ccl(Nb) in Mi for

all i. Since Ti is simple, a |̂f
M
Nb in Mi. Using base monotonicity for |̂f ,

a |̂f
N
b, so acli(Na) |̂f

N
acli(Nb). Since ccl = acli,

ccl(Na) |̂K
N

ccl(Nb) in Mi. Thus a |̂K
N
b in M∪, as desired.

Again, slightly weaker (but more technical) hypotheses suffice.
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Questions / Future work

1 When does interpolative fusion preserve NTP2? Elimination of
imaginaries? NSOP? Rosiness? Non-maximality in the Keiseler order?
Your favorite property here.

2 Interpolative fusions provide a rich source of examples around
NSOP1, which can be used to test conjectures and build intuition.

3 Complete the analogy:

Simple is to NTP2 as NSOP1 is to X

Property X should be preserved under interpolative fusions (over tame
bases). So we already know examples of theories with Property X,
e.g. Minh’s theory of ACFp with cyclically ordered multiplicative
group.
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