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Introduction

The aim of this thesis is to study and classify the representations of the

Poincaré group P, whose elements are all the isometries of the Minkowski

Spacetime. These representations are important in particle physics since

they can be considered the mathematical equivalent of the elementary par-

ticles of the Standard Model, hence it is possible to identify and classify all

such particles through the analysis of the Poincaré representations. In order

to achieve this we introduce the fundamentals of the system of imprimitiv-

ity. This concept was developed by George Mackey in an effort to study

in general terms the theory of induced representation of locally compact

groups and it has been widely applied in physics. In particular, through

the Mackey’s Theorem, those results are able to give us information on the

representations of the semidirect product of two groups G = AoH starting

from the representations of the groups A and H themselves.

We start this dissertation with an introduction about groups and their ac-

tions, as it is necessary to correctly define a group representation and a

semidirect product of groups, followed by a brief introduction of short se-

quences and their role in the description of those groups. In the second

chapter we define smooth manifolds and tangent spaces, with smooth func-

tions on manifolds and their differentials. These concepts are necessary to

build Lie groups and Lie algebras: they are essential to the study of the rep-

resentations of the Poincaré group not only because it is a Lie group itself,

but because the matrix groups with whom we work are Lie groups, and their

representations can be easier derived through the study of their Lie algebra.

Then the third chapter is dedicated to the computations of the represen-

tations of the Lie group SL(2,C) and its Lie algebra sl(2,C), which is key

iii



iv Introduction

to obtain all the necessary representations of the Restricted Lorentz group

SO(1, 3)0, one of the main constituents of the Poincaré group. In the fourth

and final chapter we describe first the Poincaré group and then we state

Mackey’s Theorem, giving an introduction of characters and their action.

We conclude with a brief explanation of the theorem, its connection with

the previous topics and how to obtain the Poincaré group representations.
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Chapter 1

Preliminaries on Groups

In this chapter we introduce the preliminary definitions about groups,

their morphisms and their action on sets, giving examples relevant to the

topics treated in the following chapters. Specifically, we are going to define

the semidirect product of groups, briefly talking about its properties and

how these are connected to the concept of exact sequences of groups.

1.1 Groups and Morphisms

First we give the definition of group, which needs the basic idea of a

binary operation on a set. After an essential introduction of subgroups,

normality and direct product of groups (this, in particular, is necessary for

future comparisons) we shall go to the description of the structure-preserving

functions, or homomorphisms, and their properties.

Definition 1.1.1. Given a set S, we call binary operation on S a function

µ : S × S −→ S and we denote it with µ(a, b) = a ∗ b.
A group is a pair (G, ∗), where G is a nonempty set and ∗ is a binary

operation on it such that:

1. ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for every a, b, c ∈ G ;

2. There exists e ∈ G identity element such that e ∗ a = a ∗ e = a for

every a ∈ G ;

1



2 1.1 - Preliminaries on Groups

3. For every a ∈ G there exists an inverse element a−1 such that

a ∗ a−1 = a−1 ∗ a = e.

A group (G, ∗) is said to be abelian if a ∗ b = b ∗ a for every a, b ∈ G.

Definition 1.1.2. Given a group (G, ∗) and a nonempty subset S ⊂ G

closed under ∗, if (S, ∗) is a group we say that S is a subgroup of G. This is

denoted by S < G.

Observation 1.1.3. Every group (G, ∗) has a trivial subgroup {e}, containing

only the identity element e ∈ G. We denote this subgroup {0} or simply 0

if the additive notation + is used for the binary operation.

We now give the notion of normal subgroup, which is especially impor-

tant when talking about homomorphisms and quotients.

Definition 1.1.4. Let (G, ∗) be a group with N < G a subgroup. We say

that N is a normal subgroup of G, written N C G, if a ∗ n ∗ a−1 ∈ N for

every a ∈ G and all n ∈ N . Every subgroup of an abelian group is normal.

Given two or more groups, it is possible to construct new ones through

the direct product. It consists of the cartesian product of the underlying

sets with a component-wise binary operation.

Definition 1.1.5. Given a finite collection of n groups (Gi, ∗i)i=1,...,n, it is

possible to define a new group G =
⊗

i=1,...,n

Gi whose set is G =
∏

i=1,...,n

Gi

and the operation ∗ is defined component-wise on the ∗i:

(a1, ..., an) ∗ (b1, ..., bn) = (a1 ∗1 b1, ..., an ∗n bn).

This is a group, since it inherits the associativity of the operation ∗ from

the original operations ∗i. The identity element e of G is (e1, ..., en) and the

inverse of an element (a1, ..., an) ∈ G is (a−11 , ..., a−1n ).

G is abelian if and only if all the (Gi, ∗i)i=1,...,n are abelian.

Now we are interested in functions that preserve the group structure:
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Definition 1.1.6. Let (G, ∗) and (H, ?) be groups. A function f : G −→ H

is said to be a group homomorphism if f(a ∗ b) = f(a) ? f(b) for every

a, b ∈ G.

In particular, if f is a bijective function, it is called an isomorphism, while

groups G,H are said to be isomorphic and we write G ∼= H. Moreover,

if G = H the homomorphism f is called endomorphism, while a bijective

endomorphism is called automorphism.

We define the image and kernel of f as follows:

Im(f) = {h ∈ H | h = f(g) for some g ∈ G}

Ker(f) = {g ∈ H | f(g) = eH}

Notation. For the sake of brevity we sometime refer to a homomorphism f

only as a morphism. We also denote respectively with End(G) and Aut(G)

the endomorphisms and automorphisms ofG. Notice that Aut(G) is a group.

Observation 1.1.7. A simple consequence of the above definition is that for

a morphism of groups f : (G, ∗) −→ (H, ?) we have f(eG) = eH and

f(a−1) = (f(a))−1 . From this follows easily that Im(f) is a subgroup of H

and Ker(f) is a normal subgroup of G. For a detailed proof of these claims,

see [6] chapter 1, section 2.

The following example introduce groups that will be used further in

this thesis for the definition of group representation and the analysis of the

Poincaré group.

Notation. For brevity, we use K from now on for R or C.

Example 1.1.8. One of the most important groups is the general linear group.

Given a K-vector space V of dim = n, the group Aut(V ) of linear maps

from V to V is isomorphic to the group of all n×n invertible matrices with

coefficient in the field K, together with matrix multiplication. Such group

is denoted GL(n,K).

The subset of all such matrices with determinant 1 is also a group, called

the special linear group, and we denote it with SL(n,K). It is a normal

subgroup of GL(n,K).
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Suppose now that such vector space V is equipped with a positive defined

symmetric (for K = R) or hermitian (for K = C) bilinear form 〈· , ·〉. Let

U ∈ Aut(V ) be a linear map preserving 〈· , ·〉:

〈Ux,Uy〉 = 〈x, y〉 for every x, y ∈ V.

U is said to be unitary. Once we fix an orthonormal basis we call the matrix

associated with U also unitary. The set of all unitary matrices, denoted

O(n) for K = R or U(n) for K = C, is a subgroup of GL(n,K). In particu-

lar, O(n) is called orthogonal group. The subset of all unitary matrices with

determinant 1 is called special orthogonal or special unitary and denoted

SO(n) or SU(n) depending on the field K. It is a subgroup of SL(n,K)

and a normal subgroup of its respective orthogonal or unitary matrix group.

All these groups are obviously non abelian since matrix multiplication (or

function composition) is not commutative.

For the properties of unitary matrices here used and for an accurate insight

of the relation between groups, vector spaces and matrices, see chapters 5,7

and 8 of [7].

1.2 Group Action

In order to understand the concept of group representation and, later

in this chapter, of semidirect product, we need to introduce the important

notion of group action. First of all, we give the basic definition of action

of a group on a set. Starting from this, we derive an equivalent concept of

group action that can be better generalized for our purposes.

Definition 1.2.1. An action of a group (G, ∗) on a set S is a function

G× S −→ S, denoted (g, x) 7−→ gx for a generic g ∈ G, x ∈ S, such that:

• (e, x) 7→ ex = x for every x ∈ S ;

• (g1, (g2, x)) 7→ g1(g2x) = (g1 ∗ g2)x for every g1, g2 ∈ G, x ∈ S .
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The action is said to be transitive if, for each pair x, y ∈ S, there exists a

g ∈ G such that y = gx, while it is said to be faithful if, for each g ∈ G , g 6=
e , there exists an x ∈ S such that gx 6= x.

We call S a G-set and we say that a map f : S −→ Z between G-sets S and

Z is a morphism of G-sets if it preserves the action of G, that is:

f(gs) = gf(s) for every g ∈ G, s ∈ S.

Observation 1.2.2. The concept of action in definition 1.2.1 can be expressed

equivalently as a function σ : G −→ Aut(S). Such σ is a homomorphism,

and also the converse is true: given a homomorphism σ as before, it identifies

a unique action G× S −→ S.

In fact, suppose that we have the action

G× S −→ S , (g, x) 7−→ gx.

Define σ : G −→ Aut(S) , g 7−→ σ(g) , as σ(g)(x) = gx . We immediately

verify it is a group homomorphism:

σ(g1 ∗ g2)(x) = (g1 ∗ g2)x = g1(g2x) = σ(g1)(σ(g2)(x)) = (σ(g1) ◦ σ(g2))(x)

because of definition of group action. Hence, σ is a homomorphism.

Suppose now that we have a homomorphism

σ : G −→ Aut(S) , g 7−→ σ(g).

Define G× S −→ S , (g, x) 7→ σ(g)(x) . It is a group action since, following

observation 1.1.7, we have:

(e, x) 7−→ σ(e)(x) = Id(x) = x .

Moreover

(g1(g2, x)) 7−→ σ(g1)(σ(g2)(x)) = σ(g1 ∗ g2)(x) = (g1 ∗ g2)(x) ,

because σ is a homomorphism. Hence, σ induces a group action.
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Definition 1.2.3. We define any morphism σ : G −→ Aut(S) a represen-

tation of G into S. From our previous observation we have that an action

of G on S is equivalent to a representation of G in S.

Observation 1.2.4. It is clear that an action is faithful if and only ifKer(σ) =

{e}, that is, the kernel of its representation is trivial. Indeed, if the action is

faithful, there could not be any g 6= e ∈ G such that σ(g) = IdS , otherwise

(g, x) 7→ gx = σ(g)(x) = IdS(x) = x for every x ∈ S.

Differently, with a non-faithful action, there would be an element g ∈ G

such that gx = x for every x ∈ S. Thus σ(g) = IdS and the kernel of the

representation is not trivial.

Example 1.2.5. Consider the group (Rn,+) acting on itself through the ho-

momorphism (additive notation) τ : Rn −→ Aut(Rn) , τ(a)(x) = x + a.

Such τ is clearly an homomorphism, while every function τ(a) is a transla-

tion of Rn, which is a bijection (but not an automorphism) of the group.

Example 1.2.6. Given a group (G, ∗), it acts on itself by left multiplication:

G × G −→ G , (g, h) 7→ g ∗ h. Moreover, given a subgroup H of G, the

left multiplication induces an action of G on the sets of left cosets of H, or

G/H: G ×G/H −→ G/H , (g, xH) = (g ∗ x)H. It is easy to see that both

these maps are actions. Therefore, both G and G/H are G-sets.

For a complete introduction of cosets and quotient groups, see chapter 1,

section 4-5 of [4].

As a consequence of the previous result, we can extend the group action

definition to a generic algebraic structure as a homomorphism between the

acting group and the group of automorphisms of the structure, that is, the

group of structure-preserving bijections. Despite that, for the aim of this

dissertation we are restricting to the case of group acting on other groups.

Note that the preceding definition of group acting on a set can fit perfectly

this generalization, since there is no binary operation naturally defined on

a set, hence the automorphisms of the structure are simply bijections.
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Observation 1.2.7. Given two groups (H, ?), (G, ∗) and a representation of

H into G , σ : H −→ Aut(G) , we have that H is acting on G (through σ)

with the action (h, g) 7−→ σ(h)(g).

Example 1.2.8. Let H be a subgroup of (G, ∗). We define the action of H

on G by conjugation C : H ×G −→ G , (h, g) 7→ h ∗ g ∗ h−1, or equivalently

by the representation σ : H −→ Aut(G), where σ(h)(g) = h ∗ g ∗ h−1. It

is easy to see that such σ is a homomorphism, thus proving that also the

action is well defined. In fact:

σ(h1 ∗ h2)(g) = (h1 ∗ h2) ∗ g ∗ (h1 ∗ h2)−1 = (h1 ∗ h2) ∗ g ∗ (h−12 ∗ h
−1
1 ) =

= σ(h1)(σ(h2)(g)) for every g ∈ G, h1, h2 ∈ H.

Moreover, σ(h) is an automorphism of G:

σ(h)(g1 ∗ g2) = h ∗ g1 ∗ g2 ∗ h−1 = h ∗ g ∗ h−1 ∗ h ∗ g2 ∗ h−1 =

= σ(h)(g1) ∗ σ(h)(g2).

We say that h ∗ g ∗ h−1 is the conjugate of g.

Observation 1.2.9. We can define, for H normal subgroup of G, another

important action: define σ : G −→ Aut(H) , σ(g)(h) = g ∗ h ∗ g−1. Clearly

this action is well defined since H is normal in G.

Going back to the basic definition of group action on a set, we want to

show a general result necessary for the introduction of two core concepts for

the the last chapter, orbit and stabilizer.

Proposition 1.2.10. Let G be a group acting on a set S through

G× S −→ S , (g, x) 7→ gx. Then:

• The relation on S defined by

x1 ∼ x2 ⇔ ∃ g ∈ G such that gx1 = x2

is an equivalence relation.

• For each x ∈ S, Gx = {g ∈ G | gx = x} is a subgroup of G.
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Proof. For the first part, let us show that ∼ is an equivalence relation:

Reflexive property: consider g = eG ∈ G, then eGx1 = x1 ⇒ x1 ∼ x1 .
Symmetric property: let x1 ∼ x2 through g. Consider then g−1 :

g−1x2 = g−1(gx1) = (g−1 ∗ g)x1 = eGx1 = x1 ⇒ x2 ∼ x1 .

Transitive property: let x1 ∼ x2 and x2 ∼ x3 through g and h, respectively.

Then we have:

(h ∗ g)x1 = h(gx1) = h(x2) = x3 ⇒ x1 ∼ x3 .

For the second part, we will show that Gx is closed for ∗: if g, h ∈ G, then

(g ∗ h)x = g(hx) = gx = x⇒ (g ∗ h) ∈ Gx.

Additionally, eG ∈ Gx and for every g ∈ G , g−1 ∈ G. Indeed, eGx = x and

g−1x = g−1(gx) = (g−1 ∗ g)x = eGx = x.

Thus, Gx is a subgroup of G.

Definition 1.2.11. Consider a group (G, ∗) acting on a set S, according to

definition 1.2.1. The equivalence classes of the previous theorem are called

the orbits of G on S, while the subgroup Gx is called the isotropy group of

x or the stabilizer of x. Namely Ox = { z ∈ S | ∃ g ∈ G z = gx } is the

orbit of x and Gx = { g ∈ G | gx = g } is its stabilizer.

Observation 1.2.12. An action G×S −→ S is transitive if and only if there is

only one orbit in S. Indeed, if the action is transitive, for any given x ∈ S we

have Ox = S, as Ox ⊂ S and for every z ∈ S there exists a g ∈ G such that

z = gx. Hence z ∈ Ox and S ⊂ Ox. Every orbit is S, or equivalently there

is only one orbit. On the contrary, if there is only one orbit, for every pair

x, z ∈ S there exists g ∈ G such that z = gx, thus the action is transitive.

Observation 1.2.13. Let (G, ∗) be a group acting transitively on a set S.

Then for every x ∈ S the stabilizers Gx are conjugate, that is, for every

x1, x2 ∈ S there exists a g ∈ G such that Gx2 = g ∗Gx1 ∗ g−1. Indeed, if the
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action is transitive there exists a g ∈ G such that g−1x2 = x1, so for every

h ∈ Gx1 we have

(g ∗ h ∗ g−1)x2 = (g ∗ h)(g−1x2) = (g ∗ h)(x1) = g(hx1) = gx1 = x2.

Hence g ∗ h ∗ g−1 ∈ Gx2 . This procedure can be simmetrically repeated

for Gx2 , obtaining that for every h′ ∈ Gx2 there exists a g′ ∈ G such that

h′′ = g′h′g′−1 ∈ Gx1 , which means that h′ = g′−1h′′g′. Thus every element

of Gx2 is the conjugate of an element of Gx1 .

In particular it is clear that, for a generic non-transitive action, the stabi-

lizers of the elements of the same orbit are conjugate.

The following proposition shows a fundamental relation between orbits

and stabilizers.

Proposition 1.2.14. Let (G, ∗) be a group acting on a set S, (g, s) 7→ gs,

Os the orbit of s ∈ S. Then there exists a bijective morphism of G-sets

between G/Gs and Os, or equivalently G/Gs ∼= Os.

Proof. The action of G on G/Gs is the left multiplication, as seen in example

1.2.6, while Os, being a subset of S, inherits the action of G on S.

Define f : G/Gs −→ Os , f(gGs) = gs. Such function is well defined:

considering h ∈ gGs, we have hGs = gGs and h = g ∗ x for a given x ∈ Gs.
So we have

f(hGs) = f((g ∗ x)Gs) = (g ∗ x)s = g(xs) = gs = f(gGs),

by definition of stabilizer and group action. f is clearly surjective, since

for every z ∈ Os , z = f(zGs). Now we show that f is injective: consider

g, h ∈ G such that f(gGs) = f(hGs). Then we have gs = hs, thus g and

h have the same action, which means gGs = hGs. Hence, f is a bijection.

Last, we show that f is a morphism of G-sets:

f(g(hGs)) = f((g ∗ h)Gs) = (g ∗ h)s = g(hs) = gf(hGs).
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1.3 Semidirect Product

In this section we exhibit a new way of building groups through the

semidirect product of existing groups, a generalization, involving group ac-

tion, of the direct product previously defined in 1.1.5. Such operation is the

key to define the Euclidean group and the Poincaré group, that will be the

main focus of this thesis.

Observation 1.3.1. Given a representation σ : H −→ Aut(G) between

groups (G, ∗) and (H, ?), we can describe a new operation on G for every

h ∈ H : (g1, g2) 7−→ g1 ∗ σ(h)(g2) .

Proposition 1.3.2. Given two groups (G, ∗), (H, ?) and a representation

σ : H −→ Aut(G), consider the set G×H with the operation induced by σ

as in the preceding observation : (g1, h1)(g2, h2) = (g1 ∗ σ(h1)(g2), h1 ? h2).

Then G × H with this operation is a group with identity element (eG, eH)

and inverse (g, h) 7→ (σ(h)−1(g−1), h−1) = (σ(h−1)(g−1), h−1).

Proof. Let us verify that such structure is effectively a group. Associativity:

(g1, h1)[(g2, h2)(g3, h3)] = (g1, h1)(g2 ∗ σ(h2)(g3), h2 ? h3) =

= (g1 ∗ σ(h1)(g2 ∗ σ(h2)(g3)), h1 ? (h2 ? h3)) =

= (g1 ∗ (σ(h1)(g2) ∗ σ(h1)(σ(h2)(g3))), (h1 ? h2) ? h3) .

Since ? is associative and σ(h1) is a homomorphism. Now, ∗ is associative

and σ is a homomorphism, so we have:

(g1, h1)[(g2, h2)(g3, h3)] = ((g1 ∗ σ(h1)(g2)) ∗ σ(h1 ? h2)(g3), (h1 ? h2) ? h3) =

= (g1 ∗ σ(h1)(g2), h1 ? h2)(g3, h3) = [(g1, h1)(g2, h2)](g3, h3),

which proves associativity.

Identity element:

(eG, eH)(g, h) = (eG ∗ σ(eH)(g), eH ? h) = (eG ∗ g, h) = (g, h)

following observation 1.1.7.
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Inverse:

(g, h)(σ(h)−1(g−1), h−1) = (g ∗ σ(h)(σ(h)−1(g−1)), h ? h−1) =

= (g ∗ g−1, eH) = (eG, eH).

Definition 1.3.3. We define G×H together with the operation introduced

above the semidirect product of H and G and we denote it GoH, or GoσH

if the action is not obvious from the context.

Observation 1.3.4. The direct product of (G, ∗) and (H, ?) (see definition

1.1.5) can be thought of as a semidirect product between H and G where

the representation defining the binary operation is the trivial homomorphism

f : H −→ Aut(G) , f(h) = IdG = eAut(G) for every h ∈ H. So we have:

(g1, h1)(g2, h2) = (g1∗f(h1)(g2), h1∗h2) = (g1∗g2, h1∗h2)⇒ GoH = G×H.

Example 1.3.5. Let us define the Euclidean group E(n) as the group of

all isometries, or the affine transformations that preserve the metric, of the

Euclidean space Rn, that is the vector space Rn equipped with the Euclidean

distance. Such group is the result of the semidirect product between TRn ,

the group of translations of Rn, and the orthogonal group O(n), considering

the representation:

σ : O(n) −→ Aut(TRn) , σ(U)(τa) = Uτa,

where

Uτa(x) = τUa(x) = x+ Ua with x, a ∈ Rn , U ∈ O(n).

Hence, the resulting binary operation is:

(τb, O2)(τa, O1) = (τb(O2τa), O2O1).

Considering that (τt, O)(x) = Ox+ t, we have:

(τb(O2τa), O2O1)(x) = O2O1x+O2a+ b.
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Which is exactly what we expect from the composition of the two isometries

(τb, O2) and (τa, O1) applied on a vector x ∈ Rn.

Observation 1.3.6. Consider a subgroup H of (G, ∗), with the action being

given by the conjugation, as seen in example 1.2.8. In particular, when H is

a normal subgroup of G both GoH and H oG are well defined, taking as

action the conjugation. Furthermore, the subgroup (H, eG) is normal both

in G oH and in H o G. Since the proof is virtually the same for the two

products, we prove only the first assertion.

We want to show that for every (x, eG) ∈ (H, eG) and (g, h) ∈ G o H we

have (g, h)(x, eG)(g, h)−1 ∈ (H, eg) .

Since (g, h)−1 = (σ(h−1)(g−1), h−1), we have by semidirect product defini-

tion:

(g, h)(x, eG)(g, h)−1 = (g, h)(x ∗ σ(eG)(σ(h−1)(g−1), eG ∗ h−1) =

= (g, h)(x ∗ σ(h−1)(g−1), h−1) = (g ∗ σ(h)(x ∗ σ(h−1)(g−1)), h ∗ h−1) =

= (g ∗ h ∗ x ∗ h−1 ∗ g−1 ∗ h ∗ h−1, eG) = (g ∗ h ∗ x ∗ h−1 ∗ g−1︸ ︷︷ ︸
∈ H

, eG).

Which implies that (h, g)(H, eG)(h, g)−1 ⊂ (H, eG) and, by definition 1.1.4,

(H, eG) C GoH.

1.4 Exact Sequences

Now, for a more comprehesive point of view on the semidirect product,

we will briefly talk about exact sequences of groups. This is a powerful tool

for a broad investigation of group extensions, but we limit ourselves to a nar-

row spectrum of examples and observations necessary for the understanding

of the core relations between the groups and their semidirect product.

Definition 1.4.1. An exact sequence of groups is a sequence, finite or in-

finite, of groups {Gi}i∈I and morphisms {φi}i∈I such that Ker(φi+1) =

Im(φi) for every i ∈ I.

G0
φ1−→ G1

φ2−→ G2
φ3−→ . . .

φn−→ Gn
φn+1−→ . . .
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In particular, we call exact short sequence of groups a sequence

{e} −→ A
α−→ B

β−→ C −→ {e}

where {e} is the trivial group. The first and the last function can only be,

following observation 1.1.7, trivial homomorphisms f1(e) = eA and f2(c) =

e.

An exact sequence is said to be split if there exists a right-inverse for β,

which is a homomorphism γ : C −→ B such that β ◦ γ = IdC .

Observation 1.4.2. From the condition on the morphisms of an exact se-

quence, we have that Im(β) = Ker(f2) = C, so β must be surjective. At

the same time, Ker(α) = Im(f1) = eA, which means that α must be injec-

tive. Furthermore, by the First Theorem of Homomorphism, β induces an

isomorphism between C and B/Im(α) and every time we have a quotient

of a group G by a normal subgroup H we can write the exact sequence:

{e} −→ H
ı−→ G

π−→ G/H −→ {e}

With ı being the inclusion H ⊂ G and π : G −→ G/H the projection into

the quotient.

Example 1.4.3. Consider the following short sequence:

0 −→ Z2
f−→ G

g−→ Z2 −→ 0

• For G = Z4, the (unique) homomorphisms are f(a) = 2a and

g(0) = g(2) = 0 , g(1) = g(3) = 1. This sequence is not split, since the

only possible homomorphism from Z2 to Z4 is f , for what we asserted

in observation 1.1.7. Indeed, g ◦ f 6= IdZ2 , as g(f(1)) = 0.

• For G = Z2 ⊕ Z2, the homomorphism are (not unique!) f(0) = (0, 0),

f(1) = (1, 0) and g((0, 0) = g((1, 0)) = 0 , g((0, 1)) = g((1, 1)) = 1.

This sequence is split, considering as right-inverse for g the homomor-

phism h(0) = (0, 0) , h(1) = (0, 1).
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1.5 Semidirect Product and Exact Sequences

In this section we see a characterization of semidirect products via exact

sequences.

Let (C, ∗) be a group and A C C. Following example 1.3.6, we can define

AoC using the conjugation σ : C −→ Aut(A). Consider the short sequence:

{e} −→ A ↪→ Ao C
π−→ C −→ {e}

Where the first non trivial morphism is the embedding ı : A −→ A o C,

ı(a) = (a, eC), and the second one, from A o C to C, is the projection

π(a, c) = c. This is an exact sequence since: Im(f1) = eA = Ker(ı),

Im(ı) = (A, eC) = Ker(π) and Im(π) = C = Ker(f2). Both ı and π are

homomorphisms, in fact:

ı(a1)ı(a2) = (a1, eC)(a2, eC) = (a1 ∗ σ(eC)(a2), eC ∗ eC) = (a1 ∗ a2, eC) =

= ı(a1 ∗ a2).

and

π((a1, c1)(a2, c2)) = π((a1 ∗ σ(c1)(a2), c1 ∗ c2)) = c1 ∗ c2 =

= π((a1, c1)) ∗ π((a2, c2)).

This sequence is split: the homomorphism φ : C −→ Ao C , φ(c) = (eC , c)

is a right inverse for π : π ◦ φ = IdC . The proof of φ homomorphism is

essentially the same as the one given for ı.

Suppose now that the short sequence in definition 1.4.1 is split:

{e} −→ A
α−→ B

β

�
γ
C −→ {e}

with β ◦ γ = IdC . We want to show that every b ∈ (B, ?) can be written
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uniquely as b = a ? c, with a ∈ Im(α) = Ker(β) and c ∈ Im(γ):

b = b ? [γ(β(b))]−1 ? γ(β(b)) = [b ? γ(β(b−1))] ? γ(β(b))︸ ︷︷ ︸
∈ Im(γ)

,

while b ? γ(β(b−1)) ∈ Ker(β) since

β(b ? γ(β(b−1))) = β(b) ∗ β(γ(β(b−1))) = β(b) ∗ β(b−1) = eC

for the properties of morphisms.

Suppose now that b = x1 ? y1 = x2 ? y2 with x1, x2 ∈ Ker(β)) and y1, y2 ∈
Im(γ). Applying β both sides we have:

β(x1) ∗ β(y1) = β(x2) ∗ β(y2) ⇒ β(y1) = β(y2).

There exists z1, z2 ∈ C such that γ(z1) = y1 and γ(z2) = y2, so:

β(γ(z1)) = β(γ(z2)) ⇒ z1 = z2 ⇒ y1 = y2 and x1 = x2.

Hence, the factorization is unique.

Consider the group Ker(β) o Im(γ), with the binary operation induced by

the conjugation, as in 1.3.6: (a1, c1)(a2, c2) = (a1 ?c1 ?a2 ?c
−1
1 , c1 ?c2). Such

operation is well defined since Ker(β) C B.

Define

φ : B −→ Ker(β) o Im(γ) , φ(b) = (a, c),

where a ∈ Ker(β) and c ∈ Im(γ) such that b = a ? c.

For what we showed before, φ is a bijection. But it is also a homomorphism:

given b1, b2 ∈ B with factorization a1 ? c1 and a2 ? c2 respectively, we have

that

φ(b1 ? b2) = φ((a1 ? c1) ? (a2 ? c2)) = φ(a1 ? c1 ? a2 ? c
−1
1︸ ︷︷ ︸

∈Ker(β)

? c1 ? c2︸ ︷︷ ︸
∈ Im(γ)

) =

= (a1 ? c1 ? a2 ? c
−1
1 , c1 ? c2) = (a1, c1)(a2, c2) = φ(b1)φ(b2).

Hence, B is isomorphic to Ker(β) o Im(γ).
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Now we want to point out that Im(α) ∼= A since α is an injection, so

Im(α) = Ker(β) ∼= A, and also that Im(γ) ∼= C, because γ is an injection.

Finally, we proved that B ∼= Ao C.

We have thus proved the following important result concerning exact

sequences and semidirect products:

Theorem 1.5.1. Let A be a normal subgroup in a group (C, ∗), then the

group (B, ?) is isomorphic to the semidirect product AoC if and only if the

sequence

{e} −→ A
α−→ B

β−→ C −→ {e}

splits.

For abelian groups, such as the one seen in example 1.4.3, the semidirect

product becomes a direct product, or equivalently a direct sum. Moreover,

recalling what we asserted in observation 1.4.2, being split implies that C ∼=
Ao C/Im(α).

One last important example, concerning the above results, is about the

structure of the orthogonal group O(n). As in example 1.1.8, we take for

granted the basic knowledge in linear algebra. See [7] for more details.

Example 1.5.2. Consider the sequence:

{e} −→ SO(n) ↪→ O(n)
π−→ O(n)/SO(n) −→ {e}

It is a particular case of the sequence seen in observation 1.4.2, where the

first non trivial homomorphism of the sequence is the inclusion ı, and the

projection to the quotient π is given by the determinant function det :

GL(n,R) −→ R\{0} . Orthogonal matrices have unitary determinant, which

means, for O(n) ⊂ GL(n,R), that it can only be ±1. Since the determinant

function det is a group homomorphism, and SO(n) is its kernel, it induces

an isomorphism between O(n)/SO(n) and ({±1}, ·). Hence, we obtained

that O(n)/SO(n) ∼= C2, where C2 is the cyclic group of order 2. Given

a reflection r through an hyperplane in Rn, such group can be expressed

in a more relevant way as ({Id,R}, ∗), where Id is the identity matrix, R

is the matrix associated with r and ∗ is the matrix multiplication. Since
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a reflection is an orthogonal transformation, and in particular an inverse

isometry and an involution, it is clear that ({Id,R}, ∗) ∼= ({±1}, ·) ∼= C2.

Such sequence is exact, because Im(ı) = Ker(π) = SO(n). Moreover, it is

also split: we can define the right-inverse for π as

φ : {±1} −→ O(n) , with φ(1) = Id , φ(−1) = R

which can be seen as the inclusion {Id,R} ⊂ O(n). Using now the previous

and general conclusions on split exact sequences, we obtain that SO(n) o
{Id,R} ∼= O(n) , with the representation σ : {Id,R} −→ Aut(SO(n)) being

the conjugation.





Chapter 2

Smooth Manifolds and Lie

Groups

In this second chapter we focus on the preliminary knowledge necessary

for the study of the main object of this thesis, the Poincaré group and its

representations. Here we are going to introduce Lie groups, without go-

ing into a detailed description of their properties, as it would bring us too

far. In order to give a precise definition of Lie groups we need to introduce

smooth manifolds, therefore we start with a short section about manifolds

and smooth functions defined on them. For an extensive discussion on this

topic, we refer the reader to [11], chapters 5 and 6.

We take for granted the topological concepts, such as homeomorphism,

neighborhood, Hausdorff space, topological base and second-countable set.

For such concepts, see [11], appendix A.

2.1 Manifolds and C∞ Atlases

In this section we define first what a topological manifold is, and then,

through the concept of a C∞ atlas, we put a differentiable structure on

the manifold, obtaining a smooth manifold. Such construction relies on

the following basic geometric idea: a manifold is a topological space that

locally resembles Rn for a given n, with various degrees of regolarity on

the functions involved depending on the kind of manifolds we are interested

19



20 2.1 - Smooth Manifolds and Lie Groups

in (for topological ones we just need continuity, while smooth manifolds

requires C∞ functions).

A formalization of this concepts can be expressed as follows.

Definition 2.1.1. A topological space M is locally euclidean of dimension

n if every point p in M has a neighborhood U and a homeomorphism φ from

U onto an open subset of Rn. A topological manifold is a Hausdorff, second

countable and locally euclidean space. We call n the dimension of M .

The pair (U, φ) is called chart, while U is called a coordinate neighborhood

and φ a coordinate map.

The purpose of a chart is to create a local coordinate system on the

manifold. Since the coordinate neighborhoods on a manifold are not disjoint,

we require a certain compatibility of the coordinate maps acting on the same

domain.

Definition 2.1.2. Suppose (U, φ) and (V, ψ) are two charts on a topologi-

cal manifold such that U ∩ V 6= ∅. These two charts are C∞-compatible, or

simply compatible, if the two following maps, called transition functions,

φ ◦ ψ−1 : ψ (U ∩ V ) −→ φ (U ∩ V ) ; ψ ◦ φ−1 : φ (U ∩ V ) −→ ψ (U ∩ V )

are C∞.

Two coordinate functions whose domain does not intersect are trivially com-

patible charts.

We are ready to define the notion of differentiable structure as the col-

lection of compatible charts of a manifold.

Definition 2.1.3. An atlas on a locally euclidean space M is a collection

U = {(Uα, φα)}α∈A of pairwise C∞-compatible charts that covers M , or

explicitly, such that M =
⋃
α∈A

Uα. An atlas U is said to be maximal if it is

not contained in any larger atlas, that is, if M is another atlas and U ⊂M ,

then U = M .

A smooth or C∞ manifold is a topological manifold together with a maximal

atlas.

However, to prove that a topological manifold is a smooth manifold it

is not necessary to exhibit a maximal atlas, since the existence of a generic



2 - Manifolds and C∞ Atlases 21

one is sufficient. Indeed, in the following proposition we prove that given an

atlas it is possibile to obtain a unique maximal atlas containing our starting

one. Hence, a topological manifold with an atlas automatically possesses a

maximal atlas and so it is, by definition, a smooth manifold.

Proposition 2.1.4. Given an atlas U = {(Uα, φα)}α∈A on a topological

manifold, it is contained in a unique maximal atlas M .

Proof. Consider all the charts (Vi, ψi)i∈I compatible with every chart in

U . It can be shown (proposition 5.8 in [11]) that all charts (Vi, ψi)i∈I are

compatible with each other. Hence, if we adjoin the charts (Vi, ψi)i∈I to the

atlas U we obtain a larger atlas M . Such new atlas is maximal, because any

other chart compatible with every chart in M is in particular compatibile

with those of U , so it is already in M .

This maximal atlas M is unique: if there was another maximal atlas M ′

containing U , all the charts in M ′ would be compatible with those in U .

Hence M ′ ⊂M . Since they are both maximal we would have M ′ = M .

Observation 2.1.5. Notice that an open set in a smooth manifold is a smooth

manifold: in fact an open subset of a topological space, with the induced

topology, inherits the properties of being Hausdorff and second countable

from the ambient space. Moreover, if {(Uα, φα)}α∈A is an atlas for our

smooth n-manifold M and V ⊂ M is the open subset considered, then

{(Uα ∩ V, φα|Uα∩V )}α∈A is an atlas for V : it clearly covers V and the maps

φα|Uα∩V : Uα ∩V −→ Rn are a restriction of the coordinate maps φα, hence

they are compatible charts for V .

Observation 2.1.6. We know that if we have two topological spaces that are

both Hausdorff and second countable, their cartesian product retains those

properties, provided that it is equipped with the product topology. So we

conclude that, given a smooth m-manifold M and a smooth n-manifold N

with atlases {(Uα, φα)} and {(Vβ, ψβ)} respectively, their product M ×N is

a smooth (m+ n)-manifold with the atlas

{(Uα × Vβ , φα × ψβ : Uα × Vβ → Rm × Rn)},
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where (φα × ψβ)(p, q) = (φα(p), ψβ(q)).

Such collection of charts is effectively an atlas since they are pairwise com-

patible.

Consider : φα1 × ψβ1 : Uα1 × Vβ1 → Rm × Rn and

φα2 × ψβ2 : Uα2 × Vβ2 → Rm × Rn.

Define W := (Uα1 × Vβ1) ∩ (Uα2 × Vβ2) = (Uα1 ∩ Uα2)× (Vβ1 ∩ Vβ2) .

The two transition functions

(φα2 × ψβ2) ◦ (φα1 × ψβ1)−1 : (φα1 × ψβ1)(W ) −→ (φα2 × ψβ2)(W )

(φα1 × ψβ1) ◦ (φα2 × ψβ2)−1 : (φα2 × ψβ2)(W ) −→ (φα1 × ψβ1)(W )

are C∞, since:

(φα2 × ψβ2) ◦ (φα1 × ψβ1)−1(x, y) = ((φα2 ◦ φ−1α1︸ ︷︷ ︸
∈C∞ Hp.

)(x), (ψβ2 ◦ ψ
−1
β1︸ ︷︷ ︸

∈C∞ Hp.

)(y)),

and Rm ×Rn is equipped with the product topology, which means that the

smoothness of a function derives from the smoothness of its component. The

same holds for the second transition function.

Example 2.1.7. The vector space Rn is a smooth manifold with the atlas

made up of the trivial chart (Rn, IdRn) alone. By the observation 2.1.5,

every open subset of Rn is a manifold with the induced atlas.

Example 2.1.8. The general linear group GL(n,R) is an n2-manifold : the

vector space of all m× n matrices, Rm×n, is isomorphic to Rmn, so we can

put the euclidean topology of Rn2
on Rn×n. By definition of GL(n,R) =

{A ∈ Rn×n | det(A) 6= 0} and the continuity of the determinant function

det : Rn×n −→ R, we obtain that GL(n,R) is an open subset of Rn2
, because

it is the preimage of the open set R \ {0} through a continous function.

Following observation 2.1.5, we conclude that GL(n,R) is an n2-manifold,

as an open subset of Rn2
.

Similar conclusions hold for the complex case: the group GL(n,C) is the

preimage of the open set C \ {0} through the continuous function det :
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Cn×n −→ C. As such, it is an open subset of Cn
2

and thus a 2n2-manifold.

We now want to introduce the concept of smooth function between

smooth manifolds.

Definition 2.1.9. Let M be a smooth m-manifold and N a smooth n-

manifold. A map f : M −→ N is C∞, or smooth, at a point p ∈M if there

are charts (V, ψ) in N and (U, φ) in M such that p ∈ U, φ(p) ∈ V and the

composition ψ◦f ◦φ−1 : φ(U ∩f−1(V )) −→ Rn is C∞ at φ(p). The function

f is said to be C∞, or smooth, on M if it is smooth at every point of M .

Observation 2.1.10. Let M and N be two open subsets of Rm and Rn respec-

tively. As in example 2.1.7, we can consider these sets as smooth manifolds

with the trivial chart only. Following the previous definition, a function

f : M −→ N is a smooth function at p ∈ Rm if Id ◦ f ◦ Id−1 = f is C∞

at p. This means that the regularity of f ensures the smoothness of f as

a function between manifolds. Such conclusion will come in handy working

with matrix groups.

2.2 Tangent Space

The tangent space naturally arises during the study of smooth manifolds.

It is the vector space of derivations on germs of functions and allows us to

define other important objects such as vector fields and the differential of a

smooth map.

First we define the germs of functions:

Definition 2.2.1. Let M be a manifold and p a point in M . Consider the

set of pairs (f, U) where f ∈ C∞(U) and U is an open set in M such that

p ∈ U . We introduce the following equivalence relation: given two pairs

(f, U) and (g, V ), we say that (f, U) is equivalent to (g, V ) if it exists an

open neighborhood W ⊂ U ∩ V of p such that f |W = g|W .

We call germ of f at p the equivalence class of (f, U), while C∞p (M) is the

set of all such equivalence classes.
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Definition 2.2.2. Given a manifold M and a point p ∈M , a tangent vector

at p in M is a derivation on germs of functions at p, that is, a linear map

D : C∞p (M) −→ R satisfying the Leibniz rule:

D(fg) = (Df)g(p) + f(p)D(g) for every f, g ∈ C∞p (M).

The tangent space of M in p, written TpM , is the set of all derivations at

p. We call vector field on an open subset U of M a function X that assigns

to each point p ∈ U a tangent vector Xp in TpM .

For every point p in a manifold M , the tangent space TpM is a real vector

space of the same dimension as the manifold. Let p ∈ M and consider a

coordinate neighborhood U of p with coordinate maps {xi}i=1,...n. A basis

for the tangent space TpM is

{
∂

∂xi

∣∣∣
p

}
i=1,...n

(see [11], chapter 8, section

4). Thus, a vector field X on a n-manifold can be expressed as a linear

combination of functions {ai}i=1,...n defined on an open subset U of the

manifold:

X =
n∑
i=1

ai
∂

∂xi
and Xp =

n∑
i=1

ai(p)
∂

∂xi

∣∣∣
p
.

In particular, we say that a vector field X is smooth if all the coefficient

functions {ai}i=1,...n are smooth. Notice that this property is independent

of the local coordinates chosen (Proposition 14.2 in [11]).

Hence, a smooth vector field can be considered as a derivationX : C∞(U) −→
C∞(U) : given a smooth map on an open subset U of a manifold, f ∈
C∞(U), the function

X(f) =
n∑
i=1

ai
∂f

∂xi

is pointwise defined by

(Xf)(p) = Xp(f) =
n∑
i=1

ai(p)
∂f

∂xi
(p)

and it is smooth.

For a comprehensive introduction about vector fields, derivations and tan-

gent spaces, with all the necessary proofs, see [11], chapter 2 and 8.
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2.3 Differential of a Function

Now we go to the definition of the differential of a smooth function.

Definition 2.3.1. Let N,M be two manifolds and F : N −→M a smooth

function between them. Let p ∈ N . The differential of F at p, dFp, is a linear

map between the tangent spaces TpN and TF (p)M such that if Xp ∈ TpN is

a tangent vector at p, then dFp(Xp) ∈ TF (p)M is a tangent vector at F (p)

defined by:

(dF (Xp))f = Xp(f ◦ F ) for f ∈ C∞F (p)(M).

Such map is clearly linear since for any tangent vectors Xp, Yp at p and

f ∈ C∞F (p)(M):

(dFp(Xp + Yp))f = (Xp + Yp)(f ◦ F ) = Xp(f ◦ F ) + Yp(f ◦ F ) =

= (dFp(Xp))f + (dFp(Yp))f,

by definition of tangent space as a real vector space.

One common technique that we will frequently employ from now on is

the computation of differentials using curves on the manifold. The idea

behind this procedure is clarified by the following proposition.

Proposition 2.3.2. Let N,M be two manifolds and F : N −→M a smooth

function between them. Consider a point p ∈ N , a tangent vector Xp ∈
TpN and c a smooth curve starting at p with velocity Xp, that is, a smooth

function between manifolds c : (a, b) −→ N such that 0 ∈ (a, b) , c(0) = p

and c′(0) = Xp. Then we have:

dFp(Xp) =
d

dt

∣∣∣
t=0

(F ◦ c)(t)

Which means that dFp(Xp), the differential of F in p evaluated on Xp, is

the velocity vector of the curve F ◦ c at F (p).

Proof. Since c′(0) = Xp and c(0) = p, we have that

dFp(Xp) = dFp(c
′(0)) = (dFp ◦ dc0)

(
d

dt

∣∣∣
t=0

)
=
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(for the chain rule, see Theorem 8.5 in [11])

= d(F ◦ c)0
(
d

dt

∣∣∣
t=0

)
=

=
d

dt

∣∣∣
t=0

(F ◦ c)(t),

by definition of the differential.

2.4 Lie Groups

We introduce now Lie groups, since the main object we are interested

in, the Poincaré group, is a semidirect product of Lie groups. This concept

combines both the ideas of group and smooth manifold, requiring a compat-

ibility between these two structures: the binary operation and the inverse

function of the group have to be smooth functions.

Definition 2.4.1. A Lie group is a smooth manifold G with a group struc-

ture such that the binary operation µ : G × G −→ G , µ(x, y) = x ∗ y and

the inverse operation ι : G −→ G , ι(x) = x−1 are C∞.

Observation 2.4.2. Note that, in this definition, the binary operation is re-

quired to be a smooth function between manifolds G×G, built through the

cartesian product as seen in 2.1.6, and G.

Notice that the left multiplication (also called left translation) map lg :

G −→ G , lg(h) = g ∗h is a smooth map for every g ∈ G, since the composi-

tion of this function with the coordinate charts can be seen as a restriction

of the composition of the group operation µ with suitable charts, which is

smooth by definition.

Example 2.4.3. The identity-connected component G0 of a Lie group G is

itself a Lie group. Let g1, g2 ∈ G0 and γi : [0, 1] −→ G0 , t 7−→ γi(t)

two continuous curves connecting e with gi , i = 1, 2. We have g1 ∗ g2 =

µ(g1, g2) ∈ G0 since µ is a smooth function and

γg2 = µ(γ1, g2) : [0, 1] −→ G0 , γg2(t) = γ1(t) ∗ g2
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is a continuous curve connecting g2 with g1 ∗ g2. Hence the curve

γ(t) : [0, 1] −→ G0 , γ(t) =


γ1(2t) t ∈ [0,

1

2
]

γg2(2t− 1) t ∈ [
1

2
, 1]

connects e with g1 ∗ g2.
Moreover, ι(g1) = g−11 ∈ G0 because ι is smooth and

γ = ι(γ1) : [0, 1] −→ G0 , γ(t) = γ1(t)
−1

is a continuous curve connecting e with g−11 . So we obtained that G0 is a

subgroup of G.

Moreover, being G a real manifold, it is locally homeomorphic to Rn for a

given n. As such, G is locally path-connected, since path-connectedness is

a topological invariant. A connected component in a locally path-connected

space is open, hence G0 is a smooth manifold of the same dimension as G,

being an open set of the smooth manifold G. We conclude that G0 is a Lie

group since it is a smooth manifold and a group whose binary operation and

inverse inherit the smoothness from µ and ι.

Example 2.4.4. We already saw in example 2.1.8 that the general linear

group GL(n,R) is a n2-manifold, since it is an open subset of Rn2
. Now we

show that it is also a Lie group. In the first chapter we introduced GL(n,R)

as a group with matrix multiplication, which can be expressed in global co-

ordinates of Rn2
as follows.

Given two matrices A,B ∈ GL(n,R) , A = (a)ij , B = (b)ij and the matrix

multiplication µ : GL(n,R)×GL(n,R) −→ GL(n,R) , µ(A,B) = AB

we have that (AB)ij =

n∑
k=1

aikbkj . Hence, every component of µ is a poly-

nomial in the coordinates of A and B. Recalling observation 2.1.10, we can

conclude that µ is C∞.

For the inverse function: givenA ∈ GL(n,R) and ι : GL(n,R) −→ GL(n,R) ,

ι(A) = A−1, we have (A−1)ij =
1

det(A)
· (−1)i+j(Aij), where Aij is the de-

terminant of the submatrix of A obtained removing the jth-row and the

ith-column. Every component of ι(A) is a rational function in the coordi-
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nates of A with a non-zero denominator, since det(A) 6= 0. This confirms

that ι is C∞ and effectively proves that GL(n,R) is a Lie group of dimension

n2.

Observation 2.4.5. Notice that results obtained for a real matrix group can

be applied to its complex counterpart through the realification: given a

complex number z = a + ib, we can write it as the square real matrix(
a −b
b a

)
∈ M(2,R). This means that every complex matrix in M(n,C)

can be written as a real matrix with doubled dimensions in M(2n,R).

Hence, a completely analogous argument as the one given in the previous

example shows that GL(n,C) is a real Lie group of dimension 2n2, which

means it has a differentiable atlas of transition functions between open sets

in R2n2
.

All the matrix subgroups introduced in example 1.1.8 are Lie groups.

We will not give a proof of the following result, so we refer to [12], chapter

2, section 1.

Theorem 2.4.6. Let G be a subgroup of GL(n,R) (or GL(n,C)) defined

through algebraic equations. Then G is a closed real (or complex) Lie group.

Example 2.4.7. We already know that SL(n,K) is a subgroup of GL(n,K).

Moreover, being det : GL(n,K) −→ K a polynomial function in the matrix

entries, SL(n,K) is a subgroup GL(n,K) defined through an algebraic equa-

tion. Hence, given the previous theorem, we conclude that SL(n,K) is a Lie

Group. We will discuss later about its dimension, as we need to use some

concepts that will be introduced in the following sections. See example 2.6.7

for the conclusion.

Example 2.4.8. The orthogonal group O(n) is a Lie group, since its defining

conditions are algebraic. In fact, considering the euclidean topology on Rn

given by the standard inner product 〈v, w〉 =
n∑
i=1

viwi and a matrix A ∈

O(n), the condition ATA = Id means that the columns (a1, a2, · · · , an) = A

satisfy the polynomial equations
n∑
k=1

aikakj = 〈ai, aj〉 = δij .
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Furthermore, following the previous example, we can say that SO(n) is a Lie

group, since it is a subgroup of the Lie group O(n) defined by the algebraic

condition that the determinant is 1.

Observation 2.4.9. Analogous results can be obtained for the unitary group

U(n) and its subgroup SU(n), applying first the realification seen in obser-

vation 2.4.5 and then concluding that the defining condition A†A = Id is

now algebraic. Hence, they are both Lie groups.

2.5 Lie Algebras

As we will see in the next chapter, Lie algebras are fundamental for the

computation of the representations of their associated Lie groups.

We give first the general definition of Lie algebra with its bracket operation,

then we prove that this structure is effectively associated with the tangent

space of a Lie group G and its Lie bracket.

Definition 2.5.1. Given a field K, a Lie algebra A is a vector space over

K equipped with an antisymmetric bilinear map, called the bracket, from

A× A into A

(X,Y ) 7−→ [X,Y ] with X,Y ∈ A

satisfying the Jacobi identity, that is:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for every X,Y, Z ∈ A

The definition of a Lie algebra associated with a Lie group relies on a

particular class of vector fields, the left invariant ones. After their definition

we will be able to geometrically identify the Lie algebra of a Lie group with

its tangent space at the identity.

Observation 2.5.2. Given a Lie group G, we already saw in example 2.4.2

that the left multiplication lg is a smooth function. So it can be differenti-

ated:

dlg : ThG −→ Tlg(h)G = Tg∗hG , Xh 7−→ dlg(Xh)
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In particular, considering G ⊂ GL(n,K), we observe that lg is a linear

function in the vector space M(n,K):

lg(h+ k) = g(h+ k) = gh+ gk = lg(h) + lg(k) for every h, k ∈ G

so the differential dlg is lg itself, and the above expression becomes Xh 7−→
dlg(Xh) = gXh, with g,Xh ∈M(n,K)

Definition 2.5.3. We say that a vector field X on a Lie group G is left

invariant if dlg(Xh) = Xg∗h, for every g, h ∈ G.

In particular, for G ⊂ GL(n,K), this means that dlg(Xh) = gXh = Xgh

Observation 2.5.4. Let G be a Lie group and X a left invariant vector field

on it. Considering the identity element e of G and the tangent vector X(e) =

Xe, we have:

dlg : TeG −→ TgG , Xe 7−→ dlg(Xe) = Xg∗e = Xg

This means that a left invariant vector field X is completely determined by

its value at e.

Now we have all the preliminary concepts to define the structure that

we will prove to be the Lie algebra associated with a Lie group.

Definition 2.5.5. Given a Lie group G, we define the Lie algebra Lie(G) =

g associated with G as the set of all the left invariant vector fields:

g = {X : g 7−→ Xg = dlg(Xe)}

Given two vector fields X,Y ∈ g, we define the Lie bracket [X,Y ] as:

[X,Y ](f) = (XY − Y X)(f) = X(Y (f))− Y (X(f)) with f ∈ C∞(G)

One can easily see that this is a vector field. Additionally, it can be shown

([11], chapter 14, section 6) that Z = [X,Y ] is a left invariant vector field,

hence Z ∈ g and the Lie bracket is effectively defined on g.

Now we are going to show that g is isomorphic, as a vector space, to the

tangent space in the identity element e of the Lie group G, and then we will
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prove that g, with the Lie bracket, is effectively a Lie algebra, as we defined

it in 2.5.1.

As we have seen in observation 2.5.4, a left invariant vector field is de-

termined by its value at e. This means that every vector field X can be

represented by a vector Xe ∈ TeG. Moreover, for every vector Xe in TeG

we have a (left invariant) vector field X applying dlg to Xe for every g ∈ G.

Hence, considering that the set of all vector fields is a vector space, we con-

clude that the set of all the left invariant vector fields is isomorphic to the

tangent space of G in e. We can now extend the previous definition:

g = {X : g 7−→ Xg = dlg(Xe)} ∼= TeG

See [12], chapter 2, section 3, for more details. In particular, it is necessary

to prove that such left invariant vector field is smooth.

We have already seen in definition 2.5.5 that, given a Lie group G, the

vector space g is equipped with a product map, the Lie bracket. Now,

considering that a derivation is a linear map and the set of all vector fields

is a vector space, we conclude that the Lie bracket is an anticommutative

bilinear product on g:

[Y,X](f) = Y (X(f))−X(Y (f)) = −[X,Y ](f)

and

[rX + sZ, Y ](f) = (rX + sZ)(Y (f))− Y ((rX + sZ)(f)) =

= rX(Y (f)) + sZ(Y (f))− Y (rX(f))− Y (sZ(f)) =

= r[X,Y ](f) + s[Z, Y ](f).

For every X,Y, Z vector fields on G and r, s ∈ K. Simmetrically for the

second argument.

Moreover, the Lie bracket satisfies the Jacobi identity:

[X, [Y,Z]](f) + [Y, [Z,X]](f) + [Z, [X,Y ]](f) =
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= [X, (Y Z − ZY )](f) + [Y, (ZX −XZ)](f) + [Z, (XY − Y X)](f) =

= (XY Z −XZY − Y ZX + ZY X)(f)+

+ (Y ZX − Y XZ − ZXY +XZY )(f)+

+ (ZXY − ZY X −XY Z + Y XZ)(f).

Using the linearity of the derivation it becomes easy to see that all those

terms are mutually cancelled.

Hence, for every Lie group G, the set of all left invariant vector fields (or

tangent space in the identity) Lie(G) = g with the Lie bracket is effectively

a Lie algebra.

Example 2.5.6. Consider the group G = SO(2) ⊂ GL(2,R). For what we

have seen in example 2.4.8, it is a Lie group. We already know that

SO(2) ∼=
{(

cosθ sinθ

−sinθ cosθ

)
, θ ∈ [0, 2π]

}
∼= S1.

As such, Lie(SO(2)) = so(2) ∼= R, since the tangent space of S1 in e = 1 ≡(
1 0

0 1

)
= IdR2 is geometrically a line, or 1-dimensional real vector space.

Left invariant vector fields on SO(2) are determined applying rotations,

that are left translations in SO(2), to a tangent vector in e, which can be

represented as a real number.

Observation 2.5.7. Let G be a subgroup of GL(n,R) with the identification

g = Lie(G) ∼= TeG:

Xe =

n∑
i,j=1

aij
∂

∂xij

∣∣∣
e
←→ (aij)i,j=1,...n = A,

the Lie bracket on g behaves as a matrix product.

Indeed, given X =

n∑
i,j=1

vij
∂

∂xij
and Y =

n∑
i,j=1

wij
∂

∂xij
left invariant vector

fields such that Xe ↔ A = (aij) = (vij(e)) and Ye ↔ B = (bij) = (wij(e)),
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we have

[X,Y ]exij = Xe(Y (xij))− Ye(X(xij))

= Xe(
n∑

l,m=1

wlm
∂

∂xlm
xij)− Ye(

n∑
l,m=1

vlm
∂

∂xlm
xij) =

= X(wij)− Y (vij).

Since X,Y are left invariant vector fields, they are determined in every point

p = (xij(p)) ∈ G by dlpXe = pXe = Xp, which means

Xp =
n∑

i,j=1

(pA)ij
∂

∂xij

∣∣∣
p

=⇒ vij =
n∑
k=1

xikakj

and the same for Y . So it follows that

[X,Y ]exij =

n∑
l,m=1

alm
∂

∂xlm
(

n∑
k=1

xikbkj)−
n∑

l,m=1

blm
∂

∂xlm
(

n∑
k=1

xikakj) =

=
n∑

l,m,k=1

almbkjδilδkm −
n∑

l,m,k=1

blmakjδilδkm =

=
n∑
k=1

aikbkj −
n∑
k=1

bikakj = (AB −BA)ij ,

which gives exactly what we were looking for:

[X,Y ]e = AB −BA.

Example 2.5.8. Consider gl(2,R) = Lie(GL(2,R)). Following example 2.1.8,

we conclude that gl(2,R) ∼= R4, since the Lie group GL(2,R) is an open set

in R4. We want to study the behaviour of the Lie bracket applied to the

following matrices:

H =

(
1 0

0 −1

)
, X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
Note thatH,X, Y are matrices in gl(2,R), not inGL(2,R). Indeed, det(X) =

det(Y ) = 0.
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[X,Y ] = XY − Y X =

(
0 1

0 0

)(
0 0

1 0

)
−
(

0 0

1 0

)(
0 1

0 0

)
=

(
1 0

0 0

)
−
(

0 0

0 1

)
=

(
1 0

0 −1

)
= H

[H,X] = HX −XH =

(
1 0

0 −1

)(
0 1

0 0

)
−
(

0 1

0 0

)(
1 0

0 −1

)
=

(
0 1

0 0

)
−
(

0 −1

0 0

)
= 2

(
0 1

0 0

)
= 2X

[H,Y ] = HY − Y H =

(
1 0

0 −1

)(
0 0

1 0

)
−
(

0 0

1 0

)(
1 0

0 −1

)
=

(
0 0

−1 0

)
−
(

0 0

1 0

)
= −2

(
0 0

1 0

)
= −2Y

We will see that this results are extremely important for the structure of

the Lie algebra sl(2,C) and its representations.

2.6 Matrix Exponential

In this section we briefly introduce the matrix exponential, a fundamen-

tal tool in Lie Theory. We are not going to use intensively this useful tool

in this thesis, so our exposition of the topic will be quite simple and focused

on our needs. For more details, see [12], chapter 2, section 10.

Definition 2.6.1. The matrix exponential is a function of square matrices

exp : M(n,K) −→M(n,K) , exp(A) = eA = I +A+
A2

2!
+
A3

3!
+ · · ·

Observation 2.6.2. The matrix exponential is defined through the power

series
∞∑
k=0

Ak

k!
, which is a generalization of the exponential map on real or

complex numbers. As such, it has the same property of convergence: we

know that in a Banach space, such as Rn×n ∼= Rn2
with the euclidean norm,
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the absolute convergence of a series implies the convergence. So we have to

study the convergence of the series
∞∑
k=0

∥∥∥Ak
k!

∥∥∥, which is bounded by

√
n+ ‖X‖+

1

2!
‖A‖2 +

1

3!
‖A‖3 + · · · = (

√
n− 1) + e‖A‖,

using the property ‖AB‖ ≤ ‖A‖‖B‖ ⇒ ‖An‖ ≤ ‖A‖n for every A ∈ Rn×n.

Since (
√
n − 1) + e‖A‖ is finite for every A ∈ Rn×n, the matrix exponential

is absolutely convergent for every A ∈ Rn×n. For more details, see [11],

chapter 15, section 3.

Observation 2.6.3. Notice that for a diagonal matrix the following property

holds:

A =


a1

a2
. . .

an

 −→ Ak =


ak1

ak2
. . .

akn


So it is immediate, by definition of matrix exponential, to conclude that etA

assumes the simple expression

etA =


eta1

eta2

. . .

etan

 .

The same is true for triangular matrices. For example, if A is an upper

triangular matrix:

A =


a1 · · · ∗ ∗

a2 · · · ∗
. . .

...

an

 −→ Ak =


ak1 · · · ? ?

ak2 · · · ?
. . .

...

akn

 .

So we have

etA =


eta1 · · · • •

eta2 · · · •
. . .

...

etan

 .
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This result will be useful for the next proposition.

Proposition 2.6.4. For every A ∈ Kn×n, det(etA) = etr(A).

Proof. If A is upper triangular as in the previous observation, we have

eA =

∞∑
k=0

Ak

k!
=

∞∑
k=0

1

k!


ak1 · · · ? ?

ak2 · · · ?
. . .

...

akn

 =


eta1 · · · • •

eta2 · · · •
. . .

...

etan

 .

Which implies that

det(eA) =
n∏
i=0

eai = e
∑n
i=0 ai = etr(A).

By Jordan’s Theorem, for a matrix A there exists an invertible matrix M ∈
GL(n,C) such that

MAM−1 =


λ1 · · · ∗ ∗

λ2 · · · ∗
. . .

...

λn

 ,

where {λ1, · · · , λn} is the (complex) spectrum of A. So we have

eMAM−1
= I +MAM−1 +

1

2!
MA2M−1 +

1

3!
MA3M−1 + · · · =

= M(I +A+
A2

2!
+
A3

3!
+ · · · )M−1 = MeAM−1.

Considering that MAM−1 is upper triangular, we obtain

det(eA) = det(MeAM−1) = det(eMAM−1
) = etr(MAM−1) = etr(A),

since the determinant and the trace of a matrix are both invariant by simi-

larity.

This means that the image of the matrix exponential is in GL(n,K),

and not simply in M(n,K): since det(etA) = etr(A), for the properties of

the complex exponential, the right-hand side is always non-zero. Hence the
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matrix eA is always invertible. In particular, for a Lie group G ⊂ GL(n,K)

and its Lie algebra g ⊂ M(n,K), the matrix exponential sends matrices

A ∈ g into matrices eA ∈ G (for an exhaustive derivation of this result, see

[12], chapter 2, section 10).

Proposition 2.6.5. For every A ∈M(n,K) we have
d

dt
etA = AetA

Proof. Since every entry in the matrix etA is a function in t defined through

a convergent power series, we can compute the derivative of each component

function with a term by term differentiation of the power series:

d

dt
etA =

d

dt

(
I + tA+ t2

A2

2!
+ t3

A3

3!
+ · · ·

)
= A+ 2t

A2

2!
+ 3t2

A3

3!
+ · · · = A

(
I + tA+ t2

A2

2!
+ · · ·

)
= AetA

Observation 2.6.6. The matrix exponential is particularly useful to write

curves in GL(n,K) with a given initial point and velocity. For example,

consider Id as the starting point and A ∈ M(n,K) as the initial velocity.

Now look at the curve c(t) = etA : R −→ GL(n,K). We have

c(0) = e0A = e0 = I and c′(0) =
d

dt

∣∣∣
t=0

etA = Ae0 = A

by the previous proposition. The curve etA has also a group structure and

realizes a group homomorphism between R and GL(n,R):

(t1 + t2) 7−→ e(t1+t2)A = et1Aet2A for every t1, t2 ∈ R

since t1A and t2A commute ([12], Lemma 2.10.2). For this reason etA , t ∈
R, is called a one parameter subgroup.

Example 2.6.7. There are different ways to determine the Lie algebra associ-

ated to a Lie group. Since we are working with matrix Lie groups, the easiest

strategy makes use of curves, similarly to what we have seen in proposition
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2.3.2 for the differential of a smooth map.

We will give an example of this procedure for the group SL(2,K). Let

X ∈M(2,K). Define the smooth curve γ in M(2,K) as

γ : (−ε, ε) ⊂ R −→M(2,K) , γ(t) = etX , ε ∈ R.

Such curve is effectively in GL(2,K) for the properties of the matrix expo-

nential, but we are interested in SL(2,K) and its Lie algebra sl(2,K). Notice

that

X ∈ sl(2,K)⇐⇒ det(etX) = det(γ(t)) = 1 t ∈ (−ε, ε).

This implication relies on the fact that whenever det(γ(t)) = 1 we are moving

in SL(2,K), hence the tangent vector
d

dt
γ(t) = γ′(t) is in the tangent space

of SL(2,K). In particular, this is true for t = 0 and thus γ′(0) = X ∈
TIdSL(2,K) = sl(2,K).

For the properties of the matrix exponential, we have

det(etX) = etr(tX) = 1 t ∈ (−ε, ε)

⇐⇒ tr(X) = 0.

We conclude that sl(2,K) is the vector space of 2 × 2 matrices with null

trace. Hence:

sl(2,K) =

{(
x11 x12
x21 −x11

)
, xij ∈ K

}
=

= spanK

{(
1 0

0 −1

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)}
.

For the Lie structure, see example 2.5.8.

This also confirms that dim(SL(2,K)) = 3 as a Lie group, and in general

dim(SL(n,K)) = n2− 1, since the approach here presented can be repeated

for an arbitrary n.



Chapter 3

Representations of SL(2,C)

In this chapter we study the representations of the Lie group SL(2,C),

necessary to study the representations of the Poincaré group P. Note that

the Poincaré group is a real group, so we consider SL(2,C) as a real group,

even if the matrices have complex entries. The choice to work with complex

matrices relies on the greater ease of diagonalization.

In this chapter K denotes the field R or C.

3.1 Preliminaries on Representation Theory

Before we talk about the classification of all possibile representations of

SL(2,C), we define a Lie group and a Lie algebra representation. Moreover,

we show some important connections in Lie theory between Lie groups and

their algebras when dealing with representations.

Definition 3.1.1. Given a Lie group G and a finite dimensional vector space

V over a field K , a linear representation of G is a smooth homomorphism

σ : G −→ Aut(V ).

Given a linear representation σ, a subspace W of V is said to be invariant

if σ(g)w ∈W for every g ∈ G and w ∈W . A representation is irreducible if

the only invariant subspaces are trivial.

In particular, if V is a complex Hilbert space, we say that σ is unitary if

σ(g) is a unitary operator for every g ∈ G.

Moreover, if G is a matrix group, we say that a representation is standard

39
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if σ ≡ Id.

Definition 3.1.2. Let G be a Lie group, g its Lie algebra and V a finite

dimensional vector space over a field K. A representation of g is an algebra

homomorphism ρ : g −→ End(V ), that is, a linear function preserving the

Lie bracket: ρ : [X,Y ] 7−→ [ρ(X), ρ(Y )], for every X,Y ∈ g.

Similarly to definition 3.1.1, we define an irreducible and a standard repre-

sentation for a Lie algebra.

So, a Lie group representation is a group representation, as we have seen

in 1.2.7, which is smooth.

Observation 3.1.3. Let G be a Lie group and V a n-dimensional K-vector

space, with a representation σ : G −→ Aut(V ). We know that σ is a

smooth map by definition, hence it is differentiable. Suppose that the

identity element of G is e, the differential dσ evaluated in e is a func-

tion between g = TeG and TIdAut(V ). If we fix a basis for V , we ob-

tain that Aut(V ) ∼= GL(n,K) and TIdAut(V ) = gl(n,K) ∼= M(n,K), since

dim(GL(n,K)) = n2. The matrix exponential makes the following diagram

commutative:
G Aut(V ) ∼= GL(n,K)

g = TeG TIdAut(V ) ∼= Mn

σ

exp

(dσ)e

exp

This result is found in [12], chapter 2, section 10.

Notice that, by Theorem 2.7.3 in [12], ρ = (dσ)e is an algebra homomorphism

between g and M(n,K). Indeed, not only ρ is a linear function, but it

preserves the bracket: given A,B ∈ g , ρ([A,B]) = [ρ(A), ρ(B)]. Hence, for

every morphism (or representation) of G in GL(n,K) we have a morphism

(or representation) of g in M(n,K).

σ : G→ GL(n,K) (dσ)e = ρ : g→M(n,K)

σ(g1g2) = σ(g1)σ(g2) ρ([A,B]) = [ρ(A), ρ(B)]

diff

(‡)

Now we are interested in (‡), that is, we want to know under which
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condition it is possibile to obtain a representation of G starting from a rep-

resentation of g. Such question is of utter importance, since it is commonly

easier to work with representations of g, as they are linear maps between

vector spaces, than with representations of G, which are smooth functions

between manifolds. From Proposition 2.7.5 in [12] we obtain that such cor-

respondence exists if G is simply connected:

Proposition 3.1.4. Let G be a simply connected Lie group and g its Lie

algebra. Then for every morphism of algebras ρ : g −→ M(n,K) there

exists a unique smooth group homomorphism σ : G −→ GL(n,K) such that

(dσ)e = ρ.

Since SL(2,C) is simply connected (see [2], chapter 13, section 3), we

conclude that its representations can be obtained studying and classifying

the representations of its Lie algebra. In order to achieve this, we classify

the representations of sl(2,C).

3.2 Representations of sl(2,C)

We begin our inquiry with a standard representation of SL(2,C), which

will be fundamental for our subsequent generalization.

µ : SL(2,C)× C2 −→ C2 , µ

((
a b

c d

)
,

(
x

y

))
=

(
ax+ by

cx+ dy

)
. (3.1)

It can be expressed equivalently by the morphism σ : SL(2,C) 7−→ GL(2,C),

σ(A) = A for every A ∈ SL(2,C). For a clearer notation we will write

A · v = σ(A)v instead of µ(A, v), with A ∈ SL(2,C) and v ∈ C2.

We are now interested in the Lie algebra represention ρ = dσe : sl(2,C) −→
M(2,C) induced by σ, that is, the action of sl(2,C) on C2. Following ob-

servation 2.6.7, we recall that

sl(2,C) = spanC

{
H =

(
1 0

0 −1

)
, X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)}
.

Hence, considering that ρ is a linear function, it is sufficient to study its

behaviour on the basis {H,X, Y }.
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To achieve this we will use curves, in a way similar to the above men-

tioned observation 2.6.7. We already showed in observation 2.6.6 that it

is possibile to build a curve with given initial point and velocity using the

matrix exponential. So, considering H first, the curve we use is

γ(t) = etH =

(
et 0

0 e−t

)
∈ SL(2,C) with t ∈ (−ε, ε) and ε ∈ R+.

Since γ(0) = I and γ′(0) = H, computing
d

dt

∣∣∣
t=0

(γ(t) · v) will give as result

H · v = ρ(H)v.

d

dt

∣∣∣
t=0

[(
et 0

0 e−t

)
·
(
x

y

)]
=

d

dt

∣∣∣
t=0

(
etx

e−ty

)
=

(
x

−y

)
.

We conclude that

(
x

0

)
is an eigenvector of H with eigenvalue 1, while(

0

y

)
is an eigenvector with eigenvalue −1.

We repeat this procedure with X and Y , using respectively γ(t) = I + tX

and γ(t) = I + tY as curves.

d

dt

∣∣∣
t=0

[(
1 t

0 1

)
·
(
x

y

)]
=

d

dt

∣∣∣
t=0

(
x+ ty

y

)
=

(
y

0

)
. (3.2)

d

dt

∣∣∣
t=0

[(
1 0

t 1

)
·
(
x

y

)]
=

d

dt

∣∣∣
t=0

(
x

tx+ y

)
=

(
0

x

)
. (3.3)

Note that we could omit the · in the previous equations, as the action de-

scribed by µ is exactly the vector-matrix product. Indeed, considering that

σ = Id, we could conclude that ρ = dσe = Id and ρ(H) = H, which is ex-

actly what we obtained through the above computations: H · v = ρ(H)v =

Hv. The same is true for X and Y .

Hence, the representation of sl(2,C) on M(2,C) is sl(2,C) itself. We will

return later on this representation.

The group action µ is fundamental for our generalization on Cn. For
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example, let us consider C3, seen as spanC{x2 , xy , y2 }, that is the space

of all second degree homogeneous polynomials in x, y. The action of a matrix

A =

(
a b

c d

)
∈ SL(2,C) is based on the matrix-vector product A−1

(
x

y

)
,

resulting in: x 7−→ dx − by and y 7−→ −cx + ay. Here x, y are intended

as complex numbers, but starting from this we obtain our action on the

polynomials:(
a b

c d

)
· x2 = (dx− by)2 = d2x2 − 2dbxy + b2y2;

(
a b

c d

)
· xy = (dx− by)(−cx+ ay) = −cdx2 + (ad+ bc)xy − bay2;

(
a b

c d

)
· y2 = (−cx+ ay)2 = c2x2 − 2caxy + a2y2;

by linearity it is extendend to all C3. This approach can be further gener-

alized to Cn+1 = spanC{xn , xn−1y , · · · , yn }.

Observation 3.2.1. The procedure used here to extend the action of SL(2,C)

on Cn+1 is the application of a more general method: let G be a group

acting on a K vector space V . This induces an action of G on the functions

f : V −→ K

(g, f)(v) = f(g−1v) for every g ∈ G, v ∈ V.

This action is well defined, since:

(e, f)(v) = f(e−1v) = f(v)

and

(g1(g2, f))(v) = (g2, f)(g−11 v) = f(g−12 g−11 v) =

= f((g1g2)
−1v) = (g1g2, f)(v).

So we have a representation σn, or equivalently an action µn, of SL(2,C)

for every n ≥ 1, where the first and basic action µ introduced in 3.1 can

now be considered µ1 and its representation σ1. We will often omit this sub-
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script to keep a lighter notation, as it is commonly obvious from the context.

As we did before with the representation in 3.1, we are now interested

in the action of the algebra sl(2,C) on Cn. We exhibit some examples on

this to better understand the classification result, which we will enunciate

later. Starting from C3 and the action of H:

d

dt

∣∣∣
t=0

[(
et 0

0 e−t

)
· x2
]

=
d

dt

∣∣∣
t=0

(e−tx)2 =
d

dt

∣∣∣
t=0

e−2tx2 = −2x2;

d

dt

∣∣∣
t=0

[(
et 0

0 e−t

)
· xy

]
=

d

dt

∣∣∣
t=0

(e−tx)(ety) =
d

dt

∣∣∣
t=0

xy = 0;

d

dt

∣∣∣
t=0

[(
et 0

0 e−t

)
· y2
]

=
d

dt

∣∣∣
t=0

(ety)2 =
d

dt

∣∣∣
t=0

e2ty2 = 2y2.

We conclude that the basis vectors x2 , xy , y2 are eigenvector of H with

eigenvalue −2 , 0 , 2 respectively.

Using the same curves of equations 3.2 and 3.3, for X and Y we have:

d

dt

∣∣∣
t=0

[(
1 t

0 1

)
· x2
]

=
d

dt

∣∣∣
t=0

(x− ty)2 =
d

dt

∣∣∣
t=0

x2 − 2txy + t2y2 = −2xy;

d

dt

∣∣∣
t=0

[(
1 t

0 1

)
· xy

]
=

d

dt

∣∣∣
t=0

(x− ty)y =
d

dt

∣∣∣
t=0

xy − ty2 = −y2;

d

dt

∣∣∣
t=0

[(
1 t

0 1

)
· y2
]

=
d

dt

∣∣∣
t=0

y2 = 0;

d

dt

∣∣∣
t=0

[(
1 0

t 1

)
· x2
]

=
d

dt

∣∣∣
t=0

x2 = 0;

and so on for the action of Y on the basis vectors xy and y2.

We have thus described the action of H in terms of its eigenvectors, which

are a basis for C3, and the action of X,Y through the relations between
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these vectors. We can summarise these passages in a scheme:

Eigenvector Eigenvalue

0

y2 2

xy 0

x2 −2

0

Y

X

H

Y

X

H

Y

X

H

All these results can be extended to Cn+1 = spanC{xn , xn−1y , · · · , yn }
for any n. The computations above can be carefully replicated for H,X, Y

with the same curves as before, but on the now n + 1 basis vectors. So we

have:

d

dt

∣∣∣
t=0

[(
et 0

0 e−t

)
· xn

]
=

d

dt

∣∣∣
t=0

(e−tx)n =
d

dt

∣∣∣
t=0

e−ntxn = −nxn;

d

dt

∣∣∣
t=0

[(
et 0

0 e−t

)
· xn−1y

]
=

d

dt

∣∣∣
t=0

(e−tx)n−1(ety) =

=
d

dt

∣∣∣
t=0

(e−(n−1)txn−1)(ety) = −(n− 2)xn−1y;

d

dt

∣∣∣
t=0

[(
1 t

0 1

)
· xn

]
=

d

dt

∣∣∣
t=0

(x− ty)n =

=
d

dt

∣∣∣
t=0

[
n∑
k=0

(
n

k

)
xk(−ty)n−k

]
= −nxn−1y.

Analogous results can be found with with the other basis vectors. So it
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can be shown that the action of H,X, Y on Cn+1 is a consistent extension

of the previous case with C3, obtaining the following scheme based on the

eigenvectors of H:

Eigenvector Eigenvalue

0

yn n

yn−1x n− 2

yn−2x2 n− 4

...
...

xn −n

0

Y

X

H

Y

X

H

Y

X

H

Y

X

Y

X

H

Note that for even n there will be a sequence of 2 ; 0 ; −2 in the eigenvalues,

while for odd n the sequence will be 1 ; −1 . In both these situation, the

smallest eigenvalue is −n. The full derivation of these representations, called

Ladder Representations, which can also be proven to be irreducible, is found

in [2], chapter 4, section 2.

3.3 Classification Theorem

Now that we have introduced the Ladder Representations, we are ready

to state the classification theorem for sl(2,C) and show the connections

between this general result and the previous representations. For the proof,

see [12], chapter 4, Theorem 4.2.2 .
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Theorem 3.3.1. For every m ∈ Z+ there exists a unique irreducible complex

representation of sl(2,C) with dimension m + 1 given as above and every

irreducible representations of sl(2,C) with dimension m+ 1 is one of those.

Example 3.3.2. Suppose that we want to study the representation for m = 1:

the space is V1 = C1+1 = C2. With the function ρ having M(2,C) as

codomain and the eigenvalues of ρ(H) being { 1 ;−1 }, it is clear that this

is a standard representation, the same as the one seen in 3.1. Thus ρ ≡ Id

and v0 = e1, v1 = e2, while ρ(X)e2 = Xe2 = e1 and ρ(Y )e1 = Y e1 = e2.

Example 3.3.3. Another important representation is the Adjoint, where sl(2,C)

acts on itself through the bracket:

ρ(H) : X → [H,X] = 2X ρ(X) : X → [X,X] = 0

Y → [H,Y ] = −2Y Y → [X,Y ] = H

H → [H,H] = 0 H → [X,H] = −2X

ρ(Y ) : X → [Y,X] = −H

Y → [Y, Y ] = 0

H → [Y,H] = 2Y

Which is exactly the representations with m = 2, or dimension 3, that is

sl(2,C) acting on C3. Indeed, we know that both C3 and sl(2,C) are complex

vector spaces of dimension 3, hence they are isomorphic once we fix a basis.

In this situation, the most situable basis for sl(2,C) is {X ; H ;Y }, as it is

made of eigenvectors. For example, with this basis, ρ(H) =

 2 0 0

0 0 0

0 0 −2







Chapter 4

Poincaré Group and

Mackey’s Theorem

In this chapter we discuss the ”Mackey Machine”, a method to classify

the representations of a group which is a semidirect product. This tech-

nique is very important for its physics application. In the first section we

introduce the Poincaré group, describing first its structure and then show-

ing the Penrose realisation. This is the most convenient expression of the

group for our analysis of its representations, which is treated in the second

part of this chapter. We then enunciate the Mackey’s theorem, which is the

key result for the system of imprimitivity, that is, the idea of deriving the

representation of a semidirect product of groups through the representation

of the groups themselves.

4.1 The Poincaré Group

Physically, the Poincaré group is the group of all Minkowksi spacetime

isometries, or affine transformations preserving the Minkowski metric. As

such, it is a proper subgroup of the affine group (see example 1.3.5). Let us

briefly recall what the structure of the affine group in Rn is, and then we

will see how Minkowski spacetime comes into this framework.

Consider V a real n-vector space. We call affine group, denoted Aff(V ),

the group of all the affine transformations of V , which are all the linear

49
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invertible transformations of V together with the translations Tv : V −→
V , Tv(w) = w + v for every v, w ∈ V . This group can be also written as

Aff(V ) = {(v, h) , v ∈ V , h ∈ GL(V )}.

It is clear from our introduction on groups, in particular from example 1.3.5,

that such group is described by a semidirect product, with GL(V ) acting on

the group of translations, which is clearly isomorphic to the space V itself,

through the standard action of GL(V ) on V . Hence,

Aff(V ) = V o GL(V ) = {(v, h) , v ∈ V , h ∈ GL(V )},

with

(v1, h1)(v2, h2) = (v1 + h1v2, h1h2).

In particular, if we fix a basis for V , we can write the affine group in terms

of matrices:

Aff(Rn) = Rn o GL(n,R) = {(v,M) , v ∈ Rn , M ∈ GL(n,R)}.

with the same group operation as before, which is now computed through

matrix products. We can view Aff(Rn) as a subset of GL(n+1,R), through

the identification

Aff(Rn) 3 (v,M)←→
(
M u

0 1

)
∈ GL(n+ 1,R).

where 0 is the zero row-vector of Rn. Such matrix is in GL(n+1,R) since its

determinant is det(M), which is non-zero by definition. A easy computation

show that this structure, with the matrix product, behaves exactly as the

semidirect product written before.

Definition 4.1.1. The Minkowski spacetime is a 4-dimensional real vector

space equipped with the Minkowski inner product, a nondegenerate symmet-

ric bilinear form with metric signature +,−,−,−. Once we fix a suitable

basis we can identify the Minkowski spacetime with R4 with the scalar prod-
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uct:

〈u , v 〉 = u0v0 − u1v1 − u2v2 − u3v3 u, v ∈ R4.

Given a point x = (x0, x1, x2, x3) in the Minkowski spacetime, we will usually

refer to the coordinate x0 as the time coordinate and to (x1, x2, x3) as the

spatial coordinates.

The Lorentz group, denoted O(1, 3), is the group of all linear isometries of

the Minkowski spacetime. Hence, the elements of this group, called Lorentz

transformations, are the automorphisms of R4 that preserve the Minkowski

inner product.

The Poincaré group is P = TR4 oO(1, 3), that is the group of all the affine

trasformations of R4 preserving the Minkowski inner product, or isometries

of the Minkowski spacetime. Since TR4
∼= R4, we can write the group directly

as P = R4 oO(1, 3).

Observation 4.1.2. It is possibile to give a description of O(1, 3) in terms

of matrices. It is a subgroup of GL(4,R) whose elements preserve the

Minkowski inner product:

〈 gu , gv 〉 = 〈u , v 〉 u, v ∈ R4 , g ∈ O(1, 3).

Hence,

O(1, 3) = {g ∈ GL(4,R) | gT I1,3g = I1,3},

with I1,3 =


−1

1

1

1

.

In particular, we have

SO(1, 3)0 = {g ∈ GL(4,R) | gT I1,3g = I1,3 , det(g) = 1}0.

Observation 4.1.3. O(1, 3) is the isotropy subgroup of 0 ∈ R4 of the Poincaré

group, since every linear transformation fixes the origin. Following exam-

ples 1.1.8 and 2.4.8, it easy to see that O(1, 3) is a Lie group. Computing

Lie(O(, 1, 3)) = o(1, 3) we obtain a vector space of dim = 6, hence the

Lorentz group is a six-dimensional Lie group. Intuitively, this is reasonable
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since the Lorentz transformations are spatial rotations (three degrees of

freedom) and Lorentz boosts, which is a coordinate transformation between

systems in relative motion and can be viewed as an hyperbolic rotation

in a 3-dimensional space: given two frames of reference with coordinates

respectively (x0, x1, x2, x3) and (x′0, x
′
1, x
′
2, x
′
3) in relative motion along the

x-axis with velocity v, the equations for the Lorentz transformation (boost)

between the two frames of reference are

x′0 = γ(x0 −
v

c
x1) ; x′1 = γ(x1 −

v

c
x0) ; x′2 = x2 ; x′3 = x3

where c is the speed of light in a vacuum and γ =
1√

1− v2

c2

∈ [1,+∞).

Such transformation can be rewritten as

x′0 = −x1sinh(φ) + x0cosh(φ) ; x′1 = x1cosh(φ)− x0sinh(φ)

x′2 = x2 ; x′3 = x3

with cosh(φ) = γ and sinh(φ) = γ
v

c
, which means that φ ∈ R.

For a generic Lorentz boost, we have three possibile spatial direction for

the relative velocity v, hence for this kind of transformation we have an-

other three degrees of freedom. In particular, with the previous basis, this

transformation can be expressed with the matrix
cosh(φ) −sinh(φ) 0 0

−sinh(φ) cosh(φ) 0 0

0 0 1 0

0 0 0 1

 ,

which has determinant cosh2(φ) − sinh2(φ) = 1, so it is a proper Lorentz

transformation.

The connected component of the identity is the Restricted Lorentz group

SO(1, 3)0, which is itself a Lie group (See example 2.4.3). Moreover, being

an open set in O(1, 3), it still has dim = 6. Physically it consists of proper

and orthochronous Lorentz transformations, which are linear isometries with

det = 1 preserving both space and time orientation.
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For a detailed derivation of these results, see [5], chapter 3, section 1-2.

For the analysis of the Poincaré group representations it is necessary to

restrict the Lorentz group O(1, 3) to the Restricted Lorentz group SO(1, 3)0,

as this group is much easier to study and the conclusions are still valid

for the entire group. Hence, from now on we take as the Poincaré group

P = R4 o SO(1, 3)0.

4.2 The Penrose Realisation of the Poincaré Group

We introduce now the Penrose realisation of the Poincaré group: we

realise P as R4oSL(2,C), where SL(2,C) is viewed as a real Lie group. In-

deed, it is possibile to show that there exists a local isomorphism SO(1, 3)0 ∼=
SL(2,C). We are not going to prove this (see [9], chapter 2, section 11), but

we will show why it is reasonable in terms of group action.

In order to show the action of P on R4 we need to consider this vector space

as the space of the 2× 2 hermitian matrices through the identification:

x = (x0, x1, x2, x3) ∈ R4 ←→
(
x0 − x1 x2 + ix3
x2 − ix3 x0 + x1

)
= M.

It is easy to see that M † = M and the above matrix entries generate every

2× 2 hermitian matrix. Moreover, we have:

det

(
x0 − x1 x2 + ix3
x2 − ix3 x0 + x1

)
= x20 − x21 − x22 − x23,

which is exactly the norm of the corresponding vector (x0, x1, x2, x3) ∈ R4

in the Minkowski metric. The action of L ∈ SL(2,C) on a 2× 2 hermitian

matrix is defined as

M =

(
x0 − x1 x2 + ix3
x2 − ix3 x0 + x1

)
7−→ L†ML−1.

This action, which is not linear, preserves the Minkowski metric. In fact, by

Binet’s Theorem

det(LXL†) = det(L†)det(X)det(L−1) = det(X).
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The complete action of P on R4 is thus:

(u, L) : M 7−→ L†ML−1 + u.

So it is reasonable to use SL(2,C) with this action instead of SO(1, 3)0,

because they both preserve the metric.

Observation 4.2.1. We can view the Penrose realisation considering the

Minkowski spacetime as the subset of 2× 2 hermitian matrix of the Grass-

manian Gr(2,C4) and P = {(u, L) , u ∈ R4 , L ∈ SL(2,C)} as a subgroup

of the conformal group SL(4,C). There is indeed a bijection between P and

the subgroup

{(
L 0

uL L†

)}
of SL(4,C). Notice that we are effectively in

SL(4,C) since every block is a 2× 2 complex matrix and the determinant is

det(L)det(L†) = 1. Hence, given M a 2× 2 coordinate matrix for the space

of hermitian matrices, the Poincaré group acts as:

(
L 0

uL L†

) 1 0

0 1

M

 =

(
L

uL+ L†M

)
=

 1 0

0 1

u+ L†ML−1

 ,

where we applied L−1 ∈ SL(2,C) in the last equivalence, since it left un-

changed the subspace expressed by the matrix and put it in an explicit form.

As we see, the action of (u, L) ∈ P on M is the same as the one introduced

above, now expressed though a matrix product.

4.3 Characters

We introduce now the concept of character, which is a one-dimensional

representation.

Definition 4.3.1. A complex character of a group A is a group homomor-

phism χ : A −→ C×, where C× is the multiplicative group of C.

The set of all the characters of a group A is denoted Â. We define in Â a

pointwise multiplication:

(χ1 · χ2)(a) = χ1(a)χ2(a) with a ∈ A,χ1, χ2 ∈ Â.
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Â is an abelian group.

Example 4.3.2. Consider A = R4. For every p = (p0, p1, p2, p3) ∈ R4 we

have a character

χp : R4 −→ C× , χp(x) = ei〈x , p 〉 = ei(x0p0−x1p1−x2p2−x3p3). (4.1)

It is an homomorphism since x+ y 7−→ ei〈x+y , p 〉 = χp(x)χp(y).

We refer to p as the momentum.

Observation 4.3.3. It is not difficult to see that all the characters of R4 are of

the form 4.1 (see theorem 8.19 in [1] for the complete and detailed proof): the

only (smooth) morphisms from R to C× are of the form t 7−→ eiλt , λ ∈ R.

Now, since every v = (v1, ... , vn) ∈ Rn can be written as v =

n∑
i=1

viei and

our character χ : Rn −→ C× is a homomorphism, we have

χ(v) = χ(
n∑
i=1

viei) =
n∏
i=1

χ(viei) =
n∏
i=1

eiviλi = ei〈 v , p 〉

for some λi ∈ R , i = 1, ... , n and p = (λ1, ... , λn).

We have thus obtained that there is a group isomorphism between R̂4 and

R4:

R̂4 = {χp : R4 → C× , χp(x) = ei〈x , p 〉} ∼= R4 , χp 7−→ p

Notice that this isomorphism depends on the inner product chosen for χ.

Since we are interested in G = AoH, there is an action µ : H×A −→ A

which defines the group operation in the semidirect product. This action of

H on A induces a group action µ̂ : H × Â −→ Â on the characters of A. We

have:

(µ̂(h, χ))(x) = χ(h−1x).

For what we said in observation 3.2.1, this action is well defined.

Observation 4.3.4. For H = SO(1, 3)0, the action µ̂ induces an action on

the momenta:

µ̂(h, χp)(x) = χp(h
−1x) = ei〈h

−1x , p 〉,
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so, by definition of h ∈ SO(1, 3)0,

〈h−1x , p 〉 = xT (h−T I1,3h
−1)hp = xT I1,3hp,

which means that µ̂(h, χp) = χhp. Hence, the action µ̂ of SO(1, 3)0 on the

characters R̂4 can be viewed as an action on the momenta, or R4. Notice

that this action is formally the same as the one expressed by µ. However, µ

acts on the points of the Minkowski spacetime, while µ̂ acts on the space of

the momenta.

4.4 Mackey’s Theorem

We have now all the premiliminary knowledge necessary to formulate the

Mackey’s Theorem. We shall not go in details on the concepts of unitary

representations when V is ∞-dimensional. For a complete proof of this

result, its derivation and a full discussion we refer to [8], chapter 3, section

8.

Theorem 4.4.1. Let G = AoH be a group. There exists a bijection between

the unitary irreducible representations of G and the pairs (Oχ, σHχ), where

Oχ is the orbit of χ ∈ Â through the action of H and σHχ is a representation

of Hχ, the stabilizer of χ for the action of H.

Our main interest for the Mackey’s Theorem is in the Poincaré group P,

so our analysis of the pairs (Oχ, σHχ) will always consider A = R4 , χ = χp

and H = SO(1, 3)0.

Following observation 4.3.4, we have that the orbits Oχp are subsets of R4,

precisely:

Oχp = {p′ = hp , for every h ∈ SO(1, 3)0}.

In order to determine the explicit structure of the orbits, we prove the

following classification result:

Proposition 4.4.2. The orbits for the Restricted Lorentz group SO(1, 3)0

are the hyper-surfaces X±m = {x20−x21−x22−x23 = ±m2 , x = (x0, x1, x2, x3) ∈
R4 , m ∈ R ≥ 0}, with X+

m associated to +m2, x0 > 0; X−m associated with
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+m2, x0 < 0 and Xm with −m2. In particular, they are of the following

types:

• Q1, for +m2 and x0 > 0 : upper branch of a two-sheet hyperboloid.

• Q2, for +m2 and x0 < 0 : lower branch of a two-sheet hyperboloid.

• Q3, for m = 0 and x0 > 0 : upper branch of a cone.

• Q4, for m = 0 and x0 < 0 : lower branch of a cone.

• Q5, for −m2 : a one-sheet hyperboloid.

• Q6, for x0 = x1 = x2 = x3 = 0 : the origin of coordinates.

Sketch of the proof. It is clear that every transformation h ∈ SO(1, 3)0 maps

points of Qi in Qi, i = 1, ..., 6, as it is a transformation that preserves the

Minkowski metric, so it leaves the norm unchanged.

Consider now the intersection of the surfaces Qi, i = 1, ..., 6, with the half-

plane generated by x0 and x3 > 0. We obtain six types of curves on this

half-plane:

• The upper and lower half-branch (x3 > 0) of the hyperbola x20 − x23 =

+m2, for x0 ≷ 0.

• Half upper asyntote x0 = x3 for x0 > 0 and half lower asyntote x0 =

−x3 for x0 < 0.

• The right-hand branch of an hyperbola x20 − x23 = −m2.

• The origin of coordinates x0 = x3 = 0.

Every one of these curves is transitive for an hyperbolic rotation in the

plane (x0, x3). We have seen in observation 4.1.3 that such transformations

are proper, and it is clear that a transformation along a single axis is or-

thochronous, hence it is SO(1, 3)0.

Given now two points q1 and q2 on a surface Qi, it is possibile to carry

them on the half-plane (x0, x3) , x3 > 0 through a spatial rotation which

does not alter the first coordinate x0. Such rotations are transformations

in SO(1, 3)0, since they preserve both time and space orientation. The two
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point obtained thus lie on the same curve and we can map one on the other

through an hyperbolic rotation. Since the transformations used to map q1

to q2 are all in SO(1, 3)0, we conclude that the above surface is transitive

for the Restricted Lorentz group, and thus is an orbit.

Observation 4.4.3. Starting from the Restricted Lorentz group SO(1, 3)0,

we have to add spatial and temporal reflection to the transformations to

obtain the whole Lorentz group O(1, 3) (see [5], chapter 3, section 2). A

spatial reflection preserves the orbits seen in the previous proposition, but

a temporal reflection interchanges the two branches of the hyperboloid and

the cone, hence the orbits for O(1, 3) are of only four types:

• Q′1, for +m2 : a two-sheet hyperboloid.

• Q′2, for m = 0 : a cone.

• Q′3, for −m2 : a one-sheet hyperboloid.

• Q′4, for x0 = x1 = x2 = x3 = 0 : the origin of coordinates.

Now we the study of the representations of Hχp , the stabilizer of χp, also

called the little group at p. Let χp be a character with p = (p0, p1, p2, p3) and

p20 − p21 − p22 − p23 = +m2. We know that the action of H = SO(1, 3)0 on χp

can be transferred on the element p ∈ R4. Therefore it is sufficient to study

the stabilizer of a generic element of the orbit of p since, following observa-

tion 1.2.13, the stabilizers of the elements in the same orbit are conjugate.

It is not difficult to see that for conjugate subgroups the representations are

the same, since the groups are isomorphic.

Consider the point q = (m, 0, 0, 0) in the orbit of p. Notice that for (−m, 0, 0, 0)

we would have a different orbit, since it would change the sign of p0. Every

element of h ∈ Hχq shall satisfy the condition hq = q, which in terms of

matrices is 
1 0 0 0

0

0

0

h′



m

0

0

0

 =


m

0

0

0

 ,
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with h′ ∈ SO(3). It is clear that the first row has to be (1, 0, 0, 0) or such

equality would not hold. This means that the first column has the same en-

tries, since h ∈ SO(1, 3)0 implies that h−1 = hT . So we reduced our problem

to the determination of the representations of SO(3). Since the Lie algebras

so(3) and su(2) are isomorphic (see [3], chapter 10, section 6), they have

the same representations. Moreover, since SU(2) ⊂ SL(2,C) is a compact

group and the complexification su(2) ⊗ C is isomorphic to sl(2,C) (see [3]

chapter 7, section 6) the representations of SU(2) are the same of SL(2,C)

(See [12], chapter 4, section 11). Hence, following theorem 3.3.1, we have

all the finite-dimensional irreducible unitary representation of SL(2,C) and

thus we obtain those of so(3).

However, SO(3) is not simply connected ([2], chapter 1, section 3), so we

cannot apply proposition 3.1.4: there is no bijection between the represen-

tations of the Lie algebra so(3) and the representations of the Lie group

SO(3). Still, all the representations of the group SO(3) can be found be-

tween the representations of sl(2,C), precisely, they are the representations

corresponding to odd j ∈ Z+ (see [10], chapter 2, section 5).

Unfortunately this result is not physically relevant, since it would not iden-

tify all the elementary particles that have been experimentally found. For a

comprehensive mathematical modelization of the elementary particles is thus

necessary to consider the group SL(2,C) instead of SO(1, 3)0, as we have

seen in the Penrose realisation of the Poincaré group. The group SL(2,C)

is the universal (2-fold) cover of SO(1, 3)0 and the local isomorphism φ be-

tween these two groups can be restricted to their respective subgroups SU(2)

and SO(3) ([3], chapter 10, ”Further Results”) :

SU(2) SO(3)

SL(2,C) SO(1, 3)0

φ|SU(2)

2:1

φ

2:1

This means that we can consider all the representations of SU(2), which

are those of SL(2,C), and obtain a representation of the little group at q

for every j ∈ Z+. Notice that in Physics it is preferred to classify these

representations with the half-integers
j

2
, j ∈ Z+.
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This conclusion also holds for the little group of the orbits X−m, where the

starting point is q = (−m, 0, 0, 0).

We have thus obtained a class of representation of the Poincaré group,

identified by the pair (m, j) m > 0, where m is given by the orbit and iden-

tifies the mass of the particle, and j is given by the representation and
j

2
is the spin of the particle. Those particles are the massive particles of the

Standard Model, such as the fermions (quarks and leptons) and the Z, W,

and Higgs bosons. The representations given by (−,m, j) m > 0 are those

obtained starting from an orbit X−m. There is an antiunitary isomorphism

(see [13], chapter 1, section 5) between the representations given by (−,m, j)
and those of (m, j), so the first one can be interpreted as the antiparticles

with opposite charge.

Analogous conclusions can be derived for the the other types of orbit

shown in proposition 4.4.2, obtaining the following results ([9], chapter 3,

section 2):

Orbit Point Little Group

X+
m (m, 0, 0, 0) SU(2)

X−m (−m, 0, 0, 0) SU(2)

X+
0 (1, 0, 0, 1) R2 o U(1)

X−0 (−1, 0, 0,−1) R2 o U(1)

(0, 0, 0, 0) (0, 0, 0, 0) SL(2,C)

Xm , −m2 (0, im, 0, 0) SL(2,R)

We conclude that the orbits in X±0 identify particles with zero mass trav-

elling at the speed of light, which are photons and, hypothetically, gravitons.

The orbit (0, 0, 0, 0) has different representations, but they are all considered

unphysical except for the trivial one-dimensional representation of the little

group, which can be considered as a model of the vacuum ([13], chapter 1,
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section 5). The last ones, Xm , −m2, should be particles with imaginary

mass im, which are experimentally considered unphysical.
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