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Preface to the Third Edition 

The fifteen years since the appearance of the second edition have been years of 
great accomplishments in scientific computation. Indeed, the number of jour-
nals dedicated to the subject of this book is now more than 20! To reflect this 
growth, this third edition is a drastic revision of the second one. Finite 
elements have been merged with the material on finite differences and they now 
constitute equal partners. Additional material has been added in the areas of 
boundary elements, spectral methods, the method of lines, and invariant 
methods. The self-contained nature of the previous editions has been main-
tained insofar as possible. 

The references have been brought up to date and new problems reflect the 
additional material. 

I am grateful to previous users for alerting me to misprints and errors of 
commission and omission. I am also thankful to Mrs. Annette Rohrs for her 
skillful preparation of the manuscript on the word processor. Professor Garrett 
Birkhoff made a number of thoughtful suggestions as I worked on the 
manuscript. For these and for his other advice I am most appreciative. 

W. F. Ames 
Georgia Institute of Technology 
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Preface to Second Edition 

Since the publication of the first edition, research in and applications of 
numerical analysis have expanded rapidly. The past few years have witnessed 
the maturation of numerical fluid mechanics and finite element techniques. 
Numerical fluid mechanics is addressed in substance in this second edition. I 
have also added material in several other areas of promise, including hopscotch 
and other explicit-implicit methods, Monte Carlo techniques, lines, the fast 
Fourier transform, and fractional steps methods. A new sixth chapter intro-
duces the general concepts of weighted residuals, with emphasis on orthogonal 
collocation and the Bubnov-Galerkin method. In turn, the latter procedure is 
used to introduce the finite element concepts. 

The spirit of the first edition was to be as self-contained as possible, to 
present many applications illustrating the theory, and to supply a substantial 
number of recent references to supplement the text material. This spirit has 
been retained—there are 38 more problems and 138 additional references. 
Also, a substantial number of additional applications have been included and 
references to others appended. 

I wish to extend my special thanks to Ms. Mildred Buckalew for the 
preparation of an outstanding manuscript on the typewriter. 

Georgia Institute of Technology 
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Preface to First Edition 

That part of numerical analysis which has been most changed by the ongoing 
revolution in numerical methods is probably the solution of partial differential 
equations. The equations from the technological world are often very compli-
cated. Usually, they have variable coefficients, nonlinearities, irregular bound-
aries, and occur in coupled systems of differing types (say, parabolic and 
hyperbolic). The 'curse of dimensionality' is ever present - problems with two 
or three space variables, and time, are within our computational grasp. 

Early development of calculational algorithms was based more upon the 
extension of methods for hand computation, empiricism, and intuition than on 
mathematical analyses. With increasing education and the subsequent develop-
ment of the professional numerical analyst, the pattern is changing. New, 
useful methods are evolving which come closer to full utilization of the 
inherent powers of high-speed, large-memory computing machines. Many 
significant and powerful methods await discovery both for problems which are 
computable with existing techniques and those which are not. 

Unfortunately, as in other portions of mathematics, the abstract and the 
applications have tended to diverge. A new field of pure mathematics has been 
generated and while it has produced some results of value to users, the 
complexities of real problems have yet to be significantly covered by the 
presently available theorems. Nevertheless, guidelines are now available for 
the person wishing to obtain the numerical solution to a practical problem. 

The present volume constitutes an attempt to introduce to upper-level 
engineering and science undergraduate and graduate students the concepts of 
modern numerical analyses as they apply to partial differential equations. The 
book, while sprinkled liberally with practical problems and their solutions, also 
strives to point out the pitfalls - e.g., overstability, consistency requirements, 
and the danger of extrapolation to nonlinear problems methods which have 
proven useful on linear problems. The mathematics is by no means ignored, 
but its development to a keen-edge is not the major goal of this work. 

The diligent student will find 248 problems of varying difficulty to test his 
mettle. Additionally, over 400 references provide a guide to the research and 
practical problems of today. With this text as a bridge, the applied student 
should find the professional numerical analysis journals more understandable. 

I wish to extend special thanks to Mrs. Gary Strong and Mrs. Steven 
Dukeshier for the typing of a difficult manuscript and Mr. Jasbir Arora for 
preparation of the ink drawings. Lastly, the excellent cooperation and patience 
of Dr. Alan Jeffrey and my publishers have made the efforts of the past two 
years bearable. 
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Fundamentals 

1-0 Introduction 
Numerical calculation is commonplace today in fields where it was virtually 
unknown before 1950. The high-speed computing machine has made possible 
the solution of scientific and engineering problems of great complexity. This 
capability has, in turn, stimulated research in numerical analysis since effective 
utilization of such devices depends strongly upon the continual advance of 
research in relevant areas of mathematical analysis. One measure of the growth 
is the upsurge of books devoted to the subject in the years after 1953. A second 
measure is the development, during the same period, of many research journals 
and societies, whose primary concern is numerical analysis. Whole new 
disciplines, such as numerical fluid mechanics and computational mechanics, 
have arisen. 

Finite difference approximations for derivatives were already in use by Euler 
[l]t in 1768. The simplest finite difference procedure for dealing with the 
problem dx/dt = f(x, t), x(0) = a is obtained by replacing (dx/dt)n_l 

with the crude approximation (xn - xn_l)/At. This leads to the recurrence 
relation x0 = a, xn = xn_x + Atf(xn_x, tn_x) for n > 0. This procedure 
is known as Euler's method. Thus, we see that for one-dimensional systems the 
finite difference approach has been deeply ingrained in computational algo-
rithms for quite some time. 

For two-dimensional systems, the first computational application of finite 
difference methods was probably carried out by Runge [2] in 1908. He studied 
the numerical solution of the Poisson equation uxx + uyy = constant. At 
approximately the same time Richardson [3], in England, was carrying on 
similar research. His 1910 paper was the earliest work on the application of 
iterative methods to the solution of continuous equilibrium problems by finite 
differences. In 1918, Liebmann [4], in considering the finite difference approx-
imation to Laplace's equation, suggested an improved method of iteration. 
Today the name of Liebmann is associated with any method of iteration by 
single steps in which a fixed calculation sequence is followed. 

The study of errors in finite difference calculations is still an area of prime 
research interest. Early mathematical convergence proofs were carried out by 
LeRoux [5], Phillips, and Wiener [6], and Courant et al. [7]. Some consider 
the celebrated 1928 paper of Courant, Friedrichs, and Lewy as the birthdate of 
the modern theory of numerical methods for partial differential equations. 

t Numbers in brackets refer to the references at the end of each chapter. 



2 FUNDAMENTALS 

The algebraic solution of finite difference approximations is usually accom-
plished by some iteration procedure. Various schemes have been proposed to 
accelerate the convergence of the iteration. A summary of those that were 
available in 1950, and that are adaptable to automatic programming, is given 
by Frankel [8]. Other methods require considerable judgment on the part of the 
computer and are therefore better suited to hand computation. Higgins [9] 
gives an extensive bibliography of such techniques. In the latter category, the 
method of relaxation has received the most complete treatment. Relaxation 
was the most popular method in the decade of the thirties. Two books by 
Southwell [10, 11] describe the process and detail many examples. The 
successive over-relaxation method, extensively used in some areas, is an 
outgrowth of this highly successful hand computation procedure. 

Let us now consider some of the early technical applications. The pioneering 
paper of Richardson [3] discussed the approximate solution by finite differ-
ences of differential equations describing stresses in a masonry dam. Equilib-
rium and eigenvalue problems were successfully handled. Binder [12] and 
Schmidt [13] applied finite difference methods to obtain solutions of the 
diffusion equation. The classical explicit recurrence relation 

uitJ+l = rui-uj + (1 - 2r)uitJ + rui+UJ, r = At/(Ax)2, 

for the diffusion equation ut = uxx was given by Schmidt [13] in 1924. 
For any given continuous system there are a multiplicity of discrete models, 

which are usually comparable in terms of their relative truncation errors. Early 
approximations were second order—that is, 0(Ä2)t—and these still play an 
important role today. Higher order procedures were promoted by Collatz [14, 
15] and Fox [16]. The relative economy of computation and accuracy of 
second-order processes utilizing a small interval size, compared with higher 
order procedures using larger interval sizes, has been discussed in the papers 
of Southwell [17] and Fox [18]. 

It is quite possible to formulate a discrete model in an apparently natural 
way that, upon computation, is of little use. This is especially true in 
propagation problems—that is, problems described by parabolic and hyper-
bolic equations. An excellent historical example is provided by Richardson's 
pioneering paper [3], in which his suggested method for the diffusion equation, 
describing the cooling of a rod, was found to be completely unstable by 
O'Brien, Hyman, and Kaplan [19]. Nevertheless, the method can be used for 
short-time calculations, as discussed by Bell [76]. Another example concerns 
the transverse vibration of a beam. In 1936, Collatz [20] proposed a "natural" 

tThe notation 0(A2) is read "(term of) order Λ2" and can be interpreted to mean "when h is 
small enough the term behaves essentially like a constant times Λ2." 
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finite difference procedure for the beam equation utt + uxxxx = 0, but fifteen 
years later [21] the algorithm was found to be computationally unstable. 

Nevertheless, the analyst usually strives to use methods dictated by the 
problem under consideration—these we call natural methods. Thus, a natural 
coordinate system may be toroidal (see Moon and Spencer [22]) instead of 
cartesian. Certain classes of equations have natural numerical methods that 
may be distinct from the finite difference methods. Typical of these are the 
method of lines for propagation problems and the method of characteristics 
for hyperbolic systems. Characteristics also provide a convenient way to 
classify partial differential equations. 

1-1 Computer Program Packages 
The user should be aware that there exist today a number of general purpose 
computer packages for the numerical solution of PDEs. This is especially true 
of quasilinear PDEs involving a single unknown function of two independent 
(real) variables. The following paragraphs will briefly identify a few such 
packages, giving references where more information about them can be found. 

(A) DISPL was developed and written at Argonne National Laboratory. 
For details one good contact is Byrne [23] (see also Byrne [24]). DISPL 
is designed for nonlinear second order PDEs (parabolic, elliptic, 
hyperbolic (some cases), and parabolic-elliptic). Boundary conditions 
of a general nature and material interfaces are allowed. The spatial 
dimension can be either one or two and in cartesian, cylindrical, or 
spherical (one dimension only) geometry. The PDEs are reduced to 
ordinary DEs by Galerkin discretization of the spatial variables. The 
resulting ordinary DEs in the time-like variable are then solved by an 
ODE software package (such as GEAR). Software features include 
graphics capabilities, printed output, dump/restart facilities, and free 
format input. DISPL is intended to be an engineering and scientific tool 
and is not a finely tuned production code for a small set of problems. 

DISPL makes no effort to control the spatial discretization errors. It 
has been used to successfully solve a variety of problems in chemical 
transport, heat and mass transfer, pipe flow, etc. 

(B) PDELIB was developed and written at Los Alamos Scientific 
Laboratory. For details write Hyman [25]. PDELIB is a library of 
subroutines to support the numerical solution of evolution equations 
with a time-like variable and one or two space variables. The routines 
are grouped into a dozen independent modules according to their 
function—i.e., accepting initial data, approximating spatial derivatives, 
advancing the solution in time, etc. Each task is isolated in a distinct 
module. Within a module, the basic task is further refined into general 
purpose flexible lower level routines. 
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PDELIB can be understood and used at different levels. Within a 
small period of time a large class of problems can be solved by a 
novice. Moreover, it can provide a wide variety of outputs. 

(C) DSS/2 is a differential systems simulator developed at Lehigh University 
as a transportable Numerical Method of Lines (NMOL) code. See also 
LEANS. For details write Schiesser [26]. 

(D) FORSIM is designed for the automated solution of sets of implicitly 
coupled PDEs of the form 

— = φ^χ, t, ui9uj9..., (ut)x,. . . , K)**> (UJ)XX> · · · )> 

for / = Ι,.,.,Ν. 
The user specifies the φί in a simple FORTRAN subroutine. Finite 
difference formulae of any order may be selected for the spatial 
discretization and the spatial grid need not be equidistant. The resulting 
system of time dependent ODEs is solved by the method of lines. For 
details write Carver [27] (see also Carver [28]). 

(E) SLDGL is a program package for the self-adaptive solution of nonlinear 
systems of elliptic and parabolic PDEs in up to and including three 
space dimensions. Variable step size and variable order are permitted. 
The discretization error is estimated and used for the determination of 
the optimum grid and optimum orders. This is the most general of the 
codes described here (not for hyperbolic systems of course). For details 
write Schönauer [29] (see Schönauer et al. [30]). This package has seen 
extensive use in Europe. 

(F) FIDISOL (finite difference solver) is a program package for nonlinear 
systems of two- or three-dimensional elliptic and parabolic systems in 
rectangular domains or in domains that can be transformed analytically 
to rectangular domains. This package is actually a redesign of parts of 
SLDGL, (E), primarily for the solution of large problems on vector 
computers. It has been tested on the CYBER 205, CRAY-1M, CRAY 
X-MP/22, and VP 200. The program vectorizes very well and uses the 
vector arithmetic efficiently. In addition to the numerical solution, a 
reliable error estimate is computed. For more details write Schönauer 
[29]. 

(G) CAVE is a program package [31] for conduction analysis via 
eigenvalues for three-dimensional geometries using the method of lines. 
In many problems much time is saved since only a few terms suffice. 

(H) IMSL Library (Rice [32]). Many industrial and university computing 
services subscribe to the IMSL Software Library. Announcements of 
new software appear in Directions, a publication of IMSL. A brief 
description of some IMSL packages applicable to PDEs and associated 
problems is now given. 
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(1) Linear Equation Packages. There are three complementary linear 
equation packages of note. 

UNPACK is a collection of programs concerned with direct 
methods for general (or full) symmetric, symmetric positive definite, 
triangular, and tridiagonal matrices. There are also programs for 
least squares problems along with the QR algorithm for eigensystems 
and the singular value decompositions of rectangular matrices. The 
programs are intended to be completely machine independent, fully 
portable, and run with good efficiency in most computing 
environments. The LINPACK User's Guide by Dongarra, et al. 
[33] is the basic reference. 

ITPACK is a modular set of programs for iterative methods. 
The package is oriented toward the sparse matrices that arise in the 
solution of PDEs and other applications. While the programs apply 
to full matrices, that is rarely profitable. Four basic iteration 
methods and two convergence acceleration methods are in the 
package. There is Jacobi, SOR (with optimum relaxation parameter 
estimated), symmetric SOR, and reduced system (red-black 
ordering) iteration, each with semi-iteration and conjugate gradient 
acceleration. All parameters for these iterations are automatically 
estimated. The practical and theoretical background for ITPACK is 
found in Hageman and Young [34]. 

YALEPACK is a substantial collection of programs for sparse 
matrix computations. 

(2) Special PDE Packages. In addition to those described in A to G 
two additional software packages bear mention. The first of these, 
the ELLPACK System, available from Rice [35], solves elliptic 
problems in two dimensions with general domains and in three 
dimensions with box-shaped domains. The system contains over 30 
numerical methods modules, thereby providing a means of 
evaluating and comparing different methods for solving elliptic 
problems. ELLPACK has a special high level language making it 
easy to use. New algorithms can be added or deleted from the 
system with ease. See also Birkhoff and Lynch [36, Chapter 9]. 

Lastly, TWODEPEP is IMSL's general finite element system for 
two-dimensional elliptic, parabolic, and eigenvalue problems. The 
Galerkin finite elements available are triangles with quadratic, 
cubic, or quartic basic functions, with one edge curved when 
adjacent to a curved boundary, according to the isoparametric 
method. Nonlinear equations are solved by Newton's method with 
the resulting linear system solved directly by Gauss elimination. 
PDE/PROTRAN is also available. It uses triangular elements with 
piecewise polynomials of degree 2, 3, or 4 to solve quite general 
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steady-state, time dependent and eigenvalue problems in general 
two-dimensional regions. There is a simple user input. Additional 
information may be obtained from IMSL [37]. NASTRAN and 
STRUDL are two advanced finite element computer systems 
available from a variety of sources. Another, UNAFEM has been 
extensively used (see Burnett [38]). 

1-2 Typical Problems 
The majority of the problems of physics and engineering fall naturally into one 
of three physical categories: equilibrium problems, eigenvalue problems, 
and propagation problems. 

Equilibrium problems are problems of steady state in which the equilibrium 
configuration φ in domain D is to be determined by solving the differential 
equation 

LM=f (1-1) 
within D, subject to certain boundary conditions 

Β,[Φ\=8, (1-2) 

on the boundary of D. Very often, but not always, the integration domain D is 
closed and bounded. In Fig. 1-1 we illustrate the general equilibrium problem. 
In mathematical terminology such problems are known as boundary value 
problems. Typical physical examples include steady viscous flow, steady 
temperature distributions, equilibrium stresses in elastic structures, and steady 
voltage distributions. Despite the apparent diversity of the physics we shall 
shortly see that the governing equations for equilibrium problems are elliptic.^ 

Eigenvalue problems may be thought of as extensions of equilibrium prob-
lems wherein critical values of certain parameters are to be determined in 
addition to the corresponding steady-state configurations. Mathematically, the 
problem is to find one or more constants (λ), and the corresponding functions 
(φ), such that the differential equation 

Σ[φ]=λΜ[φ] (1-3) 

is satisfied within D and the boundary conditions 

Β,[φ] = \Ε,[φ] (1-4) 

hold on the boundary of D. Typical physical examples include buckling and 
stability of structures, resonance in electric circuits and acoustics, natural 

t The original mathematical formulation of an equilibrium problem will generate an elliptic 
equation or system. Later mathematical approximations may change the type. A typical example is 
the boundary layer approximation of the equations of fluid mechanics. Those elliptic equations are 
approximated by the parabolic equations of the boundary layer. Yet the problem is still one of 
equilibrium. 
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Figure 1-1 Representation of the general equilibrium problem 

frequency problems in vibrations, and so on. The operators L and M are of 
elliptic type. 

Propagation problems are initial value problems that have an unsteady state 
or transient nature. One wishes to predict the subsequent behavior of a system 
given the initial state. This is to be done by solving the differential equation 

L[4>\ =f (1-5) 

within the domain D when the initial state is prescribed as 

Ι,[φ] = h, (1-6) 

and subject to prescribed conditions 

Β,[Φ]=Β, (1-7) 

on the (open) boundaries. The integration domain D is open. In Fig. 1-2 we 
illustrate the general propagation problem. In mathematical parlance such 
problems are known as initial boundary value problems.t Typical physical 
examples include the propagation of pressure waves in a fluid, propagation of 
stresses and displacements in elastic systems, propagation of heat, and the 
development of self-excited vibrations. The physical diversity obscures the fact 
that the governing equations for propagation problems are parabolic or 
hyperbolic. 

The distinction between equilibrium and propagation problems was well 
stated by Richardson [39] when he described the first as jury problems and the 
second as marching problems. In equilibrium problems the entire solution is 
passed on by a jury requiring satisfaction of all the boundary conditions and all 

t Sometimes only the terminology initial value problem is utilized. 
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Initial conditions /,·[ψ] = ht 

Figure 1-2 Representation of the general propagation problem 

the internal requirements. In propagation problems the solution marches out 
from the initial state guided and modified in transit by the side boundary 
conditions. 

1-3 Classification of Equations 
The previous physical classification emphasized the distinctive features of 
basically two classes of problems. These distinctions strongly suggest that the 
governing equations are quite different in character. From this we infer that 
the numerical methods for both problems must also have some basic 
differences. Classification of the equations is best accomplished by developing 
the concept of characteristics. 

Let the coefficients ax, a2,. . . , fx, f2 be functions of x, y, u, and v and 
consider the simultaneous first-order quasilinear systemt 

axux + bxuy + cxvx + dxvy = / , , 
(1-8) 

a2ux + b2uy + c2vx + d2vy = / 2 .% 

This set of equations is sufficiently general to represent many of the problems 
encountered in engineering where the mathematical model is second order. 

t A quasilinear system of equations is one in which the highest order derivatives occur linearly. 
X We shall often use the notation ux to represent du/dx. 


