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Exercises 81

9 Assouad dimension 83
9.1 Homogeneous spaces and the Assouad dimension 83
9.2 Assouad dimension and products 86
9.3 Orthogonal sequences 88
9.4 Homogeneity is not sufficient for a bi-Lipschitz

embedding 91
9.5 Almost bi-Lipschitz embeddings 94
9.6 Sharpness of the logarithmic exponent 99
9.7 Consequences for embedding compact

metric spaces 100
Exercises 100

PART II: FINITE-DIMENSIONAL ATTRACTORS

10 Partial differential equations and nonlinear semigroups 105
10.1 Nonlinear semigroups and attractors 105
10.2 Sobolev spaces and fractional power spaces 106
10.3 Abstract semilinear parabolic equations 108
10.4 The two-dimensional Navier–Stokes equations 109
Exercises 113



Contents ix

11 Attracting sets in infinite-dimensional systems 115
11.1 Global attractors 115
11.2 Existence of the global attractor 115
11.3 Example 1: semilinear parabolic equations 118
11.4 Example 2: the two-dimensional Navier–Stokes

equations 119
Exercises 121

12 Bounding the box-counting dimension of attractors 123
12.1 Coverings of T [B(0, 1)] via finite-dimensional

approximations 125
12.2 A dimension bound when Df ∈ Lλ/2(B), λ < 1

2 129
12.3 Finite dimension when Df ∈ L1(X) 130
12.4 Semilinear parabolic equations in Hilbert spaces 130
Exercises 132

13 Thickness exponents of attractors 136
13.1 Zero thickness 136
13.2 Zero Lipschitz deviation 138
Exercises 143

14 The Takens Time-Delay Embedding Theorem 145
14.1 The finite-dimensional case 145
14.2 Periodic orbits and the Lipschitz constant for ordinary

differential equations 152
14.3 The infinite-dimensional case 154
14.4 Periodic orbits and the Lipschitz constant for semilinear

parabolic equations 156
Exercises 158

15 Parametrisation of attractors via point values 160
15.1 Real analytic functions and the order of vanishing 161
15.2 Dimension and thickness of A in Cr (�, R

d ) 163
15.3 Proof of Theorem 15.1 165
15.4 Applications 167
Exercises 169

Solutions to exercises 170
References 196
Index 202





Preface

The main purpose of this book is to bring together a number of results concern-
ing the embedding of ‘finite-dimensional’ compact sets into Euclidean spaces,
where an ‘embedding’ of a metric space (X, �) into R

n is to be understood as a
homeomorphism from X onto its image. A secondary aim is to present, along-
side such ‘abstract’ embedding theorems, more concrete embedding results
for the finite-dimensional attractors that have been shown to exist in many
infinite-dimensional dynamical systems.

In addition to its summary of embedding results, the book also gives a unified
survey of four major definitions of dimension (Lebesgue covering dimension,
Hausdorff dimension, upper box-counting dimension, and Assouad dimension).
In particular, it provides a more sustained exposition of the properties of the box-
counting dimension than can be found elsewhere; indeed, the abstract results
for sets with finite box-counting dimension are those that are taken further in
the second part of the book, which treats finite-dimensional attractors.

While the various measures of dimension discussed here find a natural
application in the theory of fractals, this is not a book about fractals. An
example to which we will return continually is an orthogonal sequence in an
infinite-dimensional Hilbert space, which is very far from being a ‘fractal’. In
particular, this class of examples can be used to show the sharpness of three of
the embedding theorems that are proved here.

My models have been the classic text of Hurewicz & Wallman (1941) on
the topological dimension, and of course Falconer’s elegant 1985 tract which
concentrates on the Hausdorff dimension (and Hausdorff measure). It is a
pleasure to acknowledge formally my indebtedness to Hunt & Kaloshin’s 1999
paper ‘Regularity of embeddings of infinite-dimensional fractal sets into finite-
dimensional spaces’. It has had a major influence on my own research over the
last ten years, and one could view this book as an extended exploration of the
ramifications of the approach that they adopted there.
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xii Preface

My interest in abstract embedding results is related to the question of whether
one can reproduce the dynamics on a finite-dimensional attractor using a finite-
dimensional system of ordinary differential equations (see Chapter 10 of Eden,
Foias, Nicolaenko, & Temam (1994), or Chapter 16 of Robinson (2001), for
example). However, there are still only partial results in this direction, so this
potential application is not treated here; for an up-to-date discussion see the
paper by Pinto de Moura, Robinson, & Sánchez-Gabites (2010).

I started writing this book while I was a Royal Society University Research
Fellow, and many of the results here derive from work done during that
time. I am currently supported by an EPSRC Leadership Fellowship, Grant
EP/G007470/1. I am extremely grateful to both the Royal Society and to the
EPSRC for their support.

I would like to thank Alexandre Carvalho, Peter Friz, Igor Kukavica, José
Langa, Eric Olson, Eleonora Pinto de Moura, and Alejandro Vidal López, all of
whom have had a hand in material that is presented here. In particular, Eleonora
was working on closely-related problems for her doctoral thesis during most of
the time that I was writing this book, and our frequent discussions have shaped
much of the content and my approach to the material. I had comments on a
draft version of the manuscript from Witold Sadowski, Jaime Sánchez-Gabites,
and Nicholas Sharples: I am extremely grateful for their helpful and perceptive
comments. David Tranah, Clare Dennison, and Emma Walker at Cambridge
University Press have been most patient as one deadline after another was
missed and extended; that one was finally met (nearly) is due in large part to
a kind invitation from Marco Sammartino to Palermo, where I gave a series of
lectures on some of the material in this book in November 2009.

Many thanks to my parents and to my mother-in-law; in addition to all their
other support, their many days with the children have made this work possible.
Finally, of course, thanks to Tania, my wife, and our children Joseph and Kate,
who make it all worthwhile; this book is dedicated to them.



Introduction

Part I of this book treats four different definitions of dimension, and investigates
what being ‘finite dimensional’ implies in terms of embeddings into Euclidean
spaces for each of these definitions.

Whitney (1936) showed that any abstract n-dimensional Cr manifold is Cr -
homeomorphic to an analytic submanifold in R

2n+1. This book treats embed-
dings for much more general sets that need not have such a smooth structure;
one might say ‘fractals’, but we will not be concerned with the fractal nature
of these sets (whatever one takes that to mean).

We will consider four major definitions of dimension:

(i) The (Lebesgue) covering dimension dim(X), based on the maximum
number of simultaneously intersecting sets in refinements of open covers
of X (Chapter 1). This definition is topologically invariant, and is primarily
used in the classical and abstract ‘Dimension Theory’, elegantly developed
in Hurewicz & Wallman’s 1941 text, and subsequently by Engelking
(1978), who updates and extends their treatment.

(ii) The Hausdorff dimension dH(X), the value of d where the ‘d-dimensional
Hausdorff measure’ of X switches from ∞ to zero (Chapter 2). Hausdorff
measures (and hence the Hausdorff dimension) play a large role in geo-
metric measure theory (Federer, 1969), and in the theory of dynamical
systems (see Pesin (1997)); the standard reference is Falconer’s 1985
tract, and subsequent volumes (Falconer, 1990, 1997).

(iii) The (upper) box-counting dimension dB(X), essentially the scaling as
ε → 0 of N (X, ε), the number of ε-balls required to cover X, i.e.
N (X, ε) ∼ ε−dB(X) (Chapter 3). This dimension has mainly found appli-
cation in the field of dynamical systems, see for example Falconer (1990),
Eden et al. (1994), C. Robinson (1995), and Robinson (2001).
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2 Introduction

(iv) The Assouad dimension dA(X), a ‘uniform localised’ version of the box-
counting dimension: if B(x, ρ) denotes the ball of radius ρ centred at
x ∈ X, then N (X ∩ B(x, ρ), r) ∼ (ρ/r)dA(X) for every x ∈ X and every
0 < r < ρ (Chapter 9). This definition appears unfamiliar outside the
area of metric spaces and most results are confined to research papers
(e.g. Assouad (1983), Luukkainen (1998), Olson (2002); but see also
Heinonen (2001, 2003)).

For any compact metric space (X, �) we will see that

dim(X) ≤ dH(X) ≤ dB(X) ≤ dA(X),

and there are examples showing that each of these inequalities can be strict. We
will check that each definition satisfies the natural properties of a dimension:
monotonicity (X ⊆ Y implies that d(X) ≤ d(Y )); stability under finite unions
(d(X ∪ Y ) = max(d(X), d(Y ))); and the dimension of R

n is n (a consistent
way to interpret this so that it makes sense for all the definitions above is that
d(K) = n if K is a compact subset of R

n that contains an open set). We will
also consider how each definition behaves for product sets.

Our main concern will be with the embedding results that are available
for each class of ‘finite-dimensional’ set. The embedding result for sets with
finite covering dimension, due to Menger (1926) and Nöbeling (1931) (given
as Theorem 1.12 here), is in a class of its own. The result guarantees that when
dim(X) ≤ d, a generic set of continuous maps from a compact metric space
(X, �) into R

2d+1 are embeddings.
The results for sets with finite Hausdorff, upper box-counting, and Assouad

dimension are of a different cast. They are expressed in terms of ‘prevalence’
(a version of ‘almost every’ that is applicable to subsets of infinite-dimensional
spaces, introduced independently by Christensen (1973) and Hunt, Sauer, &
Yorke (1992), and the subject of Chapter 5), and treat compact subsets of
Hilbert and Banach spaces. Using techniques introduced by Hunt & Kaloshin
(1999), we show that a ‘prevalent’ set of continuous linear maps L : B → R

k

provide embeddings of X when d(X − X) < k, where

X − X = {x1 − x2 : x1, x2 ∈ X}

and d is one of the above three dimensions (see Figure 1). Note that if one
wishes to show that a linear map provides an embedding, i.e. that Lx = Ly

implies that x = y, this is equivalent to showing that Lz = 0 implies that z = 0
for z ∈ X − X. This is why the natural condition for such results is one on the
‘difference’ set X − X; but while dB(X − X) ≤ 2dB(X), there are examples of
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Figure 1 The linear map L : B → R
k embeds X into R

k . The inverse mapping
L−1 provides a parametrisation of X using k parameters.

sets for which dH(X) = 0 but dH(X − X) = ∞ (and similarly for the Assouad
dimension).

Where the embedding results for these three dimensions differ from one
another is in the smoothness of the parametrisation of X provided by L−1. In the
Hausdorff case this inverse can only be guaranteed to be continuous (Chapter 6);
in the upper box-counting case it will be Hölder (Chapter 8); and in the Assouad
case it will be Lipschitz to within logarithmic corrections (Chapter 9). Simple
examples of orthogonal sequences in �2 (or related examples in c0, the space of
sequences that tend to zero) show that the results we give cannot be improved
when the embedding map L is linear.

Chapter 4 presents an embedding result for subsets X of R
N with box-

counting dimension d < (N − 1)/2. The ideas here form the basis of the results
for subsets of Hilbert and Banach spaces that follow, and justify the development
of the theory of prevalence in Chapter 5 and the definition of various ‘thickness
exponents’ (the thickness exponent itself, the Lipschitz deviation, and the dual
thickness) in Chapter 7.

Part II discusses the attractors that arise in certain infinite-dimensional
dynamical systems, and the implications of the results of Part I for this class of
finite-dimensional sets. In particular, the embedding result for sets with finite
box-counting dimension is used toward a proof of an infinite-dimensional ver-
sion of the Takens time-delay embedding theorem (Chapter 14) and it is shown
that a finite-dimensional set of real analytic functions can be parametrised using
a finite number of point values (Chapter 15).

Chapter 10 gives a very cursory summary of some elements of the theory
of Sobolev spaces and fractional power spaces of linear operators, which are
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required in order to discuss the applications to partial differential equations.
It is shown how the solutions of an abstract semilinear parabolic equation,
and of the two-dimensional Navier–Stokes equations, can be used to generate
an infinite-dimensional dynamical system whose evolution is described by a
nonlinear semigroup.

The global attractor of such a nonlinear semigroup is a compact invariant
set that attracts all bounded subsets of the phase space. A sharp condition
guaranteeing the existence this global attractor is given in Chapter 11, and it is
shown that such an object exists for the semilinear parabolic equation and the
Navier–Stokes equations that were treated in the previous chapter.

Chapter 12 provides a method for bounding the upper box-counting dimen-
sion of attractors in Banach spaces. While there are powerful techniques avail-
able for attractors in Hilbert spaces, these are already presented in a number
of other texts, and outlining the more general Banach space technique is more
in keeping with the overall approach of this book (the Hilbert space method is
covered here in an extended series of exercises). In particular, we show that any
attractor of the abstract semilinear parabolic equation introduced in Chapter 10
will be finite-dimensional.

Before proving the final two ‘concrete’ embedding theorems in Chapters 14
and 15, Chapter 13 provides two results that guarantee that an attractor has zero
‘thickness’: we show first that if the attractor consists of smooth functions then
its thickness exponent is zero, and then that the attractors of a wide variety of
models (which can be written in the abstract semilinear parabolic form) have
zero Lipschitz deviation. This, in part, answers a conjecture of Ott, Hunt, &
Kaloshin (2006).

Most of the chapters end with a number of exercises. Many of these carry
forward portions of the argument that would break the flow of the main text, or
discuss related approaches. Full solutions of the exercises are given at the end
of the book.

All Hilbert and Banach spaces are real, throughout.
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Finite-dimensional sets
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Lebesgue covering dimension

There are a number of definitions of dimension that are invariant under home-
omorphisms, i.e. that are topological invariants – in particular, the large and
small inductive dimensions, and the Lebesgue covering dimension. Although
different a priori, the large inductive dimension and the Lebesgue covering
dimension are equal in any metric space (Katětov, 1952; Morita, 1954; Chapter
4 of Engelking, 1978), and all three definitions coincide for separable metric
spaces (Proposition III.5 A and Theorem V.8 in Hurewicz & Wallman (1941)).
A beautiful exposition of the theory of ‘topological dimension’ is given in the
classic text by Hurewicz & Wallman (1941), which treats separable spaces
throughout and makes much capital out of the equivalence of these definitions.
Chapter 1 of Engelking (1978) recapitulates these results, while the rest of his
book discusses dimension theory in more general spaces in some detail.

This chapter concentrates on one of these definitions, the Lebesgue covering
dimension, which we will denote by dim(X), and refer to simply as the covering
dimension. Among the three definitions mentioned above, it is the covering
dimension that is most suitable for proving an embedding result: we will show
in Theorem 1.12, the central result of this chapter, that if dim(X) ≤ n then a
generic set of continuous maps from X into R

2n+1 are homeomorphisms, i.e.
provide an embedding of X into R

2n+1.
There is, unsurprisingly, a topological flavour to the arguments involved

here, and consequently they are very different from those in the rest of this
book. However, any survey of embedding results for finite-dimensional sets
would be incomplete without including the ‘fundamental’ embedding theorem
that is available for sets with finite covering dimension.
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8 Lebesgue covering dimension

1.1 Covering dimension

Let (X, �) be a metric space, and A a subset1 of X. A covering of A ⊆ X is a
finite collection {Uj }rj=1 of open subsets of X such that

A ⊆
r⋃

j=1

Uj .

The order of a covering is the largest integer n such that there are n + 1
members of the covering that have a nonempty intersection. A covering β is a
refinement of a covering α if every member of β is contained in some member
of α.

Definition 1.1 A set A ⊆ X has dim(A) ≤ n if every covering has a refine-
ment of order ≤ n. A set A has dim(A) = n if dim(A) ≤ n but it is not true that
dim(A) ≤ n − 1.

Clearly dim is a topological invariant. We now prove some elementary
properties of the covering dimension, following Munkres (2000) and Edgar
(2008).

Proposition 1.2 Let B ⊆ A ⊆ X, with B closed. If dim(A) = n then
dim(B) ≤ n.

Proof Let α be a covering of B by open subsets {Uj } of X. Cover A by the
sets {Uj }, along with the open set X \ B. Let β be a refinement of this covering
that has order at most n. Then the collection

β ′ := {U ∈ β : U ∩ B �= ∅}
is a refinement of α that covers B and has order at most n. �

The assumption that B is closed makes the proof significantly simpler, but
the result remains true for an arbitrary subset of A, see Theorem 3.2.13 in
Edgar (2008), or Theorem III.1 in Hurewicz & Wallman (1941). However, the
following ‘sum theorem’ is not true unless one of the spaces is closed: in fact,
dim(X) = n if and only if X can be written as the union of n + 1 subsets all
of which have dimension zero (see Theorem III.3 in Hurewicz & Wallman
(1941)).

1 In the context of metric spaces it is somewhat artificial to make the definition in this form, since
(A, �) is a metric space in its own right. But our main focus in what follows will be on subsets
of Hilbert and Banach spaces, where the underlying linear structure of the ambient space will be
significant.


