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Preface 

It is now about thirty years since a new text or monograph dealing mainly 
with the theory of stellar pulsation has been published in the English 
language. The last such book, to the best of my knowledge, was S. 
Rosseland's classic, The Pulsation Theory of Variable Stars (Oxford 
University Press, 1949), which dealt almost exclusively with the theory of 
purely radial oscillations.* Even the monumental and remarkably compre
hensive encyclopedia article by P. Ledoux and Th. Walraven (Handb. d. 
Phys., Vol. 51, 1958) is by now more than twenty years out of date. This 
article has been the standard reference in the field for many years and will 
no doubt continue in this role; indeed, the work is referred to in almost 
every section of this book. However, some of the most important astro-
physical problems having to do with variable stars have been solved since 
the Ledoux-Walraven article was published. Also, much of the basic 
theory of nonradial oscillations was not developed until the mid and late 
1960's, and new developments are still occasionally coming in. Some of 
these recent developments have been described in various review articles 
(see the references given in Chapter 1). These articles, however, along with 
most of the background material needed for a detailed understanding of 
the theory of stellar pulsation, are scattered throughout the physical and 
astrophysical literature. In this book I have collected much of this material 
into one place, and attempted to fill the need in the astrophysical literature 
for an up-to-date, reasonably comprehensive, and sufficiently detailed 
treatment of these matters. 

The theory of both radial and nonradial oscillations is discussed in this 
book. However, the recent (mid 1960's and later) extensions of the theory 
into general relativity are considered for the most part outside the scope of 
the present work. Thus, except as mentioned otherwise, the treatment 
throughout most of this book is based on nonrelativistic, Newtonian 
physics. 

The book is divided into three main parts. Part I, consisting of five 
chapters, is devoted to fundamentals. It contains a brief summary of the 
main observations (Chap. 3); a brief summary of the basic equations of 
hydrodynamics and heat flow, couched in forms suitable for later astro
physical applications (Chap. 4); and a fairly thorough discussion of the 
linear theory (Chap. 5). I have taken considerable pains to elucidate the 

'Recently, a monograph dealing with nonradial stellar oscillations has been published by 
Unno, Osaki, Ando, and Shibahashi (1979). 
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differences between Eulerian and Lagrangian variations, and to write the 
linearized equations for the more general case in which there is a velocity 
field present. Much of this material is based on a paper published in 1967. 
I also refer to an unpublished proof worked out as recently as 1974. 

Part II, consisting of eight chapters, is concerned with purely radial 
oscillations. The theory of linear, adiabatic, radial oscillations is presented 
in considerable detail (Chapter 8), as is the theory and calculations of 
nonadiabatic and nonlinear radial oscillations (Chapters 9 through 12). 
Some simple models of stellar pulsation (essentially radial) are described 
in Chapter 13. Some of the important recent developments in our under
standing of variable stars are also summarized. 

Part III, made up of the final six chapters, is concerned primarily with 
the theory of nonradial stellar oscillations. Most of the conventional 
notation and terminology associated with nonradial oscillations is 
contained in Chapter 17. The bulk of this chapter was written in 1976— 
1977; therefore, the level of sophistication contained in, for example, the 
papers of Christensen-Dalsgaard (1979), Shibahashi (1979), and Wolff 
(1979), and in the monograph by Unno, Osaki, Shibahashi, and Ando 
(1979), is not reflected in this chapter. This fact, though regrettable, is also 
inevitable in a rapidly developing field, especially when delays in publica
tion are taken into account. In this Part I have included not only the topics 
that might logically be considered a part of this subject, but also some of 
the newer developments referred to above. Chapter 19, in particular, is 
devoted to "miscellaneous" topics. These are primarily characterized by a 
relaxation of one or more of the assumptions usually adopted—assump
tions which are held through most of the rest of the book. 

The book is aimed at about the level of the first-year graduate student. 
A knowledge of calculus, differential equations, vector analysis, and 
matrix algebra is assumed. Because of space limitations, I have not been 
able to include detailed proofs and derivations in most cases. Therefore, 
considerable demands may be made on the reader. 

Although the book was not written as a text (for example, no problems 
are included), it may nevertheless be useful in that capacity. There is 
probably more than enough material to comprise a one- or two-semester 
graduate course in variable stars. The book will probably be of greatest use 
to students and research workers in this and related fields. 

Theory of Stellar Pulsation has grown, for the most part, out of lecture 
notes developed for a graduate course in variable stars that the author has 
given at the University of Colorado several times over the past fifteen 
years. Some of the contents of several of the author's review papers on 
variable stars have also been incorporated (of course, some of the contents 
of some of these review papers had their first origin in these same lecture 
notes!). 
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Introduction 

Pulsating stars are stars in which large-scale dynamical motions, usually 
including the entire star, and usually more or less rhythmic, are present. 
The simplest kind of such motion is a purely radial pulsation, in which the 
star maintains a spherical shape at all times, but changes its volume, as if it 
were breathing. 

The study of pulsating stars constitutes a relatively small, but highly 
important, area of modern stellar astrophysics. The idea that certain types 
of variable stars owe their variability to periodic or cyclic expansions and 
contractions dates from the work of Shapley (1914), and was given a firm 
mathematical foundation by Eddington (1918a,b). Since then the "pulsa
tion hypothesis" has gained wide acceptance. The study of pulsating stars, 
both theoretical and observational, has proved a powerful tool in the study 
of stellar structure and in other aspects of modern astrophysics. (Summa
ries of some of the early history of the pulsation theory have been given by 
Rosseland 1949, Chap. 1; Eddington 1926, Chap. 8; and Ledoux and 
Walraven 1958.) One of the more spectacular and far-reaching fruits of 
the observational study of one of the best-known types of pulsating stars, 
the classical Cepheids, is the famous period-luminosity relation (see 
§3.1). This relation provides the astronomer with one of the most basic 
"yardsticks" for the measurement of truly great astronomical distances, of 
the order of the mean separation between galaxies, and has played a 
crucial role in the establishment of the basic distance scale of the universe. 
In addition, the attempts to understand the cause and nature of stellar 
pulsations have served as a challenge to the theorist, and have provided 
some fascinating and, in some ways, unique applications of physical 
theory. Further discussion of the importance and significance of the study 
of pulsating stars will be found in §19.7. 

Pulsating stars comprise only a subset of the wider class of intrinsic 
variable stars. These are stars whose variability arises from causes entirely 
within themselves, and not from geometric eifects such as eclipses in 
binary stars; or to some external agency such as interaction with the 
interstellar medium or with circumstellar matter. The whole class of 
intrinsic variables includes many different kinds of objects, some of which, 
such as the quasi-stellar objects, are probably not stars in the usual sense 
of the term. (For recent reviews of these objects, see, for example, 
Burbidge and Burbidge 1967; Perry, Burbidge, and Burbidge 1978; 
Schmidt 1969; an updated, semi-popular account is given in H. Smith 
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1978). The intrinsic variables are usually divided into two broad groups, 
the pulsating variables and the eruptive variables. This monograph is 
concerned primarily with the former group: a brief survey of the types of 
stars included therein will be presented in Chapter 3. Among the eruptive 
variables are the spectacular novae and supernovae, which will not be 
discussed in detail in this book. Recent reviews of certain types of eruptive 
variables may be found, however, in Shklovsky (1968) and in Oke and 
Searle (1974) (supernovae); Payne-Gaposchkin (1957) (novae); Kukarkin 
and Parenago (1963), Payne-Gaposchkin (1954), Ledoux and Walraven 
(1958) (the whole class of intrinsic variables, including recurrent novae 
and nova-like stars); Mumford (1967) (dwarf novae); Robinson (1976), 
Warner (1976a) (cataclysmic variables in general); and Herbig (1962) (T 
Tauri stars). See also many of the papers in Kippenhahn, Rahe, and 
Strohmeier (1977). Unless we explicitly state otherwise, we shall always in 
this book mean "intrinsic variable star" when we use the term "variable 
star." 

The most general definition of a variable star is that it is a star whose 
physical properties change with time. However, a more restricted defini
tion is implied in normal usage: by variable stars is usually meant stars 
whose properties change appreciably at a rate fairly easily detectable by 
astronomers—during, say, a few seconds or fractions of seconds to a few 
years or decades. 

The most obvious and most easily detectable distinguishing feature of a 
variable star is its apparent brightness: most such stars, in fact, are 
detected by their light variations. Other observable properties, such as 
spectral type or color, and radial velocity, usually also vary during the light 
variations. In the case of pulsars (for recent reviews, see, for example, 
Hewish 1970; Ruderman 1972, 1975; Ginzburg and Zheleznyakov 1975; 
F. G. Smith 1977; Taylor and Manchester 1977), it is the variable radio 
radiation, on time scales of a few seconds to a few hundredths of a second, 
by which these objects are generally detected. However, light variations, 
synchronized with the radio variations, have been detected in the Crab 
pulsar, NP-0532 (Cocke, Disney, and Taylor 1969). The light variations 
are synchronized with the X-ray pulses in some X-ray "pulsars" (e.g., 
Hiltner and Mook 1970; Lamb and Sorvari 1972; Davidson, Henry, 
Middleditch, and Smith 1972; Forman, Jones, and Liller 1972). On the 
other hand, in some cases, such as in spectrum or magnetic variables or in 
the "line profile variable B stars" (the "53 Persei stars") (M. Smith 1977; 
Smith and McCall 1978; M. Smith 1978, 1979a,b), the brightness may be 
almost constant in time, and some other property, such as spectral details 
or magnetic field strength, may betray the variability of the star (for 
example, Deutsch 1958; Sargent 1964; Ledoux and Renson 1966). For 
example, the eleven-year solar cycle makes the sun, strictly speaking, a 
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variable star (not to mention the small-scale oscillations recently reported 
by Hill and collaborators [Hill, Stebbins, and Brown 1975; Brown, 
Stebbins, and Hill 1976; Hill 1978; and numerous papers in Hill and 
Dziembowski 1979]; see also the numerous references in Gough 1977c 
and, in relation to the whole question of the possible variability of the sun, 
White 1977 and Eddy 1978). Also, the "X-ray bursters" exhibit variations 
on scales of minutes (see, e.g., Gursky 1977; Lewin 1977; Lewin et al. 

1977; Lewis and van Paradijs 1979), while "γ-ray bursts" are character
ized by time scales for variability of ~0.1-1 OOs (e.g., Strong, Klebesadel, 
and Evans 1975; Klebesadel and Strong 1976; Cline and Desai 1976; 
Fishman, Watts, and Derrickson 1978). (For a recent review of X-ray 
sources in general, see Ostriker 1977.) 

The variations associated with the pulsating variables may be periodic 
or cyclic, semi-regular, or irregular. The corresponding time scales range 
all the way from a few tens of seconds to a few years. It is, of course, 
possible that time scales lying outside this range exist; but then the 
problem of detection might become somewhat difficult. 

The discovery of periodic or cyclic variables came relatively late in the 
whole history of astronomy. Apparently, the first authenticated discovery 
of such a variable star was that of ο Ceti (Mira), a Long Period Variable 
(see Chap. 3), by Fabricius in 1596 (Ledoux and Walraven 1958). A few 
supernovae, such as the Crab supernova of 1054, Tycho's supernova of 
1572, and Kepler's supernova of 1604, had been recorded, but these belong 
to the class of eruptive variables. Before the end of the eighteenth century, 
only sixteen variable stars had been discovered, two of which were later 
found to be eclipsing binaries and five of which were novae (Campbell and 
Jacchia 1941). Two of these were classical Cepheids: δ Cephei, the 
prototype of this kind of star (see Chap. 3), discovered by John Goodricke 
in 1784; and η Aquilae, discovered by Edward Pigott also in 1784 
(Campbell and Jacchia 1941). The total number of intrinsic variable stars 
now known in the Galaxy is some 25,000, of which over 20,000 are listed in 
the catalog of Kukarkin et al. (1969). Over ninety per cent of these are 
pulsating variables. The total number of such variables in the entire 
Galaxy is estimated to be ~2 χ IO6 (Kukarkin and Parenago 1963). 
However, since the total number of stars in the whole Galaxy is some 
IOu-IO12, it follows that only about one star in IO5-IO6 is a pulsating star. 
Stellar pulsation is therefore quite rare, on the whole, among stars. 
Nevertheless, it is highly important in astrophysics, as will be seen in later 
portions of this book. (The recent discovery of the variable white dwarfs, or 
"ZZ Ceti stars" [McGraw 1977; Robinson and McGraw 1976a,b; Robin
son, Nather, and McGraw 1976; Nather 1978], may cause the above 
numbers to be revised somewhat.) 

In Chapter 2 we introduce, primarily for orientation, some important 
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time scales for stars. In Chapter 3 we present a brief survey of empirical 
information on pulsating variables. Since the observational literature on 
variable stars is quite extensive, and since a number of good reviews of this 
subject exist (to be referenced there), we shall only mention the particu
larly important points. 

In Chapter 4 we shall summarize some basic theoretical information 
which will frequently be referred to in later parts of the book. We shall 
here and throughout, except when explicitly stated otherwise, employ 
nonrelativistic mechanics and Newtonian gravitation theory. The neglect 
of special relativity in the consideration of pulsating stars is well justified 
in most cases because the relevant velocities are generally small compared 
to the speed of light. The neglect of general relativistic gravitation theory is 
also well justified for most pulsating stars because the gravitational fields 
are usually very weak; equivalently, the mean radii of most kinds of 
pulsating stars are much larger than their Schwarzschild radii Rs = 

2GM/(?, where G is the gravitation constant, M is the mass of the star, and 
c is the velocity of light. Examples of stellar objects in which these 
approximations are not justified are dense white dwarfs (see, e.g., Misner, 
Thorne, and Wheeler 1973); neutron stars; "supermassive stars," if they 
exist (see, e.g., Wagoner 1969); and collapsed stars, or "black holes" (see, 
e.g., Ruffini and Wheeler 1971; Penrose 1972; Zeldovitch and Novikov 
1971, Chap. 11; Thorne 1967a; Eardley and Press 1975). These develop
ments in the general relativistic theory of pulsating stars will not be 
considered in detail in this book (however, see §19.5 and Cox 1974a). 

The linear theory of stellar oscillations is discussed in Chapter 5. This 
theory has played a vital role in the development of our present under
standing of pulsating stars. Until recent years this theory formed the basis 
of nearly all theoretical discussions of pulsating stars, even though it was 
well known that pulsations of actual stars are generally of a large enough 
amplitude that nonlinear effects are certainly important. The linear theory 
is nevertheless extremely useful, in part because its relative mathematical 
simplicity facilitates understanding in physical terms of some of the 
complicated phenomena involved. This theory is also useful if we believe 
that at least some types of actual stellar oscillations arose because the star 
was at one time unstable against infinitely small oscillations. The fact that 
most of the recognized types of pulsating stars occupy more-or-less well 
defined regions on the Hertzsprung-Russell (H-R) diagram (see Fig. 3.1 
below) suggests a relation between linear instability, which depends 
(presumably) on the "static" characteristics of a star, and actual stellar 
oscillations. 

Part II will be devoted exclusively to purely radial motion, which will 
receive a fair amount of emphasis in this book. There are two main reasons 
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for this relatively heavy emphasis. First, this is the simplest kind of motion 
for spherical stars. It is therefore relatively tractable mathematically, and 
many of its aspects can be understood physically. Second, most actual 
pulsating stars appear, fortunately, to be undergoing predominantly just 
this simple kind of motion. 

Part III will be devoted primarily to the theory of nonradial stellar 
oscillations. 

In Chapter 19, certain complicating factors, such as rotation, viscosity, 
magnetic fields, thermal imbalance, and general relativity in stellar 
pulsations (both radial and nonradial) will either be dealt with briefly, or 
at least mentioned, with appropriate references to the literature. A few 
other miscellaneous topics, such as secular stability of stars, will be 
referred to, and some comments will be made about the significance of 
stellar oscillation theory to other areas of astrophysics. 

Other recent reviews of pulsating stars and pulsation theory have been 
provided by Payne-Gaposchkin (1951, 1954); Ledoux and Walraven 
(1958); Ledoux and Whitney (1961); Ledoux 1963, 1965, 1974, 1978); 
Zhevakin (1963); Christy (1966a, 1967, 1968, 1969a,b, 1970); J. P. Cox 
(1967, 1974a, 1975, 1976a, 1979); A. N. Cox and J. P. Cox (1967); King 
and Cox (1968); J. P. Cox and Giuli (1968; Chap. 27); Iben (1971a); 
HoflFmeister (1971); Percy (1975); Glasby (1975); and Kukarkin (1976). 
Earlier reviews are those of Eddington (1926, Chap. 8); and Rosseland 
(1949). Other useful recent collections of papers on pulsating stars are the 
proceedings of the Third I.A.U. Colloquium on Variable Stars (Bamberg, 
Germany, 1965), The Position of Variable Stars on the H-R Diagram; the 
proceedings of the Fifth I.A.U. Colloquium on Variable Stars (Bamberg, 
Germany, 1971), New Directions and New Frontiers in Variable Star 
Research; Detre (1968); Philip (1972); Strohmeier and Knigge (1972); 
Demarque (1973); Ledoux, Noels, and Rodgers (1974); Fischel and 
Sparks (1975); Fitch (1976a); A. N. Cox and Deupree (1976); Kippen-
hahn, Rahe, and Strohmeier (1977); Fischel, Lesh, and Sparks (1978); 
and Hill and Dziembowski (1979). A monograph on nonradial stellar 
oscillations has recently been published by Unno, Osaki, Ando, and 
Shibahashi (1979). 

Some works dealing with wave phenomena in general have been found 
very helpful to the author, and may also be helpful to the reader. Among 
these are Morse (1936), Greenspan (1968), Tolstoy (1973), Lighthill 
(1978), and Main (1978). 



Some Important Time Scales 

In this chapter we shall consider, for orientation, some important stellar 
time scales and their rough orders of magnitude. Time scales lying in the 
general range of a few seconds to a few years will be of particular interest 
in connection with pulsating stars. 

2.1. THE PULSATION PERIOD 

The first and most relevant of these time scales for pulsating stars is the 
pulsation period Π of the fundamental mode of purely radial oscillations. 
While accurate methods of calculating Π will be considered in later 
chapters, it is instructive to consider first some simple, approximate 
methods of estimating its value that give nearly the same results as do the 
more elaborate methods. To order of magnitude, this value of Π also 
applies to the lower pressure and gravity modes of nonradial oscillations of 
somewhat realistic stellar models (see Chapter 17). 

Perhaps the most general of these simple methods is that described by 
Cox (1967). This method uses the fact that stellar pulsations (at least those 
of low modes) can be regarded, approximately, as a kind of "long-wave" 
acoustics (wavelength of the "sound wave" of the order of or larger than 
the dimensions of the system), as is shown by Ledoux and Walraven (1968, 
Sect. 60; see also §8.9 of this book). The pulsation period Π then ought to 
be of the order of the time required for a sound wave to propagate through 
the mean or equilibrium diameter of the star. A general expression for the 
Laplacian (adiabatic) sound speed (see, e.g., §5.5), averaged in some 
suitable manner over the entire star in its equilibrium state, can be 
obtained from the virial theorem (see, e.g., Cox and Giuli 1968, Chap. 17). 
This expression is essentially independent of the material properties of the 
star. 

A crude but roughly equivalent method of obtaining an expression for 
the mean sound speed is the following. The equation of hydrostatic 
equilibrium is used (see, e.g., Chapter 4), and all quantities therein are 
regarded as average, or representative, values throughout the star. Substi
tuting these values into the expression (eq. [5.38]) for the sound speed then 
yields the desired result. 

This procedure shows that, very nearly, Π(ρ)1/2 = constant. This is the 
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famous period-mean density relation, which seems to be satisfied by most 
types of pulsating stars (see, e.g., Chapter 3). According to this relation, a 
large, tenuous star will have a longer period than will a small, compact 
star. 

The details of the above considerations will reveal that the constant in 
the above expression contains the factor T1 "1/2, where Γ, is one of the 
adiabatic exponents (see Chapter 4), here assumed constant. A more 
careful derivation of the above expression shows that this factor should 
actually be replaced by the factor (3Γ, - 4)~1/2, which arises from the 
spherical symmetry and the variations of gravity which are not fully taken 
into account in the above considerations. This latter factor may cause Π to 
be considerably larger than the value given in the above expression if Γ, is 
close to 4/3; this will be the case in relativistic white dwarfs or neutron 
stars, or in very massive stars where radiation pressure is more important 
than gas pressure. For Γ, = 4/3, Π = oo; and the star is dynamically 
unstable if Γ, < 4/3. 

Another simple, approximate expression for the pulsation period of a 
star, which, moreover, yields the correct factor (3Γ, - 4)~1/2, is the 
following. Suppose that the entire mass M of the star is concentrated in a 
point at the center, and that the stellar surface, lying at a mean distance R 
from the center, is represented by a thin, spherical shell of this radius, 
having a mass m small compared with M, and offering no resistance, other 
than inertia, to changes in its radius (that is, the shell is completely 
compressible, inviscid, and has zero surface tension). The entire volume 
within the shell is filled with a uniform, massless gas whose only function is 
to supply pressure to support the shell against gravity, and the shell is 
surrounded by vacuum (pressure P = 0). If r is the instantaneous radius of 
the membrane, its equation of motion is 

, GMm 
mr = 4wr P , (2.1) 

where a dot denotes the time derivative, P denotes the (spatially constant) 
gas pressure inside the membrane, and G is the constant of gravitation. We 
now assume small, adiabatic oscillations about the hydrostatic equilibrium 
state (r = 0); that is, hP f P = Γ, δρ/ρ, where δΡ, for example, denotes the 
departure of the pressure from its equilibrium value. Linearizing eq. (2.1) 
(further details regarding linearization may be found in Chap. 5) and 
assuming a time dependence of the form έ°\ it is a simple matter to show 
that the angular pulsation frequency σ is given by the relation 

σ2 = (3Γ, - 4) · ̂  = (3Γ, - 4) . % πG p ,  (2.2) 
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which defines the mean density p. We then obtain the following expression 
for the pulsation period Π = 2·κ/σ\ 

Π = 2τ/[(3Γ, - 4) · "/3 TTG p ] 1/2. (2.3) 

Interestingly enough, this is precisely the expression for the fundamental 
pulsation period of purely radial pulsations of the homogeneous (constant-
density) model of given Γ, and p. 

By carefully following through the derivation of eq. (2.2), it is easy to 
discover the origin of the "magic" critical number 4/3 (see above remarks 
concerning dynamical instability). Write the number as (2 + 2)/3. One of 
the 2's comes from the inverse square character of Newtonian gravitation 
(which is the only kind we consider in this book unless we specifically state 
otherwise); the other 2 comes from the fact that the total pressure force on 
a sphere of radius r varies as r2. The 3 comes from the three-dimensionality 
of physical space: the volume of a sphere of radius r varies as r3. 

It is customary to write the period-mean density relation in the form 

Π(ρ/ρΘ)"2 = Q, (2.4) 

where Q ~ (Gp©)_1/2 (p© = 1.41 gm cm-3 = mean density of the sun) is the 
"pulsation constant." It is not actually a constant, as its value depends, 
generally only weakly, on Γ, and on the structure of the star. Accurate 
calculations show that, for the fundamental radial mode and for Γ, = 5/3, 

0?03 <; Q £ Ofl2, (2.5) 

while a representative value is Q « Of04. Fitting formulae, giving Q as a 
function of stellar parameters (mostly mass and equilibrium radius), have 
been provided by Cox, King, and Stellingwerf (1972) and Faulkner 
(1977b). Since Q is the period that the sun would have if it were pulsating, 
we see that its period would be of the order of an hour. Observations 
(uncertain as they are!) of many variable stars yield values in the general 
range 

O t a s e s O i l l ,  ( 2 . 6 )  

in reasonable agreement with theory. 
The pulsation periods to be expected of known kinds of stars can be 

estimated on the basis of the period-mean density relation (2.4). Consider
ing stars of mean densities lying between those of moderately dense white 
dwarfs, ρ ~ IO6 gm cm"3, and those of tenuous red supergiants, ρ ~ IO-9 

gm cm"3, we obtain periods lying in the approximate range 

3 seconds ^ Π ^ 1000 days, (2.7) 

which nicely spans the range of periods observed for most types of periodic 
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or cyclic intrinsic variables (see Chapter 3). This rough agreement 
provides good general support for the pulsation theory of variable stars. 
There are stronger and more specific arguments in favor of this theory that 
are, however, outside the scope of this book (see, e.g., Eddington 1926, 
Chap. 8). We may note that, had neutron stars (which are probably 
represented by the pulsars), with mean densities ρ ~ IO15 gm cm 3, been 
included in the above selection of stars, the lower limit of the above period 
range would have been a few milliseconds. While there is as yet no direct 
evidence that neutron stars are pulsating, some of the finer details, with 
time scales of a few milliseconds, observed in the pulsed radio radiation 
from pulsars (e.g., Taylor and Huguenin 1971), could well be a result of 
pulsations. 

2.2 THE "FREE-FALL" TIME 

The "free-fall," or "dynamical," time scale, tff, is the characteristic time 
associated with dynamical collapse, or with the orbital motion of a satellite 
circling the parent body very close to its surface; tff is also the characteris
tic time for a significant departure from hydrostatic equilibrium to alter 
the state of a star appreciably. 

A simple estimate of the order of magnitude of tff can be obtained by 
calculating the time required for a unit mass to fall freely through a 
distance of the order of R (stellar radius) under the influence of a 
( c o n s t a n t )  g r a v i t a t i o n a l  a c c e l e r a t i o n  e q u a l  t o  t h e  s u r f a c e  g r a v i t y  G M f R 2  

of a star of mass M. This procedure yields 

tff~ (Gp)"'/2 (2.8) 

(other approximate methods of obtaining eq. [2.8] are presented in, e.g., 
Cox and Giuli 1968, Chap. 1). Equation (2.8) shows that, aside from 
numerical factors generally of order unity, tB is of the order of the 
pulsation period Π. This well-known result is a consequence of the fact that 
the characteristic velocities associated with low-order, largely radial pulsa
tions (the sound speed) and with dynamical processes (e.g., free fall or 
orbital speeds) or low-order, nonradial gravity oscillations are all deter
mined, via the virial theorem, essentially by the gravitational energy of the 
star. 

2.3 THE KELVIN TIME 

The "Kelvin time," tK ,  is essentially the "relaxation time" for departures of 
a star from thermal equilibrium, that is from balance between energy 
generated by thermonuclear reactions in the stellar interior and energy lost 
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by radiation, both photonic and neutrinic, through the stellar surface. The 
order of magnitude of tK can be estimated as follows. Let Eth be the total 
internal (thermal) energy of a star and L the luminosity (net rate of loss of 
energy through the surface) of the star. Then we have, to order of 
magnitude, 

tκ-EJL. (2.9) 

However, Eth can be related to Ω, the gravitational energy of the star, by 
the virial theorem. This theorem can be written in the following general 
form, for a self-gravitating system in hydrostatic equilibrium that 
possesses no mass motions (for example, turbulence, rotation, pulsation) 
and no magnetic fields, and for which the pressure vanishes on the 
surface: 

3 f PdV= —Ω, (2.10) 
J y  

where P is the total pressure and the integration is extended over the entire 
volume V of the star, and 

r Gmdm GM2 

Ω - - / -cI-B- (211 

r R 

is the gravitational potential energy of a spherical star. Here q is a 
dimensionless constant whose value depends on the mass concentration of 
the star but is of order unity for chemically homogeneous stars, and the 
integration is extended over the entire stellar mass Af. If we assume that 
the pressure is supplied by a simple, perfect, nonrelativistic gas, then we 

have Etb = (3/2) Jv PdV, which yields the simple form Eth = -(1 /2) Ω of 

the virial theorem. Using this last result in eqs. (2.9) and (2.11) for Ω, and 
taking q « 3/2, we obtain 

GM2 M2 

tk ~ ~LR ~ 2 * 10? LR yCarS' ^2'12^ 

where L, Af, and R are in solar units. The Kelvin time tK is also the time 
that would be required for a star to contract from infinite dispersion to its 
present radius if L were to remain constant during the entire contraction. 

The Kelvin time is normally not of immediate concern as far as the 
periods of pulsating stars are concerned. However, as we shall see 
(Chapter 9), it is relevant in connection with growth rates, or e-folding 
times, for the growth or decay of pulsations. 

A useful dimensionless quantity is the ratio of the free-fall time 
(~ pulsation period) to the Kelvin time: 
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(2.13) 

if L, M, and R are in solar units. It is thus seen that for stars not differing 
greatly from the sun, the pulsation period is many orders of magnitude 
smaller than the Kelvin time. 

2.4 THE "NUCLEAR" TIME 

The "nuclear" time scale, is only of indirect interest in connection with 
pulsating stars, but knowledge of its value is useful for orientation. This 
time scale is, loosely speaking, the time required for the properties of a star 
to change appreciably as a result of nuclear evolution (changes in internal 
chemical composition due to nuclear transmutations). For a hydrogen-
burning star we may make use of the fact that an amount of energy ~0.007 

ergs (c = light velocity) is released per gram of hydrogen that 
is fused into helium. Assuming that of the mass of the star is 
available for this fusion, we obtain 

(2.14) 

where again M and L are in solar units. It is seen that, normally, 



Some Observational Considerations 

In this chapter we shall discuss briefly certain topics related to variable 
stars that are of primarily observational interest. Further details of the 
observed characteristics of the numerous types of variable stars can be 
found in the comprehensive and detailed discussions of, for example, 
Ledoux and Walraven (1958), Payne-Gaposchkin (1951, 1954), Payne-
Gaposchkin and Gaposchkin (1963), Kukarkin and Parenago (1963), 
HofTmeister (1971), Strohmeier and Knigge (1972), Kukarkin (1976), Pel 
(1978), and in certain of the references given in Chapter 1. See also the 
summary in J. P. Cox (1974a). Because of the vastness of the literature on 
this subject and the rate at which discoveries are being made, no claim is 
made for completeness for the most up-to-date observational results. 
Interested persons are advised to check the current astronomical and 
astrophysical literature. We have not included the spectrum and magnetic 
variables (see, e.g., Ledoux and Renson 1966), the flare (UV Ceti) stars 
(see, e.g., Lovell 1971), nor the T Tauri stars (see, e.g., Herbig 1962, 
1978) among the pulsating variables, because it is not clear that their 
characteristics are necessarily directly related to pulsations. We have also 
not included the quasi-stellar objects, for reasons given earlier (Chapter 1); 
nor the pulsars, as their main observed characteristics are generally 
believed to be a result of rotation rather than pulsation (see, e.g., Hewish 
1970; Cameron 1970; Ruderman 1972; Canuto 1977). We have also not 
included the recently observed oscillations of some of the cataclysmic 
variables (see, e.g., Warner and Robinson 1972; Patterson, Robinson, and 
Nather 1976; Warner 1976a,b; Robinson 1976; Stiening, Hildebrand, and 
Spillar 1979), as the nature and cause of these oscillations are unknown. 
Some of the material in this chapter has been borrowed from J. P. Cox 
(1974a). 

We have summarized in Table 3.1 some of the properties of most of the 
recognized types of pulsating variables. In Figure 3.1 are shown the 
locations of some of these various types, as well as some others, on a 
Hertzsprung-Russell (H-R) diagram.1 

The classical Cepheids and W Virginis stars are sometimes called 

'This, as well as other items of astronomical nomenclature and general information, may 
be found in any text on introductory astrophysics, for example, Aller (1963), Swihart (1968), 
UnsOld (1977), Smith and Jacobs (1973), Rose (1973), or Harwit (1973). 
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Figure 3.1. Location of a number of various types of intrinsic variables on the Hertzsprung-
Russell diagram. From Figure 1 of J. P. Cox (1974a), courtesy of the Institute of Physics. 

collectively "Cepheids," being regarded as counterparts, distinguished by 
Population type, of a single kind of star. The red semi-regular variables 
and the Long Period Variables are sometimes collectively referred to as the 
"red variables." 

The group of stars in the upper part of Table 3.1 (the RR Lyrae 
variables, Cepheids, RV Tauri stars, and the red variables) is sometimes 
referred to as the Great Sequence. Note that, as one descends this part of 
the table, the characteristic periods become progressively longer and the 
stars become progressively redder (cooler). 

Such a general correlation between period and spectral type (or color) 
can easily be shown to be just what would be expected for a case of radial 
pulsations. We may say, alternatively, that large stars have relatively long 
periods (long sound travel times through their diameters): such stars are, 
for given luminosity, relatively cool. Therefore, increasing periods and 
increasing coolness tend to go together. 

The significance of the nearly vertical oval region shown by dashed lines 
in Figure 3.1 is that most pulsating stars lying in this region (the RR Lyrae 
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variables, classical Cepheids, W Virginis variables, and dwarf Cepheids 
and δ Scuti variables) are thought to owe their instability to a common 
physical mechanism (second ionization of helium in the envelope), the 
details of which will be discussed in some detail in Chapter 10. This oval 
region is sometimes referred to loosely as the "instability strip" or 
"instability region." It has been suggested by Van Horn (1978), Nather 
(1978), and Hansen (1979) that this instability region might even include 
the variable white dwarfs (or "ZZ Ceti" stars, see below). However, see 
J. P. Cox and Hansen (1979). 

For recent reviews of some of the short-period variables, see Petersen 
(1976), McNamara and Feltz (1978), and Breger (1979). 

If one examines the frequency distribution of periods for the pulsating 
variables in the Galaxy, corrected for selection effects, one finds more or 
less well-defined peaks at the characteristic periods for the various kinds of 
pulsators listed in Table 3.1 (e.g., Payne-Gaposchkin 1954, p. 17). This 
fact suggests that the classification of pulsating stars into distinct types has 
some basis in reality. 

The most common kind of pulsating variable, in terms of numbers per 
unit volume of space, is found to be, at least in the part of the Galaxy in the 
vicinity of the sun, the recently discovered variable white dwarfs (the "ZZ 
Ceti stars," McGraw 1977, Nather 1978). They appear to outnumber all 
other types of variables stars by a considerable factor (>102?). 

3.1 CLASSICAL CEPHEIDS AND THE 
PERIOD-LUMINOSITY RELATION 

Because of the importance of the classical Cepheids and their role in 
establishing the basic distance scale of the universe, through the famous 
period-luminosity relation, we devote here a special section to this type of 
variable star. 

The prototype of this kind of star is δ Cephei, with a period of 5^366 
(Kukarkin et al. 1969, 1974, 1976). Polaris is another classical Cepheid, 
although the light variations are small (<071). Classical Cepheids are 
yellow giants and supergiants, and are therefore highly luminous (see 
Table 3.2 below) and visible, if not dimmed by interstellar extinction, at 
great distances. Classical Cepheids have been observed in about thirty 
external galaxies. 

The periods of classical Cepheids are nearly all confined to the range 
\ά-5&, but a few Cepheids in the Large Magellanic Cloud have periods 
approaching IOO''; periods in the Small Magellanic Cloud extend up to 
about 200^ (Payne-Gaposchkin and Gaposchkin 1965). (The classical 
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Cepheid in the Galaxy with the longest known period is BP Her, with a 
period of 83?1, according to Makarenko 1972.) 

About 700 classical Cepheids are known in the Galaxy (Payne-
Gaposchkin and Haramundanis 1970), and they are all closely confined to 
the Galactic plane and partake of the rotation of the Galaxy. They are 
extreme Population I objects. Because of their confinement to the Galactic 
plane, they are heavily obscured and reddened by interstellar dust. They 
are all too distant for their distances to be measured by the usual direct 
methods (for example, by triangulation). Hence, until recently, the only 
way to determine the distances of Cepheids was to use statistical methods 
based on the solar motion relative to the nearby stars. These methods do 
not always yield very accurate or reliable results. Since the mid-1950's, 
however, some thirteen classical Cepheids have been discovered in galactic 
(open) clusters (for the history of these findings, see Fernie 1969). These 
discoveries have made possible more accurate determinations of the 
distances of Cepheids (see, e.g., Kraft 1961; Sandage and Tammann 1968, 
1969, 1976a,b and references therein; Geyer 1970; Schaltenbrand and 
Tammann 1970; Pel 1978), and hence of the zero point of the period-
luminosity relation (see below). 

Some properties of classical Cepheids in the Galaxy are summarized in 
Table 3.2 (from Cox 1974a). The masses given in this table are only 
estimates, based on recent stellar evolution calculations with conventional 
masses. These masses may be only upper limits since actual Cepheid 
masses may be somewhat smaller than is indicated by the evolutionary 
calculations (see §19.7). Unfortunately, reliable empirical masses are not 
available for any Cepheids, since most Cepheids are either single or 
members of such widely separated binaries that reliable orbital elements, 
and hence masses, cannot be obtained (see, e.g., Latyshev 1969; Abt 
1959). 

The light curves of classical Cepheids are skew symmetric and highly 

TABLE 3.2 

Properties of Galactic Classical Cepheids* 

Property From 

Range 

To 

Period (Π) Id 50" 
Mean Luminosity (L) 300 L b  26,000 Lm  

Median Spectral Type F5 G5 
Mean Radius (R) 14 /?„ 200 R s  

Mass ( M )  <3.7 Me  <14 Me 

•Subscript θ denotes solar values. 
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Figure 3.2. Light curve (upper figure) and radial velocity curve (lower figure) (astronomi
cal sign convention) for δ Cephei. Abscissae are phase, and the ordinate of the light curve is 

apparent magnitude (arbitrary zero point). The ordinate of the velocity curve is in units of km 

s"1 and the zero-point is not corrected for the velocity of approach of the center of mass of the 
star, relative to the sun, of 16 km s~' (from Goldberg and Aller 1943). 

periodic, repeating faithfully over many periods (see Fig. 3.2). The total 
magnitude range (visual) is about lm; this increases slowly and somewhat 
erratically with increasing period. 

The shapes of the light curves are correlated with the periods. This 
correlation is known as the Hertzsprung relation, and is illustrated, e.g., in 
Figure 4 of Cox (1974a) (this figure may also be found in Payne-
Gaposchkin 1951). (For further discussion of the Hertzsprung relation, 
see, e.g., Payne-Gaposchkin 1961; Payne-Gaposchkin and Gaposchkin 
1966). Note that a secondary hump often appears on the descending 
branch at periods between Id and 9d. It should be noted, however, that the 
Hertzsprung relation is statistical in character, as there are many individ
ual exceptions to it (see, e.g., Figure 5 in Cox 1974a). 

The spectra and colors of Cepheids also change during the light 
variation. The spectra are earliest (closest to the O end of the spectral 
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sequence) at maximum brightness, and the spectral changes are consistent 
with the changes in color. For δ Cephei, for example, the spectrum varies 
between F5 and G2 during the cycle (Kukarkin et al. 1969); this variation 
corresponds to a total change of about 1500°C in effective temperature. 
Most of the variation in brightness arises from the temperature variations; 
the radius variations are relatively small (fractional semi-amplitude 
around 0.05-0.10; see, e.g., Nikolov and Tsvetko 1972), and have only a 
minor effect on the light curves. 

The radial velocity curves of classical Cepheids tend to be roughly 
mirror images of the light curves when the astronomical sign convention 
regarding radial velocities is used, as shown in Figure 3.2 (from Cox 
1974a). If the velocity curve represents the motion of the stellar surface, 
then the phase relation between the light and velocity curves implies that 
the star is brightest when it is expanding through its equilibrium radius, 
and not when its radius is smallest, as might be expected from naive 
considerations. This retardation of maximum brightness behind minimum 
radius has been called the "phase lag discrepancy." The phase lag of 
maximum luminosity behind minimum radius would be about 90° if the 
light and velocity curves were sinusoidal. However, because of the skew-
ness of the curves, the phase lag is actually considerably smaller than this, 
perhaps 0.1-0.2 periods. The physical cause of the phase lag has been 
clarified in recent years, and will be discussed further in Chapter 11. 

The total velocity amplitude typically lies in the range 30-40 km s"1, but 
increases slowly and erratically with increasing period Π, up to some 
50-60 km s"1 for Π » 30^ — 40rf. Note that, as a result of foreshortening 
and limb darkening, the true velocity amplitudes are larger than the above 
values by a factor which is customarily taken to be 24/17 (see §3.4). 

Perhaps the most important function of classical Cepheids for the 
astronomer is their use as powerful distance indicators; they are still the 
most important tool for establishing the basic distance scale of the universe 
(Sandage and Tammann 1971; Sandage 1972). This use is based on the 
well-known period-luminosity relation, which was discovered in 1912 by 
Leavitt of Harvard on the basis of Cepheids in the Small Magellanic Cloud 
(Pickering 1912). She found that the mean luminosity increases monotoni-
cally with increasing period, but she was unable to specify the zero point of 
the relation. The history of the determination of this zero point makes a 
fascinating chapter in the history of astronomy, and has been described by 
Baade (1956, 1963) and Fernie (1969). Suffice it to say here that the 
"doubling" of the size of the universe in the early 1950's was the result of 
the discovery by Baade, using the then newly operative 200 inch Palomar 
telescope, of an error in the earlier determinations of the zero point: this 
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error had gone undetected for approximately forty years! The question of 
this zero point is certainly one of the most basic problems of observational 
astrophysics, because of its importance in the establishment of the distance 
scale for truly large astronomical distances. 

Recent discussions of the empirical period-luminosity relation of classi
cal Cepheids are due to Fernie (1967), Sandage and Tammann (1968, 
1969, 1974, 1976a,b), Geyer (1970), van Genderin (1970), Schaltenbrand 
and Tammann (1970), Gaposchkin (1972), and Pel (1978). The Sandage 
and Tammann (1968) period-luminosity relation is shown in Figure 3.3 
(from Cox 1974a). This is a composite relation, containing Galactic 
Cepheids as well as Cepheids found in other galaxies. These authors 
conclude that there is no reason to doubt that a "universal" period-
luminosity relation exists for at least all the galaxies included in their 
study. However, the question of the universality of the period-luminosity 
relation is apparently not yet entirely settled (see, e.g., Fernie 1969; 
Gascoigne 1969). 

Although the Sandage and Tammann period-luminosity relation is 
nonlinear, the departures from linearity are rather small. The central line 
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Figure 3.3. The composite period-luminosity relation of Sandage and Tammann (1968). 

The relation is based on Cepheids in our own Galaxy as well as in others, identified in the 
figure. The ordinate is absolute visual magnitude, and the superscript 0 means that the 

absolute magnitudes have been corrected for the effects of interstellar reddening and 

extinction (after Sandage and Tammann 1968). (Courtesy of The Astrophysical Journal, 
published by the University of Chicago Press, and of the authors.) 
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of the band shown in Figure 3.3 can be represented adequately over most 
of its length by the following relation: 

Mm
0 = -2.80 Iognd- 1.43 (0.4 s log Tld g 1.7), (3.1) 

where the subscript { V )  denotes an average over period, the superscript 0 
means that the absolute magnitudes have been corrected for interstellar 
reddening and extinction, and the subscripts d mean that the periods are in 
days. Using the relations among M{v), color (Β-V), Te, and Mbol given by 
Kraft (1961), we may also write eq. (3.1) as 

'°g(z^)= 115 1θ8Π"+ 2 47 (0.4-s log Π, £ 1.7), (3.2) 

where L© denotes the solar luminosity. 
The scatter shown in Figure 3.3 about the central line is thought to be 

mostly intrinsic and a result of the finite width of the region of instability, 
and possibly of the presence of stars pulsating in different modes (see 
Chapter 10 and §19.7). The total intrinsinc width of the period-luminosity 
relation is approximately Im at a given period. 

There appear to be certain differences between Cepheids in the Galaxy 
and in the Magellanic Clouds. Perhaps most striking are the differences in 
the period distributions of Cepheids in these systems. Thus, for example, in 
the Small Magellanic Cloud there are a great many Cepheids having Π g 
3^, whereas in the Galaxy very few Cepheids have periods as short as this. 
The Cepheids in the Large Magellanic Cloud are intermediate in this 
respect between those in the Galaxy and in the Small Magellanic Cloud 
(see, e.g., data summarized by Hofmeister 1967). 

3.2. MORE RECENTLY RECOGNIZED TYPES 
OF VARIABLE STARS 

Besides the types of variable stars referred to above, at least three 
additional types have recently received considerable attention in the 
astronomical and astrophysical literature. Moreover, recent discoveries 
have increased the membership of these types considerably. In view of 
these considerations, we present here brief descriptions of these types and 
some references to the literature. 

3.2a. RAPID BLUE VARIABLES 

The rapid blue variables are a somewhat loosely defined class of objects 
characterized by relatively blue colors and very short-period light varia
tions. The variations are for the most part quite irregular, and sometimes 
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described as "flickering." The periods of light variation range from some 
tens to some hundreds of seconds. The observational literature on these 
objects is summarized in Warner and Robinson (1972); Osaki and Hansen 
(1973a); Warner and Brickhill (1974); Brickhill (1975); Patterson, Robin
son, and Nather (1977); Robinson and McGraw (1976a,b); Robinson, 
Nather, and McGraw (1976); Warner (1976b); Stiening, Hildebrand, and 
Spillar (1979); and Nather (1978). These objects are probably for the 
most part dwarf novae (which are thought to be close binaries; see, e.g., 
Kraft 1962, 1963; Warner 1976a; Patterson, Robinson, and Nather 1977) 
and variable white dwarfs (Richer and Ulrych 1974; McGraw and 
Robinson 1975, 1976; Robinson and McGraw 1976a,b; Robinson, Nather, 
and McGraw 1976; Van Horn 1978; Nather 1978; and Hansen 1979). In 
fact, it has been pointed out by McGraw (1977) that the variable white 
dwarfs are the most numerous of the variable stars and that they comprise 
a new class which he refers to as the "ZZ Ceti stars." The few rapid blue 
variables that do not belong to one of these two classes are of an uncertain 
nature (Lamb 1974; Bath, Evans, and Pringle 1974). Rapid rotation, for 
example, may be involved (e.g., Lamb 1974; Herbst, Hesser, and Ostriker 
1974). 

According to McGraw (1977) and Nather (1978), there are now known 
to be twelve apparently otherwise normal DA white dwarfs, with colors in 
the range 0.16 < B-V < 0.20 (effective temperature ~IO4oK), which 
exhibit periodicities mostly in the range 200s-1000s. Further discussion of 
these stars can be found in McGraw (1977), Van Horn (1978), Nather 
(1978), Hansen (1979), J. P. Cox and Hansen (1979), and in some of the 
above references. 

3.2b. BEAT CEPHEIDS 

The beat (or "double-mode") Cepheids (they may not actually be 
Cepheids at all) consist of a small number of stars (according to Stobie 
1977, eleven are known at present) whose light curves are not periodic. 
Nevertheless, these light curves can be decomposed into essentially only 
two (and, in one or two cases, three) periodic variations per star. The 
periodic light curves for each star, when added together, give back the 
original, observed, nonperiodic light curve. The above periodic variations 
are assumed to represent distinct pulsation modes, usually assumed to be 
the radial fundamental, first harmonic, and, when present, second 
harmonic. These modes are evidently for some reason simultaneously 
present in these stars; the modes interact with one another and produce 
"beats." The longest of these periods is normally between two and seven 
days, the next shortest period is about 70% of the longest period, and the 



24 SOME OBSERVATIONAL CONSIDERATIONS 

third period, when present, is about 80% of the second period. It may be 
significant that the ratio of the second longest period to the longest in no 
case lies outside the range 0.70-0.71 (Stobie 1977, Simon 1979). These 
stars are located in the H-R diagram near the low-luminosity end of the 
Cepheid instability strip (the long, nearly vertical, oval region in Fig. 3.1). 
It is for this reason that they are called "Cepheids." According to Stobie 
(1977), nearly half the variables in the Galaxy in the appropriate period 
range are beat Cepheids. 

Important information regarding certain aspects of stellar pulsation in 
general, and of these stars in particular, can be obtained from their 
multiple periods, largely because the period in a given mode is determined 
mostly by the mass and radius of the star (see, e.g., Cogan 1970; J. P. Cox, 
King, and Stellingwerf 1972). Hence, given two periods, both of the above 
quantities can in principle be determined. Discussions of these stars have 
been provided by Fitch (1970); Stobie (1970, 1972); Stobie and Hawardin 
(1972); Rodgers and Gingold (1973); Petersen (1973, 1974, 1978); 
Schmidt (1974); King, Hansen, Ross, and Cox (1975); Fitch and Szeidl 
(1976); A. N. Cox and Cox (1976); Cogan (1977, 1978a,b); Faulkner 
(1977a,b); Saio, Kobayashi, and Takeuti (1977); A. N. Cox, Deupree, 
King, and Hodson (1977); J. P. Cox (1978a); A. N. Cox, Hodson, and 
King (1979); see also the review papers by A. N. Cox (1978b) and J. P. 
Cox (1978, 1979) and the many references therein. 

3.2c. LINE PROFILE VARIABLE B STARS 

These stars, also called "53 Persei stars" by M. A. Smith (1979a,b), are 
for the most part main sequence or near main sequence stars of spectral 
classes mainly in the early and mid B's, say from 08 through B5. However, 
some of these stars are giants or supergiants, and they occupy those parts 
of the H-R diagram surrounding and in the general vicinity of the β Cephei 
stars. The line profile variable B stars are quite common, and most stars in 
the appropriate regions of the H-R diagram probably belong to this class 
(Smith 1979a). 

These stars primarily exhibit temporal changes in the shapes of spec
trum lines in a more or less periodic fashion, with periods ranging typically 
from a few hours to about two days (characteristically ~'/2 day). These 
spectral line shape changes can be interpreted in terms of nonradial 
oscillations, in particular of g modes (M. A. Smith 1977; Smith and 
McCall 1978; M. Smith 1978, 1979a,b; Smith and Buta 1979; see also 
Chapter 17 for an explanation of the terminology). There is evidence of 
rather frequent changes in the character of the oscillations, with a given 
character persisting for, typically, about a month (Smith 1979b). 
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Light variations of ~0.1 magnitudes have also been detected in a few 
stars of this type (Buta and Smith 1979; Smith, Africano, and Worden 
1979). Buta and Smith also present a rather nice discussion of the light 
variations accompanying nonradial stellar oscillations (see also Dziem-
bowski 1977c). 

3.3 EMPIRICAL DETERMINATION OF 
RADII OF PULSATING STARS 

Most empirical methods of radius determinations for radially pulsating 
stars are based essentially on a method devised by Baade (1926) and 
Wesselink (1946, 1947). This method proceeds in principle as follows. If Fu 

denotes the radiant flux (rate of radiation of energy per unit area) in some 
spectral band (normally -700-1000 A wide), and Lu represents the 
corresponding luminosity of the star in the spectral band, then there is at 
each instant a simple relation between Fu, Lu, and the instantaneous radial 
distance R to the effective level in the atmosphere where the radiation in 
the given spectral band originates (R is approximately equal to the 
instantaneous stellar radius). The basic assumption underlying the Wesse-
Iink method is that Fu is (for a given star) a function only of the color, 
measured by the color index B-V, of the star. Here B and V are apparent 
magnitudes, corrected for interstellar reddening, in broadband spectral 
regions centered, respectively, in the blue and visual (yellow-green) regions 
of the spectrum. If one now selects two phases during the pulsation cycle, 
say at times i, and t2, at which the colors are equal, that is (B-V)1 = 
(B-V)2, then, according to the basic assumption, F11(Z1) = Fu(Z2). It then 
follows that 

v(sr· L 

where subscripts 1 and 2 refer to quantities at times Z1 and t2, respectively. 
Hence, a measurement of the relative brightnesses of the star at two phases 
of equal color gives a measure of the ratio of the radii at these two phases. 

On the other hand, if a velocity curve is available for the star, then the 
velocity, say R(t), of the stellar surface relative to the center of mass of the 
star can be obtained once the correction factor, say p, for converting from 
observed radial velocity V(t) (relative to the center of mass) to R(t), 

R(t) = -pV(t), (3.4) 

is chosen. Assuming that the mean level in the atmosphere corresponding 
to the velocity curve is the same as the mean level referred to in the 


